blob: ae1ad423ceecd9c4c66cbb9ae81dc7b5899073bf [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <arm_neon.h>
#include "aom/aom_integer.h"
#include "aom_dsp/arm/mem_neon.h"
#include "aom_dsp/arm/sum_neon.h"
#include "aom_ports/mem.h"
#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
static INLINE void variance_4xh_neon(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride, int h,
uint32_t *sse, int *sum) {
int16x8_t sum_s16 = vdupq_n_s16(0);
int32x4_t sse_s32 = vdupq_n_s32(0);
// Number of rows we can process before 'sum_s16' overflows:
// 32767 / 255 ~= 128, but we use an 8-wide accumulator; so 256 4-wide rows.
assert(h <= 256);
int i = h;
do {
uint8x8_t s = load_unaligned_u8(src, src_stride);
uint8x8_t r = load_unaligned_u8(ref, ref_stride);
int16x8_t diff = vreinterpretq_s16_u16(vsubl_u8(s, r));
sum_s16 = vaddq_s16(sum_s16, diff);
sse_s32 = vmlal_s16(sse_s32, vget_low_s16(diff), vget_low_s16(diff));
sse_s32 = vmlal_s16(sse_s32, vget_high_s16(diff), vget_high_s16(diff));
src += 2 * src_stride;
ref += 2 * ref_stride;
i -= 2;
} while (i != 0);
*sum = horizontal_add_s16x8(sum_s16);
*sse = (uint32_t)horizontal_add_s32x4(sse_s32);
}
static INLINE void variance_8xh_neon(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride, int h,
uint32_t *sse, int *sum) {
int16x8_t sum_s16 = vdupq_n_s16(0);
int32x4_t sse_s32[2] = { vdupq_n_s32(0), vdupq_n_s32(0) };
// Number of rows we can process before 'sum_s16' overflows:
// 32767 / 255 ~= 128
assert(h <= 128);
int i = h;
do {
uint8x8_t s = vld1_u8(src);
uint8x8_t r = vld1_u8(ref);
int16x8_t diff = vreinterpretq_s16_u16(vsubl_u8(s, r));
sum_s16 = vaddq_s16(sum_s16, diff);
sse_s32[0] = vmlal_s16(sse_s32[0], vget_low_s16(diff), vget_low_s16(diff));
sse_s32[1] =
vmlal_s16(sse_s32[1], vget_high_s16(diff), vget_high_s16(diff));
src += src_stride;
ref += ref_stride;
} while (--i != 0);
*sum = horizontal_add_s16x8(sum_s16);
*sse = (uint32_t)horizontal_add_s32x4(vaddq_s32(sse_s32[0], sse_s32[1]));
}
static INLINE void variance_16xh_neon(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride, int h,
uint32_t *sse, int *sum) {
int16x8_t sum_s16[2] = { vdupq_n_s16(0), vdupq_n_s16(0) };
int32x4_t sse_s32[2] = { vdupq_n_s32(0), vdupq_n_s32(0) };
// Number of rows we can process before 'sum_s16' accumulators overflow:
// 32767 / 255 ~= 128, so 128 16-wide rows.
assert(h <= 128);
int i = h;
do {
uint8x16_t s = vld1q_u8(src);
uint8x16_t r = vld1q_u8(ref);
int16x8_t diff_l =
vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(s), vget_low_u8(r)));
int16x8_t diff_h =
vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(s), vget_high_u8(r)));
sum_s16[0] = vaddq_s16(sum_s16[0], diff_l);
sum_s16[1] = vaddq_s16(sum_s16[1], diff_h);
sse_s32[0] =
vmlal_s16(sse_s32[0], vget_low_s16(diff_l), vget_low_s16(diff_l));
sse_s32[1] =
vmlal_s16(sse_s32[1], vget_high_s16(diff_l), vget_high_s16(diff_l));
sse_s32[0] =
vmlal_s16(sse_s32[0], vget_low_s16(diff_h), vget_low_s16(diff_h));
sse_s32[1] =
vmlal_s16(sse_s32[1], vget_high_s16(diff_h), vget_high_s16(diff_h));
src += src_stride;
ref += ref_stride;
} while (--i != 0);
*sum = horizontal_add_s16x8(vaddq_s16(sum_s16[0], sum_s16[1]));
*sse = (uint32_t)horizontal_add_s32x4(vaddq_s32(sse_s32[0], sse_s32[1]));
}
static INLINE void variance_large_neon(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride,
int w, int h, int h_limit, uint32_t *sse,
int *sum) {
int32x4_t sum_s32 = vdupq_n_s32(0);
int32x4_t sse_s32[2] = { vdupq_n_s32(0), vdupq_n_s32(0) };
// 'h_limit' is the number of 'w'-width rows we can process before our 16-bit
// accumulator overflows. After hitting this limit we accumulate into 32-bit
// elements.
int h_tmp = h > h_limit ? h_limit : h;
int i = 0;
do {
int16x8_t sum_s16[2] = { vdupq_n_s16(0), vdupq_n_s16(0) };
do {
int j = 0;
do {
uint8x16_t s = vld1q_u8(src + j);
uint8x16_t r = vld1q_u8(ref + j);
int16x8_t diff_l =
vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(s), vget_low_u8(r)));
int16x8_t diff_h =
vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(s), vget_high_u8(r)));
sum_s16[0] = vaddq_s16(sum_s16[0], diff_l);
sum_s16[1] = vaddq_s16(sum_s16[1], diff_h);
sse_s32[0] =
vmlal_s16(sse_s32[0], vget_low_s16(diff_l), vget_low_s16(diff_l));
sse_s32[1] =
vmlal_s16(sse_s32[1], vget_high_s16(diff_l), vget_high_s16(diff_l));
sse_s32[0] =
vmlal_s16(sse_s32[0], vget_low_s16(diff_h), vget_low_s16(diff_h));
sse_s32[1] =
vmlal_s16(sse_s32[1], vget_high_s16(diff_h), vget_high_s16(diff_h));
j += 16;
} while (j < w);
src += src_stride;
ref += ref_stride;
i++;
} while (i < h_tmp);
sum_s32 = vpadalq_s16(sum_s32, sum_s16[0]);
sum_s32 = vpadalq_s16(sum_s32, sum_s16[1]);
h_tmp += h_limit;
} while (i < h);
*sum = horizontal_add_s32x4(sum_s32);
*sse = (uint32_t)horizontal_add_s32x4(vaddq_s32(sse_s32[0], sse_s32[1]));
}
static INLINE void variance_32xh_neon(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride, int h,
uint32_t *sse, int *sum) {
variance_large_neon(src, src_stride, ref, ref_stride, 32, h, 64, sse, sum);
}
static INLINE void variance_64xh_neon(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride, int h,
uint32_t *sse, int *sum) {
variance_large_neon(src, src_stride, ref, ref_stride, 64, h, 32, sse, sum);
}
static INLINE void variance_128xh_neon(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride,
int h, uint32_t *sse, int *sum) {
variance_large_neon(src, src_stride, ref, ref_stride, 128, h, 16, sse, sum);
}
#define VARIANCE_WXH_NEON(w, h, shift) \
unsigned int aom_variance##w##x##h##_neon( \
const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, \
unsigned int *sse) { \
int sum; \
variance_##w##xh_neon(src, src_stride, ref, ref_stride, h, sse, &sum); \
return *sse - (uint32_t)(((int64_t)sum * sum) >> shift); \
}
VARIANCE_WXH_NEON(4, 4, 4)
VARIANCE_WXH_NEON(4, 8, 5)
VARIANCE_WXH_NEON(4, 16, 6)
VARIANCE_WXH_NEON(8, 4, 5)
VARIANCE_WXH_NEON(8, 8, 6)
VARIANCE_WXH_NEON(8, 16, 7)
VARIANCE_WXH_NEON(8, 32, 8)
VARIANCE_WXH_NEON(16, 4, 6)
VARIANCE_WXH_NEON(16, 8, 7)
VARIANCE_WXH_NEON(16, 16, 8)
VARIANCE_WXH_NEON(16, 32, 9)
VARIANCE_WXH_NEON(16, 64, 10)
VARIANCE_WXH_NEON(32, 8, 8)
VARIANCE_WXH_NEON(32, 16, 9)
VARIANCE_WXH_NEON(32, 32, 10)
VARIANCE_WXH_NEON(32, 64, 11)
VARIANCE_WXH_NEON(64, 16, 10)
VARIANCE_WXH_NEON(64, 32, 11)
VARIANCE_WXH_NEON(64, 64, 12)
VARIANCE_WXH_NEON(64, 128, 13)
VARIANCE_WXH_NEON(128, 64, 13)
VARIANCE_WXH_NEON(128, 128, 14)
#undef VARIANCE_WXH_NEON
// TODO(yunqingwang): Perform variance of two/four 8x8 blocks similar to that of
// AVX2. Also, implement the NEON for variance computation present in this
// function.
void aom_get_var_sse_sum_8x8_quad_neon(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride,
uint32_t *sse8x8, int *sum8x8,
unsigned int *tot_sse, int *tot_sum,
uint32_t *var8x8) {
// Loop over four 8x8 blocks. Process one 8x32 block.
for (int k = 0; k < 4; k++) {
variance_8xh_neon(src + (k * 8), src_stride, ref + (k * 8), ref_stride, 8,
&sse8x8[k], &sum8x8[k]);
}
*tot_sse += sse8x8[0] + sse8x8[1] + sse8x8[2] + sse8x8[3];
*tot_sum += sum8x8[0] + sum8x8[1] + sum8x8[2] + sum8x8[3];
for (int i = 0; i < 4; i++) {
var8x8[i] = sse8x8[i] - (uint32_t)(((int64_t)sum8x8[i] * sum8x8[i]) >> 6);
}
}
void aom_get_var_sse_sum_16x16_dual_neon(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride,
uint32_t *sse16x16,
unsigned int *tot_sse, int *tot_sum,
uint32_t *var16x16) {
int sum16x16[2] = { 0 };
// Loop over two 16x16 blocks. Process one 16x32 block.
for (int k = 0; k < 2; k++) {
variance_16xh_neon(src + (k * 16), src_stride, ref + (k * 16), ref_stride,
16, &sse16x16[k], &sum16x16[k]);
}
*tot_sse += sse16x16[0] + sse16x16[1];
*tot_sum += sum16x16[0] + sum16x16[1];
for (int i = 0; i < 2; i++) {
var16x16[i] =
sse16x16[i] - (uint32_t)(((int64_t)sum16x16[i] * sum16x16[i]) >> 8);
}
}
static INLINE unsigned int mse8xh_neon(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride,
unsigned int *sse, int h) {
uint8x8_t s[2], r[2];
int16x4_t diff_lo[2], diff_hi[2];
uint16x8_t diff[2];
int32x4_t sse_s32[2] = { vdupq_n_s32(0), vdupq_n_s32(0) };
int i = h;
do {
s[0] = vld1_u8(src);
src += src_stride;
s[1] = vld1_u8(src);
src += src_stride;
r[0] = vld1_u8(ref);
ref += ref_stride;
r[1] = vld1_u8(ref);
ref += ref_stride;
diff[0] = vsubl_u8(s[0], r[0]);
diff[1] = vsubl_u8(s[1], r[1]);
diff_lo[0] = vreinterpret_s16_u16(vget_low_u16(diff[0]));
diff_lo[1] = vreinterpret_s16_u16(vget_low_u16(diff[1]));
sse_s32[0] = vmlal_s16(sse_s32[0], diff_lo[0], diff_lo[0]);
sse_s32[1] = vmlal_s16(sse_s32[1], diff_lo[1], diff_lo[1]);
diff_hi[0] = vreinterpret_s16_u16(vget_high_u16(diff[0]));
diff_hi[1] = vreinterpret_s16_u16(vget_high_u16(diff[1]));
sse_s32[0] = vmlal_s16(sse_s32[0], diff_hi[0], diff_hi[0]);
sse_s32[1] = vmlal_s16(sse_s32[1], diff_hi[1], diff_hi[1]);
i -= 2;
} while (i != 0);
sse_s32[0] = vaddq_s32(sse_s32[0], sse_s32[1]);
*sse = horizontal_add_u32x4(vreinterpretq_u32_s32(sse_s32[0]));
return horizontal_add_u32x4(vreinterpretq_u32_s32(sse_s32[0]));
}
static INLINE unsigned int mse16xh_neon(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride,
unsigned int *sse, int h) {
uint8x16_t s[2], r[2];
int16x4_t diff_lo[4], diff_hi[4];
uint16x8_t diff[4];
int32x4_t sse_s32[4] = { vdupq_n_s32(0), vdupq_n_s32(0), vdupq_n_s32(0),
vdupq_n_s32(0) };
int i = h;
do {
s[0] = vld1q_u8(src);
src += src_stride;
s[1] = vld1q_u8(src);
src += src_stride;
r[0] = vld1q_u8(ref);
ref += ref_stride;
r[1] = vld1q_u8(ref);
ref += ref_stride;
diff[0] = vsubl_u8(vget_low_u8(s[0]), vget_low_u8(r[0]));
diff[1] = vsubl_u8(vget_high_u8(s[0]), vget_high_u8(r[0]));
diff[2] = vsubl_u8(vget_low_u8(s[1]), vget_low_u8(r[1]));
diff[3] = vsubl_u8(vget_high_u8(s[1]), vget_high_u8(r[1]));
diff_lo[0] = vreinterpret_s16_u16(vget_low_u16(diff[0]));
diff_lo[1] = vreinterpret_s16_u16(vget_low_u16(diff[1]));
sse_s32[0] = vmlal_s16(sse_s32[0], diff_lo[0], diff_lo[0]);
sse_s32[1] = vmlal_s16(sse_s32[1], diff_lo[1], diff_lo[1]);
diff_lo[2] = vreinterpret_s16_u16(vget_low_u16(diff[2]));
diff_lo[3] = vreinterpret_s16_u16(vget_low_u16(diff[3]));
sse_s32[2] = vmlal_s16(sse_s32[2], diff_lo[2], diff_lo[2]);
sse_s32[3] = vmlal_s16(sse_s32[3], diff_lo[3], diff_lo[3]);
diff_hi[0] = vreinterpret_s16_u16(vget_high_u16(diff[0]));
diff_hi[1] = vreinterpret_s16_u16(vget_high_u16(diff[1]));
sse_s32[0] = vmlal_s16(sse_s32[0], diff_hi[0], diff_hi[0]);
sse_s32[1] = vmlal_s16(sse_s32[1], diff_hi[1], diff_hi[1]);
diff_hi[2] = vreinterpret_s16_u16(vget_high_u16(diff[2]));
diff_hi[3] = vreinterpret_s16_u16(vget_high_u16(diff[3]));
sse_s32[2] = vmlal_s16(sse_s32[2], diff_hi[2], diff_hi[2]);
sse_s32[3] = vmlal_s16(sse_s32[3], diff_hi[3], diff_hi[3]);
i -= 2;
} while (i != 0);
sse_s32[0] = vaddq_s32(sse_s32[0], sse_s32[1]);
sse_s32[2] = vaddq_s32(sse_s32[2], sse_s32[3]);
sse_s32[0] = vaddq_s32(sse_s32[0], sse_s32[2]);
*sse = horizontal_add_u32x4(vreinterpretq_u32_s32(sse_s32[0]));
return horizontal_add_u32x4(vreinterpretq_u32_s32(sse_s32[0]));
}
#define MSE_WXH_NEON(w, h) \
unsigned int aom_mse##w##x##h##_neon(const uint8_t *src, int src_stride, \
const uint8_t *ref, int ref_stride, \
unsigned int *sse) { \
return mse##w##xh_neon(src, src_stride, ref, ref_stride, sse, h); \
}
MSE_WXH_NEON(8, 8)
MSE_WXH_NEON(8, 16)
MSE_WXH_NEON(16, 8)
MSE_WXH_NEON(16, 16)
#undef MSE_WXH_NEON
static INLINE uint64x2_t mse_accumulate_u16_u8_8x2(uint64x2_t sum,
uint16x8_t s0, uint16x8_t s1,
uint8x8_t d0, uint8x8_t d1) {
int16x8_t e0 = vreinterpretq_s16_u16(vsubw_u8(s0, d0));
int16x8_t e1 = vreinterpretq_s16_u16(vsubw_u8(s1, d1));
int32x4_t mse = vmull_s16(vget_low_s16(e0), vget_low_s16(e0));
mse = vmlal_s16(mse, vget_high_s16(e0), vget_high_s16(e0));
mse = vmlal_s16(mse, vget_low_s16(e1), vget_low_s16(e1));
mse = vmlal_s16(mse, vget_high_s16(e1), vget_high_s16(e1));
return vpadalq_u32(sum, vreinterpretq_u32_s32(mse));
}
static uint64x2_t mse_wxh_16bit(uint8_t *dst, int dstride, const uint16_t *src,
int sstride, int w, int h) {
assert((w == 8 || w == 4) && (h == 8 || h == 4));
uint64x2_t sum = vdupq_n_u64(0);
if (w == 8) {
do {
uint8x8_t d0 = vld1_u8(dst + 0 * dstride);
uint8x8_t d1 = vld1_u8(dst + 1 * dstride);
uint16x8_t s0 = vld1q_u16(src + 0 * sstride);
uint16x8_t s1 = vld1q_u16(src + 1 * sstride);
sum = mse_accumulate_u16_u8_8x2(sum, s0, s1, d0, d1);
dst += 2 * dstride;
src += 2 * sstride;
h -= 2;
} while (h != 0);
} else {
do {
uint8x8_t d0 = load_unaligned_u8_4x2(dst + 0 * dstride, dstride);
uint8x8_t d1 = load_unaligned_u8_4x2(dst + 2 * dstride, dstride);
uint16x8_t s0 = load_unaligned_u16_4x2(src + 0 * sstride, sstride);
uint16x8_t s1 = load_unaligned_u16_4x2(src + 2 * sstride, sstride);
sum = mse_accumulate_u16_u8_8x2(sum, s0, s1, d0, d1);
dst += 4 * dstride;
src += 4 * sstride;
h -= 4;
} while (h != 0);
}
return sum;
}
// Computes mse for a given block size. This function gets called for specific
// block sizes, which are 8x8, 8x4, 4x8 and 4x4.
uint64_t aom_mse_wxh_16bit_neon(uint8_t *dst, int dstride, uint16_t *src,
int sstride, int w, int h) {
return horizontal_add_u64x2(mse_wxh_16bit(dst, dstride, src, sstride, w, h));
}
uint32_t aom_get_mb_ss_neon(const int16_t *a) {
int32x4_t sse[2] = { vdupq_n_s32(0), vdupq_n_s32(0) };
for (int i = 0; i < 256; i = i + 8) {
int16x8_t a_s16 = vld1q_s16(a + i);
sse[0] = vmlal_s16(sse[0], vget_low_s16(a_s16), vget_low_s16(a_s16));
sse[1] = vmlal_s16(sse[1], vget_high_s16(a_s16), vget_high_s16(a_s16));
}
return horizontal_add_s32x4(vaddq_s32(sse[0], sse[1]));
}
uint64_t aom_mse_16xh_16bit_neon(uint8_t *dst, int dstride, uint16_t *src,
int w, int h) {
uint64x2_t sum = vdupq_n_u64(0);
int num_blks = 16 / w;
do {
sum = vaddq_u64(sum, mse_wxh_16bit(dst, dstride, src, w, w, h));
dst += w;
src += w * h;
} while (--num_blks != 0);
return horizontal_add_u64x2(sum);
}