| /* |
| * Copyright (c) 2023, Alliance for Open Media. All rights reserved. |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| #ifndef AOM_AV1_COMMON_ARM_HIGHBD_WARP_PLANE_NEON_H_ |
| #define AOM_AV1_COMMON_ARM_HIGHBD_WARP_PLANE_NEON_H_ |
| |
| #include <arm_neon.h> |
| #include <assert.h> |
| #include <stdbool.h> |
| |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_dsp/arm/mem_neon.h" |
| #include "aom_dsp/arm/sum_neon.h" |
| #include "aom_ports/mem.h" |
| #include "av1/common/scale.h" |
| #include "av1/common/warped_motion.h" |
| #include "config/av1_rtcd.h" |
| |
| static AOM_FORCE_INLINE int16x8_t |
| highbd_horizontal_filter_4x1_f4(int16x8_t rv0, int16x8_t rv1, int16x8_t rv2, |
| int16x8_t rv3, int bd, int sx, int alpha); |
| |
| static AOM_FORCE_INLINE int16x8_t highbd_horizontal_filter_8x1_f8( |
| int16x8_t rv0, int16x8_t rv1, int16x8_t rv2, int16x8_t rv3, int16x8_t rv4, |
| int16x8_t rv5, int16x8_t rv6, int16x8_t rv7, int bd, int sx, int alpha); |
| |
| static AOM_FORCE_INLINE int16x8_t highbd_horizontal_filter_4x1_f1( |
| int16x8_t rv0, int16x8_t rv1, int16x8_t rv2, int16x8_t rv3, int bd, int sx); |
| |
| static AOM_FORCE_INLINE int16x8_t highbd_horizontal_filter_8x1_f1( |
| int16x8_t rv0, int16x8_t rv1, int16x8_t rv2, int16x8_t rv3, int16x8_t rv4, |
| int16x8_t rv5, int16x8_t rv6, int16x8_t rv7, int bd, int sx); |
| |
| static AOM_FORCE_INLINE int32x4_t vertical_filter_4x1_f1(const int16x8_t *tmp, |
| int sy); |
| |
| static AOM_FORCE_INLINE int32x4x2_t vertical_filter_8x1_f1(const int16x8_t *tmp, |
| int sy); |
| |
| static AOM_FORCE_INLINE int32x4_t vertical_filter_4x1_f4(const int16x8_t *tmp, |
| int sy, int gamma); |
| |
| static AOM_FORCE_INLINE int32x4x2_t vertical_filter_8x1_f8(const int16x8_t *tmp, |
| int sy, int gamma); |
| |
| static AOM_FORCE_INLINE int16x8_t load_filters_1(int ofs) { |
| const int ofs0 = ROUND_POWER_OF_TWO(ofs, WARPEDDIFF_PREC_BITS); |
| |
| const int16_t *base = |
| (int16_t *)av1_warped_filter + WARPEDPIXEL_PREC_SHIFTS * 8; |
| return vld1q_s16(base + ofs0 * 8); |
| } |
| |
| static AOM_FORCE_INLINE void load_filters_4(int16x8_t out[], int ofs, |
| int stride) { |
| const int ofs0 = ROUND_POWER_OF_TWO(ofs + stride * 0, WARPEDDIFF_PREC_BITS); |
| const int ofs1 = ROUND_POWER_OF_TWO(ofs + stride * 1, WARPEDDIFF_PREC_BITS); |
| const int ofs2 = ROUND_POWER_OF_TWO(ofs + stride * 2, WARPEDDIFF_PREC_BITS); |
| const int ofs3 = ROUND_POWER_OF_TWO(ofs + stride * 3, WARPEDDIFF_PREC_BITS); |
| |
| const int16_t *base = |
| (int16_t *)av1_warped_filter + WARPEDPIXEL_PREC_SHIFTS * 8; |
| out[0] = vld1q_s16(base + ofs0 * 8); |
| out[1] = vld1q_s16(base + ofs1 * 8); |
| out[2] = vld1q_s16(base + ofs2 * 8); |
| out[3] = vld1q_s16(base + ofs3 * 8); |
| } |
| |
| static AOM_FORCE_INLINE void load_filters_8(int16x8_t out[], int ofs, |
| int stride) { |
| const int ofs0 = ROUND_POWER_OF_TWO(ofs + stride * 0, WARPEDDIFF_PREC_BITS); |
| const int ofs1 = ROUND_POWER_OF_TWO(ofs + stride * 1, WARPEDDIFF_PREC_BITS); |
| const int ofs2 = ROUND_POWER_OF_TWO(ofs + stride * 2, WARPEDDIFF_PREC_BITS); |
| const int ofs3 = ROUND_POWER_OF_TWO(ofs + stride * 3, WARPEDDIFF_PREC_BITS); |
| const int ofs4 = ROUND_POWER_OF_TWO(ofs + stride * 4, WARPEDDIFF_PREC_BITS); |
| const int ofs5 = ROUND_POWER_OF_TWO(ofs + stride * 5, WARPEDDIFF_PREC_BITS); |
| const int ofs6 = ROUND_POWER_OF_TWO(ofs + stride * 6, WARPEDDIFF_PREC_BITS); |
| const int ofs7 = ROUND_POWER_OF_TWO(ofs + stride * 7, WARPEDDIFF_PREC_BITS); |
| |
| const int16_t *base = |
| (int16_t *)av1_warped_filter + WARPEDPIXEL_PREC_SHIFTS * 8; |
| out[0] = vld1q_s16(base + ofs0 * 8); |
| out[1] = vld1q_s16(base + ofs1 * 8); |
| out[2] = vld1q_s16(base + ofs2 * 8); |
| out[3] = vld1q_s16(base + ofs3 * 8); |
| out[4] = vld1q_s16(base + ofs4 * 8); |
| out[5] = vld1q_s16(base + ofs5 * 8); |
| out[6] = vld1q_s16(base + ofs6 * 8); |
| out[7] = vld1q_s16(base + ofs7 * 8); |
| } |
| |
| static AOM_FORCE_INLINE uint16x4_t clip_pixel_highbd_vec(int32x4_t val, |
| int bd) { |
| const int limit = (1 << bd) - 1; |
| return vqmovun_s32(vminq_s32(val, vdupq_n_s32(limit))); |
| } |
| |
| static AOM_FORCE_INLINE uint16x8x2_t clamp_horizontal( |
| uint16x8x2_t src_1, int out_of_boundary_left, int out_of_boundary_right, |
| const uint16_t *ref, int iy, int stride, int width, const uint16x8_t indx0, |
| const uint16x8_t indx1) { |
| if (out_of_boundary_left >= 0) { |
| uint16x8_t cmp_vec = vdupq_n_u16(out_of_boundary_left); |
| uint16x8_t vec_dup = vdupq_n_u16(ref[iy * stride]); |
| uint16x8_t mask0 = vcleq_u16(indx0, cmp_vec); |
| uint16x8_t mask1 = vcleq_u16(indx1, cmp_vec); |
| src_1.val[0] = vbslq_u16(mask0, vec_dup, src_1.val[0]); |
| src_1.val[1] = vbslq_u16(mask1, vec_dup, src_1.val[1]); |
| } |
| if (out_of_boundary_right >= 0) { |
| uint16x8_t cmp_vec = vdupq_n_u16(15 - out_of_boundary_right); |
| uint16x8_t vec_dup = vdupq_n_u16(ref[iy * stride + width - 1]); |
| uint16x8_t mask0 = vcgeq_u16(indx0, cmp_vec); |
| uint16x8_t mask1 = vcgeq_u16(indx1, cmp_vec); |
| src_1.val[0] = vbslq_u16(mask0, vec_dup, src_1.val[0]); |
| src_1.val[1] = vbslq_u16(mask1, vec_dup, src_1.val[1]); |
| } |
| return src_1; |
| } |
| |
| static AOM_FORCE_INLINE void warp_affine_horizontal(const uint16_t *ref, |
| int width, int height, |
| int stride, int p_width, |
| int16_t alpha, int16_t beta, |
| int iy4, int sx4, int ix4, |
| int16x8_t tmp[], int bd) { |
| const int round0 = (bd == 12) ? ROUND0_BITS + 2 : ROUND0_BITS; |
| |
| if (ix4 <= -7) { |
| for (int k = 0; k < 15; ++k) { |
| int iy = clamp(iy4 + k - 7, 0, height - 1); |
| int32_t dup_val = (1 << (bd + FILTER_BITS - round0 - 1)) + |
| ref[iy * stride] * (1 << (FILTER_BITS - round0)); |
| tmp[k] = vdupq_n_s16(dup_val); |
| } |
| return; |
| } else if (ix4 >= width + 6) { |
| for (int k = 0; k < 15; ++k) { |
| int iy = clamp(iy4 + k - 7, 0, height - 1); |
| int32_t dup_val = |
| (1 << (bd + FILTER_BITS - round0 - 1)) + |
| ref[iy * stride + (width - 1)] * (1 << (FILTER_BITS - round0)); |
| tmp[k] = vdupq_n_s16(dup_val); |
| } |
| return; |
| } |
| |
| static const uint16_t kIotaArr[] = { 0, 1, 2, 3, 4, 5, 6, 7, |
| 8, 9, 10, 11, 12, 13, 14, 15 }; |
| const uint16x8_t indx0 = vld1q_u16(kIotaArr); |
| const uint16x8_t indx1 = vld1q_u16(kIotaArr + 8); |
| |
| const int out_of_boundary_left = -(ix4 - 6); |
| const int out_of_boundary_right = (ix4 + 8) - width; |
| |
| #define APPLY_HORIZONTAL_SHIFT_4X1(fn, ...) \ |
| do { \ |
| if (out_of_boundary_left >= 0 || out_of_boundary_right >= 0) { \ |
| for (int k = 0; k < 15; ++k) { \ |
| const int iy = clamp(iy4 + k - 7, 0, height - 1); \ |
| uint16x8x2_t src_1 = vld1q_u16_x2(ref + iy * stride + ix4 - 7); \ |
| src_1 = clamp_horizontal(src_1, out_of_boundary_left, \ |
| out_of_boundary_right, ref, iy, stride, \ |
| width, indx0, indx1); \ |
| int16x8_t rv0 = vextq_s16(vreinterpretq_s16_u16(src_1.val[0]), \ |
| vreinterpretq_s16_u16(src_1.val[1]), 0); \ |
| int16x8_t rv1 = vextq_s16(vreinterpretq_s16_u16(src_1.val[0]), \ |
| vreinterpretq_s16_u16(src_1.val[1]), 1); \ |
| int16x8_t rv2 = vextq_s16(vreinterpretq_s16_u16(src_1.val[0]), \ |
| vreinterpretq_s16_u16(src_1.val[1]), 2); \ |
| int16x8_t rv3 = vextq_s16(vreinterpretq_s16_u16(src_1.val[0]), \ |
| vreinterpretq_s16_u16(src_1.val[1]), 3); \ |
| tmp[k] = (fn)(rv0, rv1, rv2, rv3, __VA_ARGS__); \ |
| } \ |
| } else { \ |
| for (int k = 0; k < 15; ++k) { \ |
| const int iy = clamp(iy4 + k - 7, 0, height - 1); \ |
| const uint16_t *src = ref + iy * stride + ix4; \ |
| int16x8_t rv0 = vreinterpretq_s16_u16(vld1q_u16(src - 7)); \ |
| int16x8_t rv1 = vreinterpretq_s16_u16(vld1q_u16(src - 6)); \ |
| int16x8_t rv2 = vreinterpretq_s16_u16(vld1q_u16(src - 5)); \ |
| int16x8_t rv3 = vreinterpretq_s16_u16(vld1q_u16(src - 4)); \ |
| tmp[k] = (fn)(rv0, rv1, rv2, rv3, __VA_ARGS__); \ |
| } \ |
| } \ |
| } while (0) |
| |
| #define APPLY_HORIZONTAL_SHIFT_8X1(fn, ...) \ |
| do { \ |
| if (out_of_boundary_left >= 0 || out_of_boundary_right >= 0) { \ |
| for (int k = 0; k < 15; ++k) { \ |
| const int iy = clamp(iy4 + k - 7, 0, height - 1); \ |
| uint16x8x2_t src_1 = vld1q_u16_x2(ref + iy * stride + ix4 - 7); \ |
| src_1 = clamp_horizontal(src_1, out_of_boundary_left, \ |
| out_of_boundary_right, ref, iy, stride, \ |
| width, indx0, indx1); \ |
| int16x8_t rv0 = vextq_s16(vreinterpretq_s16_u16(src_1.val[0]), \ |
| vreinterpretq_s16_u16(src_1.val[1]), 0); \ |
| int16x8_t rv1 = vextq_s16(vreinterpretq_s16_u16(src_1.val[0]), \ |
| vreinterpretq_s16_u16(src_1.val[1]), 1); \ |
| int16x8_t rv2 = vextq_s16(vreinterpretq_s16_u16(src_1.val[0]), \ |
| vreinterpretq_s16_u16(src_1.val[1]), 2); \ |
| int16x8_t rv3 = vextq_s16(vreinterpretq_s16_u16(src_1.val[0]), \ |
| vreinterpretq_s16_u16(src_1.val[1]), 3); \ |
| int16x8_t rv4 = vextq_s16(vreinterpretq_s16_u16(src_1.val[0]), \ |
| vreinterpretq_s16_u16(src_1.val[1]), 4); \ |
| int16x8_t rv5 = vextq_s16(vreinterpretq_s16_u16(src_1.val[0]), \ |
| vreinterpretq_s16_u16(src_1.val[1]), 5); \ |
| int16x8_t rv6 = vextq_s16(vreinterpretq_s16_u16(src_1.val[0]), \ |
| vreinterpretq_s16_u16(src_1.val[1]), 6); \ |
| int16x8_t rv7 = vextq_s16(vreinterpretq_s16_u16(src_1.val[0]), \ |
| vreinterpretq_s16_u16(src_1.val[1]), 7); \ |
| tmp[k] = (fn)(rv0, rv1, rv2, rv3, rv4, rv5, rv6, rv7, __VA_ARGS__); \ |
| } \ |
| } else { \ |
| for (int k = 0; k < 15; ++k) { \ |
| const int iy = clamp(iy4 + k - 7, 0, height - 1); \ |
| const uint16_t *src = ref + iy * stride + ix4; \ |
| int16x8_t rv0 = vreinterpretq_s16_u16(vld1q_u16(src - 7)); \ |
| int16x8_t rv1 = vreinterpretq_s16_u16(vld1q_u16(src - 6)); \ |
| int16x8_t rv2 = vreinterpretq_s16_u16(vld1q_u16(src - 5)); \ |
| int16x8_t rv3 = vreinterpretq_s16_u16(vld1q_u16(src - 4)); \ |
| int16x8_t rv4 = vreinterpretq_s16_u16(vld1q_u16(src - 3)); \ |
| int16x8_t rv5 = vreinterpretq_s16_u16(vld1q_u16(src - 2)); \ |
| int16x8_t rv6 = vreinterpretq_s16_u16(vld1q_u16(src - 1)); \ |
| int16x8_t rv7 = vreinterpretq_s16_u16(vld1q_u16(src - 0)); \ |
| tmp[k] = (fn)(rv0, rv1, rv2, rv3, rv4, rv5, rv6, rv7, __VA_ARGS__); \ |
| } \ |
| } \ |
| } while (0) |
| |
| if (p_width == 4) { |
| if (beta == 0) { |
| if (alpha == 0) { |
| APPLY_HORIZONTAL_SHIFT_4X1(highbd_horizontal_filter_4x1_f1, bd, sx4); |
| } else { |
| APPLY_HORIZONTAL_SHIFT_4X1(highbd_horizontal_filter_4x1_f4, bd, sx4, |
| alpha); |
| } |
| } else { |
| if (alpha == 0) { |
| APPLY_HORIZONTAL_SHIFT_4X1(highbd_horizontal_filter_4x1_f1, bd, |
| (sx4 + beta * (k - 3))); |
| } else { |
| APPLY_HORIZONTAL_SHIFT_4X1(highbd_horizontal_filter_4x1_f4, bd, |
| (sx4 + beta * (k - 3)), alpha); |
| } |
| } |
| } else { |
| if (beta == 0) { |
| if (alpha == 0) { |
| APPLY_HORIZONTAL_SHIFT_8X1(highbd_horizontal_filter_8x1_f1, bd, sx4); |
| } else { |
| APPLY_HORIZONTAL_SHIFT_8X1(highbd_horizontal_filter_8x1_f8, bd, sx4, |
| alpha); |
| } |
| } else { |
| if (alpha == 0) { |
| APPLY_HORIZONTAL_SHIFT_8X1(highbd_horizontal_filter_8x1_f1, bd, |
| (sx4 + beta * (k - 3))); |
| } else { |
| APPLY_HORIZONTAL_SHIFT_8X1(highbd_horizontal_filter_8x1_f8, bd, |
| (sx4 + beta * (k - 3)), alpha); |
| } |
| } |
| } |
| |
| #undef APPLY_HORIZONTAL_SHIFT_4X1 |
| #undef APPLY_HORIZONTAL_SHIFT_8X1 |
| } |
| |
| static AOM_FORCE_INLINE void highbd_vertical_filter_4x1_f4( |
| uint16_t *pred, int p_stride, int bd, uint16_t *dst, int dst_stride, |
| bool is_compound, bool do_average, bool use_dist_wtd_comp_avg, int fwd, |
| int bwd, int16_t gamma, const int16x8_t *tmp, int i, int sy, int j) { |
| int32x4_t sum0 = gamma == 0 ? vertical_filter_4x1_f1(tmp, sy) |
| : vertical_filter_4x1_f4(tmp, sy, gamma); |
| |
| const int round0 = (bd == 12) ? ROUND0_BITS + 2 : ROUND0_BITS; |
| const int offset_bits_vert = bd + 2 * FILTER_BITS - round0; |
| |
| sum0 = vaddq_s32(sum0, vdupq_n_s32(1 << offset_bits_vert)); |
| |
| uint16_t *dst16 = &pred[i * p_stride + j]; |
| |
| if (!is_compound) { |
| const int reduce_bits_vert = 2 * FILTER_BITS - round0; |
| sum0 = vrshlq_s32(sum0, vdupq_n_s32(-reduce_bits_vert)); |
| |
| const int res_sub_const = (1 << (bd - 1)) + (1 << bd); |
| sum0 = vsubq_s32(sum0, vdupq_n_s32(res_sub_const)); |
| uint16x4_t res0 = clip_pixel_highbd_vec(sum0, bd); |
| vst1_u16(dst16, res0); |
| return; |
| } |
| |
| sum0 = vrshrq_n_s32(sum0, COMPOUND_ROUND1_BITS); |
| |
| uint16_t *p = &dst[i * dst_stride + j]; |
| |
| if (!do_average) { |
| vst1_u16(p, vqmovun_s32(sum0)); |
| return; |
| } |
| |
| uint16x4_t p0 = vld1_u16(p); |
| int32x4_t p_vec0 = vreinterpretq_s32_u32(vmovl_u16(p0)); |
| if (use_dist_wtd_comp_avg) { |
| p_vec0 = vmulq_n_s32(p_vec0, fwd); |
| p_vec0 = vmlaq_n_s32(p_vec0, sum0, bwd); |
| p_vec0 = vshrq_n_s32(p_vec0, DIST_PRECISION_BITS); |
| } else { |
| p_vec0 = vhaddq_s32(p_vec0, sum0); |
| } |
| |
| const int offset_bits = bd + 2 * FILTER_BITS - round0; |
| const int round1 = COMPOUND_ROUND1_BITS; |
| const int res_sub_const = |
| (1 << (offset_bits - round1)) + (1 << (offset_bits - round1 - 1)); |
| const int round_bits = 2 * FILTER_BITS - round0 - round1; |
| |
| p_vec0 = vsubq_s32(p_vec0, vdupq_n_s32(res_sub_const)); |
| p_vec0 = vrshlq_s32(p_vec0, vdupq_n_s32(-round_bits)); |
| uint16x4_t res0 = clip_pixel_highbd_vec(p_vec0, bd); |
| vst1_u16(dst16, res0); |
| } |
| |
| static AOM_FORCE_INLINE void highbd_vertical_filter_8x1_f8( |
| uint16_t *pred, int p_stride, int bd, uint16_t *dst, int dst_stride, |
| bool is_compound, bool do_average, bool use_dist_wtd_comp_avg, int fwd, |
| int bwd, int16_t gamma, const int16x8_t *tmp, int i, int sy, int j) { |
| int32x4x2_t sums = gamma == 0 ? vertical_filter_8x1_f1(tmp, sy) |
| : vertical_filter_8x1_f8(tmp, sy, gamma); |
| int32x4_t sum0 = sums.val[0]; |
| int32x4_t sum1 = sums.val[1]; |
| |
| const int round0 = (bd == 12) ? ROUND0_BITS + 2 : ROUND0_BITS; |
| const int offset_bits_vert = bd + 2 * FILTER_BITS - round0; |
| |
| sum0 = vaddq_s32(sum0, vdupq_n_s32(1 << offset_bits_vert)); |
| sum1 = vaddq_s32(sum1, vdupq_n_s32(1 << offset_bits_vert)); |
| |
| uint16_t *dst16 = &pred[i * p_stride + j]; |
| |
| if (!is_compound) { |
| const int reduce_bits_vert = 2 * FILTER_BITS - round0; |
| sum0 = vrshlq_s32(sum0, vdupq_n_s32(-reduce_bits_vert)); |
| sum1 = vrshlq_s32(sum1, vdupq_n_s32(-reduce_bits_vert)); |
| |
| const int res_sub_const = (1 << (bd - 1)) + (1 << bd); |
| sum0 = vsubq_s32(sum0, vdupq_n_s32(res_sub_const)); |
| sum1 = vsubq_s32(sum1, vdupq_n_s32(res_sub_const)); |
| uint16x4_t res0 = clip_pixel_highbd_vec(sum0, bd); |
| uint16x4_t res1 = clip_pixel_highbd_vec(sum1, bd); |
| vst1_u16(dst16, res0); |
| vst1_u16(dst16 + 4, res1); |
| return; |
| } |
| |
| sum0 = vrshrq_n_s32(sum0, COMPOUND_ROUND1_BITS); |
| sum1 = vrshrq_n_s32(sum1, COMPOUND_ROUND1_BITS); |
| |
| uint16_t *p = &dst[i * dst_stride + j]; |
| |
| if (!do_average) { |
| vst1_u16(p, vqmovun_s32(sum0)); |
| vst1_u16(p + 4, vqmovun_s32(sum1)); |
| return; |
| } |
| |
| uint16x8_t p0 = vld1q_u16(p); |
| int32x4_t p_vec0 = vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(p0))); |
| int32x4_t p_vec1 = vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(p0))); |
| if (use_dist_wtd_comp_avg) { |
| p_vec0 = vmulq_n_s32(p_vec0, fwd); |
| p_vec1 = vmulq_n_s32(p_vec1, fwd); |
| p_vec0 = vmlaq_n_s32(p_vec0, sum0, bwd); |
| p_vec1 = vmlaq_n_s32(p_vec1, sum1, bwd); |
| p_vec0 = vshrq_n_s32(p_vec0, DIST_PRECISION_BITS); |
| p_vec1 = vshrq_n_s32(p_vec1, DIST_PRECISION_BITS); |
| } else { |
| p_vec0 = vhaddq_s32(p_vec0, sum0); |
| p_vec1 = vhaddq_s32(p_vec1, sum1); |
| } |
| |
| const int offset_bits = bd + 2 * FILTER_BITS - round0; |
| const int round1 = COMPOUND_ROUND1_BITS; |
| const int res_sub_const = |
| (1 << (offset_bits - round1)) + (1 << (offset_bits - round1 - 1)); |
| const int round_bits = 2 * FILTER_BITS - round0 - round1; |
| |
| p_vec0 = vsubq_s32(p_vec0, vdupq_n_s32(res_sub_const)); |
| p_vec1 = vsubq_s32(p_vec1, vdupq_n_s32(res_sub_const)); |
| |
| p_vec0 = vrshlq_s32(p_vec0, vdupq_n_s32(-round_bits)); |
| p_vec1 = vrshlq_s32(p_vec1, vdupq_n_s32(-round_bits)); |
| uint16x4_t res0 = clip_pixel_highbd_vec(p_vec0, bd); |
| uint16x4_t res1 = clip_pixel_highbd_vec(p_vec1, bd); |
| vst1_u16(dst16, res0); |
| vst1_u16(dst16 + 4, res1); |
| } |
| |
| static AOM_FORCE_INLINE void warp_affine_vertical( |
| uint16_t *pred, int p_width, int p_height, int p_stride, int bd, |
| uint16_t *dst, int dst_stride, bool is_compound, bool do_average, |
| bool use_dist_wtd_comp_avg, int fwd, int bwd, int16_t gamma, int16_t delta, |
| const int16x8_t *tmp, int i, int sy4, int j) { |
| int limit_height = p_height > 4 ? 8 : 4; |
| |
| if (p_width > 4) { |
| // p_width == 8 |
| for (int k = 0; k < limit_height; ++k) { |
| int sy = sy4 + delta * k; |
| highbd_vertical_filter_8x1_f8( |
| pred, p_stride, bd, dst, dst_stride, is_compound, do_average, |
| use_dist_wtd_comp_avg, fwd, bwd, gamma, tmp + k, i + k, sy, j); |
| } |
| } else { |
| // p_width == 4 |
| for (int k = 0; k < limit_height; ++k) { |
| int sy = sy4 + delta * k; |
| highbd_vertical_filter_4x1_f4( |
| pred, p_stride, bd, dst, dst_stride, is_compound, do_average, |
| use_dist_wtd_comp_avg, fwd, bwd, gamma, tmp + k, i + k, sy, j); |
| } |
| } |
| } |
| |
| static AOM_FORCE_INLINE void highbd_warp_affine_common( |
| const int32_t *mat, const uint16_t *ref, int width, int height, int stride, |
| uint16_t *pred, int p_col, int p_row, int p_width, int p_height, |
| int p_stride, int subsampling_x, int subsampling_y, int bd, |
| ConvolveParams *conv_params, int16_t alpha, int16_t beta, int16_t gamma, |
| int16_t delta) { |
| uint16_t *const dst = conv_params->dst; |
| const int dst_stride = conv_params->dst_stride; |
| const bool is_compound = conv_params->is_compound; |
| const bool do_average = conv_params->do_average; |
| const bool use_dist_wtd_comp_avg = conv_params->use_dist_wtd_comp_avg; |
| const int fwd = conv_params->fwd_offset; |
| const int bwd = conv_params->bck_offset; |
| |
| assert(IMPLIES(is_compound, dst != NULL)); |
| |
| for (int i = 0; i < p_height; i += 8) { |
| for (int j = 0; j < p_width; j += 8) { |
| // Calculate the center of this 8x8 block, |
| // project to luma coordinates (if in a subsampled chroma plane), |
| // apply the affine transformation, |
| // then convert back to the original coordinates (if necessary) |
| const int32_t src_x = (j + 4 + p_col) << subsampling_x; |
| const int32_t src_y = (i + 4 + p_row) << subsampling_y; |
| const int64_t dst_x = |
| (int64_t)mat[2] * src_x + (int64_t)mat[3] * src_y + (int64_t)mat[0]; |
| const int64_t dst_y = |
| (int64_t)mat[4] * src_x + (int64_t)mat[5] * src_y + (int64_t)mat[1]; |
| const int64_t x4 = dst_x >> subsampling_x; |
| const int64_t y4 = dst_y >> subsampling_y; |
| |
| const int32_t ix4 = (int32_t)(x4 >> WARPEDMODEL_PREC_BITS); |
| int32_t sx4 = x4 & ((1 << WARPEDMODEL_PREC_BITS) - 1); |
| const int32_t iy4 = (int32_t)(y4 >> WARPEDMODEL_PREC_BITS); |
| int32_t sy4 = y4 & ((1 << WARPEDMODEL_PREC_BITS) - 1); |
| |
| sx4 += alpha * (-4) + beta * (-4); |
| sy4 += gamma * (-4) + delta * (-4); |
| |
| sx4 &= ~((1 << WARP_PARAM_REDUCE_BITS) - 1); |
| sy4 &= ~((1 << WARP_PARAM_REDUCE_BITS) - 1); |
| |
| // Each horizontal filter result is formed by the sum of up to eight |
| // multiplications by filter values and then a shift. Although both the |
| // inputs and filters are loaded as int16, the input data is at most bd |
| // bits and the filters are at most 8 bits each. Additionally since we |
| // know all possible filter values we know that the sum of absolute |
| // filter values will fit in at most 9 bits. With this in mind we can |
| // conclude that the sum of each filter application will fit in bd + 9 |
| // bits. The shift following the summation is ROUND0_BITS (which is 3), |
| // +2 for 12-bit, which gives us a final storage of: |
| // bd == 8: ( 8 + 9) - 3 => 14 bits |
| // bd == 10: (10 + 9) - 3 => 16 bits |
| // bd == 12: (12 + 9) - 5 => 16 bits |
| // So it is safe to use int16x8_t as the intermediate storage type here. |
| int16x8_t tmp[15]; |
| |
| warp_affine_horizontal(ref, width, height, stride, p_width, alpha, beta, |
| iy4, sx4, ix4, tmp, bd); |
| warp_affine_vertical(pred, p_width, p_height, p_stride, bd, dst, |
| dst_stride, is_compound, do_average, |
| use_dist_wtd_comp_avg, fwd, bwd, gamma, delta, tmp, |
| i, sy4, j); |
| } |
| } |
| } |
| |
| #endif // AOM_AV1_COMMON_ARM_HIGHBD_WARP_PLANE_NEON_H_ |