| /* |
| * |
| * Copyright (c) 2020, Alliance for Open Media. All rights reserved. |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| #include <arm_neon.h> |
| #include <assert.h> |
| |
| #include "aom_dsp/arm/mem_neon.h" |
| #include "aom_dsp/arm/transpose_neon.h" |
| #include "av1/common/resize.h" |
| #include "config/av1_rtcd.h" |
| #include "config/aom_dsp_rtcd.h" |
| #include "config/aom_scale_rtcd.h" |
| |
| static INLINE int16x4_t convolve8_4(const int16x4_t s0, const int16x4_t s1, |
| const int16x4_t s2, const int16x4_t s3, |
| const int16x4_t s4, const int16x4_t s5, |
| const int16x4_t s6, const int16x4_t s7, |
| const int16x8_t filter) { |
| const int16x4_t filter_lo = vget_low_s16(filter); |
| const int16x4_t filter_hi = vget_high_s16(filter); |
| |
| int16x4_t sum = vmul_lane_s16(s0, filter_lo, 0); |
| sum = vmla_lane_s16(sum, s1, filter_lo, 1); |
| sum = vmla_lane_s16(sum, s2, filter_lo, 2); |
| sum = vmla_lane_s16(sum, s5, filter_hi, 1); |
| sum = vmla_lane_s16(sum, s6, filter_hi, 2); |
| sum = vmla_lane_s16(sum, s7, filter_hi, 3); |
| sum = vqadd_s16(sum, vmul_lane_s16(s3, filter_lo, 3)); |
| sum = vqadd_s16(sum, vmul_lane_s16(s4, filter_hi, 0)); |
| return sum; |
| } |
| |
| static INLINE uint8x8_t convolve8_8(const int16x8_t s0, const int16x8_t s1, |
| const int16x8_t s2, const int16x8_t s3, |
| const int16x8_t s4, const int16x8_t s5, |
| const int16x8_t s6, const int16x8_t s7, |
| const int16x8_t filter) { |
| const int16x4_t filter_lo = vget_low_s16(filter); |
| const int16x4_t filter_hi = vget_high_s16(filter); |
| |
| int16x8_t sum = vmulq_lane_s16(s0, filter_lo, 0); |
| sum = vmlaq_lane_s16(sum, s1, filter_lo, 1); |
| sum = vmlaq_lane_s16(sum, s2, filter_lo, 2); |
| sum = vmlaq_lane_s16(sum, s5, filter_hi, 1); |
| sum = vmlaq_lane_s16(sum, s6, filter_hi, 2); |
| sum = vmlaq_lane_s16(sum, s7, filter_hi, 3); |
| sum = vqaddq_s16(sum, vmulq_lane_s16(s3, filter_lo, 3)); |
| sum = vqaddq_s16(sum, vmulq_lane_s16(s4, filter_hi, 0)); |
| return vqrshrun_n_s16(sum, 7); |
| } |
| |
| static INLINE uint8x8_t scale_filter_8(const uint8x8_t *const s, |
| const int16x8_t filter) { |
| int16x8_t ss0 = vreinterpretq_s16_u16(vmovl_u8(s[0])); |
| int16x8_t ss1 = vreinterpretq_s16_u16(vmovl_u8(s[1])); |
| int16x8_t ss2 = vreinterpretq_s16_u16(vmovl_u8(s[2])); |
| int16x8_t ss3 = vreinterpretq_s16_u16(vmovl_u8(s[3])); |
| int16x8_t ss4 = vreinterpretq_s16_u16(vmovl_u8(s[4])); |
| int16x8_t ss5 = vreinterpretq_s16_u16(vmovl_u8(s[5])); |
| int16x8_t ss6 = vreinterpretq_s16_u16(vmovl_u8(s[6])); |
| int16x8_t ss7 = vreinterpretq_s16_u16(vmovl_u8(s[7])); |
| |
| return convolve8_8(ss0, ss1, ss2, ss3, ss4, ss5, ss6, ss7, filter); |
| } |
| |
| static INLINE void scale_plane_2_to_1_phase_0(const uint8_t *src, |
| const int src_stride, |
| uint8_t *dst, |
| const int dst_stride, const int w, |
| const int h) { |
| const int max_width = (w + 15) & ~15; |
| int y = h; |
| |
| assert(w && h); |
| |
| do { |
| int x = max_width; |
| do { |
| const uint8x16x2_t s = vld2q_u8(src); |
| vst1q_u8(dst, s.val[0]); |
| src += 32; |
| dst += 16; |
| x -= 16; |
| } while (x); |
| src += 2 * (src_stride - max_width); |
| dst += dst_stride - max_width; |
| } while (--y); |
| } |
| |
| static INLINE void scale_plane_4_to_1_phase_0(const uint8_t *src, |
| const int src_stride, |
| uint8_t *dst, |
| const int dst_stride, const int w, |
| const int h) { |
| const int max_width = (w + 15) & ~15; |
| int y = h; |
| |
| assert(w && h); |
| |
| do { |
| int x = max_width; |
| do { |
| const uint8x16x4_t s = vld4q_u8(src); |
| vst1q_u8(dst, s.val[0]); |
| src += 64; |
| dst += 16; |
| x -= 16; |
| } while (x); |
| src += 4 * (src_stride - max_width); |
| dst += dst_stride - max_width; |
| } while (--y); |
| } |
| |
| static INLINE void scale_plane_bilinear_kernel( |
| const uint8x16_t in0, const uint8x16_t in1, const uint8x16_t in2, |
| const uint8x16_t in3, const uint8x8_t coef0, const uint8x8_t coef1, |
| uint8_t *const dst) { |
| const uint16x8_t h0 = vmull_u8(vget_low_u8(in0), coef0); |
| const uint16x8_t h1 = vmull_u8(vget_high_u8(in0), coef0); |
| const uint16x8_t h2 = vmull_u8(vget_low_u8(in2), coef0); |
| const uint16x8_t h3 = vmull_u8(vget_high_u8(in2), coef0); |
| const uint16x8_t h4 = vmlal_u8(h0, vget_low_u8(in1), coef1); |
| const uint16x8_t h5 = vmlal_u8(h1, vget_high_u8(in1), coef1); |
| const uint16x8_t h6 = vmlal_u8(h2, vget_low_u8(in3), coef1); |
| const uint16x8_t h7 = vmlal_u8(h3, vget_high_u8(in3), coef1); |
| |
| const uint8x8_t hor0 = vrshrn_n_u16(h4, 7); // temp: 00 01 02 03 04 05 06 07 |
| const uint8x8_t hor1 = vrshrn_n_u16(h5, 7); // temp: 08 09 0A 0B 0C 0D 0E 0F |
| const uint8x8_t hor2 = vrshrn_n_u16(h6, 7); // temp: 10 11 12 13 14 15 16 17 |
| const uint8x8_t hor3 = vrshrn_n_u16(h7, 7); // temp: 18 19 1A 1B 1C 1D 1E 1F |
| const uint16x8_t v0 = vmull_u8(hor0, coef0); |
| const uint16x8_t v1 = vmull_u8(hor1, coef0); |
| const uint16x8_t v2 = vmlal_u8(v0, hor2, coef1); |
| const uint16x8_t v3 = vmlal_u8(v1, hor3, coef1); |
| // dst: 0 1 2 3 4 5 6 7 8 9 A B C D E F |
| const uint8x16_t d = vcombine_u8(vrshrn_n_u16(v2, 7), vrshrn_n_u16(v3, 7)); |
| vst1q_u8(dst, d); |
| } |
| |
| static INLINE void scale_plane_2_to_1_bilinear( |
| const uint8_t *const src, const int src_stride, uint8_t *dst, |
| const int dst_stride, const int w, const int h, const int16_t c0, |
| const int16_t c1) { |
| const int max_width = (w + 15) & ~15; |
| const uint8_t *src0 = src; |
| const uint8_t *src1 = src + src_stride; |
| const uint8x8_t coef0 = vdup_n_u8(c0); |
| const uint8x8_t coef1 = vdup_n_u8(c1); |
| int y = h; |
| |
| assert(w && h); |
| |
| do { |
| int x = max_width; |
| do { |
| // 000 002 004 006 008 00A 00C 00E 010 012 014 016 018 01A 01C 01E |
| // 001 003 005 007 009 00B 00D 00F 011 013 015 017 019 01B 01D 01F |
| const uint8x16x2_t s0 = vld2q_u8(src0); |
| // 100 102 104 106 108 10A 10C 10E 110 112 114 116 118 11A 11C 11E |
| // 101 103 105 107 109 10B 10D 10F 111 113 115 117 119 11B 11D 11F |
| const uint8x16x2_t s1 = vld2q_u8(src1); |
| scale_plane_bilinear_kernel(s0.val[0], s0.val[1], s1.val[0], s1.val[1], |
| coef0, coef1, dst); |
| src0 += 32; |
| src1 += 32; |
| dst += 16; |
| x -= 16; |
| } while (x); |
| src0 += 2 * (src_stride - max_width); |
| src1 += 2 * (src_stride - max_width); |
| dst += dst_stride - max_width; |
| } while (--y); |
| } |
| |
| static INLINE void scale_plane_4_to_1_bilinear( |
| const uint8_t *const src, const int src_stride, uint8_t *dst, |
| const int dst_stride, const int w, const int h, const int16_t c0, |
| const int16_t c1) { |
| const int max_width = (w + 15) & ~15; |
| const uint8_t *src0 = src; |
| const uint8_t *src1 = src + src_stride; |
| const uint8x8_t coef0 = vdup_n_u8(c0); |
| const uint8x8_t coef1 = vdup_n_u8(c1); |
| int y = h; |
| |
| assert(w && h); |
| |
| do { |
| int x = max_width; |
| do { |
| // (*) -- useless |
| // 000 004 008 00C 010 014 018 01C 020 024 028 02C 030 034 038 03C |
| // 001 005 009 00D 011 015 019 01D 021 025 029 02D 031 035 039 03D |
| // 002 006 00A 00E 012 016 01A 01E 022 026 02A 02E 032 036 03A 03E (*) |
| // 003 007 00B 00F 013 017 01B 01F 023 027 02B 02F 033 037 03B 03F (*) |
| const uint8x16x4_t s0 = vld4q_u8(src0); |
| // 100 104 108 10C 110 114 118 11C 120 124 128 12C 130 134 138 13C |
| // 101 105 109 10D 111 115 119 11D 121 125 129 12D 131 135 139 13D |
| // 102 106 10A 10E 112 116 11A 11E 122 126 12A 12E 132 136 13A 13E (*) |
| // 103 107 10B 10F 113 117 11B 11F 123 127 12B 12F 133 137 13B 13F (*) |
| const uint8x16x4_t s1 = vld4q_u8(src1); |
| scale_plane_bilinear_kernel(s0.val[0], s0.val[1], s1.val[0], s1.val[1], |
| coef0, coef1, dst); |
| src0 += 64; |
| src1 += 64; |
| dst += 16; |
| x -= 16; |
| } while (x); |
| src0 += 4 * (src_stride - max_width); |
| src1 += 4 * (src_stride - max_width); |
| dst += dst_stride - max_width; |
| } while (--y); |
| } |
| |
| static void scale_plane_2_to_1_general(const uint8_t *src, const int src_stride, |
| uint8_t *dst, const int dst_stride, |
| const int w, const int h, |
| const int16_t *const coef, |
| uint8_t *const temp_buffer) { |
| const int width_hor = (w + 3) & ~3; |
| const int width_ver = (w + 7) & ~7; |
| const int height_hor = (2 * h + SUBPEL_TAPS - 2 + 7) & ~7; |
| const int height_ver = (h + 3) & ~3; |
| const int16x8_t filters = vld1q_s16(coef); |
| int x, y = height_hor; |
| uint8_t *t = temp_buffer; |
| uint8x8_t s[14], d[4]; |
| |
| assert(w && h); |
| |
| src -= (SUBPEL_TAPS / 2 - 1) * src_stride + SUBPEL_TAPS / 2 + 1; |
| |
| // horizontal 4x8 |
| // Note: processing 4x8 is about 20% faster than processing row by row using |
| // vld4_u8(). |
| do { |
| load_u8_8x8(src + 2, src_stride, &s[0], &s[1], &s[2], &s[3], &s[4], &s[5], |
| &s[6], &s[7]); |
| transpose_elems_inplace_u8_8x8(&s[0], &s[1], &s[2], &s[3], &s[4], &s[5], |
| &s[6], &s[7]); |
| x = width_hor; |
| |
| do { |
| src += 8; |
| load_u8_8x8(src, src_stride, &s[6], &s[7], &s[8], &s[9], &s[10], &s[11], |
| &s[12], &s[13]); |
| transpose_elems_inplace_u8_8x8(&s[6], &s[7], &s[8], &s[9], &s[10], &s[11], |
| &s[12], &s[13]); |
| |
| d[0] = scale_filter_8(&s[0], filters); // 00 10 20 30 40 50 60 70 |
| d[1] = scale_filter_8(&s[2], filters); // 01 11 21 31 41 51 61 71 |
| d[2] = scale_filter_8(&s[4], filters); // 02 12 22 32 42 52 62 72 |
| d[3] = scale_filter_8(&s[6], filters); // 03 13 23 33 43 53 63 73 |
| // 00 01 02 03 40 41 42 43 |
| // 10 11 12 13 50 51 52 53 |
| // 20 21 22 23 60 61 62 63 |
| // 30 31 32 33 70 71 72 73 |
| transpose_elems_inplace_u8_8x4(&d[0], &d[1], &d[2], &d[3]); |
| vst1_lane_u32((uint32_t *)(t + 0 * width_hor), vreinterpret_u32_u8(d[0]), |
| 0); |
| vst1_lane_u32((uint32_t *)(t + 1 * width_hor), vreinterpret_u32_u8(d[1]), |
| 0); |
| vst1_lane_u32((uint32_t *)(t + 2 * width_hor), vreinterpret_u32_u8(d[2]), |
| 0); |
| vst1_lane_u32((uint32_t *)(t + 3 * width_hor), vreinterpret_u32_u8(d[3]), |
| 0); |
| vst1_lane_u32((uint32_t *)(t + 4 * width_hor), vreinterpret_u32_u8(d[0]), |
| 1); |
| vst1_lane_u32((uint32_t *)(t + 5 * width_hor), vreinterpret_u32_u8(d[1]), |
| 1); |
| vst1_lane_u32((uint32_t *)(t + 6 * width_hor), vreinterpret_u32_u8(d[2]), |
| 1); |
| vst1_lane_u32((uint32_t *)(t + 7 * width_hor), vreinterpret_u32_u8(d[3]), |
| 1); |
| |
| s[0] = s[8]; |
| s[1] = s[9]; |
| s[2] = s[10]; |
| s[3] = s[11]; |
| s[4] = s[12]; |
| s[5] = s[13]; |
| |
| t += 4; |
| x -= 4; |
| } while (x); |
| src += 8 * src_stride - 2 * width_hor; |
| t += 7 * width_hor; |
| y -= 8; |
| } while (y); |
| |
| // vertical 8x4 |
| x = width_ver; |
| t = temp_buffer; |
| do { |
| load_u8_8x8(t, width_hor, &s[0], &s[1], &s[2], &s[3], &s[4], &s[5], &s[6], |
| &s[7]); |
| t += 6 * width_hor; |
| y = height_ver; |
| |
| do { |
| load_u8_8x8(t, width_hor, &s[6], &s[7], &s[8], &s[9], &s[10], &s[11], |
| &s[12], &s[13]); |
| t += 8 * width_hor; |
| |
| d[0] = scale_filter_8(&s[0], filters); // 00 01 02 03 04 05 06 07 |
| d[1] = scale_filter_8(&s[2], filters); // 10 11 12 13 14 15 16 17 |
| d[2] = scale_filter_8(&s[4], filters); // 20 21 22 23 24 25 26 27 |
| d[3] = scale_filter_8(&s[6], filters); // 30 31 32 33 34 35 36 37 |
| vst1_u8(dst + 0 * dst_stride, d[0]); |
| vst1_u8(dst + 1 * dst_stride, d[1]); |
| vst1_u8(dst + 2 * dst_stride, d[2]); |
| vst1_u8(dst + 3 * dst_stride, d[3]); |
| |
| s[0] = s[8]; |
| s[1] = s[9]; |
| s[2] = s[10]; |
| s[3] = s[11]; |
| s[4] = s[12]; |
| s[5] = s[13]; |
| |
| dst += 4 * dst_stride; |
| y -= 4; |
| } while (y); |
| t -= width_hor * (2 * height_ver + 6); |
| t += 8; |
| dst -= height_ver * dst_stride; |
| dst += 8; |
| x -= 8; |
| } while (x); |
| } |
| |
| static void scale_plane_4_to_1_general(const uint8_t *src, const int src_stride, |
| uint8_t *dst, const int dst_stride, |
| const int w, const int h, |
| const int16_t *const coef, |
| uint8_t *const temp_buffer) { |
| const int width_hor = (w + 1) & ~1; |
| const int width_ver = (w + 7) & ~7; |
| const int height_hor = (4 * h + SUBPEL_TAPS - 2 + 7) & ~7; |
| const int height_ver = (h + 1) & ~1; |
| const int16x8_t filters = vld1q_s16(coef); |
| int x, y = height_hor; |
| uint8_t *t = temp_buffer; |
| uint8x8_t s[12], d[2]; |
| |
| assert(w && h); |
| |
| src -= (SUBPEL_TAPS / 2 - 1) * src_stride + SUBPEL_TAPS / 2 + 3; |
| |
| // horizontal 2x8 |
| // Note: processing 2x8 is about 20% faster than processing row by row using |
| // vld4_u8(). |
| do { |
| load_u8_8x8(src + 4, src_stride, &s[0], &s[1], &s[2], &s[3], &s[4], &s[5], |
| &s[6], &s[7]); |
| transpose_elems_u8_4x8(s[0], s[1], s[2], s[3], s[4], s[5], s[6], s[7], |
| &s[0], &s[1], &s[2], &s[3]); |
| x = width_hor; |
| |
| do { |
| uint8x8x2_t dd; |
| src += 8; |
| load_u8_8x8(src, src_stride, &s[4], &s[5], &s[6], &s[7], &s[8], &s[9], |
| &s[10], &s[11]); |
| transpose_elems_inplace_u8_8x8(&s[4], &s[5], &s[6], &s[7], &s[8], &s[9], |
| &s[10], &s[11]); |
| |
| d[0] = scale_filter_8(&s[0], filters); // 00 10 20 30 40 50 60 70 |
| d[1] = scale_filter_8(&s[4], filters); // 01 11 21 31 41 51 61 71 |
| // dd.val[0]: 00 01 20 21 40 41 60 61 |
| // dd.val[1]: 10 11 30 31 50 51 70 71 |
| dd = vtrn_u8(d[0], d[1]); |
| vst1_lane_u16((uint16_t *)(t + 0 * width_hor), |
| vreinterpret_u16_u8(dd.val[0]), 0); |
| vst1_lane_u16((uint16_t *)(t + 1 * width_hor), |
| vreinterpret_u16_u8(dd.val[1]), 0); |
| vst1_lane_u16((uint16_t *)(t + 2 * width_hor), |
| vreinterpret_u16_u8(dd.val[0]), 1); |
| vst1_lane_u16((uint16_t *)(t + 3 * width_hor), |
| vreinterpret_u16_u8(dd.val[1]), 1); |
| vst1_lane_u16((uint16_t *)(t + 4 * width_hor), |
| vreinterpret_u16_u8(dd.val[0]), 2); |
| vst1_lane_u16((uint16_t *)(t + 5 * width_hor), |
| vreinterpret_u16_u8(dd.val[1]), 2); |
| vst1_lane_u16((uint16_t *)(t + 6 * width_hor), |
| vreinterpret_u16_u8(dd.val[0]), 3); |
| vst1_lane_u16((uint16_t *)(t + 7 * width_hor), |
| vreinterpret_u16_u8(dd.val[1]), 3); |
| |
| s[0] = s[8]; |
| s[1] = s[9]; |
| s[2] = s[10]; |
| s[3] = s[11]; |
| |
| t += 2; |
| x -= 2; |
| } while (x); |
| src += 8 * src_stride - 4 * width_hor; |
| t += 7 * width_hor; |
| y -= 8; |
| } while (y); |
| |
| // vertical 8x2 |
| x = width_ver; |
| t = temp_buffer; |
| do { |
| load_u8_8x4(t, width_hor, &s[0], &s[1], &s[2], &s[3]); |
| t += 4 * width_hor; |
| y = height_ver; |
| |
| do { |
| load_u8_8x8(t, width_hor, &s[4], &s[5], &s[6], &s[7], &s[8], &s[9], |
| &s[10], &s[11]); |
| t += 8 * width_hor; |
| |
| d[0] = scale_filter_8(&s[0], filters); // 00 01 02 03 04 05 06 07 |
| d[1] = scale_filter_8(&s[4], filters); // 10 11 12 13 14 15 16 17 |
| vst1_u8(dst + 0 * dst_stride, d[0]); |
| vst1_u8(dst + 1 * dst_stride, d[1]); |
| |
| s[0] = s[8]; |
| s[1] = s[9]; |
| s[2] = s[10]; |
| s[3] = s[11]; |
| |
| dst += 2 * dst_stride; |
| y -= 2; |
| } while (y); |
| t -= width_hor * (4 * height_ver + 4); |
| t += 8; |
| dst -= height_ver * dst_stride; |
| dst += 8; |
| x -= 8; |
| } while (x); |
| } |
| |
| static INLINE uint8x8_t scale_filter_bilinear(const uint8x8_t *const s, |
| const uint8x8_t *const coef) { |
| const uint16x8_t h0 = vmull_u8(s[0], coef[0]); |
| const uint16x8_t h1 = vmlal_u8(h0, s[1], coef[1]); |
| |
| return vrshrn_n_u16(h1, 7); |
| } |
| |
| // Notes for 4 to 3 scaling: |
| // |
| // 1. 6 rows are calculated in each horizontal inner loop, so width_hor must be |
| // multiple of 6, and no less than w. |
| // |
| // 2. 8 rows are calculated in each vertical inner loop, so width_ver must be |
| // multiple of 8, and no less than w. |
| // |
| // 3. 8 columns are calculated in each horizontal inner loop for further |
| // vertical scaling, so height_hor must be multiple of 8, and no less than |
| // 4 * h / 3. |
| // |
| // 4. 6 columns are calculated in each vertical inner loop, so height_ver must |
| // be multiple of 6, and no less than h. |
| // |
| // 5. The physical location of the last row of the 4 to 3 scaled frame is |
| // decided by phase_scaler, and are always less than 1 pixel below the last row |
| // of the original image. |
| static void scale_plane_4_to_3_bilinear(const uint8_t *src, |
| const int src_stride, uint8_t *dst, |
| const int dst_stride, const int w, |
| const int h, const int phase_scaler, |
| uint8_t *const temp_buffer) { |
| static const int step_q4 = 16 * 4 / 3; |
| const int width_hor = (w + 5) - ((w + 5) % 6); |
| const int stride_hor = width_hor + 2; // store 2 extra pixels |
| const int width_ver = (w + 7) & ~7; |
| // We only need 1 extra row below because there are only 2 bilinear |
| // coefficients. |
| const int height_hor = (4 * h / 3 + 1 + 7) & ~7; |
| const int height_ver = (h + 5) - ((h + 5) % 6); |
| int x, y = height_hor; |
| uint8_t *t = temp_buffer; |
| uint8x8_t s[9], d[8], c[6]; |
| const InterpKernel *interp_kernel = |
| (const InterpKernel *)av1_interp_filter_params_list[BILINEAR].filter_ptr; |
| assert(w && h); |
| |
| c[0] = vdup_n_u8((uint8_t)interp_kernel[phase_scaler][3]); |
| c[1] = vdup_n_u8((uint8_t)interp_kernel[phase_scaler][4]); |
| c[2] = vdup_n_u8( |
| (uint8_t)interp_kernel[(phase_scaler + 1 * step_q4) & SUBPEL_MASK][3]); |
| c[3] = vdup_n_u8( |
| (uint8_t)interp_kernel[(phase_scaler + 1 * step_q4) & SUBPEL_MASK][4]); |
| c[4] = vdup_n_u8( |
| (uint8_t)interp_kernel[(phase_scaler + 2 * step_q4) & SUBPEL_MASK][3]); |
| c[5] = vdup_n_u8( |
| (uint8_t)interp_kernel[(phase_scaler + 2 * step_q4) & SUBPEL_MASK][4]); |
| |
| d[6] = vdup_n_u8(0); |
| d[7] = vdup_n_u8(0); |
| |
| // horizontal 6x8 |
| do { |
| load_u8_8x8(src, src_stride, &s[0], &s[1], &s[2], &s[3], &s[4], &s[5], |
| &s[6], &s[7]); |
| src += 1; |
| transpose_elems_inplace_u8_8x8(&s[0], &s[1], &s[2], &s[3], &s[4], &s[5], |
| &s[6], &s[7]); |
| x = width_hor; |
| |
| do { |
| load_u8_8x8(src, src_stride, &s[1], &s[2], &s[3], &s[4], &s[5], &s[6], |
| &s[7], &s[8]); |
| src += 8; |
| transpose_elems_inplace_u8_8x8(&s[1], &s[2], &s[3], &s[4], &s[5], &s[6], |
| &s[7], &s[8]); |
| |
| // 00 10 20 30 40 50 60 70 |
| // 01 11 21 31 41 51 61 71 |
| // 02 12 22 32 42 52 62 72 |
| // 03 13 23 33 43 53 63 73 |
| // 04 14 24 34 44 54 64 74 |
| // 05 15 25 35 45 55 65 75 |
| d[0] = scale_filter_bilinear(&s[0], &c[0]); |
| d[1] = |
| scale_filter_bilinear(&s[(phase_scaler + 1 * step_q4) >> 4], &c[2]); |
| d[2] = |
| scale_filter_bilinear(&s[(phase_scaler + 2 * step_q4) >> 4], &c[4]); |
| d[3] = scale_filter_bilinear(&s[4], &c[0]); |
| d[4] = scale_filter_bilinear(&s[4 + ((phase_scaler + 1 * step_q4) >> 4)], |
| &c[2]); |
| d[5] = scale_filter_bilinear(&s[4 + ((phase_scaler + 2 * step_q4) >> 4)], |
| &c[4]); |
| |
| // 00 01 02 03 04 05 xx xx |
| // 10 11 12 13 14 15 xx xx |
| // 20 21 22 23 24 25 xx xx |
| // 30 31 32 33 34 35 xx xx |
| // 40 41 42 43 44 45 xx xx |
| // 50 51 52 53 54 55 xx xx |
| // 60 61 62 63 64 65 xx xx |
| // 70 71 72 73 74 75 xx xx |
| transpose_elems_inplace_u8_8x8(&d[0], &d[1], &d[2], &d[3], &d[4], &d[5], |
| &d[6], &d[7]); |
| // store 2 extra pixels |
| vst1_u8(t + 0 * stride_hor, d[0]); |
| vst1_u8(t + 1 * stride_hor, d[1]); |
| vst1_u8(t + 2 * stride_hor, d[2]); |
| vst1_u8(t + 3 * stride_hor, d[3]); |
| vst1_u8(t + 4 * stride_hor, d[4]); |
| vst1_u8(t + 5 * stride_hor, d[5]); |
| vst1_u8(t + 6 * stride_hor, d[6]); |
| vst1_u8(t + 7 * stride_hor, d[7]); |
| |
| s[0] = s[8]; |
| |
| t += 6; |
| x -= 6; |
| } while (x); |
| src += 8 * src_stride - 4 * width_hor / 3 - 1; |
| t += 7 * stride_hor + 2; |
| y -= 8; |
| } while (y); |
| |
| // vertical 8x6 |
| x = width_ver; |
| t = temp_buffer; |
| do { |
| load_u8_8x8(t, stride_hor, &s[0], &s[1], &s[2], &s[3], &s[4], &s[5], &s[6], |
| &s[7]); |
| t += stride_hor; |
| y = height_ver; |
| |
| do { |
| load_u8_8x8(t, stride_hor, &s[1], &s[2], &s[3], &s[4], &s[5], &s[6], |
| &s[7], &s[8]); |
| t += 8 * stride_hor; |
| |
| d[0] = scale_filter_bilinear(&s[0], &c[0]); |
| d[1] = |
| scale_filter_bilinear(&s[(phase_scaler + 1 * step_q4) >> 4], &c[2]); |
| d[2] = |
| scale_filter_bilinear(&s[(phase_scaler + 2 * step_q4) >> 4], &c[4]); |
| d[3] = scale_filter_bilinear(&s[4], &c[0]); |
| d[4] = scale_filter_bilinear(&s[4 + ((phase_scaler + 1 * step_q4) >> 4)], |
| &c[2]); |
| d[5] = scale_filter_bilinear(&s[4 + ((phase_scaler + 2 * step_q4) >> 4)], |
| &c[4]); |
| vst1_u8(dst + 0 * dst_stride, d[0]); |
| vst1_u8(dst + 1 * dst_stride, d[1]); |
| vst1_u8(dst + 2 * dst_stride, d[2]); |
| vst1_u8(dst + 3 * dst_stride, d[3]); |
| vst1_u8(dst + 4 * dst_stride, d[4]); |
| vst1_u8(dst + 5 * dst_stride, d[5]); |
| |
| s[0] = s[8]; |
| |
| dst += 6 * dst_stride; |
| y -= 6; |
| } while (y); |
| t -= stride_hor * (4 * height_ver / 3 + 1); |
| t += 8; |
| dst -= height_ver * dst_stride; |
| dst += 8; |
| x -= 8; |
| } while (x); |
| } |
| |
| static void scale_plane_4_to_3_general(const uint8_t *src, const int src_stride, |
| uint8_t *dst, const int dst_stride, |
| const int w, const int h, |
| const InterpKernel *const coef, |
| const int phase_scaler, |
| uint8_t *const temp_buffer) { |
| static const int step_q4 = 16 * 4 / 3; |
| const int width_hor = (w + 5) - ((w + 5) % 6); |
| const int stride_hor = width_hor + 2; // store 2 extra pixels |
| const int width_ver = (w + 7) & ~7; |
| // We need (SUBPEL_TAPS - 1) extra rows: (SUBPEL_TAPS / 2 - 1) extra rows |
| // above and (SUBPEL_TAPS / 2) extra rows below. |
| const int height_hor = (4 * h / 3 + SUBPEL_TAPS - 1 + 7) & ~7; |
| const int height_ver = (h + 5) - ((h + 5) % 6); |
| const int16x8_t filters0 = vld1q_s16( |
| (const int16_t *)&coef[(phase_scaler + 0 * step_q4) & SUBPEL_MASK]); |
| const int16x8_t filters1 = vld1q_s16( |
| (const int16_t *)&coef[(phase_scaler + 1 * step_q4) & SUBPEL_MASK]); |
| const int16x8_t filters2 = vld1q_s16( |
| (const int16_t *)&coef[(phase_scaler + 2 * step_q4) & SUBPEL_MASK]); |
| int x, y = height_hor; |
| uint8_t *t = temp_buffer; |
| uint8x8_t s[15], d[8]; |
| |
| assert(w && h); |
| |
| src -= (SUBPEL_TAPS / 2 - 1) * src_stride + SUBPEL_TAPS / 2; |
| d[6] = vdup_n_u8(0); |
| d[7] = vdup_n_u8(0); |
| |
| // horizontal 6x8 |
| do { |
| load_u8_8x8(src + 1, src_stride, &s[0], &s[1], &s[2], &s[3], &s[4], &s[5], |
| &s[6], &s[7]); |
| transpose_elems_inplace_u8_8x8(&s[0], &s[1], &s[2], &s[3], &s[4], &s[5], |
| &s[6], &s[7]); |
| x = width_hor; |
| |
| do { |
| src += 8; |
| load_u8_8x8(src, src_stride, &s[7], &s[8], &s[9], &s[10], &s[11], &s[12], |
| &s[13], &s[14]); |
| transpose_elems_inplace_u8_8x8(&s[7], &s[8], &s[9], &s[10], &s[11], |
| &s[12], &s[13], &s[14]); |
| |
| // 00 10 20 30 40 50 60 70 |
| // 01 11 21 31 41 51 61 71 |
| // 02 12 22 32 42 52 62 72 |
| // 03 13 23 33 43 53 63 73 |
| // 04 14 24 34 44 54 64 74 |
| // 05 15 25 35 45 55 65 75 |
| d[0] = scale_filter_8(&s[0], filters0); |
| d[1] = scale_filter_8(&s[(phase_scaler + 1 * step_q4) >> 4], filters1); |
| d[2] = scale_filter_8(&s[(phase_scaler + 2 * step_q4) >> 4], filters2); |
| d[3] = scale_filter_8(&s[4], filters0); |
| d[4] = |
| scale_filter_8(&s[4 + ((phase_scaler + 1 * step_q4) >> 4)], filters1); |
| d[5] = |
| scale_filter_8(&s[4 + ((phase_scaler + 2 * step_q4) >> 4)], filters2); |
| |
| // 00 01 02 03 04 05 xx xx |
| // 10 11 12 13 14 15 xx xx |
| // 20 21 22 23 24 25 xx xx |
| // 30 31 32 33 34 35 xx xx |
| // 40 41 42 43 44 45 xx xx |
| // 50 51 52 53 54 55 xx xx |
| // 60 61 62 63 64 65 xx xx |
| // 70 71 72 73 74 75 xx xx |
| transpose_elems_inplace_u8_8x8(&d[0], &d[1], &d[2], &d[3], &d[4], &d[5], |
| &d[6], &d[7]); |
| // store 2 extra pixels |
| vst1_u8(t + 0 * stride_hor, d[0]); |
| vst1_u8(t + 1 * stride_hor, d[1]); |
| vst1_u8(t + 2 * stride_hor, d[2]); |
| vst1_u8(t + 3 * stride_hor, d[3]); |
| vst1_u8(t + 4 * stride_hor, d[4]); |
| vst1_u8(t + 5 * stride_hor, d[5]); |
| vst1_u8(t + 6 * stride_hor, d[6]); |
| vst1_u8(t + 7 * stride_hor, d[7]); |
| |
| s[0] = s[8]; |
| s[1] = s[9]; |
| s[2] = s[10]; |
| s[3] = s[11]; |
| s[4] = s[12]; |
| s[5] = s[13]; |
| s[6] = s[14]; |
| |
| t += 6; |
| x -= 6; |
| } while (x); |
| src += 8 * src_stride - 4 * width_hor / 3; |
| t += 7 * stride_hor + 2; |
| y -= 8; |
| } while (y); |
| |
| // vertical 8x6 |
| x = width_ver; |
| t = temp_buffer; |
| do { |
| load_u8_8x8(t, stride_hor, &s[0], &s[1], &s[2], &s[3], &s[4], &s[5], &s[6], |
| &s[7]); |
| t += 7 * stride_hor; |
| y = height_ver; |
| |
| do { |
| load_u8_8x8(t, stride_hor, &s[7], &s[8], &s[9], &s[10], &s[11], &s[12], |
| &s[13], &s[14]); |
| t += 8 * stride_hor; |
| |
| d[0] = scale_filter_8(&s[0], filters0); |
| d[1] = scale_filter_8(&s[(phase_scaler + 1 * step_q4) >> 4], filters1); |
| d[2] = scale_filter_8(&s[(phase_scaler + 2 * step_q4) >> 4], filters2); |
| d[3] = scale_filter_8(&s[4], filters0); |
| d[4] = |
| scale_filter_8(&s[4 + ((phase_scaler + 1 * step_q4) >> 4)], filters1); |
| d[5] = |
| scale_filter_8(&s[4 + ((phase_scaler + 2 * step_q4) >> 4)], filters2); |
| vst1_u8(dst + 0 * dst_stride, d[0]); |
| vst1_u8(dst + 1 * dst_stride, d[1]); |
| vst1_u8(dst + 2 * dst_stride, d[2]); |
| vst1_u8(dst + 3 * dst_stride, d[3]); |
| vst1_u8(dst + 4 * dst_stride, d[4]); |
| vst1_u8(dst + 5 * dst_stride, d[5]); |
| |
| s[0] = s[8]; |
| s[1] = s[9]; |
| s[2] = s[10]; |
| s[3] = s[11]; |
| s[4] = s[12]; |
| s[5] = s[13]; |
| s[6] = s[14]; |
| |
| dst += 6 * dst_stride; |
| y -= 6; |
| } while (y); |
| t -= stride_hor * (4 * height_ver / 3 + 7); |
| t += 8; |
| dst -= height_ver * dst_stride; |
| dst += 8; |
| x -= 8; |
| } while (x); |
| } |
| |
| // There's SIMD optimizations for 1/4, 1/2 and 3/4 downscaling in NEON. |
| static INLINE bool has_normative_scaler_neon(const int src_width, |
| const int src_height, |
| const int dst_width, |
| const int dst_height) { |
| const bool has_normative_scaler = |
| (2 * dst_width == src_width && 2 * dst_height == src_height) || |
| (4 * dst_width == src_width && 4 * dst_height == src_height) || |
| (4 * dst_width == 3 * src_width && 4 * dst_height == 3 * src_height); |
| |
| return has_normative_scaler; |
| } |
| |
| void av1_resize_and_extend_frame_neon(const YV12_BUFFER_CONFIG *src, |
| YV12_BUFFER_CONFIG *dst, |
| const InterpFilter filter, |
| const int phase, const int num_planes) { |
| bool has_normative_scaler = |
| has_normative_scaler_neon(src->y_crop_width, src->y_crop_height, |
| dst->y_crop_width, dst->y_crop_height); |
| |
| if (num_planes > 1) { |
| has_normative_scaler = |
| has_normative_scaler && |
| has_normative_scaler_neon(src->uv_crop_width, src->uv_crop_height, |
| dst->uv_crop_width, dst->uv_crop_height); |
| } |
| |
| if (!has_normative_scaler) { |
| av1_resize_and_extend_frame_c(src, dst, filter, phase, num_planes); |
| return; |
| } |
| |
| // We use AOMMIN(num_planes, MAX_MB_PLANE) instead of num_planes to quiet |
| // the static analysis warnings. |
| int malloc_failed = 0; |
| for (int i = 0; i < AOMMIN(num_planes, MAX_MB_PLANE); ++i) { |
| const int is_uv = i > 0; |
| const int src_w = src->crop_widths[is_uv]; |
| const int src_h = src->crop_heights[is_uv]; |
| const int dst_w = dst->crop_widths[is_uv]; |
| const int dst_h = dst->crop_heights[is_uv]; |
| const int dst_y_w = (dst->crop_widths[0] + 1) & ~1; |
| const int dst_y_h = (dst->crop_heights[0] + 1) & ~1; |
| |
| if (2 * dst_w == src_w && 2 * dst_h == src_h) { |
| if (phase == 0) { |
| scale_plane_2_to_1_phase_0(src->buffers[i], src->strides[is_uv], |
| dst->buffers[i], dst->strides[is_uv], dst_w, |
| dst_h); |
| } else if (filter == BILINEAR) { |
| const int16_t c0 = av1_bilinear_filters[phase][3]; |
| const int16_t c1 = av1_bilinear_filters[phase][4]; |
| scale_plane_2_to_1_bilinear(src->buffers[i], src->strides[is_uv], |
| dst->buffers[i], dst->strides[is_uv], dst_w, |
| dst_h, c0, c1); |
| } else { |
| const int buffer_stride = (dst_y_w + 3) & ~3; |
| const int buffer_height = (2 * dst_y_h + SUBPEL_TAPS - 2 + 7) & ~7; |
| uint8_t *const temp_buffer = |
| (uint8_t *)malloc(buffer_stride * buffer_height); |
| if (!temp_buffer) { |
| malloc_failed = 1; |
| break; |
| } |
| const InterpKernel *interp_kernel = |
| (const InterpKernel *)av1_interp_filter_params_list[filter] |
| .filter_ptr; |
| scale_plane_2_to_1_general(src->buffers[i], src->strides[is_uv], |
| dst->buffers[i], dst->strides[is_uv], dst_w, |
| dst_h, interp_kernel[phase], temp_buffer); |
| free(temp_buffer); |
| } |
| } else if (4 * dst_w == src_w && 4 * dst_h == src_h) { |
| if (phase == 0) { |
| scale_plane_4_to_1_phase_0(src->buffers[i], src->strides[is_uv], |
| dst->buffers[i], dst->strides[is_uv], dst_w, |
| dst_h); |
| } else if (filter == BILINEAR) { |
| const int16_t c0 = av1_bilinear_filters[phase][3]; |
| const int16_t c1 = av1_bilinear_filters[phase][4]; |
| scale_plane_4_to_1_bilinear(src->buffers[i], src->strides[is_uv], |
| dst->buffers[i], dst->strides[is_uv], dst_w, |
| dst_h, c0, c1); |
| } else { |
| const int buffer_stride = (dst_y_w + 1) & ~1; |
| const int buffer_height = (4 * dst_y_h + SUBPEL_TAPS - 2 + 7) & ~7; |
| uint8_t *const temp_buffer = |
| (uint8_t *)malloc(buffer_stride * buffer_height); |
| if (!temp_buffer) { |
| malloc_failed = 1; |
| break; |
| } |
| const InterpKernel *interp_kernel = |
| (const InterpKernel *)av1_interp_filter_params_list[filter] |
| .filter_ptr; |
| scale_plane_4_to_1_general(src->buffers[i], src->strides[is_uv], |
| dst->buffers[i], dst->strides[is_uv], dst_w, |
| dst_h, interp_kernel[phase], temp_buffer); |
| free(temp_buffer); |
| } |
| } else { |
| assert(4 * dst_w == 3 * src_w && 4 * dst_h == 3 * src_h); |
| // 4 to 3 |
| const int buffer_stride = (dst_y_w + 5) - ((dst_y_w + 5) % 6) + 2; |
| const int buffer_height = (4 * dst_y_h / 3 + SUBPEL_TAPS - 1 + 7) & ~7; |
| uint8_t *const temp_buffer = |
| (uint8_t *)malloc(buffer_stride * buffer_height); |
| if (!temp_buffer) { |
| malloc_failed = 1; |
| break; |
| } |
| if (filter == BILINEAR) { |
| scale_plane_4_to_3_bilinear(src->buffers[i], src->strides[is_uv], |
| dst->buffers[i], dst->strides[is_uv], dst_w, |
| dst_h, phase, temp_buffer); |
| } else { |
| const InterpKernel *interp_kernel = |
| (const InterpKernel *)av1_interp_filter_params_list[filter] |
| .filter_ptr; |
| scale_plane_4_to_3_general(src->buffers[i], src->strides[is_uv], |
| dst->buffers[i], dst->strides[is_uv], dst_w, |
| dst_h, interp_kernel, phase, temp_buffer); |
| } |
| free(temp_buffer); |
| } |
| } |
| |
| if (malloc_failed) { |
| av1_resize_and_extend_frame_c(src, dst, filter, phase, num_planes); |
| } else { |
| aom_extend_frame_borders(dst, num_planes); |
| } |
| } |
| |
| static INLINE void scaledconvolve_horiz_w4( |
| const uint8_t *src, const ptrdiff_t src_stride, uint8_t *dst, |
| const ptrdiff_t dst_stride, const InterpKernel *const x_filters, |
| const int x0_q4, const int x_step_q4, const int w, const int h) { |
| DECLARE_ALIGNED(16, uint8_t, temp[4 * 4]); |
| int x, y, z; |
| |
| src -= SUBPEL_TAPS / 2 - 1; |
| |
| y = h; |
| do { |
| int x_q4 = x0_q4; |
| x = 0; |
| do { |
| // process 4 src_x steps |
| for (z = 0; z < 4; ++z) { |
| const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS]; |
| if (x_q4 & SUBPEL_MASK) { |
| const int16x8_t filters = vld1q_s16(x_filters[x_q4 & SUBPEL_MASK]); |
| uint8x8_t s[8], d; |
| int16x8_t ss[4]; |
| int16x4_t t[8], tt; |
| |
| load_u8_8x4(src_x, src_stride, &s[0], &s[1], &s[2], &s[3]); |
| transpose_elems_inplace_u8_8x4(&s[0], &s[1], &s[2], &s[3]); |
| |
| ss[0] = vreinterpretq_s16_u16(vmovl_u8(s[0])); |
| ss[1] = vreinterpretq_s16_u16(vmovl_u8(s[1])); |
| ss[2] = vreinterpretq_s16_u16(vmovl_u8(s[2])); |
| ss[3] = vreinterpretq_s16_u16(vmovl_u8(s[3])); |
| t[0] = vget_low_s16(ss[0]); |
| t[1] = vget_low_s16(ss[1]); |
| t[2] = vget_low_s16(ss[2]); |
| t[3] = vget_low_s16(ss[3]); |
| t[4] = vget_high_s16(ss[0]); |
| t[5] = vget_high_s16(ss[1]); |
| t[6] = vget_high_s16(ss[2]); |
| t[7] = vget_high_s16(ss[3]); |
| |
| tt = convolve8_4(t[0], t[1], t[2], t[3], t[4], t[5], t[6], t[7], |
| filters); |
| d = vqrshrun_n_s16(vcombine_s16(tt, tt), 7); |
| store_u8_4x1(&temp[4 * z], d); |
| } else { |
| int i; |
| for (i = 0; i < 4; ++i) { |
| temp[z * 4 + i] = src_x[i * src_stride + 3]; |
| } |
| } |
| x_q4 += x_step_q4; |
| } |
| |
| // transpose the 4x4 filters values back to dst |
| { |
| const uint8x8x4_t d4 = vld4_u8(temp); |
| store_u8_4x1(&dst[x + 0 * dst_stride], d4.val[0]); |
| store_u8_4x1(&dst[x + 1 * dst_stride], d4.val[1]); |
| store_u8_4x1(&dst[x + 2 * dst_stride], d4.val[2]); |
| store_u8_4x1(&dst[x + 3 * dst_stride], d4.val[3]); |
| } |
| x += 4; |
| } while (x < w); |
| |
| src += src_stride * 4; |
| dst += dst_stride * 4; |
| y -= 4; |
| } while (y > 0); |
| } |
| |
| static INLINE void scaledconvolve_horiz_w8( |
| const uint8_t *src, const ptrdiff_t src_stride, uint8_t *dst, |
| const ptrdiff_t dst_stride, const InterpKernel *const x_filters, |
| const int x0_q4, const int x_step_q4, const int w, const int h) { |
| DECLARE_ALIGNED(16, uint8_t, temp[8 * 8]); |
| int x, y, z; |
| src -= SUBPEL_TAPS / 2 - 1; |
| |
| // This function processes 8x8 areas. The intermediate height is not always |
| // a multiple of 8, so force it to be a multiple of 8 here. |
| y = (h + 7) & ~7; |
| |
| do { |
| int x_q4 = x0_q4; |
| x = 0; |
| do { |
| uint8x8_t d[8]; |
| // process 8 src_x steps |
| for (z = 0; z < 8; ++z) { |
| const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS]; |
| |
| if (x_q4 & SUBPEL_MASK) { |
| const int16x8_t filters = vld1q_s16(x_filters[x_q4 & SUBPEL_MASK]); |
| uint8x8_t s[8]; |
| load_u8_8x8(src_x, src_stride, &s[0], &s[1], &s[2], &s[3], &s[4], |
| &s[5], &s[6], &s[7]); |
| transpose_elems_inplace_u8_8x8(&s[0], &s[1], &s[2], &s[3], &s[4], |
| &s[5], &s[6], &s[7]); |
| d[0] = scale_filter_8(s, filters); |
| vst1_u8(&temp[8 * z], d[0]); |
| } else { |
| int i; |
| for (i = 0; i < 8; ++i) { |
| temp[z * 8 + i] = src_x[i * src_stride + 3]; |
| } |
| } |
| x_q4 += x_step_q4; |
| } |
| |
| // transpose the 8x8 filters values back to dst |
| load_u8_8x8(temp, 8, &d[0], &d[1], &d[2], &d[3], &d[4], &d[5], &d[6], |
| &d[7]); |
| transpose_elems_inplace_u8_8x8(&d[0], &d[1], &d[2], &d[3], &d[4], &d[5], |
| &d[6], &d[7]); |
| store_u8_8x8(dst + x, dst_stride, d[0], d[1], d[2], d[3], d[4], d[5], |
| d[6], d[7]); |
| x += 8; |
| } while (x < w); |
| |
| src += src_stride * 8; |
| dst += dst_stride * 8; |
| } while (y -= 8); |
| } |
| |
| static INLINE void scaledconvolve_vert_w4( |
| const uint8_t *src, const ptrdiff_t src_stride, uint8_t *dst, |
| const ptrdiff_t dst_stride, const InterpKernel *const y_filters, |
| const int y0_q4, const int y_step_q4, const int w, const int h) { |
| int y; |
| int y_q4 = y0_q4; |
| |
| src -= src_stride * (SUBPEL_TAPS / 2 - 1); |
| y = h; |
| do { |
| const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride]; |
| |
| if (y_q4 & SUBPEL_MASK) { |
| const int16x8_t filters = vld1q_s16(y_filters[y_q4 & SUBPEL_MASK]); |
| uint8x8_t s[8], d; |
| int16x4_t t[8], tt; |
| |
| load_u8_8x8(src_y, src_stride, &s[0], &s[1], &s[2], &s[3], &s[4], &s[5], |
| &s[6], &s[7]); |
| t[0] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[0]))); |
| t[1] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[1]))); |
| t[2] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[2]))); |
| t[3] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[3]))); |
| t[4] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[4]))); |
| t[5] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[5]))); |
| t[6] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[6]))); |
| t[7] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[7]))); |
| |
| tt = convolve8_4(t[0], t[1], t[2], t[3], t[4], t[5], t[6], t[7], filters); |
| d = vqrshrun_n_s16(vcombine_s16(tt, tt), 7); |
| store_u8_4x1(dst, d); |
| } else { |
| memcpy(dst, &src_y[3 * src_stride], w); |
| } |
| |
| dst += dst_stride; |
| y_q4 += y_step_q4; |
| } while (--y); |
| } |
| |
| static INLINE void scaledconvolve_vert_w8( |
| const uint8_t *src, const ptrdiff_t src_stride, uint8_t *dst, |
| const ptrdiff_t dst_stride, const InterpKernel *const y_filters, |
| const int y0_q4, const int y_step_q4, const int w, const int h) { |
| int y; |
| int y_q4 = y0_q4; |
| |
| src -= src_stride * (SUBPEL_TAPS / 2 - 1); |
| y = h; |
| do { |
| const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride]; |
| if (y_q4 & SUBPEL_MASK) { |
| const int16x8_t filters = vld1q_s16(y_filters[y_q4 & SUBPEL_MASK]); |
| uint8x8_t s[8], d; |
| load_u8_8x8(src_y, src_stride, &s[0], &s[1], &s[2], &s[3], &s[4], &s[5], |
| &s[6], &s[7]); |
| d = scale_filter_8(s, filters); |
| vst1_u8(dst, d); |
| } else { |
| memcpy(dst, &src_y[3 * src_stride], w); |
| } |
| dst += dst_stride; |
| y_q4 += y_step_q4; |
| } while (--y); |
| } |
| |
| static INLINE void scaledconvolve_vert_w16( |
| const uint8_t *src, const ptrdiff_t src_stride, uint8_t *dst, |
| const ptrdiff_t dst_stride, const InterpKernel *const y_filters, |
| const int y0_q4, const int y_step_q4, const int w, const int h) { |
| int x, y; |
| int y_q4 = y0_q4; |
| |
| src -= src_stride * (SUBPEL_TAPS / 2 - 1); |
| y = h; |
| do { |
| const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride]; |
| if (y_q4 & SUBPEL_MASK) { |
| x = 0; |
| do { |
| const int16x8_t filters = vld1q_s16(y_filters[y_q4 & SUBPEL_MASK]); |
| uint8x16_t ss[8]; |
| uint8x8_t s[8], d[2]; |
| load_u8_16x8(src_y, src_stride, &ss[0], &ss[1], &ss[2], &ss[3], &ss[4], |
| &ss[5], &ss[6], &ss[7]); |
| s[0] = vget_low_u8(ss[0]); |
| s[1] = vget_low_u8(ss[1]); |
| s[2] = vget_low_u8(ss[2]); |
| s[3] = vget_low_u8(ss[3]); |
| s[4] = vget_low_u8(ss[4]); |
| s[5] = vget_low_u8(ss[5]); |
| s[6] = vget_low_u8(ss[6]); |
| s[7] = vget_low_u8(ss[7]); |
| d[0] = scale_filter_8(s, filters); |
| |
| s[0] = vget_high_u8(ss[0]); |
| s[1] = vget_high_u8(ss[1]); |
| s[2] = vget_high_u8(ss[2]); |
| s[3] = vget_high_u8(ss[3]); |
| s[4] = vget_high_u8(ss[4]); |
| s[5] = vget_high_u8(ss[5]); |
| s[6] = vget_high_u8(ss[6]); |
| s[7] = vget_high_u8(ss[7]); |
| d[1] = scale_filter_8(s, filters); |
| vst1q_u8(&dst[x], vcombine_u8(d[0], d[1])); |
| src_y += 16; |
| x += 16; |
| } while (x < w); |
| } else { |
| memcpy(dst, &src_y[3 * src_stride], w); |
| } |
| dst += dst_stride; |
| y_q4 += y_step_q4; |
| } while (--y); |
| } |
| |
| void aom_scaled_2d_neon(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, |
| ptrdiff_t dst_stride, const InterpKernel *filter, |
| int x0_q4, int x_step_q4, int y0_q4, int y_step_q4, |
| int w, int h) { |
| // Note: Fixed size intermediate buffer, temp, places limits on parameters. |
| // 2d filtering proceeds in 2 steps: |
| // (1) Interpolate horizontally into an intermediate buffer, temp. |
| // (2) Interpolate temp vertically to derive the sub-pixel result. |
| // Deriving the maximum number of rows in the temp buffer (135): |
| // --Smallest scaling factor is x1/2 ==> y_step_q4 = 32 (Normative). |
| // --Largest block size is 64x64 pixels. |
| // --64 rows in the downscaled frame span a distance of (64 - 1) * 32 in the |
| // original frame (in 1/16th pixel units). |
| // --Must round-up because block may be located at sub-pixel position. |
| // --Require an additional SUBPEL_TAPS rows for the 8-tap filter tails. |
| // --((64 - 1) * 32 + 15) >> 4 + 8 = 135. |
| // --Require an additional 8 rows for the horiz_w8 transpose tail. |
| // When calling in frame scaling function, the smallest scaling factor is x1/4 |
| // ==> y_step_q4 = 64. Since w and h are at most 16, the temp buffer is still |
| // big enough. |
| DECLARE_ALIGNED(16, uint8_t, temp[(135 + 8) * 64]); |
| const int intermediate_height = |
| (((h - 1) * y_step_q4 + y0_q4) >> SUBPEL_BITS) + SUBPEL_TAPS; |
| |
| assert(w <= 64); |
| assert(h <= 64); |
| assert(y_step_q4 <= 32 || (y_step_q4 <= 64 && h <= 32)); |
| assert(x_step_q4 <= 64); |
| |
| if (w >= 8) { |
| scaledconvolve_horiz_w8(src - src_stride * (SUBPEL_TAPS / 2 - 1), |
| src_stride, temp, 64, filter, x0_q4, x_step_q4, w, |
| intermediate_height); |
| } else { |
| scaledconvolve_horiz_w4(src - src_stride * (SUBPEL_TAPS / 2 - 1), |
| src_stride, temp, 64, filter, x0_q4, x_step_q4, w, |
| intermediate_height); |
| } |
| |
| if (w >= 16) { |
| scaledconvolve_vert_w16(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst, |
| dst_stride, filter, y0_q4, y_step_q4, w, h); |
| } else if (w == 8) { |
| scaledconvolve_vert_w8(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst, |
| dst_stride, filter, y0_q4, y_step_q4, w, h); |
| } else { |
| scaledconvolve_vert_w4(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst, |
| dst_stride, filter, y0_q4, y_step_q4, w, h); |
| } |
| } |