| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved. |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #ifndef AOM_AV1_COMMON_AV1_TXFM_H_ |
| #define AOM_AV1_COMMON_AV1_TXFM_H_ |
| |
| #include <assert.h> |
| #include <math.h> |
| #include <stdio.h> |
| |
| #include "config/aom_config.h" |
| |
| #include "av1/common/enums.h" |
| #include "av1/common/blockd.h" |
| #include "aom/aom_integer.h" |
| #include "aom_dsp/aom_dsp_common.h" |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| #if !defined(DO_RANGE_CHECK_CLAMP) |
| #define DO_RANGE_CHECK_CLAMP 0 |
| #endif |
| |
| extern const int32_t av1_cospi_arr_data[4][64]; |
| extern const int32_t av1_sinpi_arr_data[4][5]; |
| |
| #define MAX_TXFM_STAGE_NUM 12 |
| |
| static const int cos_bit_min = 10; |
| |
| #define NewSqrt2Bits ((int32_t)12) |
| // 2^12 * sqrt(2) |
| static const int32_t NewSqrt2 = 5793; |
| // 2^12 / sqrt(2) |
| static const int32_t NewInvSqrt2 = 2896; |
| |
| static INLINE const int32_t *cospi_arr(int n) { |
| return av1_cospi_arr_data[n - cos_bit_min]; |
| } |
| |
| static INLINE const int32_t *sinpi_arr(int n) { |
| return av1_sinpi_arr_data[n - cos_bit_min]; |
| } |
| |
| // The reduced bit-width and permuted arrays are only used in the Arm Neon |
| // implementations in av1_fwd_txfm2d_neon.c and highbd_fwd_txfm_neon.c for now. |
| #if HAVE_NEON |
| // Store cospi/sinpi costants in Q2.13 format. |
| // See: https://en.wikipedia.org/wiki/Q_(number_format) |
| extern const int16_t av1_cospi_arr_q13_data[4][128]; |
| extern const int16_t av1_sinpi_arr_q13_data[4][4]; |
| |
| extern const int32_t av1_cospi_arr_s32_data[4][66]; |
| |
| static INLINE const int16_t *cospi_arr_q13(int n) { |
| return av1_cospi_arr_q13_data[n - cos_bit_min]; |
| } |
| |
| static INLINE const int16_t *sinpi_arr_q13(int n) { |
| return av1_sinpi_arr_q13_data[n - cos_bit_min]; |
| } |
| |
| static INLINE const int32_t *cospi_arr_s32(int n) { |
| return av1_cospi_arr_s32_data[n - cos_bit_min]; |
| } |
| #endif // HAVE_NEON |
| |
| static INLINE int32_t range_check_value(int32_t value, int8_t bit) { |
| #if CONFIG_COEFFICIENT_RANGE_CHECKING |
| const int64_t max_value = (1LL << (bit - 1)) - 1; |
| const int64_t min_value = -(1LL << (bit - 1)); |
| if (value < min_value || value > max_value) { |
| fprintf(stderr, "coeff out of bit range, value: %d bit %d\n", value, bit); |
| #if !CONFIG_AV1_ENCODER |
| assert(0); |
| #endif |
| } |
| #endif // CONFIG_COEFFICIENT_RANGE_CHECKING |
| #if DO_RANGE_CHECK_CLAMP |
| bit = AOMMIN(bit, 31); |
| return clamp(value, -(1 << (bit - 1)), (1 << (bit - 1)) - 1); |
| #endif // DO_RANGE_CHECK_CLAMP |
| (void)bit; |
| return value; |
| } |
| |
| static INLINE int32_t round_shift(int64_t value, int bit) { |
| assert(bit >= 1); |
| return (int32_t)((value + (1ll << (bit - 1))) >> bit); |
| } |
| |
| static INLINE int32_t half_btf(int32_t w0, int32_t in0, int32_t w1, int32_t in1, |
| int bit) { |
| int64_t result_64 = (int64_t)(w0 * in0) + (int64_t)(w1 * in1); |
| int64_t intermediate = result_64 + (1LL << (bit - 1)); |
| // NOTE(rachelbarker): The value 'result_64' may not necessarily fit |
| // into 32 bits. However, the result of this function is nominally |
| // ROUND_POWER_OF_TWO_64(result_64, bit) |
| // and that is required to fit into stage_range[stage] many bits |
| // (checked by range_check_buf()). |
| // |
| // Here we've unpacked that rounding operation, and it can be shown |
| // that the value of 'intermediate' here *does* fit into 32 bits |
| // for any conformant bitstream. |
| // The upshot is that, if you do all this calculation using |
| // wrapping 32-bit arithmetic instead of (non-wrapping) 64-bit arithmetic, |
| // then you'll still get the correct result. |
| // To provide a check on this logic, we assert that 'intermediate' |
| // would fit into an int32 if range checking is enabled. |
| #if CONFIG_COEFFICIENT_RANGE_CHECKING |
| assert(intermediate >= INT32_MIN && intermediate <= INT32_MAX); |
| #endif |
| return (int32_t)(intermediate >> bit); |
| } |
| |
| static INLINE uint16_t highbd_clip_pixel_add(uint16_t dest, tran_high_t trans, |
| int bd) { |
| return clip_pixel_highbd(dest + (int)trans, bd); |
| } |
| |
| typedef void (*TxfmFunc)(const int32_t *input, int32_t *output, int8_t cos_bit, |
| const int8_t *stage_range); |
| |
| typedef void (*FwdTxfm2dFunc)(const int16_t *input, int32_t *output, int stride, |
| TX_TYPE tx_type, int bd); |
| |
| enum { |
| TXFM_TYPE_DCT4, |
| TXFM_TYPE_DCT8, |
| TXFM_TYPE_DCT16, |
| TXFM_TYPE_DCT32, |
| TXFM_TYPE_DCT64, |
| TXFM_TYPE_ADST4, |
| TXFM_TYPE_ADST8, |
| TXFM_TYPE_ADST16, |
| TXFM_TYPE_IDENTITY4, |
| TXFM_TYPE_IDENTITY8, |
| TXFM_TYPE_IDENTITY16, |
| TXFM_TYPE_IDENTITY32, |
| TXFM_TYPES, |
| TXFM_TYPE_INVALID, |
| } UENUM1BYTE(TXFM_TYPE); |
| |
| typedef struct TXFM_2D_FLIP_CFG { |
| TX_SIZE tx_size; |
| int ud_flip; // flip upside down |
| int lr_flip; // flip left to right |
| const int8_t *shift; |
| int8_t cos_bit_col; |
| int8_t cos_bit_row; |
| int8_t stage_range_col[MAX_TXFM_STAGE_NUM]; |
| int8_t stage_range_row[MAX_TXFM_STAGE_NUM]; |
| TXFM_TYPE txfm_type_col; |
| TXFM_TYPE txfm_type_row; |
| int stage_num_col; |
| int stage_num_row; |
| } TXFM_2D_FLIP_CFG; |
| |
| static INLINE void get_flip_cfg(TX_TYPE tx_type, int *ud_flip, int *lr_flip) { |
| switch (tx_type) { |
| case DCT_DCT: |
| case ADST_DCT: |
| case DCT_ADST: |
| case ADST_ADST: |
| *ud_flip = 0; |
| *lr_flip = 0; |
| break; |
| case IDTX: |
| case V_DCT: |
| case H_DCT: |
| case V_ADST: |
| case H_ADST: |
| *ud_flip = 0; |
| *lr_flip = 0; |
| break; |
| case FLIPADST_DCT: |
| case FLIPADST_ADST: |
| case V_FLIPADST: |
| *ud_flip = 1; |
| *lr_flip = 0; |
| break; |
| case DCT_FLIPADST: |
| case ADST_FLIPADST: |
| case H_FLIPADST: |
| *ud_flip = 0; |
| *lr_flip = 1; |
| break; |
| case FLIPADST_FLIPADST: |
| *ud_flip = 1; |
| *lr_flip = 1; |
| break; |
| default: |
| *ud_flip = 0; |
| *lr_flip = 0; |
| assert(0); |
| } |
| } |
| |
| static INLINE void set_flip_cfg(TX_TYPE tx_type, TXFM_2D_FLIP_CFG *cfg) { |
| get_flip_cfg(tx_type, &cfg->ud_flip, &cfg->lr_flip); |
| } |
| |
| // Utility function that returns the log of the ratio of the col and row |
| // sizes. |
| static INLINE int get_rect_tx_log_ratio(int col, int row) { |
| if (col == row) return 0; |
| if (col > row) { |
| if (col == row * 2) return 1; |
| if (col == row * 4) return 2; |
| assert(0 && "Unsupported transform size"); |
| } else { |
| if (row == col * 2) return -1; |
| if (row == col * 4) return -2; |
| assert(0 && "Unsupported transform size"); |
| } |
| return 0; // Invalid |
| } |
| |
| void av1_gen_fwd_stage_range(int8_t *stage_range_col, int8_t *stage_range_row, |
| const TXFM_2D_FLIP_CFG *cfg, int bd); |
| |
| void av1_gen_inv_stage_range(int8_t *stage_range_col, int8_t *stage_range_row, |
| const TXFM_2D_FLIP_CFG *cfg, TX_SIZE tx_size, |
| int bd); |
| |
| void av1_get_fwd_txfm_cfg(TX_TYPE tx_type, TX_SIZE tx_size, |
| TXFM_2D_FLIP_CFG *cfg); |
| void av1_get_inv_txfm_cfg(TX_TYPE tx_type, TX_SIZE tx_size, |
| TXFM_2D_FLIP_CFG *cfg); |
| extern const TXFM_TYPE av1_txfm_type_ls[5][TX_TYPES_1D]; |
| extern const int8_t av1_txfm_stage_num_list[TXFM_TYPES]; |
| static INLINE int get_txw_idx(TX_SIZE tx_size) { |
| return tx_size_wide_log2[tx_size] - tx_size_wide_log2[0]; |
| } |
| static INLINE int get_txh_idx(TX_SIZE tx_size) { |
| return tx_size_high_log2[tx_size] - tx_size_high_log2[0]; |
| } |
| |
| void av1_range_check_buf(int32_t stage, const int32_t *input, |
| const int32_t *buf, int32_t size, int8_t bit); |
| #define MAX_TXWH_IDX 5 |
| #ifdef __cplusplus |
| } |
| #endif // __cplusplus |
| |
| #endif // AOM_AV1_COMMON_AV1_TXFM_H_ |