blob: f406109afdcad80e15dc4909903dc3f47a4a7b9b [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#ifndef AOM_AV1_COMMON_AV1_TXFM_H_
#define AOM_AV1_COMMON_AV1_TXFM_H_
#include <assert.h>
#include <math.h>
#include <stdio.h>
#include "config/aom_config.h"
#include "av1/common/enums.h"
#include "av1/common/blockd.h"
#include "aom/aom_integer.h"
#include "aom_dsp/aom_dsp_common.h"
#ifdef __cplusplus
extern "C" {
#endif
#if !defined(DO_RANGE_CHECK_CLAMP)
#define DO_RANGE_CHECK_CLAMP 0
#endif
extern const int32_t av1_cospi_arr_data[4][64];
extern const int32_t av1_sinpi_arr_data[4][5];
#define MAX_TXFM_STAGE_NUM 12
static const int cos_bit_min = 10;
#define NewSqrt2Bits ((int32_t)12)
// 2^12 * sqrt(2)
static const int32_t NewSqrt2 = 5793;
// 2^12 / sqrt(2)
static const int32_t NewInvSqrt2 = 2896;
static INLINE const int32_t *cospi_arr(int n) {
return av1_cospi_arr_data[n - cos_bit_min];
}
static INLINE const int32_t *sinpi_arr(int n) {
return av1_sinpi_arr_data[n - cos_bit_min];
}
// The reduced bit-width and permuted arrays are only used in the Arm Neon
// implementations in av1_fwd_txfm2d_neon.c and highbd_fwd_txfm_neon.c for now.
#if HAVE_NEON
// Store cospi/sinpi costants in Q2.13 format.
// See: https://en.wikipedia.org/wiki/Q_(number_format)
extern const int16_t av1_cospi_arr_q13_data[4][128];
extern const int16_t av1_sinpi_arr_q13_data[4][4];
extern const int32_t av1_cospi_arr_s32_data[4][66];
static INLINE const int16_t *cospi_arr_q13(int n) {
return av1_cospi_arr_q13_data[n - cos_bit_min];
}
static INLINE const int16_t *sinpi_arr_q13(int n) {
return av1_sinpi_arr_q13_data[n - cos_bit_min];
}
static INLINE const int32_t *cospi_arr_s32(int n) {
return av1_cospi_arr_s32_data[n - cos_bit_min];
}
#endif // HAVE_NEON
static INLINE int32_t range_check_value(int32_t value, int8_t bit) {
#if CONFIG_COEFFICIENT_RANGE_CHECKING
const int64_t max_value = (1LL << (bit - 1)) - 1;
const int64_t min_value = -(1LL << (bit - 1));
if (value < min_value || value > max_value) {
fprintf(stderr, "coeff out of bit range, value: %d bit %d\n", value, bit);
#if !CONFIG_AV1_ENCODER
assert(0);
#endif
}
#endif // CONFIG_COEFFICIENT_RANGE_CHECKING
#if DO_RANGE_CHECK_CLAMP
bit = AOMMIN(bit, 31);
return clamp(value, -(1 << (bit - 1)), (1 << (bit - 1)) - 1);
#endif // DO_RANGE_CHECK_CLAMP
(void)bit;
return value;
}
static INLINE int32_t round_shift(int64_t value, int bit) {
assert(bit >= 1);
return (int32_t)((value + (1ll << (bit - 1))) >> bit);
}
static INLINE int32_t half_btf(int32_t w0, int32_t in0, int32_t w1, int32_t in1,
int bit) {
int64_t result_64 = (int64_t)(w0 * in0) + (int64_t)(w1 * in1);
int64_t intermediate = result_64 + (1LL << (bit - 1));
// NOTE(rachelbarker): The value 'result_64' may not necessarily fit
// into 32 bits. However, the result of this function is nominally
// ROUND_POWER_OF_TWO_64(result_64, bit)
// and that is required to fit into stage_range[stage] many bits
// (checked by range_check_buf()).
//
// Here we've unpacked that rounding operation, and it can be shown
// that the value of 'intermediate' here *does* fit into 32 bits
// for any conformant bitstream.
// The upshot is that, if you do all this calculation using
// wrapping 32-bit arithmetic instead of (non-wrapping) 64-bit arithmetic,
// then you'll still get the correct result.
// To provide a check on this logic, we assert that 'intermediate'
// would fit into an int32 if range checking is enabled.
#if CONFIG_COEFFICIENT_RANGE_CHECKING
assert(intermediate >= INT32_MIN && intermediate <= INT32_MAX);
#endif
return (int32_t)(intermediate >> bit);
}
static INLINE uint16_t highbd_clip_pixel_add(uint16_t dest, tran_high_t trans,
int bd) {
return clip_pixel_highbd(dest + (int)trans, bd);
}
typedef void (*TxfmFunc)(const int32_t *input, int32_t *output, int8_t cos_bit,
const int8_t *stage_range);
typedef void (*FwdTxfm2dFunc)(const int16_t *input, int32_t *output, int stride,
TX_TYPE tx_type, int bd);
enum {
TXFM_TYPE_DCT4,
TXFM_TYPE_DCT8,
TXFM_TYPE_DCT16,
TXFM_TYPE_DCT32,
TXFM_TYPE_DCT64,
TXFM_TYPE_ADST4,
TXFM_TYPE_ADST8,
TXFM_TYPE_ADST16,
TXFM_TYPE_IDENTITY4,
TXFM_TYPE_IDENTITY8,
TXFM_TYPE_IDENTITY16,
TXFM_TYPE_IDENTITY32,
TXFM_TYPES,
TXFM_TYPE_INVALID,
} UENUM1BYTE(TXFM_TYPE);
typedef struct TXFM_2D_FLIP_CFG {
TX_SIZE tx_size;
int ud_flip; // flip upside down
int lr_flip; // flip left to right
const int8_t *shift;
int8_t cos_bit_col;
int8_t cos_bit_row;
int8_t stage_range_col[MAX_TXFM_STAGE_NUM];
int8_t stage_range_row[MAX_TXFM_STAGE_NUM];
TXFM_TYPE txfm_type_col;
TXFM_TYPE txfm_type_row;
int stage_num_col;
int stage_num_row;
} TXFM_2D_FLIP_CFG;
static INLINE void get_flip_cfg(TX_TYPE tx_type, int *ud_flip, int *lr_flip) {
switch (tx_type) {
case DCT_DCT:
case ADST_DCT:
case DCT_ADST:
case ADST_ADST:
*ud_flip = 0;
*lr_flip = 0;
break;
case IDTX:
case V_DCT:
case H_DCT:
case V_ADST:
case H_ADST:
*ud_flip = 0;
*lr_flip = 0;
break;
case FLIPADST_DCT:
case FLIPADST_ADST:
case V_FLIPADST:
*ud_flip = 1;
*lr_flip = 0;
break;
case DCT_FLIPADST:
case ADST_FLIPADST:
case H_FLIPADST:
*ud_flip = 0;
*lr_flip = 1;
break;
case FLIPADST_FLIPADST:
*ud_flip = 1;
*lr_flip = 1;
break;
default:
*ud_flip = 0;
*lr_flip = 0;
assert(0);
}
}
static INLINE void set_flip_cfg(TX_TYPE tx_type, TXFM_2D_FLIP_CFG *cfg) {
get_flip_cfg(tx_type, &cfg->ud_flip, &cfg->lr_flip);
}
// Utility function that returns the log of the ratio of the col and row
// sizes.
static INLINE int get_rect_tx_log_ratio(int col, int row) {
if (col == row) return 0;
if (col > row) {
if (col == row * 2) return 1;
if (col == row * 4) return 2;
assert(0 && "Unsupported transform size");
} else {
if (row == col * 2) return -1;
if (row == col * 4) return -2;
assert(0 && "Unsupported transform size");
}
return 0; // Invalid
}
void av1_gen_fwd_stage_range(int8_t *stage_range_col, int8_t *stage_range_row,
const TXFM_2D_FLIP_CFG *cfg, int bd);
void av1_gen_inv_stage_range(int8_t *stage_range_col, int8_t *stage_range_row,
const TXFM_2D_FLIP_CFG *cfg, TX_SIZE tx_size,
int bd);
void av1_get_fwd_txfm_cfg(TX_TYPE tx_type, TX_SIZE tx_size,
TXFM_2D_FLIP_CFG *cfg);
void av1_get_inv_txfm_cfg(TX_TYPE tx_type, TX_SIZE tx_size,
TXFM_2D_FLIP_CFG *cfg);
extern const TXFM_TYPE av1_txfm_type_ls[5][TX_TYPES_1D];
extern const int8_t av1_txfm_stage_num_list[TXFM_TYPES];
static INLINE int get_txw_idx(TX_SIZE tx_size) {
return tx_size_wide_log2[tx_size] - tx_size_wide_log2[0];
}
static INLINE int get_txh_idx(TX_SIZE tx_size) {
return tx_size_high_log2[tx_size] - tx_size_high_log2[0];
}
void av1_range_check_buf(int32_t stage, const int32_t *input,
const int32_t *buf, int32_t size, int8_t bit);
#define MAX_TXWH_IDX 5
#ifdef __cplusplus
}
#endif // __cplusplus
#endif // AOM_AV1_COMMON_AV1_TXFM_H_