blob: 213dcfe10221a293ebdb6352fe8e2dd9ba6cf087 [file] [log] [blame]
/*
* Copyright (c) 2018, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <math.h>
#include <immintrin.h>
#include "config/aom_dsp_rtcd.h"
#include "aom_ports/mem.h"
#include "aom_dsp/flow_estimation/corner_match.h"
DECLARE_ALIGNED(32, static const uint16_t, ones_array[16]) = { 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1,
1, 1, 1, 1 };
#if MATCH_SZ != 16
#error "Need to apply pixel mask in corner_match_avx2.c if MATCH_SZ != 16"
#endif
/* Compute mean and standard deviation of pixels in a window of size
MATCH_SZ by MATCH_SZ centered at (x, y).
Store results into *mean and *one_over_stddev
Note: The output of this function is scaled by MATCH_SZ, as in
*mean = MATCH_SZ * <true mean> and
*one_over_stddev = 1 / (MATCH_SZ * <true stddev>)
Combined with the fact that we return 1/stddev rather than the standard
deviation itself, this allows us to completely avoid divisions in
aom_compute_correlation, which is much hotter than this function is.
Returns true if this feature point is usable, false otherwise.
*/
bool aom_compute_mean_stddev_avx2(const unsigned char *frame, int stride, int x,
int y, double *mean,
double *one_over_stddev) {
__m256i sum_vec = _mm256_setzero_si256();
__m256i sumsq_vec = _mm256_setzero_si256();
frame += (y - MATCH_SZ_BY2) * stride + (x - MATCH_SZ_BY2);
for (int i = 0; i < MATCH_SZ; ++i) {
const __m256i v = _mm256_cvtepu8_epi16(_mm_loadu_si128((__m128i *)frame));
sum_vec = _mm256_add_epi16(sum_vec, v);
sumsq_vec = _mm256_add_epi32(sumsq_vec, _mm256_madd_epi16(v, v));
frame += stride;
}
// Reduce sum_vec and sumsq_vec into single values
// Start by reducing each vector to 8x32-bit values, hadd() to perform 8
// additions, sum vertically to do 4 more, then the last 2 in scalar code.
const __m256i ones = _mm256_load_si256((__m256i *)ones_array);
const __m256i partial_sum = _mm256_madd_epi16(sum_vec, ones);
const __m256i tmp_8x32 = _mm256_hadd_epi32(partial_sum, sumsq_vec);
const __m128i tmp_4x32 = _mm_add_epi32(_mm256_extracti128_si256(tmp_8x32, 0),
_mm256_extracti128_si256(tmp_8x32, 1));
const int sum =
_mm_extract_epi32(tmp_4x32, 0) + _mm_extract_epi32(tmp_4x32, 1);
const int sumsq =
_mm_extract_epi32(tmp_4x32, 2) + _mm_extract_epi32(tmp_4x32, 3);
*mean = (double)sum / MATCH_SZ;
const double variance = sumsq - (*mean) * (*mean);
if (variance < MIN_FEATURE_VARIANCE) {
*one_over_stddev = 0.0;
return false;
}
*one_over_stddev = 1.0 / sqrt(variance);
return true;
}
/* Compute corr(frame1, frame2) over a window of size MATCH_SZ by MATCH_SZ.
To save on computation, the mean and (1 divided by the) standard deviation
of the window in each frame are precomputed and passed into this function
as arguments.
*/
double aom_compute_correlation_avx2(const unsigned char *frame1, int stride1,
int x1, int y1, double mean1,
double one_over_stddev1,
const unsigned char *frame2, int stride2,
int x2, int y2, double mean2,
double one_over_stddev2) {
__m256i cross_vec = _mm256_setzero_si256();
frame1 += (y1 - MATCH_SZ_BY2) * stride1 + (x1 - MATCH_SZ_BY2);
frame2 += (y2 - MATCH_SZ_BY2) * stride2 + (x2 - MATCH_SZ_BY2);
for (int i = 0; i < MATCH_SZ; ++i) {
const __m256i v1 = _mm256_cvtepu8_epi16(_mm_loadu_si128((__m128i *)frame1));
const __m256i v2 = _mm256_cvtepu8_epi16(_mm_loadu_si128((__m128i *)frame2));
cross_vec = _mm256_add_epi32(cross_vec, _mm256_madd_epi16(v1, v2));
frame1 += stride1;
frame2 += stride2;
}
// Sum cross_vec into a single value
const __m128i tmp = _mm_add_epi32(_mm256_extracti128_si256(cross_vec, 0),
_mm256_extracti128_si256(cross_vec, 1));
const int cross = _mm_extract_epi32(tmp, 0) + _mm_extract_epi32(tmp, 1) +
_mm_extract_epi32(tmp, 2) + _mm_extract_epi32(tmp, 3);
// Note: In theory, the calculations here "should" be
// covariance = cross / N^2 - mean1 * mean2
// correlation = covariance / (stddev1 * stddev2).
//
// However, because of the scaling in aom_compute_mean_stddev, the
// lines below actually calculate
// covariance * N^2 = cross - (mean1 * N) * (mean2 * N)
// correlation = (covariance * N^2) / ((stddev1 * N) * (stddev2 * N))
//
// ie. we have removed the need for a division, and still end up with the
// correct unscaled correlation (ie, in the range [-1, +1])
const double covariance = cross - mean1 * mean2;
const double correlation = covariance * (one_over_stddev1 * one_over_stddev2);
return correlation;
}