| /* |
| * Copyright (c) 2023, Alliance for Open Media. All rights reserved. |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include "aom_dsp/flow_estimation/disflow.h" |
| |
| #include <arm_neon.h> |
| #include <math.h> |
| |
| #include "aom_dsp/arm/mem_neon.h" |
| #include "aom_dsp/arm/sum_neon.h" |
| #include "aom_dsp/flow_estimation/arm/disflow_neon.h" |
| #include "config/aom_config.h" |
| #include "config/aom_dsp_rtcd.h" |
| |
| // Compare two regions of width x height pixels, one rooted at position |
| // (x, y) in src and the other at (x + u, y + v) in ref. |
| // This function returns the sum of squared pixel differences between |
| // the two regions. |
| static INLINE void compute_flow_error(const uint8_t *src, const uint8_t *ref, |
| int width, int height, int stride, int x, |
| int y, double u, double v, int16_t *dt) { |
| // Split offset into integer and fractional parts, and compute cubic |
| // interpolation kernels |
| const int u_int = (int)floor(u); |
| const int v_int = (int)floor(v); |
| const double u_frac = u - floor(u); |
| const double v_frac = v - floor(v); |
| |
| int h_kernel[4]; |
| int v_kernel[4]; |
| get_cubic_kernel_int(u_frac, h_kernel); |
| get_cubic_kernel_int(v_frac, v_kernel); |
| |
| int16_t tmp_[DISFLOW_PATCH_SIZE * (DISFLOW_PATCH_SIZE + 3)]; |
| |
| // Clamp coordinates so that all pixels we fetch will remain within the |
| // allocated border region, but allow them to go far enough out that |
| // the border pixels' values do not change. |
| // Since we are calculating an 8x8 block, the bottom-right pixel |
| // in the block has coordinates (x0 + 7, y0 + 7). Then, the cubic |
| // interpolation has 4 taps, meaning that the output of pixel |
| // (x_w, y_w) depends on the pixels in the range |
| // ([x_w - 1, x_w + 2], [y_w - 1, y_w + 2]). |
| // |
| // Thus the most extreme coordinates which will be fetched are |
| // (x0 - 1, y0 - 1) and (x0 + 9, y0 + 9). |
| const int x0 = clamp(x + u_int, -9, width); |
| const int y0 = clamp(y + v_int, -9, height); |
| |
| // Horizontal convolution. |
| const uint8_t *ref_start = ref + (y0 - 1) * stride + (x0 - 1); |
| int16x4_t h_filter = vmovn_s32(vld1q_s32(h_kernel)); |
| |
| for (int i = 0; i < DISFLOW_PATCH_SIZE + 3; ++i) { |
| uint8x16_t r = vld1q_u8(ref_start + i * stride); |
| uint16x8_t r0 = vmovl_u8(vget_low_u8(r)); |
| uint16x8_t r1 = vmovl_u8(vget_high_u8(r)); |
| |
| int16x8_t s0 = vreinterpretq_s16_u16(r0); |
| int16x8_t s1 = vreinterpretq_s16_u16(vextq_u16(r0, r1, 1)); |
| int16x8_t s2 = vreinterpretq_s16_u16(vextq_u16(r0, r1, 2)); |
| int16x8_t s3 = vreinterpretq_s16_u16(vextq_u16(r0, r1, 3)); |
| |
| int32x4_t sum_lo = vmull_lane_s16(vget_low_s16(s0), h_filter, 0); |
| sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(s1), h_filter, 1); |
| sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(s2), h_filter, 2); |
| sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(s3), h_filter, 3); |
| |
| int32x4_t sum_hi = vmull_lane_s16(vget_high_s16(s0), h_filter, 0); |
| sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(s1), h_filter, 1); |
| sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(s2), h_filter, 2); |
| sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(s3), h_filter, 3); |
| |
| // 6 is the maximum allowable number of extra bits which will avoid |
| // the intermediate values overflowing an int16_t. The most extreme |
| // intermediate value occurs when: |
| // * The input pixels are [0, 255, 255, 0] |
| // * u_frac = 0.5 |
| // In this case, the un-scaled output is 255 * 1.125 = 286.875. |
| // As an integer with 6 fractional bits, that is 18360, which fits |
| // in an int16_t. But with 7 fractional bits it would be 36720, |
| // which is too large. |
| |
| int16x8_t sum = vcombine_s16(vrshrn_n_s32(sum_lo, DISFLOW_INTERP_BITS - 6), |
| vrshrn_n_s32(sum_hi, DISFLOW_INTERP_BITS - 6)); |
| vst1q_s16(tmp_ + i * DISFLOW_PATCH_SIZE, sum); |
| } |
| |
| // Vertical convolution. |
| int16x4_t v_filter = vmovn_s32(vld1q_s32(v_kernel)); |
| int16_t *tmp_start = tmp_ + DISFLOW_PATCH_SIZE; |
| |
| for (int i = 0; i < DISFLOW_PATCH_SIZE; ++i) { |
| int16x8_t t0 = vld1q_s16(tmp_start + (i - 1) * DISFLOW_PATCH_SIZE); |
| int16x8_t t1 = vld1q_s16(tmp_start + i * DISFLOW_PATCH_SIZE); |
| int16x8_t t2 = vld1q_s16(tmp_start + (i + 1) * DISFLOW_PATCH_SIZE); |
| int16x8_t t3 = vld1q_s16(tmp_start + (i + 2) * DISFLOW_PATCH_SIZE); |
| |
| int32x4_t sum_lo = vmull_lane_s16(vget_low_s16(t0), v_filter, 0); |
| sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(t1), v_filter, 1); |
| sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(t2), v_filter, 2); |
| sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(t3), v_filter, 3); |
| |
| int32x4_t sum_hi = vmull_lane_s16(vget_high_s16(t0), v_filter, 0); |
| sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(t1), v_filter, 1); |
| sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(t2), v_filter, 2); |
| sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(t3), v_filter, 3); |
| |
| uint8x8_t s = vld1_u8(src + (i + y) * stride + x); |
| int16x8_t s_s16 = vreinterpretq_s16_u16(vshll_n_u8(s, 3)); |
| |
| // This time, we have to round off the 6 extra bits which were kept |
| // earlier, but we also want to keep DISFLOW_DERIV_SCALE_LOG2 extra bits |
| // of precision to match the scale of the dx and dy arrays. |
| sum_lo = vrshrq_n_s32(sum_lo, |
| DISFLOW_INTERP_BITS + 6 - DISFLOW_DERIV_SCALE_LOG2); |
| sum_hi = vrshrq_n_s32(sum_hi, |
| DISFLOW_INTERP_BITS + 6 - DISFLOW_DERIV_SCALE_LOG2); |
| int32x4_t err_lo = vsubw_s16(sum_lo, vget_low_s16(s_s16)); |
| int32x4_t err_hi = vsubw_s16(sum_hi, vget_high_s16(s_s16)); |
| vst1q_s16(dt + i * DISFLOW_PATCH_SIZE, |
| vcombine_s16(vmovn_s32(err_lo), vmovn_s32(err_hi))); |
| } |
| } |
| |
| // Computes the components of the system of equations used to solve for |
| // a flow vector. |
| // |
| // The flow equations are a least-squares system, derived as follows: |
| // |
| // For each pixel in the patch, we calculate the current error `dt`, |
| // and the x and y gradients `dx` and `dy` of the source patch. |
| // This means that, to first order, the squared error for this pixel is |
| // |
| // (dt + u * dx + v * dy)^2 |
| // |
| // where (u, v) are the incremental changes to the flow vector. |
| // |
| // We then want to find the values of u and v which minimize the sum |
| // of the squared error across all pixels. Conveniently, this fits exactly |
| // into the form of a least squares problem, with one equation |
| // |
| // u * dx + v * dy = -dt |
| // |
| // for each pixel. |
| // |
| // Summing across all pixels in a square window of size DISFLOW_PATCH_SIZE, |
| // and absorbing the - sign elsewhere, this results in the least squares system |
| // |
| // M = |sum(dx * dx) sum(dx * dy)| |
| // |sum(dx * dy) sum(dy * dy)| |
| // |
| // b = |sum(dx * dt)| |
| // |sum(dy * dt)| |
| static INLINE void compute_flow_matrix(const int16_t *dx, int dx_stride, |
| const int16_t *dy, int dy_stride, |
| double *M_inv) { |
| int32x4_t sum[4] = { vdupq_n_s32(0), vdupq_n_s32(0), vdupq_n_s32(0), |
| vdupq_n_s32(0) }; |
| |
| for (int i = 0; i < DISFLOW_PATCH_SIZE; i++) { |
| int16x8_t x = vld1q_s16(dx + i * dx_stride); |
| int16x8_t y = vld1q_s16(dy + i * dy_stride); |
| sum[0] = vmlal_s16(sum[0], vget_low_s16(x), vget_low_s16(x)); |
| sum[0] = vmlal_s16(sum[0], vget_high_s16(x), vget_high_s16(x)); |
| |
| sum[1] = vmlal_s16(sum[1], vget_low_s16(x), vget_low_s16(y)); |
| sum[1] = vmlal_s16(sum[1], vget_high_s16(x), vget_high_s16(y)); |
| |
| sum[3] = vmlal_s16(sum[3], vget_low_s16(y), vget_low_s16(y)); |
| sum[3] = vmlal_s16(sum[3], vget_high_s16(y), vget_high_s16(y)); |
| } |
| sum[2] = sum[1]; |
| |
| int32x4_t res = horizontal_add_4d_s32x4(sum); |
| |
| // Apply regularization |
| // We follow the standard regularization method of adding `k * I` before |
| // inverting. This ensures that the matrix will be invertible. |
| // |
| // Setting the regularization strength k to 1 seems to work well here, as |
| // typical values coming from the other equations are very large (1e5 to |
| // 1e6, with an upper limit of around 6e7, at the time of writing). |
| // It also preserves the property that all matrix values are whole numbers, |
| // which is convenient for integerized SIMD implementation. |
| |
| double M0 = (double)vgetq_lane_s32(res, 0) + 1; |
| double M1 = (double)vgetq_lane_s32(res, 1); |
| double M2 = (double)vgetq_lane_s32(res, 2); |
| double M3 = (double)vgetq_lane_s32(res, 3) + 1; |
| |
| // Invert matrix M. |
| double det = (M0 * M3) - (M1 * M2); |
| assert(det >= 1); |
| const double det_inv = 1 / det; |
| |
| M_inv[0] = M3 * det_inv; |
| M_inv[1] = -M1 * det_inv; |
| M_inv[2] = -M2 * det_inv; |
| M_inv[3] = M0 * det_inv; |
| } |
| |
| static INLINE void compute_flow_vector(const int16_t *dx, int dx_stride, |
| const int16_t *dy, int dy_stride, |
| const int16_t *dt, int dt_stride, |
| int *b) { |
| int32x4_t b_s32[2] = { vdupq_n_s32(0), vdupq_n_s32(0) }; |
| |
| for (int i = 0; i < DISFLOW_PATCH_SIZE; i++) { |
| int16x8_t dx16 = vld1q_s16(dx + i * dx_stride); |
| int16x8_t dy16 = vld1q_s16(dy + i * dy_stride); |
| int16x8_t dt16 = vld1q_s16(dt + i * dt_stride); |
| |
| b_s32[0] = vmlal_s16(b_s32[0], vget_low_s16(dx16), vget_low_s16(dt16)); |
| b_s32[0] = vmlal_s16(b_s32[0], vget_high_s16(dx16), vget_high_s16(dt16)); |
| |
| b_s32[1] = vmlal_s16(b_s32[1], vget_low_s16(dy16), vget_low_s16(dt16)); |
| b_s32[1] = vmlal_s16(b_s32[1], vget_high_s16(dy16), vget_high_s16(dt16)); |
| } |
| |
| int32x4_t b_red = horizontal_add_2d_s32(b_s32[0], b_s32[1]); |
| vst1_s32(b, add_pairwise_s32x4(b_red)); |
| } |
| |
| void aom_compute_flow_at_point_neon(const uint8_t *src, const uint8_t *ref, |
| int x, int y, int width, int height, |
| int stride, double *u, double *v) { |
| double M_inv[4]; |
| int b[2]; |
| int16_t dt[DISFLOW_PATCH_SIZE * DISFLOW_PATCH_SIZE]; |
| int16_t dx[DISFLOW_PATCH_SIZE * DISFLOW_PATCH_SIZE]; |
| int16_t dy[DISFLOW_PATCH_SIZE * DISFLOW_PATCH_SIZE]; |
| |
| // Compute gradients within this patch |
| const uint8_t *src_patch = &src[y * stride + x]; |
| sobel_filter_x(src_patch, stride, dx, DISFLOW_PATCH_SIZE); |
| sobel_filter_y(src_patch, stride, dy, DISFLOW_PATCH_SIZE); |
| |
| compute_flow_matrix(dx, DISFLOW_PATCH_SIZE, dy, DISFLOW_PATCH_SIZE, M_inv); |
| |
| for (int itr = 0; itr < DISFLOW_MAX_ITR; itr++) { |
| compute_flow_error(src, ref, width, height, stride, x, y, *u, *v, dt); |
| compute_flow_vector(dx, DISFLOW_PATCH_SIZE, dy, DISFLOW_PATCH_SIZE, dt, |
| DISFLOW_PATCH_SIZE, b); |
| |
| // Solve flow equations to find a better estimate for the flow vector |
| // at this point |
| const double step_u = M_inv[0] * b[0] + M_inv[1] * b[1]; |
| const double step_v = M_inv[2] * b[0] + M_inv[3] * b[1]; |
| *u += fclamp(step_u * DISFLOW_STEP_SIZE, -2, 2); |
| *v += fclamp(step_v * DISFLOW_STEP_SIZE, -2, 2); |
| |
| if (fabs(step_u) + fabs(step_v) < DISFLOW_STEP_SIZE_THRESOLD) { |
| // Stop iteration when we're close to convergence |
| break; |
| } |
| } |
| } |