| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved. |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <tmmintrin.h> |
| |
| #include "config/aom_dsp_rtcd.h" |
| |
| #include "aom_dsp/aom_filter.h" |
| #include "aom_dsp/x86/convolve.h" |
| #include "aom_dsp/x86/convolve_sse2.h" |
| #include "aom_dsp/x86/convolve_ssse3.h" |
| #include "aom_dsp/x86/mem_sse2.h" |
| #include "aom_dsp/x86/transpose_sse2.h" |
| #include "aom_mem/aom_mem.h" |
| #include "aom_ports/mem.h" |
| #include "aom_ports/emmintrin_compat.h" |
| |
| DECLARE_ALIGNED(32, static const uint8_t, filt_h4[]) = { |
| 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 0, 1, 1, |
| 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 2, 3, 3, 4, 4, 5, |
| 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 2, 3, 3, 4, 4, 5, 5, 6, 6, |
| 7, 7, 8, 8, 9, 9, 10, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, |
| 10, 11, 11, 12, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, |
| 12, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 6, 7, |
| 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14 |
| }; |
| |
| DECLARE_ALIGNED(32, static const uint8_t, filtd4[]) = { |
| 2, 3, 4, 5, 3, 4, 5, 6, 4, 5, 6, 7, 5, 6, 7, 8, |
| 2, 3, 4, 5, 3, 4, 5, 6, 4, 5, 6, 7, 5, 6, 7, 8, |
| }; |
| |
| static void aom_filter_block1d4_h4_ssse3( |
| const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr, |
| ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) { |
| __m128i filtersReg; |
| __m128i addFilterReg32, filt1Reg, firstFilters, srcReg32b1, srcRegFilt32b1_1; |
| unsigned int i; |
| src_ptr -= 3; |
| addFilterReg32 = _mm_set1_epi16(32); |
| filtersReg = _mm_loadu_si128((const __m128i *)filter); |
| filtersReg = _mm_srai_epi16(filtersReg, 1); |
| // converting the 16 bit (short) to 8 bit (byte) and have the same data |
| // in both lanes of 128 bit register. |
| filtersReg = _mm_packs_epi16(filtersReg, filtersReg); |
| |
| firstFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi32(0x5040302u)); |
| filt1Reg = _mm_load_si128((__m128i const *)(filtd4)); |
| |
| for (i = output_height; i > 0; i -= 1) { |
| // load the 2 strides of source |
| srcReg32b1 = _mm_loadu_si128((const __m128i *)src_ptr); |
| |
| // filter the source buffer |
| srcRegFilt32b1_1 = _mm_shuffle_epi8(srcReg32b1, filt1Reg); |
| |
| // multiply 4 adjacent elements with the filter and add the result |
| srcRegFilt32b1_1 = _mm_maddubs_epi16(srcRegFilt32b1_1, firstFilters); |
| |
| srcRegFilt32b1_1 = _mm_hadds_epi16(srcRegFilt32b1_1, _mm_setzero_si128()); |
| |
| // shift by 6 bit each 16 bit |
| srcRegFilt32b1_1 = _mm_adds_epi16(srcRegFilt32b1_1, addFilterReg32); |
| srcRegFilt32b1_1 = _mm_srai_epi16(srcRegFilt32b1_1, 6); |
| |
| // shrink to 8 bit each 16 bits, the first lane contain the first |
| // convolve result and the second lane contain the second convolve result |
| srcRegFilt32b1_1 = _mm_packus_epi16(srcRegFilt32b1_1, _mm_setzero_si128()); |
| |
| src_ptr += src_pixels_per_line; |
| |
| *((int *)(output_ptr)) = _mm_cvtsi128_si32(srcRegFilt32b1_1); |
| output_ptr += output_pitch; |
| } |
| } |
| |
| static void aom_filter_block1d4_v4_ssse3( |
| const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr, |
| ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) { |
| __m128i filtersReg; |
| __m128i addFilterReg32; |
| __m128i srcReg2, srcReg3, srcReg23, srcReg4, srcReg34, srcReg5, srcReg45, |
| srcReg6, srcReg56; |
| __m128i srcReg23_34_lo, srcReg45_56_lo; |
| __m128i srcReg2345_3456_lo, srcReg2345_3456_hi; |
| __m128i resReglo, resReghi; |
| __m128i firstFilters; |
| unsigned int i; |
| ptrdiff_t src_stride, dst_stride; |
| |
| addFilterReg32 = _mm_set1_epi16(32); |
| filtersReg = _mm_loadu_si128((const __m128i *)filter); |
| // converting the 16 bit (short) to 8 bit (byte) and have the |
| // same data in both lanes of 128 bit register. |
| filtersReg = _mm_srai_epi16(filtersReg, 1); |
| filtersReg = _mm_packs_epi16(filtersReg, filtersReg); |
| |
| firstFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi32(0x5040302u)); |
| |
| // multiple the size of the source and destination stride by two |
| src_stride = src_pitch << 1; |
| dst_stride = out_pitch << 1; |
| |
| srcReg2 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 2)); |
| srcReg3 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 3)); |
| srcReg23 = _mm_unpacklo_epi32(srcReg2, srcReg3); |
| |
| srcReg4 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 4)); |
| |
| // have consecutive loads on the same 256 register |
| srcReg34 = _mm_unpacklo_epi32(srcReg3, srcReg4); |
| |
| srcReg23_34_lo = _mm_unpacklo_epi8(srcReg23, srcReg34); |
| |
| for (i = output_height; i > 1; i -= 2) { |
| srcReg5 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 5)); |
| srcReg45 = _mm_unpacklo_epi32(srcReg4, srcReg5); |
| |
| srcReg6 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 6)); |
| srcReg56 = _mm_unpacklo_epi32(srcReg5, srcReg6); |
| |
| // merge every two consecutive registers |
| srcReg45_56_lo = _mm_unpacklo_epi8(srcReg45, srcReg56); |
| |
| srcReg2345_3456_lo = _mm_unpacklo_epi16(srcReg23_34_lo, srcReg45_56_lo); |
| srcReg2345_3456_hi = _mm_unpackhi_epi16(srcReg23_34_lo, srcReg45_56_lo); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| resReglo = _mm_maddubs_epi16(srcReg2345_3456_lo, firstFilters); |
| resReghi = _mm_maddubs_epi16(srcReg2345_3456_hi, firstFilters); |
| |
| resReglo = _mm_hadds_epi16(resReglo, _mm_setzero_si128()); |
| resReghi = _mm_hadds_epi16(resReghi, _mm_setzero_si128()); |
| |
| // shift by 6 bit each 16 bit |
| resReglo = _mm_adds_epi16(resReglo, addFilterReg32); |
| resReghi = _mm_adds_epi16(resReghi, addFilterReg32); |
| resReglo = _mm_srai_epi16(resReglo, 6); |
| resReghi = _mm_srai_epi16(resReghi, 6); |
| |
| // shrink to 8 bit each 16 bits, the first lane contain the first |
| // convolve result and the second lane contain the second convolve |
| // result |
| resReglo = _mm_packus_epi16(resReglo, resReglo); |
| resReghi = _mm_packus_epi16(resReghi, resReghi); |
| |
| src_ptr += src_stride; |
| |
| *((int *)(output_ptr)) = _mm_cvtsi128_si32(resReglo); |
| *((int *)(output_ptr + out_pitch)) = _mm_cvtsi128_si32(resReghi); |
| |
| output_ptr += dst_stride; |
| |
| // save part of the registers for next strides |
| srcReg23_34_lo = srcReg45_56_lo; |
| srcReg4 = srcReg6; |
| } |
| } |
| |
| static void aom_filter_block1d8_h4_ssse3( |
| const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr, |
| ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) { |
| __m128i filtersReg; |
| __m128i addFilterReg32, filt2Reg, filt3Reg; |
| __m128i secondFilters, thirdFilters; |
| __m128i srcRegFilt32b1_1, srcRegFilt32b2, srcRegFilt32b3; |
| __m128i srcReg32b1; |
| unsigned int i; |
| src_ptr -= 3; |
| addFilterReg32 = _mm_set1_epi16(32); |
| filtersReg = _mm_loadu_si128((const __m128i *)filter); |
| filtersReg = _mm_srai_epi16(filtersReg, 1); |
| // converting the 16 bit (short) to 8 bit (byte) and have the same data |
| // in both lanes of 128 bit register. |
| filtersReg = _mm_packs_epi16(filtersReg, filtersReg); |
| |
| // duplicate only the second 16 bits (third and forth byte) |
| // across 256 bit register |
| secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u)); |
| // duplicate only the third 16 bits (fifth and sixth byte) |
| // across 256 bit register |
| thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u)); |
| |
| filt2Reg = _mm_load_si128((__m128i const *)(filt_h4 + 32)); |
| filt3Reg = _mm_load_si128((__m128i const *)(filt_h4 + 32 * 2)); |
| |
| for (i = output_height; i > 0; i -= 1) { |
| srcReg32b1 = _mm_loadu_si128((const __m128i *)src_ptr); |
| |
| // filter the source buffer |
| srcRegFilt32b3 = _mm_shuffle_epi8(srcReg32b1, filt2Reg); |
| srcRegFilt32b2 = _mm_shuffle_epi8(srcReg32b1, filt3Reg); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| srcRegFilt32b3 = _mm_maddubs_epi16(srcRegFilt32b3, secondFilters); |
| srcRegFilt32b2 = _mm_maddubs_epi16(srcRegFilt32b2, thirdFilters); |
| |
| srcRegFilt32b1_1 = _mm_adds_epi16(srcRegFilt32b3, srcRegFilt32b2); |
| |
| // shift by 6 bit each 16 bit |
| srcRegFilt32b1_1 = _mm_adds_epi16(srcRegFilt32b1_1, addFilterReg32); |
| srcRegFilt32b1_1 = _mm_srai_epi16(srcRegFilt32b1_1, 6); |
| |
| // shrink to 8 bit each 16 bits |
| srcRegFilt32b1_1 = _mm_packus_epi16(srcRegFilt32b1_1, _mm_setzero_si128()); |
| |
| src_ptr += src_pixels_per_line; |
| |
| _mm_storel_epi64((__m128i *)output_ptr, srcRegFilt32b1_1); |
| |
| output_ptr += output_pitch; |
| } |
| } |
| |
| static void aom_filter_block1d8_v4_ssse3( |
| const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr, |
| ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) { |
| __m128i filtersReg; |
| __m128i srcReg2, srcReg3, srcReg4, srcReg5, srcReg6; |
| __m128i srcReg23, srcReg34, srcReg45, srcReg56; |
| __m128i resReg23, resReg34, resReg45, resReg56; |
| __m128i resReg23_45, resReg34_56; |
| __m128i addFilterReg32, secondFilters, thirdFilters; |
| unsigned int i; |
| ptrdiff_t src_stride, dst_stride; |
| |
| addFilterReg32 = _mm_set1_epi16(32); |
| filtersReg = _mm_loadu_si128((const __m128i *)filter); |
| // converting the 16 bit (short) to 8 bit (byte) and have the |
| // same data in both lanes of 128 bit register. |
| filtersReg = _mm_srai_epi16(filtersReg, 1); |
| filtersReg = _mm_packs_epi16(filtersReg, filtersReg); |
| |
| // duplicate only the second 16 bits (third and forth byte) |
| // across 128 bit register |
| secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u)); |
| // duplicate only the third 16 bits (fifth and sixth byte) |
| // across 128 bit register |
| thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u)); |
| |
| // multiple the size of the source and destination stride by two |
| src_stride = src_pitch << 1; |
| dst_stride = out_pitch << 1; |
| |
| srcReg2 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 2)); |
| srcReg3 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 3)); |
| srcReg23 = _mm_unpacklo_epi8(srcReg2, srcReg3); |
| |
| srcReg4 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 4)); |
| |
| // have consecutive loads on the same 256 register |
| srcReg34 = _mm_unpacklo_epi8(srcReg3, srcReg4); |
| |
| for (i = output_height; i > 1; i -= 2) { |
| srcReg5 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 5)); |
| |
| srcReg45 = _mm_unpacklo_epi8(srcReg4, srcReg5); |
| |
| srcReg6 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 6)); |
| |
| srcReg56 = _mm_unpacklo_epi8(srcReg5, srcReg6); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| resReg23 = _mm_maddubs_epi16(srcReg23, secondFilters); |
| resReg34 = _mm_maddubs_epi16(srcReg34, secondFilters); |
| resReg45 = _mm_maddubs_epi16(srcReg45, thirdFilters); |
| resReg56 = _mm_maddubs_epi16(srcReg56, thirdFilters); |
| |
| // add and saturate the results together |
| resReg23_45 = _mm_adds_epi16(resReg23, resReg45); |
| resReg34_56 = _mm_adds_epi16(resReg34, resReg56); |
| |
| // shift by 6 bit each 16 bit |
| resReg23_45 = _mm_adds_epi16(resReg23_45, addFilterReg32); |
| resReg34_56 = _mm_adds_epi16(resReg34_56, addFilterReg32); |
| resReg23_45 = _mm_srai_epi16(resReg23_45, 6); |
| resReg34_56 = _mm_srai_epi16(resReg34_56, 6); |
| |
| // shrink to 8 bit each 16 bits, the first lane contain the first |
| // convolve result and the second lane contain the second convolve |
| // result |
| resReg23_45 = _mm_packus_epi16(resReg23_45, _mm_setzero_si128()); |
| resReg34_56 = _mm_packus_epi16(resReg34_56, _mm_setzero_si128()); |
| |
| src_ptr += src_stride; |
| |
| _mm_storel_epi64((__m128i *)output_ptr, (resReg23_45)); |
| _mm_storel_epi64((__m128i *)(output_ptr + out_pitch), (resReg34_56)); |
| |
| output_ptr += dst_stride; |
| |
| // save part of the registers for next strides |
| srcReg23 = srcReg45; |
| srcReg34 = srcReg56; |
| srcReg4 = srcReg6; |
| } |
| } |
| |
| static void aom_filter_block1d16_h4_ssse3( |
| const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr, |
| ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) { |
| __m128i filtersReg; |
| __m128i addFilterReg32, filt2Reg, filt3Reg; |
| __m128i secondFilters, thirdFilters; |
| __m128i srcRegFilt32b1_1, srcRegFilt32b2_1, srcRegFilt32b2, srcRegFilt32b3; |
| __m128i srcReg32b1, srcReg32b2; |
| unsigned int i; |
| src_ptr -= 3; |
| addFilterReg32 = _mm_set1_epi16(32); |
| filtersReg = _mm_loadu_si128((const __m128i *)filter); |
| filtersReg = _mm_srai_epi16(filtersReg, 1); |
| // converting the 16 bit (short) to 8 bit (byte) and have the same data |
| // in both lanes of 128 bit register. |
| filtersReg = _mm_packs_epi16(filtersReg, filtersReg); |
| |
| // duplicate only the second 16 bits (third and forth byte) |
| // across 256 bit register |
| secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u)); |
| // duplicate only the third 16 bits (fifth and sixth byte) |
| // across 256 bit register |
| thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u)); |
| |
| filt2Reg = _mm_load_si128((__m128i const *)(filt_h4 + 32)); |
| filt3Reg = _mm_load_si128((__m128i const *)(filt_h4 + 32 * 2)); |
| |
| for (i = output_height; i > 0; i -= 1) { |
| srcReg32b1 = _mm_loadu_si128((const __m128i *)src_ptr); |
| |
| // filter the source buffer |
| srcRegFilt32b3 = _mm_shuffle_epi8(srcReg32b1, filt2Reg); |
| srcRegFilt32b2 = _mm_shuffle_epi8(srcReg32b1, filt3Reg); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| srcRegFilt32b3 = _mm_maddubs_epi16(srcRegFilt32b3, secondFilters); |
| srcRegFilt32b2 = _mm_maddubs_epi16(srcRegFilt32b2, thirdFilters); |
| |
| srcRegFilt32b1_1 = _mm_adds_epi16(srcRegFilt32b3, srcRegFilt32b2); |
| |
| // reading stride of the next 16 bytes |
| // (part of it was being read by earlier read) |
| srcReg32b2 = _mm_loadu_si128((const __m128i *)(src_ptr + 8)); |
| |
| // filter the source buffer |
| srcRegFilt32b3 = _mm_shuffle_epi8(srcReg32b2, filt2Reg); |
| srcRegFilt32b2 = _mm_shuffle_epi8(srcReg32b2, filt3Reg); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| srcRegFilt32b3 = _mm_maddubs_epi16(srcRegFilt32b3, secondFilters); |
| srcRegFilt32b2 = _mm_maddubs_epi16(srcRegFilt32b2, thirdFilters); |
| |
| // add and saturate the results together |
| srcRegFilt32b2_1 = _mm_adds_epi16(srcRegFilt32b3, srcRegFilt32b2); |
| |
| // shift by 6 bit each 16 bit |
| srcRegFilt32b1_1 = _mm_adds_epi16(srcRegFilt32b1_1, addFilterReg32); |
| srcRegFilt32b2_1 = _mm_adds_epi16(srcRegFilt32b2_1, addFilterReg32); |
| srcRegFilt32b1_1 = _mm_srai_epi16(srcRegFilt32b1_1, 6); |
| srcRegFilt32b2_1 = _mm_srai_epi16(srcRegFilt32b2_1, 6); |
| |
| // shrink to 8 bit each 16 bits, the first lane contain the first |
| // convolve result and the second lane contain the second convolve result |
| srcRegFilt32b1_1 = _mm_packus_epi16(srcRegFilt32b1_1, srcRegFilt32b2_1); |
| |
| src_ptr += src_pixels_per_line; |
| |
| _mm_store_si128((__m128i *)output_ptr, srcRegFilt32b1_1); |
| |
| output_ptr += output_pitch; |
| } |
| } |
| |
| static void aom_filter_block1d16_v4_ssse3( |
| const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr, |
| ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) { |
| __m128i filtersReg; |
| __m128i srcReg2, srcReg3, srcReg4, srcReg5, srcReg6; |
| __m128i srcReg23_lo, srcReg23_hi, srcReg34_lo, srcReg34_hi; |
| __m128i srcReg45_lo, srcReg45_hi, srcReg56_lo, srcReg56_hi; |
| __m128i resReg23_lo, resReg34_lo, resReg45_lo, resReg56_lo; |
| __m128i resReg23_hi, resReg34_hi, resReg45_hi, resReg56_hi; |
| __m128i resReg23_45_lo, resReg34_56_lo, resReg23_45_hi, resReg34_56_hi; |
| __m128i resReg23_45, resReg34_56; |
| __m128i addFilterReg32, secondFilters, thirdFilters; |
| unsigned int i; |
| ptrdiff_t src_stride, dst_stride; |
| |
| addFilterReg32 = _mm_set1_epi16(32); |
| filtersReg = _mm_loadu_si128((const __m128i *)filter); |
| // converting the 16 bit (short) to 8 bit (byte) and have the |
| // same data in both lanes of 128 bit register. |
| filtersReg = _mm_srai_epi16(filtersReg, 1); |
| filtersReg = _mm_packs_epi16(filtersReg, filtersReg); |
| |
| // duplicate only the second 16 bits (third and forth byte) |
| // across 128 bit register |
| secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u)); |
| // duplicate only the third 16 bits (fifth and sixth byte) |
| // across 128 bit register |
| thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u)); |
| |
| // multiple the size of the source and destination stride by two |
| src_stride = src_pitch << 1; |
| dst_stride = out_pitch << 1; |
| |
| srcReg2 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 2)); |
| srcReg3 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 3)); |
| srcReg23_lo = _mm_unpacklo_epi8(srcReg2, srcReg3); |
| srcReg23_hi = _mm_unpackhi_epi8(srcReg2, srcReg3); |
| |
| srcReg4 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 4)); |
| |
| // have consecutive loads on the same 256 register |
| srcReg34_lo = _mm_unpacklo_epi8(srcReg3, srcReg4); |
| srcReg34_hi = _mm_unpackhi_epi8(srcReg3, srcReg4); |
| |
| for (i = output_height; i > 1; i -= 2) { |
| srcReg5 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 5)); |
| |
| srcReg45_lo = _mm_unpacklo_epi8(srcReg4, srcReg5); |
| srcReg45_hi = _mm_unpackhi_epi8(srcReg4, srcReg5); |
| |
| srcReg6 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 6)); |
| |
| srcReg56_lo = _mm_unpacklo_epi8(srcReg5, srcReg6); |
| srcReg56_hi = _mm_unpackhi_epi8(srcReg5, srcReg6); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| resReg23_lo = _mm_maddubs_epi16(srcReg23_lo, secondFilters); |
| resReg34_lo = _mm_maddubs_epi16(srcReg34_lo, secondFilters); |
| resReg45_lo = _mm_maddubs_epi16(srcReg45_lo, thirdFilters); |
| resReg56_lo = _mm_maddubs_epi16(srcReg56_lo, thirdFilters); |
| |
| // add and saturate the results together |
| resReg23_45_lo = _mm_adds_epi16(resReg23_lo, resReg45_lo); |
| resReg34_56_lo = _mm_adds_epi16(resReg34_lo, resReg56_lo); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| |
| resReg23_hi = _mm_maddubs_epi16(srcReg23_hi, secondFilters); |
| resReg34_hi = _mm_maddubs_epi16(srcReg34_hi, secondFilters); |
| resReg45_hi = _mm_maddubs_epi16(srcReg45_hi, thirdFilters); |
| resReg56_hi = _mm_maddubs_epi16(srcReg56_hi, thirdFilters); |
| |
| // add and saturate the results together |
| resReg23_45_hi = _mm_adds_epi16(resReg23_hi, resReg45_hi); |
| resReg34_56_hi = _mm_adds_epi16(resReg34_hi, resReg56_hi); |
| |
| // shift by 6 bit each 16 bit |
| resReg23_45_lo = _mm_adds_epi16(resReg23_45_lo, addFilterReg32); |
| resReg34_56_lo = _mm_adds_epi16(resReg34_56_lo, addFilterReg32); |
| resReg23_45_hi = _mm_adds_epi16(resReg23_45_hi, addFilterReg32); |
| resReg34_56_hi = _mm_adds_epi16(resReg34_56_hi, addFilterReg32); |
| resReg23_45_lo = _mm_srai_epi16(resReg23_45_lo, 6); |
| resReg34_56_lo = _mm_srai_epi16(resReg34_56_lo, 6); |
| resReg23_45_hi = _mm_srai_epi16(resReg23_45_hi, 6); |
| resReg34_56_hi = _mm_srai_epi16(resReg34_56_hi, 6); |
| |
| // shrink to 8 bit each 16 bits, the first lane contain the first |
| // convolve result and the second lane contain the second convolve |
| // result |
| resReg23_45 = _mm_packus_epi16(resReg23_45_lo, resReg23_45_hi); |
| resReg34_56 = _mm_packus_epi16(resReg34_56_lo, resReg34_56_hi); |
| |
| src_ptr += src_stride; |
| |
| _mm_store_si128((__m128i *)output_ptr, (resReg23_45)); |
| _mm_store_si128((__m128i *)(output_ptr + out_pitch), (resReg34_56)); |
| |
| output_ptr += dst_stride; |
| |
| // save part of the registers for next strides |
| srcReg23_lo = srcReg45_lo; |
| srcReg34_lo = srcReg56_lo; |
| srcReg23_hi = srcReg45_hi; |
| srcReg34_hi = srcReg56_hi; |
| srcReg4 = srcReg6; |
| } |
| } |
| |
| static INLINE __m128i shuffle_filter_convolve8_8_ssse3( |
| const __m128i *const s, const int16_t *const filter) { |
| __m128i f[4]; |
| shuffle_filter_ssse3(filter, f); |
| return convolve8_8_ssse3(s, f); |
| } |
| |
| static void filter_horiz_w8_ssse3(const uint8_t *const src, |
| const ptrdiff_t src_stride, |
| uint8_t *const dst, |
| const int16_t *const x_filter) { |
| __m128i s[8], ss[4], temp; |
| |
| load_8bit_8x8(src, src_stride, s); |
| // 00 01 10 11 20 21 30 31 40 41 50 51 60 61 70 71 |
| // 02 03 12 13 22 23 32 33 42 43 52 53 62 63 72 73 |
| // 04 05 14 15 24 25 34 35 44 45 54 55 64 65 74 75 |
| // 06 07 16 17 26 27 36 37 46 47 56 57 66 67 76 77 |
| transpose_16bit_4x8(s, ss); |
| temp = shuffle_filter_convolve8_8_ssse3(ss, x_filter); |
| // shrink to 8 bit each 16 bits |
| temp = _mm_packus_epi16(temp, temp); |
| // save only 8 bytes convolve result |
| _mm_storel_epi64((__m128i *)dst, temp); |
| } |
| |
| static void transpose8x8_to_dst(const uint8_t *const src, |
| const ptrdiff_t src_stride, uint8_t *const dst, |
| const ptrdiff_t dst_stride) { |
| __m128i s[8]; |
| |
| load_8bit_8x8(src, src_stride, s); |
| transpose_8bit_8x8(s, s); |
| store_8bit_8x8(s, dst, dst_stride); |
| } |
| |
| static void scaledconvolve_horiz_w8(const uint8_t *src, |
| const ptrdiff_t src_stride, uint8_t *dst, |
| const ptrdiff_t dst_stride, |
| const InterpKernel *const x_filters, |
| const int x0_q4, const int x_step_q4, |
| const int w, const int h) { |
| DECLARE_ALIGNED(16, uint8_t, temp[8 * 8]); |
| int x, y, z; |
| src -= SUBPEL_TAPS / 2 - 1; |
| |
| // This function processes 8x8 areas. The intermediate height is not always |
| // a multiple of 8, so force it to be a multiple of 8 here. |
| y = h + (8 - (h & 0x7)); |
| |
| do { |
| int x_q4 = x0_q4; |
| for (x = 0; x < w; x += 8) { |
| // process 8 src_x steps |
| for (z = 0; z < 8; ++z) { |
| const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS]; |
| const int16_t *const x_filter = x_filters[x_q4 & SUBPEL_MASK]; |
| if (x_q4 & SUBPEL_MASK) { |
| filter_horiz_w8_ssse3(src_x, src_stride, temp + (z * 8), x_filter); |
| } else { |
| int i; |
| for (i = 0; i < 8; ++i) { |
| temp[z * 8 + i] = src_x[i * src_stride + 3]; |
| } |
| } |
| x_q4 += x_step_q4; |
| } |
| |
| // transpose the 8x8 filters values back to dst |
| transpose8x8_to_dst(temp, 8, dst + x, dst_stride); |
| } |
| |
| src += src_stride * 8; |
| dst += dst_stride * 8; |
| } while (y -= 8); |
| } |
| |
| static void filter_horiz_w4_ssse3(const uint8_t *const src, |
| const ptrdiff_t src_stride, |
| uint8_t *const dst, |
| const int16_t *const filter) { |
| __m128i s[4]; |
| __m128i temp; |
| |
| load_8bit_8x4(src, src_stride, s); |
| transpose_16bit_4x4(s, s); |
| |
| temp = shuffle_filter_convolve8_8_ssse3(s, filter); |
| // shrink to 8 bit each 16 bits |
| temp = _mm_packus_epi16(temp, temp); |
| // save only 4 bytes |
| *(int *)dst = _mm_cvtsi128_si32(temp); |
| } |
| |
| static void transpose4x4_to_dst(const uint8_t *const src, |
| const ptrdiff_t src_stride, uint8_t *const dst, |
| const ptrdiff_t dst_stride) { |
| __m128i s[4]; |
| |
| load_8bit_4x4(src, src_stride, s); |
| s[0] = transpose_8bit_4x4(s); |
| s[1] = _mm_srli_si128(s[0], 4); |
| s[2] = _mm_srli_si128(s[0], 8); |
| s[3] = _mm_srli_si128(s[0], 12); |
| store_8bit_4x4(s, dst, dst_stride); |
| } |
| |
| static void scaledconvolve_horiz_w4(const uint8_t *src, |
| const ptrdiff_t src_stride, uint8_t *dst, |
| const ptrdiff_t dst_stride, |
| const InterpKernel *const x_filters, |
| const int x0_q4, const int x_step_q4, |
| const int w, const int h) { |
| DECLARE_ALIGNED(16, uint8_t, temp[4 * 4]); |
| int x, y, z; |
| src -= SUBPEL_TAPS / 2 - 1; |
| |
| for (y = 0; y < h; y += 4) { |
| int x_q4 = x0_q4; |
| for (x = 0; x < w; x += 4) { |
| // process 4 src_x steps |
| for (z = 0; z < 4; ++z) { |
| const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS]; |
| const int16_t *const x_filter = x_filters[x_q4 & SUBPEL_MASK]; |
| if (x_q4 & SUBPEL_MASK) { |
| filter_horiz_w4_ssse3(src_x, src_stride, temp + (z * 4), x_filter); |
| } else { |
| int i; |
| for (i = 0; i < 4; ++i) { |
| temp[z * 4 + i] = src_x[i * src_stride + 3]; |
| } |
| } |
| x_q4 += x_step_q4; |
| } |
| |
| // transpose the 4x4 filters values back to dst |
| transpose4x4_to_dst(temp, 4, dst + x, dst_stride); |
| } |
| |
| src += src_stride * 4; |
| dst += dst_stride * 4; |
| } |
| } |
| |
| static __m128i filter_vert_kernel(const __m128i *const s, |
| const int16_t *const filter) { |
| __m128i ss[4]; |
| __m128i temp; |
| |
| // 00 10 01 11 02 12 03 13 |
| ss[0] = _mm_unpacklo_epi8(s[0], s[1]); |
| // 20 30 21 31 22 32 23 33 |
| ss[1] = _mm_unpacklo_epi8(s[2], s[3]); |
| // 40 50 41 51 42 52 43 53 |
| ss[2] = _mm_unpacklo_epi8(s[4], s[5]); |
| // 60 70 61 71 62 72 63 73 |
| ss[3] = _mm_unpacklo_epi8(s[6], s[7]); |
| |
| temp = shuffle_filter_convolve8_8_ssse3(ss, filter); |
| // shrink to 8 bit each 16 bits |
| return _mm_packus_epi16(temp, temp); |
| } |
| |
| static void filter_vert_w4_ssse3(const uint8_t *const src, |
| const ptrdiff_t src_stride, uint8_t *const dst, |
| const int16_t *const filter) { |
| __m128i s[8]; |
| __m128i temp; |
| |
| load_8bit_4x8(src, src_stride, s); |
| temp = filter_vert_kernel(s, filter); |
| // save only 4 bytes |
| *(int *)dst = _mm_cvtsi128_si32(temp); |
| } |
| |
| static void scaledconvolve_vert_w4( |
| const uint8_t *src, const ptrdiff_t src_stride, uint8_t *const dst, |
| const ptrdiff_t dst_stride, const InterpKernel *const y_filters, |
| const int y0_q4, const int y_step_q4, const int w, const int h) { |
| int y; |
| int y_q4 = y0_q4; |
| |
| src -= src_stride * (SUBPEL_TAPS / 2 - 1); |
| for (y = 0; y < h; ++y) { |
| const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride]; |
| const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK]; |
| |
| if (y_q4 & SUBPEL_MASK) { |
| filter_vert_w4_ssse3(src_y, src_stride, &dst[y * dst_stride], y_filter); |
| } else { |
| memcpy(&dst[y * dst_stride], &src_y[3 * src_stride], w); |
| } |
| |
| y_q4 += y_step_q4; |
| } |
| } |
| |
| static void filter_vert_w8_ssse3(const uint8_t *const src, |
| const ptrdiff_t src_stride, uint8_t *const dst, |
| const int16_t *const filter) { |
| __m128i s[8], temp; |
| |
| load_8bit_8x8(src, src_stride, s); |
| temp = filter_vert_kernel(s, filter); |
| // save only 8 bytes convolve result |
| _mm_storel_epi64((__m128i *)dst, temp); |
| } |
| |
| static void scaledconvolve_vert_w8( |
| const uint8_t *src, const ptrdiff_t src_stride, uint8_t *const dst, |
| const ptrdiff_t dst_stride, const InterpKernel *const y_filters, |
| const int y0_q4, const int y_step_q4, const int w, const int h) { |
| int y; |
| int y_q4 = y0_q4; |
| |
| src -= src_stride * (SUBPEL_TAPS / 2 - 1); |
| for (y = 0; y < h; ++y) { |
| const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride]; |
| const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK]; |
| if (y_q4 & SUBPEL_MASK) { |
| filter_vert_w8_ssse3(src_y, src_stride, &dst[y * dst_stride], y_filter); |
| } else { |
| memcpy(&dst[y * dst_stride], &src_y[3 * src_stride], w); |
| } |
| y_q4 += y_step_q4; |
| } |
| } |
| |
| static void filter_vert_w16_ssse3(const uint8_t *src, |
| const ptrdiff_t src_stride, |
| uint8_t *const dst, |
| const int16_t *const filter, const int w) { |
| int i; |
| __m128i f[4]; |
| shuffle_filter_ssse3(filter, f); |
| |
| for (i = 0; i < w; i += 16) { |
| __m128i s[8], s_lo[4], s_hi[4], temp_lo, temp_hi; |
| |
| loadu_8bit_16x8(src, src_stride, s); |
| |
| // merge the result together |
| s_lo[0] = _mm_unpacklo_epi8(s[0], s[1]); |
| s_hi[0] = _mm_unpackhi_epi8(s[0], s[1]); |
| s_lo[1] = _mm_unpacklo_epi8(s[2], s[3]); |
| s_hi[1] = _mm_unpackhi_epi8(s[2], s[3]); |
| s_lo[2] = _mm_unpacklo_epi8(s[4], s[5]); |
| s_hi[2] = _mm_unpackhi_epi8(s[4], s[5]); |
| s_lo[3] = _mm_unpacklo_epi8(s[6], s[7]); |
| s_hi[3] = _mm_unpackhi_epi8(s[6], s[7]); |
| temp_lo = convolve8_8_ssse3(s_lo, f); |
| temp_hi = convolve8_8_ssse3(s_hi, f); |
| |
| // shrink to 8 bit each 16 bits, the first lane contain the first convolve |
| // result and the second lane contain the second convolve result |
| temp_hi = _mm_packus_epi16(temp_lo, temp_hi); |
| src += 16; |
| // save 16 bytes convolve result |
| _mm_store_si128((__m128i *)&dst[i], temp_hi); |
| } |
| } |
| |
| static void scaledconvolve_vert_w16( |
| const uint8_t *src, const ptrdiff_t src_stride, uint8_t *const dst, |
| const ptrdiff_t dst_stride, const InterpKernel *const y_filters, |
| const int y0_q4, const int y_step_q4, const int w, const int h) { |
| int y; |
| int y_q4 = y0_q4; |
| |
| src -= src_stride * (SUBPEL_TAPS / 2 - 1); |
| for (y = 0; y < h; ++y) { |
| const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride]; |
| const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK]; |
| if (y_q4 & SUBPEL_MASK) { |
| filter_vert_w16_ssse3(src_y, src_stride, &dst[y * dst_stride], y_filter, |
| w); |
| } else { |
| memcpy(&dst[y * dst_stride], &src_y[3 * src_stride], w); |
| } |
| y_q4 += y_step_q4; |
| } |
| } |
| |
| void aom_scaled_2d_ssse3(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, |
| ptrdiff_t dst_stride, const InterpKernel *filter, |
| int x0_q4, int x_step_q4, int y0_q4, int y_step_q4, |
| int w, int h) { |
| // Note: Fixed size intermediate buffer, temp, places limits on parameters. |
| // 2d filtering proceeds in 2 steps: |
| // (1) Interpolate horizontally into an intermediate buffer, temp. |
| // (2) Interpolate temp vertically to derive the sub-pixel result. |
| // Deriving the maximum number of rows in the temp buffer (135): |
| // --Smallest scaling factor is x1/2 ==> y_step_q4 = 32 (Normative). |
| // --Largest block size is 64x64 pixels. |
| // --64 rows in the downscaled frame span a distance of (64 - 1) * 32 in the |
| // original frame (in 1/16th pixel units). |
| // --Must round-up because block may be located at sub-pixel position. |
| // --Require an additional SUBPEL_TAPS rows for the 8-tap filter tails. |
| // --((64 - 1) * 32 + 15) >> 4 + 8 = 135. |
| // --Require an additional 8 rows for the horiz_w8 transpose tail. |
| // When calling in frame scaling function, the smallest scaling factor is x1/4 |
| // ==> y_step_q4 = 64. Since w and h are at most 16, the temp buffer is still |
| // big enough. |
| DECLARE_ALIGNED(16, uint8_t, temp[(135 + 8) * 64]); |
| const int intermediate_height = |
| (((h - 1) * y_step_q4 + y0_q4) >> SUBPEL_BITS) + SUBPEL_TAPS; |
| |
| assert(w <= 64); |
| assert(h <= 64); |
| assert(y_step_q4 <= 32 || (y_step_q4 <= 64 && h <= 32)); |
| assert(x_step_q4 <= 64); |
| |
| if (w >= 8) { |
| scaledconvolve_horiz_w8(src - src_stride * (SUBPEL_TAPS / 2 - 1), |
| src_stride, temp, 64, filter, x0_q4, x_step_q4, w, |
| intermediate_height); |
| } else { |
| scaledconvolve_horiz_w4(src - src_stride * (SUBPEL_TAPS / 2 - 1), |
| src_stride, temp, 64, filter, x0_q4, x_step_q4, w, |
| intermediate_height); |
| } |
| |
| if (w >= 16) { |
| scaledconvolve_vert_w16(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst, |
| dst_stride, filter, y0_q4, y_step_q4, w, h); |
| } else if (w == 8) { |
| scaledconvolve_vert_w8(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst, |
| dst_stride, filter, y0_q4, y_step_q4, w, h); |
| } else { |
| scaledconvolve_vert_w4(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst, |
| dst_stride, filter, y0_q4, y_step_q4, w, h); |
| } |
| } |
| |
| filter8_1dfunction aom_filter_block1d16_v8_ssse3; |
| filter8_1dfunction aom_filter_block1d16_h8_ssse3; |
| filter8_1dfunction aom_filter_block1d8_v8_ssse3; |
| filter8_1dfunction aom_filter_block1d8_h8_ssse3; |
| filter8_1dfunction aom_filter_block1d4_v8_ssse3; |
| filter8_1dfunction aom_filter_block1d4_h8_ssse3; |
| |
| filter8_1dfunction aom_filter_block1d16_v2_ssse3; |
| filter8_1dfunction aom_filter_block1d16_h2_ssse3; |
| filter8_1dfunction aom_filter_block1d8_v2_ssse3; |
| filter8_1dfunction aom_filter_block1d8_h2_ssse3; |
| filter8_1dfunction aom_filter_block1d4_v2_ssse3; |
| filter8_1dfunction aom_filter_block1d4_h2_ssse3; |
| |
| // void aom_convolve8_horiz_ssse3(const uint8_t *src, ptrdiff_t src_stride, |
| // uint8_t *dst, ptrdiff_t dst_stride, |
| // const int16_t *filter_x, int x_step_q4, |
| // const int16_t *filter_y, int y_step_q4, |
| // int w, int h); |
| // void aom_convolve8_vert_ssse3(const uint8_t *src, ptrdiff_t src_stride, |
| // uint8_t *dst, ptrdiff_t dst_stride, |
| // const int16_t *filter_x, int x_step_q4, |
| // const int16_t *filter_y, int y_step_q4, |
| // int w, int h); |
| FUN_CONV_1D(horiz, x_step_q4, filter_x, h, src, , ssse3) |
| FUN_CONV_1D(vert, y_step_q4, filter_y, v, src - src_stride * 3, , ssse3) |