| /* |
| * Copyright (c) 2018, Alliance for Open Media. All rights reserved. |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <assert.h> |
| #include <immintrin.h> |
| |
| #include "config/aom_config.h" |
| #include "config/aom_dsp_rtcd.h" |
| |
| #include "aom_ports/mem.h" |
| #include "aom/aom_integer.h" |
| |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_dsp/x86/obmc_intrinsic_ssse3.h" |
| #include "aom_dsp/x86/synonyms.h" |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // 8 bit |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| static INLINE unsigned int obmc_sad_w4_avx2(const uint8_t *pre, |
| const int pre_stride, |
| const int32_t *wsrc, |
| const int32_t *mask, |
| const int height) { |
| int n = 0; |
| __m256i v_sad_d = _mm256_setzero_si256(); |
| const __m256i v_bias_d = _mm256_set1_epi32((1 << 12) >> 1); |
| |
| do { |
| const __m128i v_p_b_0 = xx_loadl_32(pre); |
| const __m128i v_p_b_1 = xx_loadl_32(pre + pre_stride); |
| const __m128i v_p_b = _mm_unpacklo_epi32(v_p_b_0, v_p_b_1); |
| const __m256i v_m_d = _mm256_lddqu_si256((__m256i *)(mask + n)); |
| const __m256i v_w_d = _mm256_lddqu_si256((__m256i *)(wsrc + n)); |
| |
| const __m256i v_p_d = _mm256_cvtepu8_epi32(v_p_b); |
| |
| // Values in both pre and mask fit in 15 bits, and are packed at 32 bit |
| // boundaries. We use pmaddwd, as it has lower latency on Haswell |
| // than pmulld but produces the same result with these inputs. |
| const __m256i v_pm_d = _mm256_madd_epi16(v_p_d, v_m_d); |
| |
| const __m256i v_diff_d = _mm256_sub_epi32(v_w_d, v_pm_d); |
| const __m256i v_absdiff_d = _mm256_abs_epi32(v_diff_d); |
| |
| // Rounded absolute difference |
| const __m256i v_tmp_d = _mm256_add_epi32(v_absdiff_d, v_bias_d); |
| const __m256i v_rad_d = _mm256_srli_epi32(v_tmp_d, 12); |
| |
| v_sad_d = _mm256_add_epi32(v_sad_d, v_rad_d); |
| |
| n += 8; |
| pre += pre_stride << 1; |
| } while (n < 8 * (height >> 1)); |
| |
| __m128i v_sad_d_0 = _mm256_castsi256_si128(v_sad_d); |
| __m128i v_sad_d_1 = _mm256_extracti128_si256(v_sad_d, 1); |
| v_sad_d_0 = _mm_add_epi32(v_sad_d_0, v_sad_d_1); |
| return xx_hsum_epi32_si32(v_sad_d_0); |
| } |
| |
| static INLINE unsigned int obmc_sad_w8n_avx2( |
| const uint8_t *pre, const int pre_stride, const int32_t *wsrc, |
| const int32_t *mask, const int width, const int height) { |
| const int pre_step = pre_stride - width; |
| int n = 0; |
| __m256i v_sad_d = _mm256_setzero_si256(); |
| const __m256i v_bias_d = _mm256_set1_epi32((1 << 12) >> 1); |
| assert(width >= 8); |
| assert(IS_POWER_OF_TWO(width)); |
| |
| do { |
| const __m128i v_p0_b = xx_loadl_64(pre + n); |
| const __m256i v_m0_d = _mm256_lddqu_si256((__m256i *)(mask + n)); |
| const __m256i v_w0_d = _mm256_lddqu_si256((__m256i *)(wsrc + n)); |
| |
| const __m256i v_p0_d = _mm256_cvtepu8_epi32(v_p0_b); |
| |
| // Values in both pre and mask fit in 15 bits, and are packed at 32 bit |
| // boundaries. We use pmaddwd, as it has lower latency on Haswell |
| // than pmulld but produces the same result with these inputs. |
| const __m256i v_pm0_d = _mm256_madd_epi16(v_p0_d, v_m0_d); |
| |
| const __m256i v_diff0_d = _mm256_sub_epi32(v_w0_d, v_pm0_d); |
| const __m256i v_absdiff0_d = _mm256_abs_epi32(v_diff0_d); |
| |
| // Rounded absolute difference |
| const __m256i v_tmp_d = _mm256_add_epi32(v_absdiff0_d, v_bias_d); |
| const __m256i v_rad0_d = _mm256_srli_epi32(v_tmp_d, 12); |
| |
| v_sad_d = _mm256_add_epi32(v_sad_d, v_rad0_d); |
| |
| n += 8; |
| |
| if ((n & (width - 1)) == 0) pre += pre_step; |
| } while (n < width * height); |
| |
| __m128i v_sad_d_0 = _mm256_castsi256_si128(v_sad_d); |
| __m128i v_sad_d_1 = _mm256_extracti128_si256(v_sad_d, 1); |
| v_sad_d_0 = _mm_add_epi32(v_sad_d_0, v_sad_d_1); |
| return xx_hsum_epi32_si32(v_sad_d_0); |
| } |
| |
| #define OBMCSADWXH(w, h) \ |
| unsigned int aom_obmc_sad##w##x##h##_avx2( \ |
| const uint8_t *pre, int pre_stride, const int32_t *wsrc, \ |
| const int32_t *msk) { \ |
| if (w == 4) { \ |
| return obmc_sad_w4_avx2(pre, pre_stride, wsrc, msk, h); \ |
| } else { \ |
| return obmc_sad_w8n_avx2(pre, pre_stride, wsrc, msk, w, h); \ |
| } \ |
| } |
| |
| OBMCSADWXH(128, 128) |
| OBMCSADWXH(128, 64) |
| OBMCSADWXH(64, 128) |
| OBMCSADWXH(64, 64) |
| OBMCSADWXH(64, 32) |
| OBMCSADWXH(32, 64) |
| OBMCSADWXH(32, 32) |
| OBMCSADWXH(32, 16) |
| OBMCSADWXH(16, 32) |
| OBMCSADWXH(16, 16) |
| OBMCSADWXH(16, 8) |
| OBMCSADWXH(8, 16) |
| OBMCSADWXH(8, 8) |
| OBMCSADWXH(8, 4) |
| OBMCSADWXH(4, 8) |
| OBMCSADWXH(4, 4) |
| OBMCSADWXH(4, 16) |
| OBMCSADWXH(16, 4) |
| OBMCSADWXH(8, 32) |
| OBMCSADWXH(32, 8) |
| OBMCSADWXH(16, 64) |
| OBMCSADWXH(64, 16) |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // High bit-depth |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| static INLINE unsigned int hbd_obmc_sad_w4_avx2(const uint8_t *pre8, |
| const int pre_stride, |
| const int32_t *wsrc, |
| const int32_t *mask, |
| const int height) { |
| const uint16_t *pre = CONVERT_TO_SHORTPTR(pre8); |
| int n = 0; |
| __m256i v_sad_d = _mm256_setzero_si256(); |
| const __m256i v_bias_d = _mm256_set1_epi32((1 << 12) >> 1); |
| do { |
| const __m128i v_p_w_0 = xx_loadl_64(pre); |
| const __m128i v_p_w_1 = xx_loadl_64(pre + pre_stride); |
| const __m128i v_p_w = _mm_unpacklo_epi64(v_p_w_0, v_p_w_1); |
| const __m256i v_m_d = _mm256_lddqu_si256((__m256i *)(mask + n)); |
| const __m256i v_w_d = _mm256_lddqu_si256((__m256i *)(wsrc + n)); |
| |
| const __m256i v_p_d = _mm256_cvtepu16_epi32(v_p_w); |
| |
| // Values in both pre and mask fit in 15 bits, and are packed at 32 bit |
| // boundaries. We use pmaddwd, as it has lower latency on Haswell |
| // than pmulld but produces the same result with these inputs. |
| const __m256i v_pm_d = _mm256_madd_epi16(v_p_d, v_m_d); |
| |
| const __m256i v_diff_d = _mm256_sub_epi32(v_w_d, v_pm_d); |
| const __m256i v_absdiff_d = _mm256_abs_epi32(v_diff_d); |
| |
| // Rounded absolute difference |
| |
| const __m256i v_tmp_d = _mm256_add_epi32(v_absdiff_d, v_bias_d); |
| const __m256i v_rad_d = _mm256_srli_epi32(v_tmp_d, 12); |
| |
| v_sad_d = _mm256_add_epi32(v_sad_d, v_rad_d); |
| |
| n += 8; |
| |
| pre += pre_stride << 1; |
| } while (n < 8 * (height >> 1)); |
| |
| __m128i v_sad_d_0 = _mm256_castsi256_si128(v_sad_d); |
| __m128i v_sad_d_1 = _mm256_extracti128_si256(v_sad_d, 1); |
| v_sad_d_0 = _mm_add_epi32(v_sad_d_0, v_sad_d_1); |
| return xx_hsum_epi32_si32(v_sad_d_0); |
| } |
| |
| static INLINE unsigned int hbd_obmc_sad_w8n_avx2( |
| const uint8_t *pre8, const int pre_stride, const int32_t *wsrc, |
| const int32_t *mask, const int width, const int height) { |
| const uint16_t *pre = CONVERT_TO_SHORTPTR(pre8); |
| const int pre_step = pre_stride - width; |
| int n = 0; |
| __m256i v_sad_d = _mm256_setzero_si256(); |
| const __m256i v_bias_d = _mm256_set1_epi32((1 << 12) >> 1); |
| |
| assert(width >= 8); |
| assert(IS_POWER_OF_TWO(width)); |
| |
| do { |
| const __m128i v_p0_w = _mm_lddqu_si128((__m128i *)(pre + n)); |
| const __m256i v_m0_d = _mm256_lddqu_si256((__m256i *)(mask + n)); |
| const __m256i v_w0_d = _mm256_lddqu_si256((__m256i *)(wsrc + n)); |
| |
| const __m256i v_p0_d = _mm256_cvtepu16_epi32(v_p0_w); |
| |
| // Values in both pre and mask fit in 15 bits, and are packed at 32 bit |
| // boundaries. We use pmaddwd, as it has lower latency on Haswell |
| // than pmulld but produces the same result with these inputs. |
| const __m256i v_pm0_d = _mm256_madd_epi16(v_p0_d, v_m0_d); |
| |
| const __m256i v_diff0_d = _mm256_sub_epi32(v_w0_d, v_pm0_d); |
| const __m256i v_absdiff0_d = _mm256_abs_epi32(v_diff0_d); |
| |
| // Rounded absolute difference |
| const __m256i v_tmp_d = _mm256_add_epi32(v_absdiff0_d, v_bias_d); |
| const __m256i v_rad0_d = _mm256_srli_epi32(v_tmp_d, 12); |
| |
| v_sad_d = _mm256_add_epi32(v_sad_d, v_rad0_d); |
| |
| n += 8; |
| |
| if (n % width == 0) pre += pre_step; |
| } while (n < width * height); |
| |
| __m128i v_sad_d_0 = _mm256_castsi256_si128(v_sad_d); |
| __m128i v_sad_d_1 = _mm256_extracti128_si256(v_sad_d, 1); |
| v_sad_d_0 = _mm_add_epi32(v_sad_d_0, v_sad_d_1); |
| return xx_hsum_epi32_si32(v_sad_d_0); |
| } |
| |
| #define HBD_OBMCSADWXH(w, h) \ |
| unsigned int aom_highbd_obmc_sad##w##x##h##_avx2( \ |
| const uint8_t *pre, int pre_stride, const int32_t *wsrc, \ |
| const int32_t *mask) { \ |
| if (w == 4) { \ |
| return hbd_obmc_sad_w4_avx2(pre, pre_stride, wsrc, mask, h); \ |
| } else { \ |
| return hbd_obmc_sad_w8n_avx2(pre, pre_stride, wsrc, mask, w, h); \ |
| } \ |
| } |
| |
| HBD_OBMCSADWXH(128, 128) |
| HBD_OBMCSADWXH(128, 64) |
| HBD_OBMCSADWXH(64, 128) |
| HBD_OBMCSADWXH(64, 64) |
| HBD_OBMCSADWXH(64, 32) |
| HBD_OBMCSADWXH(32, 64) |
| HBD_OBMCSADWXH(32, 32) |
| HBD_OBMCSADWXH(32, 16) |
| HBD_OBMCSADWXH(16, 32) |
| HBD_OBMCSADWXH(16, 16) |
| HBD_OBMCSADWXH(16, 8) |
| HBD_OBMCSADWXH(8, 16) |
| HBD_OBMCSADWXH(8, 8) |
| HBD_OBMCSADWXH(8, 4) |
| HBD_OBMCSADWXH(4, 8) |
| HBD_OBMCSADWXH(4, 4) |
| HBD_OBMCSADWXH(4, 16) |
| HBD_OBMCSADWXH(16, 4) |
| HBD_OBMCSADWXH(8, 32) |
| HBD_OBMCSADWXH(32, 8) |
| HBD_OBMCSADWXH(16, 64) |
| HBD_OBMCSADWXH(64, 16) |