| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved. |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <immintrin.h> |
| |
| #include "config/aom_dsp_rtcd.h" |
| #include "aom/aom_integer.h" |
| #include "aom_dsp/x86/bitdepth_conversion_avx2.h" |
| #include "aom_ports/mem.h" |
| |
| static INLINE void sign_extend_16bit_to_32bit_avx2(__m256i in, __m256i zero, |
| __m256i *out_lo, |
| __m256i *out_hi) { |
| const __m256i sign_bits = _mm256_cmpgt_epi16(zero, in); |
| *out_lo = _mm256_unpacklo_epi16(in, sign_bits); |
| *out_hi = _mm256_unpackhi_epi16(in, sign_bits); |
| } |
| |
| static void hadamard_col8x2_avx2(__m256i *in, int iter) { |
| __m256i a0 = in[0]; |
| __m256i a1 = in[1]; |
| __m256i a2 = in[2]; |
| __m256i a3 = in[3]; |
| __m256i a4 = in[4]; |
| __m256i a5 = in[5]; |
| __m256i a6 = in[6]; |
| __m256i a7 = in[7]; |
| |
| __m256i b0 = _mm256_add_epi16(a0, a1); |
| __m256i b1 = _mm256_sub_epi16(a0, a1); |
| __m256i b2 = _mm256_add_epi16(a2, a3); |
| __m256i b3 = _mm256_sub_epi16(a2, a3); |
| __m256i b4 = _mm256_add_epi16(a4, a5); |
| __m256i b5 = _mm256_sub_epi16(a4, a5); |
| __m256i b6 = _mm256_add_epi16(a6, a7); |
| __m256i b7 = _mm256_sub_epi16(a6, a7); |
| |
| a0 = _mm256_add_epi16(b0, b2); |
| a1 = _mm256_add_epi16(b1, b3); |
| a2 = _mm256_sub_epi16(b0, b2); |
| a3 = _mm256_sub_epi16(b1, b3); |
| a4 = _mm256_add_epi16(b4, b6); |
| a5 = _mm256_add_epi16(b5, b7); |
| a6 = _mm256_sub_epi16(b4, b6); |
| a7 = _mm256_sub_epi16(b5, b7); |
| |
| if (iter == 0) { |
| b0 = _mm256_add_epi16(a0, a4); |
| b7 = _mm256_add_epi16(a1, a5); |
| b3 = _mm256_add_epi16(a2, a6); |
| b4 = _mm256_add_epi16(a3, a7); |
| b2 = _mm256_sub_epi16(a0, a4); |
| b6 = _mm256_sub_epi16(a1, a5); |
| b1 = _mm256_sub_epi16(a2, a6); |
| b5 = _mm256_sub_epi16(a3, a7); |
| |
| a0 = _mm256_unpacklo_epi16(b0, b1); |
| a1 = _mm256_unpacklo_epi16(b2, b3); |
| a2 = _mm256_unpackhi_epi16(b0, b1); |
| a3 = _mm256_unpackhi_epi16(b2, b3); |
| a4 = _mm256_unpacklo_epi16(b4, b5); |
| a5 = _mm256_unpacklo_epi16(b6, b7); |
| a6 = _mm256_unpackhi_epi16(b4, b5); |
| a7 = _mm256_unpackhi_epi16(b6, b7); |
| |
| b0 = _mm256_unpacklo_epi32(a0, a1); |
| b1 = _mm256_unpacklo_epi32(a4, a5); |
| b2 = _mm256_unpackhi_epi32(a0, a1); |
| b3 = _mm256_unpackhi_epi32(a4, a5); |
| b4 = _mm256_unpacklo_epi32(a2, a3); |
| b5 = _mm256_unpacklo_epi32(a6, a7); |
| b6 = _mm256_unpackhi_epi32(a2, a3); |
| b7 = _mm256_unpackhi_epi32(a6, a7); |
| |
| in[0] = _mm256_unpacklo_epi64(b0, b1); |
| in[1] = _mm256_unpackhi_epi64(b0, b1); |
| in[2] = _mm256_unpacklo_epi64(b2, b3); |
| in[3] = _mm256_unpackhi_epi64(b2, b3); |
| in[4] = _mm256_unpacklo_epi64(b4, b5); |
| in[5] = _mm256_unpackhi_epi64(b4, b5); |
| in[6] = _mm256_unpacklo_epi64(b6, b7); |
| in[7] = _mm256_unpackhi_epi64(b6, b7); |
| } else { |
| in[0] = _mm256_add_epi16(a0, a4); |
| in[7] = _mm256_add_epi16(a1, a5); |
| in[3] = _mm256_add_epi16(a2, a6); |
| in[4] = _mm256_add_epi16(a3, a7); |
| in[2] = _mm256_sub_epi16(a0, a4); |
| in[6] = _mm256_sub_epi16(a1, a5); |
| in[1] = _mm256_sub_epi16(a2, a6); |
| in[5] = _mm256_sub_epi16(a3, a7); |
| } |
| } |
| |
| void aom_hadamard_lp_8x8_dual_avx2(const int16_t *src_diff, |
| ptrdiff_t src_stride, int16_t *coeff) { |
| __m256i src[8]; |
| src[0] = _mm256_loadu_si256((const __m256i *)src_diff); |
| src[1] = _mm256_loadu_si256((const __m256i *)(src_diff += src_stride)); |
| src[2] = _mm256_loadu_si256((const __m256i *)(src_diff += src_stride)); |
| src[3] = _mm256_loadu_si256((const __m256i *)(src_diff += src_stride)); |
| src[4] = _mm256_loadu_si256((const __m256i *)(src_diff += src_stride)); |
| src[5] = _mm256_loadu_si256((const __m256i *)(src_diff += src_stride)); |
| src[6] = _mm256_loadu_si256((const __m256i *)(src_diff += src_stride)); |
| src[7] = _mm256_loadu_si256((const __m256i *)(src_diff + src_stride)); |
| |
| hadamard_col8x2_avx2(src, 0); |
| hadamard_col8x2_avx2(src, 1); |
| |
| _mm256_storeu_si256((__m256i *)coeff, |
| _mm256_permute2x128_si256(src[0], src[1], 0x20)); |
| coeff += 16; |
| _mm256_storeu_si256((__m256i *)coeff, |
| _mm256_permute2x128_si256(src[2], src[3], 0x20)); |
| coeff += 16; |
| _mm256_storeu_si256((__m256i *)coeff, |
| _mm256_permute2x128_si256(src[4], src[5], 0x20)); |
| coeff += 16; |
| _mm256_storeu_si256((__m256i *)coeff, |
| _mm256_permute2x128_si256(src[6], src[7], 0x20)); |
| coeff += 16; |
| _mm256_storeu_si256((__m256i *)coeff, |
| _mm256_permute2x128_si256(src[0], src[1], 0x31)); |
| coeff += 16; |
| _mm256_storeu_si256((__m256i *)coeff, |
| _mm256_permute2x128_si256(src[2], src[3], 0x31)); |
| coeff += 16; |
| _mm256_storeu_si256((__m256i *)coeff, |
| _mm256_permute2x128_si256(src[4], src[5], 0x31)); |
| coeff += 16; |
| _mm256_storeu_si256((__m256i *)coeff, |
| _mm256_permute2x128_si256(src[6], src[7], 0x31)); |
| } |
| |
| static INLINE void hadamard_16x16_avx2(const int16_t *src_diff, |
| ptrdiff_t src_stride, tran_low_t *coeff, |
| int is_final) { |
| DECLARE_ALIGNED(32, int16_t, temp_coeff[16 * 16]); |
| int16_t *t_coeff = temp_coeff; |
| int16_t *coeff16 = (int16_t *)coeff; |
| int idx; |
| for (idx = 0; idx < 2; ++idx) { |
| const int16_t *src_ptr = src_diff + idx * 8 * src_stride; |
| aom_hadamard_lp_8x8_dual_avx2(src_ptr, src_stride, |
| t_coeff + (idx * 64 * 2)); |
| } |
| |
| for (idx = 0; idx < 64; idx += 16) { |
| const __m256i coeff0 = _mm256_loadu_si256((const __m256i *)t_coeff); |
| const __m256i coeff1 = _mm256_loadu_si256((const __m256i *)(t_coeff + 64)); |
| const __m256i coeff2 = _mm256_loadu_si256((const __m256i *)(t_coeff + 128)); |
| const __m256i coeff3 = _mm256_loadu_si256((const __m256i *)(t_coeff + 192)); |
| |
| __m256i b0 = _mm256_add_epi16(coeff0, coeff1); |
| __m256i b1 = _mm256_sub_epi16(coeff0, coeff1); |
| __m256i b2 = _mm256_add_epi16(coeff2, coeff3); |
| __m256i b3 = _mm256_sub_epi16(coeff2, coeff3); |
| |
| b0 = _mm256_srai_epi16(b0, 1); |
| b1 = _mm256_srai_epi16(b1, 1); |
| b2 = _mm256_srai_epi16(b2, 1); |
| b3 = _mm256_srai_epi16(b3, 1); |
| if (is_final) { |
| store_tran_low(_mm256_add_epi16(b0, b2), coeff); |
| store_tran_low(_mm256_add_epi16(b1, b3), coeff + 64); |
| store_tran_low(_mm256_sub_epi16(b0, b2), coeff + 128); |
| store_tran_low(_mm256_sub_epi16(b1, b3), coeff + 192); |
| coeff += 16; |
| } else { |
| _mm256_storeu_si256((__m256i *)coeff16, _mm256_add_epi16(b0, b2)); |
| _mm256_storeu_si256((__m256i *)(coeff16 + 64), _mm256_add_epi16(b1, b3)); |
| _mm256_storeu_si256((__m256i *)(coeff16 + 128), _mm256_sub_epi16(b0, b2)); |
| _mm256_storeu_si256((__m256i *)(coeff16 + 192), _mm256_sub_epi16(b1, b3)); |
| coeff16 += 16; |
| } |
| t_coeff += 16; |
| } |
| } |
| |
| void aom_hadamard_16x16_avx2(const int16_t *src_diff, ptrdiff_t src_stride, |
| tran_low_t *coeff) { |
| hadamard_16x16_avx2(src_diff, src_stride, coeff, 1); |
| } |
| |
| void aom_hadamard_lp_16x16_avx2(const int16_t *src_diff, ptrdiff_t src_stride, |
| int16_t *coeff) { |
| int16_t *t_coeff = coeff; |
| for (int idx = 0; idx < 2; ++idx) { |
| const int16_t *src_ptr = src_diff + idx * 8 * src_stride; |
| aom_hadamard_lp_8x8_dual_avx2(src_ptr, src_stride, |
| t_coeff + (idx * 64 * 2)); |
| } |
| |
| for (int idx = 0; idx < 64; idx += 16) { |
| const __m256i coeff0 = _mm256_loadu_si256((const __m256i *)t_coeff); |
| const __m256i coeff1 = _mm256_loadu_si256((const __m256i *)(t_coeff + 64)); |
| const __m256i coeff2 = _mm256_loadu_si256((const __m256i *)(t_coeff + 128)); |
| const __m256i coeff3 = _mm256_loadu_si256((const __m256i *)(t_coeff + 192)); |
| |
| __m256i b0 = _mm256_add_epi16(coeff0, coeff1); |
| __m256i b1 = _mm256_sub_epi16(coeff0, coeff1); |
| __m256i b2 = _mm256_add_epi16(coeff2, coeff3); |
| __m256i b3 = _mm256_sub_epi16(coeff2, coeff3); |
| |
| b0 = _mm256_srai_epi16(b0, 1); |
| b1 = _mm256_srai_epi16(b1, 1); |
| b2 = _mm256_srai_epi16(b2, 1); |
| b3 = _mm256_srai_epi16(b3, 1); |
| _mm256_storeu_si256((__m256i *)coeff, _mm256_add_epi16(b0, b2)); |
| _mm256_storeu_si256((__m256i *)(coeff + 64), _mm256_add_epi16(b1, b3)); |
| _mm256_storeu_si256((__m256i *)(coeff + 128), _mm256_sub_epi16(b0, b2)); |
| _mm256_storeu_si256((__m256i *)(coeff + 192), _mm256_sub_epi16(b1, b3)); |
| coeff += 16; |
| t_coeff += 16; |
| } |
| } |
| |
| void aom_hadamard_32x32_avx2(const int16_t *src_diff, ptrdiff_t src_stride, |
| tran_low_t *coeff) { |
| // For high bitdepths, it is unnecessary to store_tran_low |
| // (mult/unpack/store), then load_tran_low (load/pack) the same memory in the |
| // next stage. Output to an intermediate buffer first, then store_tran_low() |
| // in the final stage. |
| DECLARE_ALIGNED(32, int16_t, temp_coeff[32 * 32]); |
| int16_t *t_coeff = temp_coeff; |
| int idx; |
| __m256i coeff0_lo, coeff1_lo, coeff2_lo, coeff3_lo, b0_lo, b1_lo, b2_lo, |
| b3_lo; |
| __m256i coeff0_hi, coeff1_hi, coeff2_hi, coeff3_hi, b0_hi, b1_hi, b2_hi, |
| b3_hi; |
| __m256i b0, b1, b2, b3; |
| const __m256i zero = _mm256_setzero_si256(); |
| for (idx = 0; idx < 4; ++idx) { |
| // src_diff: 9 bit, dynamic range [-255, 255] |
| const int16_t *src_ptr = |
| src_diff + (idx >> 1) * 16 * src_stride + (idx & 0x01) * 16; |
| hadamard_16x16_avx2(src_ptr, src_stride, |
| (tran_low_t *)(t_coeff + idx * 256), 0); |
| } |
| |
| for (idx = 0; idx < 256; idx += 16) { |
| const __m256i coeff0 = _mm256_loadu_si256((const __m256i *)t_coeff); |
| const __m256i coeff1 = _mm256_loadu_si256((const __m256i *)(t_coeff + 256)); |
| const __m256i coeff2 = _mm256_loadu_si256((const __m256i *)(t_coeff + 512)); |
| const __m256i coeff3 = _mm256_loadu_si256((const __m256i *)(t_coeff + 768)); |
| |
| // Sign extend 16 bit to 32 bit. |
| sign_extend_16bit_to_32bit_avx2(coeff0, zero, &coeff0_lo, &coeff0_hi); |
| sign_extend_16bit_to_32bit_avx2(coeff1, zero, &coeff1_lo, &coeff1_hi); |
| sign_extend_16bit_to_32bit_avx2(coeff2, zero, &coeff2_lo, &coeff2_hi); |
| sign_extend_16bit_to_32bit_avx2(coeff3, zero, &coeff3_lo, &coeff3_hi); |
| |
| b0_lo = _mm256_add_epi32(coeff0_lo, coeff1_lo); |
| b0_hi = _mm256_add_epi32(coeff0_hi, coeff1_hi); |
| |
| b1_lo = _mm256_sub_epi32(coeff0_lo, coeff1_lo); |
| b1_hi = _mm256_sub_epi32(coeff0_hi, coeff1_hi); |
| |
| b2_lo = _mm256_add_epi32(coeff2_lo, coeff3_lo); |
| b2_hi = _mm256_add_epi32(coeff2_hi, coeff3_hi); |
| |
| b3_lo = _mm256_sub_epi32(coeff2_lo, coeff3_lo); |
| b3_hi = _mm256_sub_epi32(coeff2_hi, coeff3_hi); |
| |
| b0_lo = _mm256_srai_epi32(b0_lo, 2); |
| b1_lo = _mm256_srai_epi32(b1_lo, 2); |
| b2_lo = _mm256_srai_epi32(b2_lo, 2); |
| b3_lo = _mm256_srai_epi32(b3_lo, 2); |
| |
| b0_hi = _mm256_srai_epi32(b0_hi, 2); |
| b1_hi = _mm256_srai_epi32(b1_hi, 2); |
| b2_hi = _mm256_srai_epi32(b2_hi, 2); |
| b3_hi = _mm256_srai_epi32(b3_hi, 2); |
| |
| b0 = _mm256_packs_epi32(b0_lo, b0_hi); |
| b1 = _mm256_packs_epi32(b1_lo, b1_hi); |
| b2 = _mm256_packs_epi32(b2_lo, b2_hi); |
| b3 = _mm256_packs_epi32(b3_lo, b3_hi); |
| |
| store_tran_low(_mm256_add_epi16(b0, b2), coeff); |
| store_tran_low(_mm256_add_epi16(b1, b3), coeff + 256); |
| store_tran_low(_mm256_sub_epi16(b0, b2), coeff + 512); |
| store_tran_low(_mm256_sub_epi16(b1, b3), coeff + 768); |
| |
| coeff += 16; |
| t_coeff += 16; |
| } |
| } |
| |
| #if CONFIG_AV1_HIGHBITDEPTH |
| static void highbd_hadamard_col8_avx2(__m256i *in, int iter) { |
| __m256i a0 = in[0]; |
| __m256i a1 = in[1]; |
| __m256i a2 = in[2]; |
| __m256i a3 = in[3]; |
| __m256i a4 = in[4]; |
| __m256i a5 = in[5]; |
| __m256i a6 = in[6]; |
| __m256i a7 = in[7]; |
| |
| __m256i b0 = _mm256_add_epi32(a0, a1); |
| __m256i b1 = _mm256_sub_epi32(a0, a1); |
| __m256i b2 = _mm256_add_epi32(a2, a3); |
| __m256i b3 = _mm256_sub_epi32(a2, a3); |
| __m256i b4 = _mm256_add_epi32(a4, a5); |
| __m256i b5 = _mm256_sub_epi32(a4, a5); |
| __m256i b6 = _mm256_add_epi32(a6, a7); |
| __m256i b7 = _mm256_sub_epi32(a6, a7); |
| |
| a0 = _mm256_add_epi32(b0, b2); |
| a1 = _mm256_add_epi32(b1, b3); |
| a2 = _mm256_sub_epi32(b0, b2); |
| a3 = _mm256_sub_epi32(b1, b3); |
| a4 = _mm256_add_epi32(b4, b6); |
| a5 = _mm256_add_epi32(b5, b7); |
| a6 = _mm256_sub_epi32(b4, b6); |
| a7 = _mm256_sub_epi32(b5, b7); |
| |
| if (iter == 0) { |
| b0 = _mm256_add_epi32(a0, a4); |
| b7 = _mm256_add_epi32(a1, a5); |
| b3 = _mm256_add_epi32(a2, a6); |
| b4 = _mm256_add_epi32(a3, a7); |
| b2 = _mm256_sub_epi32(a0, a4); |
| b6 = _mm256_sub_epi32(a1, a5); |
| b1 = _mm256_sub_epi32(a2, a6); |
| b5 = _mm256_sub_epi32(a3, a7); |
| |
| a0 = _mm256_unpacklo_epi32(b0, b1); |
| a1 = _mm256_unpacklo_epi32(b2, b3); |
| a2 = _mm256_unpackhi_epi32(b0, b1); |
| a3 = _mm256_unpackhi_epi32(b2, b3); |
| a4 = _mm256_unpacklo_epi32(b4, b5); |
| a5 = _mm256_unpacklo_epi32(b6, b7); |
| a6 = _mm256_unpackhi_epi32(b4, b5); |
| a7 = _mm256_unpackhi_epi32(b6, b7); |
| |
| b0 = _mm256_unpacklo_epi64(a0, a1); |
| b1 = _mm256_unpacklo_epi64(a4, a5); |
| b2 = _mm256_unpackhi_epi64(a0, a1); |
| b3 = _mm256_unpackhi_epi64(a4, a5); |
| b4 = _mm256_unpacklo_epi64(a2, a3); |
| b5 = _mm256_unpacklo_epi64(a6, a7); |
| b6 = _mm256_unpackhi_epi64(a2, a3); |
| b7 = _mm256_unpackhi_epi64(a6, a7); |
| |
| in[0] = _mm256_permute2x128_si256(b0, b1, 0x20); |
| in[1] = _mm256_permute2x128_si256(b0, b1, 0x31); |
| in[2] = _mm256_permute2x128_si256(b2, b3, 0x20); |
| in[3] = _mm256_permute2x128_si256(b2, b3, 0x31); |
| in[4] = _mm256_permute2x128_si256(b4, b5, 0x20); |
| in[5] = _mm256_permute2x128_si256(b4, b5, 0x31); |
| in[6] = _mm256_permute2x128_si256(b6, b7, 0x20); |
| in[7] = _mm256_permute2x128_si256(b6, b7, 0x31); |
| } else { |
| in[0] = _mm256_add_epi32(a0, a4); |
| in[7] = _mm256_add_epi32(a1, a5); |
| in[3] = _mm256_add_epi32(a2, a6); |
| in[4] = _mm256_add_epi32(a3, a7); |
| in[2] = _mm256_sub_epi32(a0, a4); |
| in[6] = _mm256_sub_epi32(a1, a5); |
| in[1] = _mm256_sub_epi32(a2, a6); |
| in[5] = _mm256_sub_epi32(a3, a7); |
| } |
| } |
| |
| void aom_highbd_hadamard_8x8_avx2(const int16_t *src_diff, ptrdiff_t src_stride, |
| tran_low_t *coeff) { |
| __m128i src16[8]; |
| __m256i src32[8]; |
| |
| src16[0] = _mm_loadu_si128((const __m128i *)src_diff); |
| src16[1] = _mm_loadu_si128((const __m128i *)(src_diff += src_stride)); |
| src16[2] = _mm_loadu_si128((const __m128i *)(src_diff += src_stride)); |
| src16[3] = _mm_loadu_si128((const __m128i *)(src_diff += src_stride)); |
| src16[4] = _mm_loadu_si128((const __m128i *)(src_diff += src_stride)); |
| src16[5] = _mm_loadu_si128((const __m128i *)(src_diff += src_stride)); |
| src16[6] = _mm_loadu_si128((const __m128i *)(src_diff += src_stride)); |
| src16[7] = _mm_loadu_si128((const __m128i *)(src_diff + src_stride)); |
| |
| src32[0] = _mm256_cvtepi16_epi32(src16[0]); |
| src32[1] = _mm256_cvtepi16_epi32(src16[1]); |
| src32[2] = _mm256_cvtepi16_epi32(src16[2]); |
| src32[3] = _mm256_cvtepi16_epi32(src16[3]); |
| src32[4] = _mm256_cvtepi16_epi32(src16[4]); |
| src32[5] = _mm256_cvtepi16_epi32(src16[5]); |
| src32[6] = _mm256_cvtepi16_epi32(src16[6]); |
| src32[7] = _mm256_cvtepi16_epi32(src16[7]); |
| |
| highbd_hadamard_col8_avx2(src32, 0); |
| highbd_hadamard_col8_avx2(src32, 1); |
| |
| _mm256_storeu_si256((__m256i *)coeff, src32[0]); |
| coeff += 8; |
| _mm256_storeu_si256((__m256i *)coeff, src32[1]); |
| coeff += 8; |
| _mm256_storeu_si256((__m256i *)coeff, src32[2]); |
| coeff += 8; |
| _mm256_storeu_si256((__m256i *)coeff, src32[3]); |
| coeff += 8; |
| _mm256_storeu_si256((__m256i *)coeff, src32[4]); |
| coeff += 8; |
| _mm256_storeu_si256((__m256i *)coeff, src32[5]); |
| coeff += 8; |
| _mm256_storeu_si256((__m256i *)coeff, src32[6]); |
| coeff += 8; |
| _mm256_storeu_si256((__m256i *)coeff, src32[7]); |
| } |
| |
| void aom_highbd_hadamard_16x16_avx2(const int16_t *src_diff, |
| ptrdiff_t src_stride, tran_low_t *coeff) { |
| int idx; |
| tran_low_t *t_coeff = coeff; |
| for (idx = 0; idx < 4; ++idx) { |
| const int16_t *src_ptr = |
| src_diff + (idx >> 1) * 8 * src_stride + (idx & 0x01) * 8; |
| aom_highbd_hadamard_8x8_avx2(src_ptr, src_stride, t_coeff + idx * 64); |
| } |
| |
| for (idx = 0; idx < 64; idx += 8) { |
| __m256i coeff0 = _mm256_loadu_si256((const __m256i *)t_coeff); |
| __m256i coeff1 = _mm256_loadu_si256((const __m256i *)(t_coeff + 64)); |
| __m256i coeff2 = _mm256_loadu_si256((const __m256i *)(t_coeff + 128)); |
| __m256i coeff3 = _mm256_loadu_si256((const __m256i *)(t_coeff + 192)); |
| |
| __m256i b0 = _mm256_add_epi32(coeff0, coeff1); |
| __m256i b1 = _mm256_sub_epi32(coeff0, coeff1); |
| __m256i b2 = _mm256_add_epi32(coeff2, coeff3); |
| __m256i b3 = _mm256_sub_epi32(coeff2, coeff3); |
| |
| b0 = _mm256_srai_epi32(b0, 1); |
| b1 = _mm256_srai_epi32(b1, 1); |
| b2 = _mm256_srai_epi32(b2, 1); |
| b3 = _mm256_srai_epi32(b3, 1); |
| |
| coeff0 = _mm256_add_epi32(b0, b2); |
| coeff1 = _mm256_add_epi32(b1, b3); |
| coeff2 = _mm256_sub_epi32(b0, b2); |
| coeff3 = _mm256_sub_epi32(b1, b3); |
| |
| _mm256_storeu_si256((__m256i *)coeff, coeff0); |
| _mm256_storeu_si256((__m256i *)(coeff + 64), coeff1); |
| _mm256_storeu_si256((__m256i *)(coeff + 128), coeff2); |
| _mm256_storeu_si256((__m256i *)(coeff + 192), coeff3); |
| |
| coeff += 8; |
| t_coeff += 8; |
| } |
| } |
| |
| void aom_highbd_hadamard_32x32_avx2(const int16_t *src_diff, |
| ptrdiff_t src_stride, tran_low_t *coeff) { |
| int idx; |
| tran_low_t *t_coeff = coeff; |
| for (idx = 0; idx < 4; ++idx) { |
| const int16_t *src_ptr = |
| src_diff + (idx >> 1) * 16 * src_stride + (idx & 0x01) * 16; |
| aom_highbd_hadamard_16x16_avx2(src_ptr, src_stride, t_coeff + idx * 256); |
| } |
| |
| for (idx = 0; idx < 256; idx += 8) { |
| __m256i coeff0 = _mm256_loadu_si256((const __m256i *)t_coeff); |
| __m256i coeff1 = _mm256_loadu_si256((const __m256i *)(t_coeff + 256)); |
| __m256i coeff2 = _mm256_loadu_si256((const __m256i *)(t_coeff + 512)); |
| __m256i coeff3 = _mm256_loadu_si256((const __m256i *)(t_coeff + 768)); |
| |
| __m256i b0 = _mm256_add_epi32(coeff0, coeff1); |
| __m256i b1 = _mm256_sub_epi32(coeff0, coeff1); |
| __m256i b2 = _mm256_add_epi32(coeff2, coeff3); |
| __m256i b3 = _mm256_sub_epi32(coeff2, coeff3); |
| |
| b0 = _mm256_srai_epi32(b0, 2); |
| b1 = _mm256_srai_epi32(b1, 2); |
| b2 = _mm256_srai_epi32(b2, 2); |
| b3 = _mm256_srai_epi32(b3, 2); |
| |
| coeff0 = _mm256_add_epi32(b0, b2); |
| coeff1 = _mm256_add_epi32(b1, b3); |
| coeff2 = _mm256_sub_epi32(b0, b2); |
| coeff3 = _mm256_sub_epi32(b1, b3); |
| |
| _mm256_storeu_si256((__m256i *)coeff, coeff0); |
| _mm256_storeu_si256((__m256i *)(coeff + 256), coeff1); |
| _mm256_storeu_si256((__m256i *)(coeff + 512), coeff2); |
| _mm256_storeu_si256((__m256i *)(coeff + 768), coeff3); |
| |
| coeff += 8; |
| t_coeff += 8; |
| } |
| } |
| #endif // CONFIG_AV1_HIGHBITDEPTH |
| |
| int aom_satd_avx2(const tran_low_t *coeff, int length) { |
| __m256i accum = _mm256_setzero_si256(); |
| int i; |
| |
| for (i = 0; i < length; i += 8, coeff += 8) { |
| const __m256i src_line = _mm256_loadu_si256((const __m256i *)coeff); |
| const __m256i abs = _mm256_abs_epi32(src_line); |
| accum = _mm256_add_epi32(accum, abs); |
| } |
| |
| { // 32 bit horizontal add |
| const __m256i a = _mm256_srli_si256(accum, 8); |
| const __m256i b = _mm256_add_epi32(accum, a); |
| const __m256i c = _mm256_srli_epi64(b, 32); |
| const __m256i d = _mm256_add_epi32(b, c); |
| const __m128i accum_128 = _mm_add_epi32(_mm256_castsi256_si128(d), |
| _mm256_extractf128_si256(d, 1)); |
| return _mm_cvtsi128_si32(accum_128); |
| } |
| } |
| |
| int aom_satd_lp_avx2(const int16_t *coeff, int length) { |
| const __m256i one = _mm256_set1_epi16(1); |
| __m256i accum = _mm256_setzero_si256(); |
| |
| for (int i = 0; i < length; i += 16) { |
| const __m256i src_line = _mm256_loadu_si256((const __m256i *)coeff); |
| const __m256i abs = _mm256_abs_epi16(src_line); |
| const __m256i sum = _mm256_madd_epi16(abs, one); |
| accum = _mm256_add_epi32(accum, sum); |
| coeff += 16; |
| } |
| |
| { // 32 bit horizontal add |
| const __m256i a = _mm256_srli_si256(accum, 8); |
| const __m256i b = _mm256_add_epi32(accum, a); |
| const __m256i c = _mm256_srli_epi64(b, 32); |
| const __m256i d = _mm256_add_epi32(b, c); |
| const __m128i accum_128 = _mm_add_epi32(_mm256_castsi256_si128(d), |
| _mm256_extractf128_si256(d, 1)); |
| return _mm_cvtsi128_si32(accum_128); |
| } |
| } |
| |
| static INLINE __m256i xx_loadu2_mi128(const void *hi, const void *lo) { |
| __m256i a = _mm256_castsi128_si256(_mm_loadu_si128((const __m128i *)(lo))); |
| a = _mm256_inserti128_si256(a, _mm_loadu_si128((const __m128i *)(hi)), 1); |
| return a; |
| } |
| |
| void aom_avg_8x8_quad_avx2(const uint8_t *s, int p, int x16_idx, int y16_idx, |
| int *avg) { |
| const uint8_t *s_y0 = s + y16_idx * p + x16_idx; |
| const uint8_t *s_y1 = s_y0 + 8 * p; |
| __m256i sum0, sum1, s0, s1, s2, s3, u0; |
| u0 = _mm256_setzero_si256(); |
| s0 = _mm256_sad_epu8(xx_loadu2_mi128(s_y1, s_y0), u0); |
| s1 = _mm256_sad_epu8(xx_loadu2_mi128(s_y1 + p, s_y0 + p), u0); |
| s2 = _mm256_sad_epu8(xx_loadu2_mi128(s_y1 + 2 * p, s_y0 + 2 * p), u0); |
| s3 = _mm256_sad_epu8(xx_loadu2_mi128(s_y1 + 3 * p, s_y0 + 3 * p), u0); |
| sum0 = _mm256_add_epi16(s0, s1); |
| sum1 = _mm256_add_epi16(s2, s3); |
| s0 = _mm256_sad_epu8(xx_loadu2_mi128(s_y1 + 4 * p, s_y0 + 4 * p), u0); |
| s1 = _mm256_sad_epu8(xx_loadu2_mi128(s_y1 + 5 * p, s_y0 + 5 * p), u0); |
| s2 = _mm256_sad_epu8(xx_loadu2_mi128(s_y1 + 6 * p, s_y0 + 6 * p), u0); |
| s3 = _mm256_sad_epu8(xx_loadu2_mi128(s_y1 + 7 * p, s_y0 + 7 * p), u0); |
| sum0 = _mm256_add_epi16(sum0, _mm256_add_epi16(s0, s1)); |
| sum1 = _mm256_add_epi16(sum1, _mm256_add_epi16(s2, s3)); |
| sum0 = _mm256_add_epi16(sum0, sum1); |
| |
| // (avg + 32) >> 6 |
| __m256i rounding = _mm256_set1_epi32(32); |
| sum0 = _mm256_add_epi32(sum0, rounding); |
| sum0 = _mm256_srli_epi32(sum0, 6); |
| __m128i lo = _mm256_castsi256_si128(sum0); |
| __m128i hi = _mm256_extracti128_si256(sum0, 1); |
| avg[0] = _mm_cvtsi128_si32(lo); |
| avg[1] = _mm_extract_epi32(lo, 2); |
| avg[2] = _mm_cvtsi128_si32(hi); |
| avg[3] = _mm_extract_epi32(hi, 2); |
| } |
| |
| void aom_int_pro_row_avx2(int16_t *hbuf, const uint8_t *ref, |
| const int ref_stride, const int width, |
| const int height, int norm_factor) { |
| // SIMD implementation assumes width and height to be multiple of 16 and 2 |
| // respectively. For any odd width or height, SIMD support needs to be added. |
| assert(width % 16 == 0 && height % 2 == 0); |
| |
| if (width % 32 == 0) { |
| const __m256i zero = _mm256_setzero_si256(); |
| for (int wd = 0; wd < width; wd += 32) { |
| const uint8_t *ref_tmp = ref + wd; |
| int16_t *hbuf_tmp = hbuf + wd; |
| __m256i s0 = zero; |
| __m256i s1 = zero; |
| int idx = 0; |
| do { |
| __m256i src_line = _mm256_loadu_si256((const __m256i *)ref_tmp); |
| __m256i t0 = _mm256_unpacklo_epi8(src_line, zero); |
| __m256i t1 = _mm256_unpackhi_epi8(src_line, zero); |
| s0 = _mm256_add_epi16(s0, t0); |
| s1 = _mm256_add_epi16(s1, t1); |
| ref_tmp += ref_stride; |
| |
| src_line = _mm256_loadu_si256((const __m256i *)ref_tmp); |
| t0 = _mm256_unpacklo_epi8(src_line, zero); |
| t1 = _mm256_unpackhi_epi8(src_line, zero); |
| s0 = _mm256_add_epi16(s0, t0); |
| s1 = _mm256_add_epi16(s1, t1); |
| ref_tmp += ref_stride; |
| idx += 2; |
| } while (idx < height); |
| s0 = _mm256_srai_epi16(s0, norm_factor); |
| s1 = _mm256_srai_epi16(s1, norm_factor); |
| _mm_storeu_si128((__m128i *)(hbuf_tmp), _mm256_castsi256_si128(s0)); |
| _mm_storeu_si128((__m128i *)(hbuf_tmp + 8), _mm256_castsi256_si128(s1)); |
| _mm_storeu_si128((__m128i *)(hbuf_tmp + 16), |
| _mm256_extractf128_si256(s0, 1)); |
| _mm_storeu_si128((__m128i *)(hbuf_tmp + 24), |
| _mm256_extractf128_si256(s1, 1)); |
| } |
| } else if (width % 16 == 0) { |
| aom_int_pro_row_sse2(hbuf, ref, ref_stride, width, height, norm_factor); |
| } |
| } |
| |
| static INLINE void load_from_src_buf(const uint8_t *ref1, __m256i *src, |
| const int stride) { |
| src[0] = _mm256_loadu_si256((const __m256i *)ref1); |
| src[1] = _mm256_loadu_si256((const __m256i *)(ref1 + stride)); |
| src[2] = _mm256_loadu_si256((const __m256i *)(ref1 + (2 * stride))); |
| src[3] = _mm256_loadu_si256((const __m256i *)(ref1 + (3 * stride))); |
| } |
| |
| #define CALC_TOT_SAD_AND_STORE \ |
| /* r00 r10 x x r01 r11 x x | r02 r12 x x r03 r13 x x */ \ |
| const __m256i r01 = _mm256_add_epi16(_mm256_slli_si256(r1, 2), r0); \ |
| /* r00 r10 r20 x r01 r11 r21 x | r02 r12 r22 x r03 r13 r23 x */ \ |
| const __m256i r012 = _mm256_add_epi16(_mm256_slli_si256(r2, 4), r01); \ |
| /* r00 r10 r20 r30 r01 r11 r21 r31 | r02 r12 r22 r32 r03 r13 r23 r33 */ \ |
| const __m256i result0 = _mm256_add_epi16(_mm256_slli_si256(r3, 6), r012); \ |
| \ |
| const __m128i results0 = _mm_add_epi16( \ |
| _mm256_castsi256_si128(result0), _mm256_extractf128_si256(result0, 1)); \ |
| const __m128i results1 = \ |
| _mm_add_epi16(results0, _mm_srli_si128(results0, 8)); \ |
| _mm_storel_epi64((__m128i *)vbuf, _mm_srli_epi16(results1, norm_factor)); |
| |
| static INLINE void aom_int_pro_col_16wd_avx2(int16_t *vbuf, const uint8_t *ref, |
| const int ref_stride, |
| const int height, |
| int norm_factor) { |
| const __m256i zero = _mm256_setzero_si256(); |
| int ht = 0; |
| // Post sad operation, the data is present in lower 16-bit of each 64-bit lane |
| // and higher 16-bits are Zero. Here, we are processing 8 rows at a time to |
| // utilize the higher 16-bits efficiently. |
| do { |
| __m256i src_00 = |
| _mm256_castsi128_si256(_mm_loadu_si128((const __m128i *)(ref))); |
| src_00 = _mm256_inserti128_si256( |
| src_00, _mm_loadu_si128((const __m128i *)(ref + ref_stride * 4)), 1); |
| __m256i src_01 = _mm256_castsi128_si256( |
| _mm_loadu_si128((const __m128i *)(ref + ref_stride * 1))); |
| src_01 = _mm256_inserti128_si256( |
| src_01, _mm_loadu_si128((const __m128i *)(ref + ref_stride * 5)), 1); |
| __m256i src_10 = _mm256_castsi128_si256( |
| _mm_loadu_si128((const __m128i *)(ref + ref_stride * 2))); |
| src_10 = _mm256_inserti128_si256( |
| src_10, _mm_loadu_si128((const __m128i *)(ref + ref_stride * 6)), 1); |
| __m256i src_11 = _mm256_castsi128_si256( |
| _mm_loadu_si128((const __m128i *)(ref + ref_stride * 3))); |
| src_11 = _mm256_inserti128_si256( |
| src_11, _mm_loadu_si128((const __m128i *)(ref + ref_stride * 7)), 1); |
| |
| // s00 x x x s01 x x x | s40 x x x s41 x x x |
| const __m256i s0 = _mm256_sad_epu8(src_00, zero); |
| // s10 x x x s11 x x x | s50 x x x s51 x x x |
| const __m256i s1 = _mm256_sad_epu8(src_01, zero); |
| // s20 x x x s21 x x x | s60 x x x s61 x x x |
| const __m256i s2 = _mm256_sad_epu8(src_10, zero); |
| // s30 x x x s31 x x x | s70 x x x s71 x x x |
| const __m256i s3 = _mm256_sad_epu8(src_11, zero); |
| |
| // s00 s10 x x x x x x | s40 s50 x x x x x x |
| const __m256i s0_lo = _mm256_unpacklo_epi16(s0, s1); |
| // s01 s11 x x x x x x | s41 s51 x x x x x x |
| const __m256i s0_hi = _mm256_unpackhi_epi16(s0, s1); |
| // s20 s30 x x x x x x | s60 s70 x x x x x x |
| const __m256i s1_lo = _mm256_unpacklo_epi16(s2, s3); |
| // s21 s31 x x x x x x | s61 s71 x x x x x x |
| const __m256i s1_hi = _mm256_unpackhi_epi16(s2, s3); |
| |
| // s0 s1 x x x x x x | s4 s5 x x x x x x |
| const __m256i s0_add = _mm256_add_epi16(s0_lo, s0_hi); |
| // s2 s3 x x x x x x | s6 s7 x x x x x x |
| const __m256i s1_add = _mm256_add_epi16(s1_lo, s1_hi); |
| |
| // s1 s1 s2 s3 s4 s5 s6 s7 |
| const __m128i results = _mm256_castsi256_si128( |
| _mm256_permute4x64_epi64(_mm256_unpacklo_epi32(s0_add, s1_add), 0x08)); |
| _mm_storeu_si128((__m128i *)vbuf, _mm_srli_epi16(results, norm_factor)); |
| vbuf += 8; |
| ref += (ref_stride << 3); |
| ht += 8; |
| } while (ht < height); |
| } |
| |
| void aom_int_pro_col_avx2(int16_t *vbuf, const uint8_t *ref, |
| const int ref_stride, const int width, |
| const int height, int norm_factor) { |
| assert(width % 16 == 0); |
| if (width == 128) { |
| const __m256i zero = _mm256_setzero_si256(); |
| for (int ht = 0; ht < height; ht += 4) { |
| __m256i src[16]; |
| // Load source data. |
| load_from_src_buf(ref, &src[0], ref_stride); |
| load_from_src_buf(ref + 32, &src[4], ref_stride); |
| load_from_src_buf(ref + 64, &src[8], ref_stride); |
| load_from_src_buf(ref + 96, &src[12], ref_stride); |
| |
| // Row0 output: r00 x x x r01 x x x | r02 x x x r03 x x x |
| const __m256i s0 = _mm256_add_epi16(_mm256_sad_epu8(src[0], zero), |
| _mm256_sad_epu8(src[4], zero)); |
| const __m256i s1 = _mm256_add_epi16(_mm256_sad_epu8(src[8], zero), |
| _mm256_sad_epu8(src[12], zero)); |
| const __m256i r0 = _mm256_add_epi16(s0, s1); |
| // Row1 output: r10 x x x r11 x x x | r12 x x x r13 x x x |
| const __m256i s2 = _mm256_add_epi16(_mm256_sad_epu8(src[1], zero), |
| _mm256_sad_epu8(src[5], zero)); |
| const __m256i s3 = _mm256_add_epi16(_mm256_sad_epu8(src[9], zero), |
| _mm256_sad_epu8(src[13], zero)); |
| const __m256i r1 = _mm256_add_epi16(s2, s3); |
| // Row2 output: r20 x x x r21 x x x | r22 x x x r23 x x x |
| const __m256i s4 = _mm256_add_epi16(_mm256_sad_epu8(src[2], zero), |
| _mm256_sad_epu8(src[6], zero)); |
| const __m256i s5 = _mm256_add_epi16(_mm256_sad_epu8(src[10], zero), |
| _mm256_sad_epu8(src[14], zero)); |
| const __m256i r2 = _mm256_add_epi16(s4, s5); |
| // Row3 output: r30 x x x r31 x x x | r32 x x x r33 x x x |
| const __m256i s6 = _mm256_add_epi16(_mm256_sad_epu8(src[3], zero), |
| _mm256_sad_epu8(src[7], zero)); |
| const __m256i s7 = _mm256_add_epi16(_mm256_sad_epu8(src[11], zero), |
| _mm256_sad_epu8(src[15], zero)); |
| const __m256i r3 = _mm256_add_epi16(s6, s7); |
| |
| CALC_TOT_SAD_AND_STORE |
| vbuf += 4; |
| ref += ref_stride << 2; |
| } |
| } else if (width == 64) { |
| const __m256i zero = _mm256_setzero_si256(); |
| for (int ht = 0; ht < height; ht += 4) { |
| __m256i src[8]; |
| // Load source data. |
| load_from_src_buf(ref, &src[0], ref_stride); |
| load_from_src_buf(ref + 32, &src[4], ref_stride); |
| |
| // Row0 output: r00 x x x r01 x x x | r02 x x x r03 x x x |
| const __m256i s0 = _mm256_sad_epu8(src[0], zero); |
| const __m256i s1 = _mm256_sad_epu8(src[4], zero); |
| const __m256i r0 = _mm256_add_epi16(s0, s1); |
| // Row1 output: r10 x x x r11 x x x | r12 x x x r13 x x x |
| const __m256i s2 = _mm256_sad_epu8(src[1], zero); |
| const __m256i s3 = _mm256_sad_epu8(src[5], zero); |
| const __m256i r1 = _mm256_add_epi16(s2, s3); |
| // Row2 output: r20 x x x r21 x x x | r22 x x x r23 x x x |
| const __m256i s4 = _mm256_sad_epu8(src[2], zero); |
| const __m256i s5 = _mm256_sad_epu8(src[6], zero); |
| const __m256i r2 = _mm256_add_epi16(s4, s5); |
| // Row3 output: r30 x x x r31 x x x | r32 x x x r33 x x x |
| const __m256i s6 = _mm256_sad_epu8(src[3], zero); |
| const __m256i s7 = _mm256_sad_epu8(src[7], zero); |
| const __m256i r3 = _mm256_add_epi16(s6, s7); |
| |
| CALC_TOT_SAD_AND_STORE |
| vbuf += 4; |
| ref += ref_stride << 2; |
| } |
| } else if (width == 32) { |
| assert(height % 2 == 0); |
| const __m256i zero = _mm256_setzero_si256(); |
| for (int ht = 0; ht < height; ht += 4) { |
| __m256i src[4]; |
| // Load source data. |
| load_from_src_buf(ref, &src[0], ref_stride); |
| |
| // s00 x x x s01 x x x s02 x x x s03 x x x |
| const __m256i r0 = _mm256_sad_epu8(src[0], zero); |
| // s10 x x x s11 x x x s12 x x x s13 x x x |
| const __m256i r1 = _mm256_sad_epu8(src[1], zero); |
| // s20 x x x s21 x x x s22 x x x s23 x x x |
| const __m256i r2 = _mm256_sad_epu8(src[2], zero); |
| // s30 x x x s31 x x x s32 x x x s33 x x x |
| const __m256i r3 = _mm256_sad_epu8(src[3], zero); |
| |
| CALC_TOT_SAD_AND_STORE |
| vbuf += 4; |
| ref += ref_stride << 2; |
| } |
| } else if (width == 16) { |
| aom_int_pro_col_16wd_avx2(vbuf, ref, ref_stride, height, norm_factor); |
| } |
| } |
| |
| static inline void calc_vector_mean_sse_64wd(const int16_t *ref, |
| const int16_t *src, __m256i *mean, |
| __m256i *sse) { |
| const __m256i src_line0 = _mm256_loadu_si256((const __m256i *)src); |
| const __m256i src_line1 = _mm256_loadu_si256((const __m256i *)(src + 16)); |
| const __m256i src_line2 = _mm256_loadu_si256((const __m256i *)(src + 32)); |
| const __m256i src_line3 = _mm256_loadu_si256((const __m256i *)(src + 48)); |
| const __m256i ref_line0 = _mm256_loadu_si256((const __m256i *)ref); |
| const __m256i ref_line1 = _mm256_loadu_si256((const __m256i *)(ref + 16)); |
| const __m256i ref_line2 = _mm256_loadu_si256((const __m256i *)(ref + 32)); |
| const __m256i ref_line3 = _mm256_loadu_si256((const __m256i *)(ref + 48)); |
| |
| const __m256i diff0 = _mm256_sub_epi16(ref_line0, src_line0); |
| const __m256i diff1 = _mm256_sub_epi16(ref_line1, src_line1); |
| const __m256i diff2 = _mm256_sub_epi16(ref_line2, src_line2); |
| const __m256i diff3 = _mm256_sub_epi16(ref_line3, src_line3); |
| const __m256i diff_sqr0 = _mm256_madd_epi16(diff0, diff0); |
| const __m256i diff_sqr1 = _mm256_madd_epi16(diff1, diff1); |
| const __m256i diff_sqr2 = _mm256_madd_epi16(diff2, diff2); |
| const __m256i diff_sqr3 = _mm256_madd_epi16(diff3, diff3); |
| |
| *mean = _mm256_add_epi16(*mean, _mm256_add_epi16(diff0, diff1)); |
| *mean = _mm256_add_epi16(*mean, diff2); |
| *mean = _mm256_add_epi16(*mean, diff3); |
| *sse = _mm256_add_epi32(*sse, _mm256_add_epi32(diff_sqr0, diff_sqr1)); |
| *sse = _mm256_add_epi32(*sse, diff_sqr2); |
| *sse = _mm256_add_epi32(*sse, diff_sqr3); |
| } |
| |
| #define CALC_VAR_FROM_MEAN_SSE(mean, sse) \ |
| { \ |
| mean = _mm256_madd_epi16(mean, _mm256_set1_epi16(1)); \ |
| mean = _mm256_hadd_epi32(mean, sse); \ |
| mean = _mm256_add_epi32(mean, _mm256_bsrli_epi128(mean, 4)); \ |
| const __m128i result = _mm_add_epi32(_mm256_castsi256_si128(mean), \ |
| _mm256_extractf128_si256(mean, 1)); \ |
| /*(mean * mean): dynamic range 31 bits.*/ \ |
| const int mean_int = _mm_extract_epi32(result, 0); \ |
| const int sse_int = _mm_extract_epi32(result, 2); \ |
| const unsigned int mean_abs = abs(mean_int); \ |
| var = sse_int - ((mean_abs * mean_abs) >> (bwl + 2)); \ |
| } |
| |
| // ref: [0 - 510] |
| // src: [0 - 510] |
| // bwl: {2, 3, 4, 5} |
| int aom_vector_var_avx2(const int16_t *ref, const int16_t *src, int bwl) { |
| const int width = 4 << bwl; |
| assert(width % 16 == 0 && width <= 128); |
| int var = 0; |
| |
| // Instead of having a loop over width 16, considered loop unrolling to avoid |
| // some addition operations. |
| if (width == 128) { |
| __m256i mean = _mm256_setzero_si256(); |
| __m256i sse = _mm256_setzero_si256(); |
| |
| calc_vector_mean_sse_64wd(src, ref, &mean, &sse); |
| calc_vector_mean_sse_64wd(src + 64, ref + 64, &mean, &sse); |
| CALC_VAR_FROM_MEAN_SSE(mean, sse) |
| } else if (width == 64) { |
| __m256i mean = _mm256_setzero_si256(); |
| __m256i sse = _mm256_setzero_si256(); |
| |
| calc_vector_mean_sse_64wd(src, ref, &mean, &sse); |
| CALC_VAR_FROM_MEAN_SSE(mean, sse) |
| } else if (width == 32) { |
| const __m256i src_line0 = _mm256_loadu_si256((const __m256i *)src); |
| const __m256i ref_line0 = _mm256_loadu_si256((const __m256i *)ref); |
| const __m256i src_line1 = _mm256_loadu_si256((const __m256i *)(src + 16)); |
| const __m256i ref_line1 = _mm256_loadu_si256((const __m256i *)(ref + 16)); |
| |
| const __m256i diff0 = _mm256_sub_epi16(ref_line0, src_line0); |
| const __m256i diff1 = _mm256_sub_epi16(ref_line1, src_line1); |
| const __m256i diff_sqr0 = _mm256_madd_epi16(diff0, diff0); |
| const __m256i diff_sqr1 = _mm256_madd_epi16(diff1, diff1); |
| const __m256i sse = _mm256_add_epi32(diff_sqr0, diff_sqr1); |
| __m256i mean = _mm256_add_epi16(diff0, diff1); |
| |
| CALC_VAR_FROM_MEAN_SSE(mean, sse) |
| } else if (width == 16) { |
| const __m256i src_line = _mm256_loadu_si256((const __m256i *)src); |
| const __m256i ref_line = _mm256_loadu_si256((const __m256i *)ref); |
| __m256i mean = _mm256_sub_epi16(ref_line, src_line); |
| const __m256i sse = _mm256_madd_epi16(mean, mean); |
| |
| CALC_VAR_FROM_MEAN_SSE(mean, sse) |
| } |
| return var; |
| } |