| /* |
| * |
| * Copyright (c) 2020, Alliance for Open Media. All rights reserved. |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <tmmintrin.h> // SSSE3 |
| #include "config/av1_rtcd.h" |
| #include "config/aom_scale_rtcd.h" |
| |
| #include "aom_dsp/x86/convolve_sse2.h" |
| #include "aom_dsp/x86/convolve_ssse3.h" |
| #include "aom_dsp/x86/mem_sse2.h" |
| #include "aom_dsp/x86/transpose_sse2.h" |
| #include "av1/common/resize.h" |
| |
| static INLINE __m128i scale_plane_2_to_1_phase_0_kernel( |
| const uint8_t *const src, const __m128i *const mask) { |
| const __m128i a = _mm_loadu_si128((const __m128i *)(&src[0])); |
| const __m128i b = _mm_loadu_si128((const __m128i *)(&src[16])); |
| const __m128i a_and = _mm_and_si128(a, *mask); |
| const __m128i b_and = _mm_and_si128(b, *mask); |
| return _mm_packus_epi16(a_and, b_and); |
| } |
| |
| static INLINE void shuffle_filter_odd_ssse3(const int16_t *const filter, |
| __m128i *const f) { |
| const __m128i f_values = _mm_load_si128((const __m128i *)filter); |
| // pack and duplicate the filter values |
| // It utilizes the fact that the high byte of filter[3] is always 0 to clean |
| // half of f[0] and f[4]. |
| assert(filter[3] >= 0 && filter[3] < 256); |
| f[0] = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0007u)); |
| f[1] = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0402u)); |
| f[2] = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0806u)); |
| f[3] = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0c0au)); |
| f[4] = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x070eu)); |
| } |
| |
| static INLINE __m128i convolve8_8_even_offset_ssse3(const __m128i *const s, |
| const __m128i *const f) { |
| // multiply 2 adjacent elements with the filter and add the result |
| const __m128i k_64 = _mm_set1_epi16(1 << 6); |
| const __m128i x0 = _mm_maddubs_epi16(s[0], f[0]); |
| const __m128i x1 = _mm_maddubs_epi16(s[1], f[1]); |
| const __m128i x2 = _mm_maddubs_epi16(s[2], f[2]); |
| const __m128i x3 = _mm_maddubs_epi16(s[3], f[3]); |
| // compensate the subtracted 64 in f[1]. x4 is always non negative. |
| const __m128i x4 = _mm_maddubs_epi16(s[1], _mm_set1_epi8(64)); |
| // add and saturate the results together |
| __m128i temp = _mm_adds_epi16(x0, x3); |
| temp = _mm_adds_epi16(temp, x1); |
| temp = _mm_adds_epi16(temp, x2); |
| temp = _mm_adds_epi16(temp, x4); |
| // round and shift by 7 bit each 16 bit |
| temp = _mm_adds_epi16(temp, k_64); |
| temp = _mm_srai_epi16(temp, 7); |
| return temp; |
| } |
| |
| static INLINE __m128i convolve8_8_odd_offset_ssse3(const __m128i *const s, |
| const __m128i *const f) { |
| // multiply 2 adjacent elements with the filter and add the result |
| const __m128i k_64 = _mm_set1_epi16(1 << 6); |
| const __m128i x0 = _mm_maddubs_epi16(s[0], f[0]); |
| const __m128i x1 = _mm_maddubs_epi16(s[1], f[1]); |
| const __m128i x2 = _mm_maddubs_epi16(s[2], f[2]); |
| const __m128i x3 = _mm_maddubs_epi16(s[3], f[3]); |
| const __m128i x4 = _mm_maddubs_epi16(s[4], f[4]); |
| // compensate the subtracted 64 in f[2]. x5 is always non negative. |
| const __m128i x5 = _mm_maddubs_epi16(s[2], _mm_set1_epi8(64)); |
| __m128i temp; |
| |
| // add and saturate the results together |
| temp = _mm_adds_epi16(x0, x1); |
| temp = _mm_adds_epi16(temp, x2); |
| temp = _mm_adds_epi16(temp, x3); |
| temp = _mm_adds_epi16(temp, x4); |
| temp = _mm_adds_epi16(temp, x5); |
| // round and shift by 7 bit each 16 bit |
| temp = _mm_adds_epi16(temp, k_64); |
| temp = _mm_srai_epi16(temp, 7); |
| return temp; |
| } |
| |
| static void scale_plane_2_to_1_phase_0(const uint8_t *src, |
| const ptrdiff_t src_stride, uint8_t *dst, |
| const ptrdiff_t dst_stride, |
| const int dst_w, const int dst_h) { |
| const int max_width = (dst_w + 15) & ~15; |
| const __m128i mask = _mm_set1_epi16(0x00FF); |
| int y = dst_h; |
| |
| do { |
| int x = max_width; |
| do { |
| const __m128i d = scale_plane_2_to_1_phase_0_kernel(src, &mask); |
| _mm_storeu_si128((__m128i *)dst, d); |
| src += 32; |
| dst += 16; |
| x -= 16; |
| } while (x); |
| src += 2 * (src_stride - max_width); |
| dst += dst_stride - max_width; |
| } while (--y); |
| } |
| |
| static void scale_plane_4_to_1_phase_0(const uint8_t *src, |
| const ptrdiff_t src_stride, uint8_t *dst, |
| const ptrdiff_t dst_stride, |
| const int dst_w, const int dst_h) { |
| const int max_width = (dst_w + 15) & ~15; |
| const __m128i mask = _mm_set1_epi32(0x000000FF); |
| int y = dst_h; |
| |
| do { |
| int x = max_width; |
| do { |
| const __m128i d0 = scale_plane_2_to_1_phase_0_kernel(&src[0], &mask); |
| const __m128i d1 = scale_plane_2_to_1_phase_0_kernel(&src[32], &mask); |
| const __m128i d2 = _mm_packus_epi16(d0, d1); |
| _mm_storeu_si128((__m128i *)dst, d2); |
| src += 64; |
| dst += 16; |
| x -= 16; |
| } while (x); |
| src += 4 * (src_stride - max_width); |
| dst += dst_stride - max_width; |
| } while (--y); |
| } |
| |
| static INLINE __m128i scale_plane_bilinear_kernel(const __m128i *const s, |
| const __m128i c0c1) { |
| const __m128i k_64 = _mm_set1_epi16(1 << 6); |
| const __m128i t0 = _mm_maddubs_epi16(s[0], c0c1); |
| const __m128i t1 = _mm_maddubs_epi16(s[1], c0c1); |
| // round and shift by 7 bit each 16 bit |
| const __m128i t2 = _mm_adds_epi16(t0, k_64); |
| const __m128i t3 = _mm_adds_epi16(t1, k_64); |
| const __m128i t4 = _mm_srai_epi16(t2, 7); |
| const __m128i t5 = _mm_srai_epi16(t3, 7); |
| return _mm_packus_epi16(t4, t5); |
| } |
| |
| static void scale_plane_2_to_1_bilinear(const uint8_t *src, |
| const ptrdiff_t src_stride, |
| uint8_t *dst, |
| const ptrdiff_t dst_stride, |
| const int dst_w, const int dst_h, |
| const __m128i c0c1) { |
| const int max_width = (dst_w + 15) & ~15; |
| int y = dst_h; |
| |
| do { |
| int x = max_width; |
| do { |
| __m128i s[2], d[2]; |
| |
| // Horizontal |
| // Even rows |
| s[0] = _mm_loadu_si128((const __m128i *)(src + 0)); |
| s[1] = _mm_loadu_si128((const __m128i *)(src + 16)); |
| d[0] = scale_plane_bilinear_kernel(s, c0c1); |
| |
| // odd rows |
| s[0] = _mm_loadu_si128((const __m128i *)(src + src_stride + 0)); |
| s[1] = _mm_loadu_si128((const __m128i *)(src + src_stride + 16)); |
| d[1] = scale_plane_bilinear_kernel(s, c0c1); |
| |
| // Vertical |
| s[0] = _mm_unpacklo_epi8(d[0], d[1]); |
| s[1] = _mm_unpackhi_epi8(d[0], d[1]); |
| d[0] = scale_plane_bilinear_kernel(s, c0c1); |
| |
| _mm_storeu_si128((__m128i *)dst, d[0]); |
| src += 32; |
| dst += 16; |
| x -= 16; |
| } while (x); |
| src += 2 * (src_stride - max_width); |
| dst += dst_stride - max_width; |
| } while (--y); |
| } |
| |
| static void scale_plane_4_to_1_bilinear(const uint8_t *src, |
| const ptrdiff_t src_stride, |
| uint8_t *dst, |
| const ptrdiff_t dst_stride, |
| const int dst_w, const int dst_h, |
| const __m128i c0c1) { |
| const int max_width = (dst_w + 15) & ~15; |
| int y = dst_h; |
| |
| do { |
| int x = max_width; |
| do { |
| __m128i s[8], d[8]; |
| |
| // Note: Using _mm_packus_epi32() in SSE4.1 could be faster. |
| // Here we tried to not use shuffle instructions which would be slow |
| // on some x86 CPUs. |
| |
| // Horizontal |
| // 000 001 xx xx 004 005 xx xx 008 009 xx xx 00C 00D xx xx |
| // 010 011 xx xx 014 015 xx xx 018 019 xx xx 01C 01D xx xx |
| // 020 021 xx xx 024 025 xx xx 028 029 xx xx 02C 02D xx xx |
| // 030 031 xx xx 034 035 xx xx 038 039 xx xx 03C 03D xx xx |
| // 100 101 xx xx 104 105 xx xx 108 109 xx xx 10C 10D xx xx |
| // 110 111 xx xx 114 115 xx xx 118 119 xx xx 11C 11D xx xx |
| // 120 121 xx xx 124 125 xx xx 128 129 xx xx 12C 12D xx xx |
| // 130 131 xx xx 134 135 xx xx 138 139 xx xx 13C 13D xx xx |
| s[0] = _mm_loadu_si128((const __m128i *)(&src[0])); |
| s[1] = _mm_loadu_si128((const __m128i *)(&src[16])); |
| s[2] = _mm_loadu_si128((const __m128i *)(&src[32])); |
| s[3] = _mm_loadu_si128((const __m128i *)(&src[48])); |
| s[4] = _mm_loadu_si128((const __m128i *)(src + src_stride + 0)); |
| s[5] = _mm_loadu_si128((const __m128i *)(src + src_stride + 16)); |
| s[6] = _mm_loadu_si128((const __m128i *)(src + src_stride + 32)); |
| s[7] = _mm_loadu_si128((const __m128i *)(src + src_stride + 48)); |
| |
| // 000 001 100 101 xx xx xx xx 004 005 104 105 xx xx xx xx |
| // 008 009 108 109 xx xx xx xx 00C 00D 10C 10D xx xx xx xx |
| // 010 011 110 111 xx xx xx xx 014 015 114 115 xx xx xx xx |
| // 018 019 118 119 xx xx xx xx 01C 01D 11C 11D xx xx xx xx |
| // 020 021 120 121 xx xx xx xx 024 025 124 125 xx xx xx xx |
| // 028 029 128 129 xx xx xx xx 02C 02D 12C 12D xx xx xx xx |
| // 030 031 130 131 xx xx xx xx 034 035 134 135 xx xx xx xx |
| // 038 039 138 139 xx xx xx xx 03C 03D 13C 13D xx xx xx xx |
| d[0] = _mm_unpacklo_epi16(s[0], s[4]); |
| d[1] = _mm_unpackhi_epi16(s[0], s[4]); |
| d[2] = _mm_unpacklo_epi16(s[1], s[5]); |
| d[3] = _mm_unpackhi_epi16(s[1], s[5]); |
| d[4] = _mm_unpacklo_epi16(s[2], s[6]); |
| d[5] = _mm_unpackhi_epi16(s[2], s[6]); |
| d[6] = _mm_unpacklo_epi16(s[3], s[7]); |
| d[7] = _mm_unpackhi_epi16(s[3], s[7]); |
| |
| // 000 001 100 101 008 009 108 109 xx xx xx xx xx xx xx xx |
| // 004 005 104 105 00C 00D 10C 10D xx xx xx xx xx xx xx xx |
| // 010 011 110 111 018 019 118 119 xx xx xx xx xx xx xx xx |
| // 014 015 114 115 01C 01D 11C 11D xx xx xx xx xx xx xx xx |
| // 020 021 120 121 028 029 128 129 xx xx xx xx xx xx xx xx |
| // 024 025 124 125 02C 02D 12C 12D xx xx xx xx xx xx xx xx |
| // 030 031 130 131 038 039 138 139 xx xx xx xx xx xx xx xx |
| // 034 035 134 135 03C 03D 13C 13D xx xx xx xx xx xx xx xx |
| s[0] = _mm_unpacklo_epi32(d[0], d[1]); |
| s[1] = _mm_unpackhi_epi32(d[0], d[1]); |
| s[2] = _mm_unpacklo_epi32(d[2], d[3]); |
| s[3] = _mm_unpackhi_epi32(d[2], d[3]); |
| s[4] = _mm_unpacklo_epi32(d[4], d[5]); |
| s[5] = _mm_unpackhi_epi32(d[4], d[5]); |
| s[6] = _mm_unpacklo_epi32(d[6], d[7]); |
| s[7] = _mm_unpackhi_epi32(d[6], d[7]); |
| |
| // 000 001 100 101 004 005 104 105 008 009 108 109 00C 00D 10C 10D |
| // 010 011 110 111 014 015 114 115 018 019 118 119 01C 01D 11C 11D |
| // 020 021 120 121 024 025 124 125 028 029 128 129 02C 02D 12C 12D |
| // 030 031 130 131 034 035 134 135 038 039 138 139 03C 03D 13C 13D |
| d[0] = _mm_unpacklo_epi32(s[0], s[1]); |
| d[1] = _mm_unpacklo_epi32(s[2], s[3]); |
| d[2] = _mm_unpacklo_epi32(s[4], s[5]); |
| d[3] = _mm_unpacklo_epi32(s[6], s[7]); |
| |
| d[0] = scale_plane_bilinear_kernel(&d[0], c0c1); |
| d[1] = scale_plane_bilinear_kernel(&d[2], c0c1); |
| |
| // Vertical |
| d[0] = scale_plane_bilinear_kernel(d, c0c1); |
| |
| _mm_storeu_si128((__m128i *)dst, d[0]); |
| src += 64; |
| dst += 16; |
| x -= 16; |
| } while (x); |
| src += 4 * (src_stride - max_width); |
| dst += dst_stride - max_width; |
| } while (--y); |
| } |
| |
| static void scale_plane_4_to_1_general(const uint8_t *src, const int src_stride, |
| uint8_t *dst, const int dst_stride, |
| const int w, const int h, |
| const int16_t *const coef, |
| uint8_t *const temp_buffer) { |
| const int width_hor = (w + 1) & ~1; |
| const int width_ver = (w + 7) & ~7; |
| const int height_hor = (4 * h + SUBPEL_TAPS - 2 + 7) & ~7; |
| const int height_ver = (h + 1) & ~1; |
| int x, y = height_hor; |
| uint8_t *t = temp_buffer; |
| __m128i s[11], d[4]; |
| __m128i f[4]; |
| |
| assert(w && h); |
| |
| shuffle_filter_ssse3(coef, f); |
| src -= (SUBPEL_TAPS / 2 - 1) * src_stride + SUBPEL_TAPS / 2 + 3; |
| |
| // horizontal 2x8 |
| do { |
| load_8bit_8x8(src + 4, src_stride, s); |
| // 00 01 10 11 20 21 30 31 40 41 50 51 60 61 70 71 |
| // 02 03 12 13 22 23 32 33 42 43 52 53 62 63 72 73 |
| // 04 05 14 15 24 25 34 35 44 45 54 55 64 65 74 75 (overlapped) |
| // 06 07 16 17 26 27 36 37 46 47 56 57 66 67 76 77 (overlapped) |
| transpose_16bit_4x8(s, s); |
| x = width_hor; |
| |
| do { |
| src += 8; |
| load_8bit_8x8(src, src_stride, &s[2]); |
| // 04 05 14 15 24 25 34 35 44 45 54 55 64 65 74 75 |
| // 06 07 16 17 26 27 36 37 46 47 56 57 66 67 76 77 |
| // 08 09 18 19 28 29 38 39 48 49 58 59 68 69 78 79 |
| // 0A 0B 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B 7A 7B |
| transpose_16bit_4x8(&s[2], &s[2]); |
| |
| d[0] = convolve8_8_ssse3(&s[0], f); // 00 10 20 30 40 50 60 70 |
| d[1] = convolve8_8_ssse3(&s[2], f); // 01 11 21 31 41 51 61 71 |
| |
| // 00 10 20 30 40 50 60 70 xx xx xx xx xx xx xx xx |
| // 01 11 21 31 41 51 61 71 xx xx xx xx xx xx xx xx |
| d[0] = _mm_packus_epi16(d[0], d[0]); |
| d[1] = _mm_packus_epi16(d[1], d[1]); |
| // 00 10 01 11 20 30 21 31 40 50 41 51 60 70 61 71 |
| d[0] = _mm_unpacklo_epi16(d[0], d[1]); |
| store_8bit_4x4_sse2(d[0], t, 2 * width_hor); |
| |
| s[0] = s[4]; |
| s[1] = s[5]; |
| |
| t += 4; |
| x -= 2; |
| } while (x); |
| src += 8 * src_stride - 4 * width_hor; |
| t += 6 * width_hor; |
| y -= 8; |
| } while (y); |
| |
| // vertical 8x2 |
| x = width_ver; |
| t = temp_buffer; |
| do { |
| // 00 10 01 11 02 12 03 13 04 14 05 15 06 16 07 17 |
| // 20 30 21 31 22 32 23 33 24 34 25 35 26 36 27 37 |
| s[0] = _mm_loadu_si128((const __m128i *)(t + 0 * width_hor)); |
| s[1] = _mm_loadu_si128((const __m128i *)(t + 2 * width_hor)); |
| t += 4 * width_hor; |
| y = height_ver; |
| |
| do { |
| // 40 50 41 51 42 52 43 53 44 54 45 55 46 56 47 57 |
| // 60 70 61 71 62 72 63 73 64 74 65 75 66 76 67 77 |
| // 80 90 81 91 82 92 83 93 84 94 85 95 86 96 87 77 |
| // A0 B0 A1 B1 A2 B2 A3 B3 A4 B4 A5 B5 A6 B6 A7 77 |
| loadu_8bit_16x4(t, 2 * width_hor, &s[2]); |
| t += 8 * width_hor; |
| |
| d[0] = convolve8_8_ssse3(&s[0], f); // 00 01 02 03 04 05 06 07 |
| d[1] = convolve8_8_ssse3(&s[2], f); // 10 11 12 13 14 15 16 17 |
| |
| // 00 01 02 03 04 05 06 07 10 11 12 13 14 15 16 17 |
| d[0] = _mm_packus_epi16(d[0], d[1]); |
| _mm_storel_epi64((__m128i *)(dst + 0 * dst_stride), d[0]); |
| _mm_storeh_epi64((__m128i *)(dst + 1 * dst_stride), d[0]); |
| |
| s[0] = s[4]; |
| s[1] = s[5]; |
| |
| dst += 2 * dst_stride; |
| y -= 2; |
| } while (y); |
| t -= width_hor * (4 * height_ver + 4); |
| t += 16; |
| dst -= height_ver * dst_stride; |
| dst += 8; |
| x -= 8; |
| } while (x); |
| } |
| |
| static void scale_plane_2_to_1_general(const uint8_t *src, const int src_stride, |
| uint8_t *dst, const int dst_stride, |
| const int w, const int h, |
| const int16_t *const coef, |
| uint8_t *const temp_buffer) { |
| const int width_hor = (w + 3) & ~3; |
| const int width_ver = (w + 7) & ~7; |
| const int height_hor = (2 * h + SUBPEL_TAPS - 2 + 7) & ~7; |
| const int height_ver = (h + 3) & ~3; |
| int x, y = height_hor; |
| uint8_t *t = temp_buffer; |
| __m128i s[11], d[4]; |
| __m128i f[4]; |
| |
| assert(w && h); |
| |
| shuffle_filter_ssse3(coef, f); |
| src -= (SUBPEL_TAPS / 2 - 1) * src_stride + SUBPEL_TAPS / 2 + 1; |
| |
| // horizontal 4x8 |
| do { |
| load_8bit_8x8(src + 2, src_stride, s); |
| // 00 01 10 11 20 21 30 31 40 41 50 51 60 61 70 71 |
| // 02 03 12 13 22 23 32 33 42 43 52 53 62 63 72 73 |
| // 04 05 14 15 24 25 34 35 44 45 54 55 64 65 74 75 |
| // 06 07 16 17 26 27 36 37 46 47 56 57 66 67 76 77 (overlapped) |
| transpose_16bit_4x8(s, s); |
| x = width_hor; |
| |
| do { |
| src += 8; |
| load_8bit_8x8(src, src_stride, &s[3]); |
| // 06 07 16 17 26 27 36 37 46 47 56 57 66 67 76 77 |
| // 08 09 18 19 28 29 38 39 48 49 58 59 68 69 78 79 |
| // 0A 0B 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B 7A 7B |
| // 0C 0D 1C 1D 2C 2D 3C 3D 4C 4D 5C 5D 6C 6D 7C 7D |
| transpose_16bit_4x8(&s[3], &s[3]); |
| |
| d[0] = convolve8_8_ssse3(&s[0], f); // 00 10 20 30 40 50 60 70 |
| d[1] = convolve8_8_ssse3(&s[1], f); // 01 11 21 31 41 51 61 71 |
| d[2] = convolve8_8_ssse3(&s[2], f); // 02 12 22 32 42 52 62 72 |
| d[3] = convolve8_8_ssse3(&s[3], f); // 03 13 23 33 43 53 63 73 |
| |
| // 00 10 20 30 40 50 60 70 02 12 22 32 42 52 62 72 |
| // 01 11 21 31 41 51 61 71 03 13 23 33 43 53 63 73 |
| d[0] = _mm_packus_epi16(d[0], d[2]); |
| d[1] = _mm_packus_epi16(d[1], d[3]); |
| // 00 10 01 11 20 30 21 31 40 50 41 51 60 70 61 71 |
| // 02 12 03 13 22 32 23 33 42 52 43 53 62 72 63 73 |
| d[2] = _mm_unpacklo_epi16(d[0], d[1]); |
| d[3] = _mm_unpackhi_epi16(d[0], d[1]); |
| // 00 10 01 11 02 12 03 13 20 30 21 31 22 32 23 33 |
| // 40 50 41 51 42 52 43 53 60 70 61 71 62 72 63 73 |
| d[0] = _mm_unpacklo_epi32(d[2], d[3]); |
| d[1] = _mm_unpackhi_epi32(d[2], d[3]); |
| store_8bit_8x4_from_16x2(d, t, 2 * width_hor); |
| |
| s[0] = s[4]; |
| s[1] = s[5]; |
| s[2] = s[6]; |
| |
| t += 8; |
| x -= 4; |
| } while (x); |
| src += 8 * src_stride - 2 * width_hor; |
| t += 6 * width_hor; |
| y -= 8; |
| } while (y); |
| |
| // vertical 8x4 |
| x = width_ver; |
| t = temp_buffer; |
| do { |
| // 00 10 01 11 02 12 03 13 04 14 05 15 06 16 07 17 |
| // 20 30 21 31 22 32 23 33 24 34 25 35 26 36 27 37 |
| // 40 50 41 51 42 52 43 53 44 54 45 55 46 56 47 57 |
| s[0] = _mm_loadu_si128((const __m128i *)(t + 0 * width_hor)); |
| s[1] = _mm_loadu_si128((const __m128i *)(t + 2 * width_hor)); |
| s[2] = _mm_loadu_si128((const __m128i *)(t + 4 * width_hor)); |
| t += 6 * width_hor; |
| y = height_ver; |
| |
| do { |
| // 60 70 61 71 62 72 63 73 64 74 65 75 66 76 67 77 |
| // 80 90 81 91 82 92 83 93 84 94 85 95 86 96 87 77 |
| // A0 B0 A1 B1 A2 B2 A3 B3 A4 B4 A5 B5 A6 B6 A7 77 |
| // C0 D0 C1 D1 C2 D2 C3 D3 C4 D4 C5 D5 C6 D6 C7 77 |
| loadu_8bit_16x4(t, 2 * width_hor, &s[3]); |
| t += 8 * width_hor; |
| |
| d[0] = convolve8_8_ssse3(&s[0], f); // 00 01 02 03 04 05 06 07 |
| d[1] = convolve8_8_ssse3(&s[1], f); // 10 11 12 13 14 15 16 17 |
| d[2] = convolve8_8_ssse3(&s[2], f); // 20 21 22 23 24 25 26 27 |
| d[3] = convolve8_8_ssse3(&s[3], f); // 30 31 32 33 34 35 36 37 |
| |
| // 00 01 02 03 04 05 06 07 10 11 12 13 14 15 16 17 |
| // 20 21 22 23 24 25 26 27 30 31 32 33 34 35 36 37 |
| d[0] = _mm_packus_epi16(d[0], d[1]); |
| d[1] = _mm_packus_epi16(d[2], d[3]); |
| store_8bit_8x4_from_16x2(d, dst, dst_stride); |
| |
| s[0] = s[4]; |
| s[1] = s[5]; |
| s[2] = s[6]; |
| |
| dst += 4 * dst_stride; |
| y -= 4; |
| } while (y); |
| t -= width_hor * (2 * height_ver + 6); |
| t += 16; |
| dst -= height_ver * dst_stride; |
| dst += 8; |
| x -= 8; |
| } while (x); |
| } |
| |
| typedef void (*shuffle_filter_funcs)(const int16_t *const filter, |
| __m128i *const f); |
| |
| typedef __m128i (*convolve8_funcs)(const __m128i *const s, |
| const __m128i *const f); |
| |
| static void scale_plane_4_to_3_general(const uint8_t *src, const int src_stride, |
| uint8_t *dst, const int dst_stride, |
| const int w, const int h, |
| const InterpKernel *const coef, |
| const int phase, |
| uint8_t *const temp_buffer) { |
| static const int step_q4 = 16 * 4 / 3; |
| const int width_hor = (w + 5) - ((w + 5) % 6); |
| const int stride_hor = 2 * width_hor + 4; // store 4 extra pixels |
| const int width_ver = (w + 7) & ~7; |
| // We need (SUBPEL_TAPS - 1) extra rows: (SUBPEL_TAPS / 2 - 1) extra rows |
| // above and (SUBPEL_TAPS / 2) extra rows below. |
| const int height_hor = (4 * h / 3 + SUBPEL_TAPS - 1 + 7) & ~7; |
| const int height_ver = (h + 5) - ((h + 5) % 6); |
| int x, y = height_hor; |
| uint8_t *t = temp_buffer; |
| __m128i s[12], d[6], dd[4]; |
| __m128i f0[4], f1[5], f2[5]; |
| // The offset of the first row is always less than 1 pixel. |
| const int offset1_q4 = phase + 1 * step_q4; |
| const int offset2_q4 = phase + 2 * step_q4; |
| // offset_idxx indicates the pixel offset is even (0) or odd (1). |
| // It's used to choose the src offset and filter coefficient offset. |
| const int offset_idx1 = (offset1_q4 >> 4) & 1; |
| const int offset_idx2 = (offset2_q4 >> 4) & 1; |
| static const shuffle_filter_funcs shuffle_filter_func_list[2] = { |
| shuffle_filter_ssse3, shuffle_filter_odd_ssse3 |
| }; |
| static const convolve8_funcs convolve8_func_list[2] = { |
| convolve8_8_even_offset_ssse3, convolve8_8_odd_offset_ssse3 |
| }; |
| |
| assert(w && h); |
| |
| shuffle_filter_ssse3(coef[(phase + 0 * step_q4) & SUBPEL_MASK], f0); |
| shuffle_filter_func_list[offset_idx1](coef[offset1_q4 & SUBPEL_MASK], f1); |
| shuffle_filter_func_list[offset_idx2](coef[offset2_q4 & SUBPEL_MASK], f2); |
| |
| // Sub 64 to avoid overflow. |
| // Coef 128 would be treated as -128 in PMADDUBSW. Sub 64 here. |
| // Coef 128 is in either fx[1] or fx[2] depending on the phase idx. |
| // When filter phase idx is 1, the two biggest coefficients are shuffled |
| // together, and the sum of them are always no less than 128. Sub 64 here. |
| // After the subtraction, when the sum of all positive coefficients are no |
| // larger than 128, and the sum of all negative coefficients are no |
| // less than -128, there will be no overflow in the convolve8 functions. |
| f0[1] = _mm_sub_epi8(f0[1], _mm_set1_epi8(64)); |
| f1[1 + offset_idx1] = _mm_sub_epi8(f1[1 + offset_idx1], _mm_set1_epi8(64)); |
| f2[1 + offset_idx2] = _mm_sub_epi8(f2[1 + offset_idx2], _mm_set1_epi8(64)); |
| |
| src -= (SUBPEL_TAPS / 2 - 1) * src_stride + SUBPEL_TAPS / 2 - 1; |
| |
| // horizontal 6x8 |
| do { |
| load_8bit_8x8(src, src_stride, s); |
| // 00 01 10 11 20 21 30 31 40 41 50 51 60 61 70 71 |
| // 02 03 12 13 22 23 32 33 42 43 52 53 62 63 72 73 |
| // 04 05 14 15 24 25 34 35 44 45 54 55 64 65 74 75 |
| // 06 07 16 17 26 27 36 37 46 47 56 57 66 67 76 77 |
| transpose_16bit_4x8(s, s); |
| x = width_hor; |
| |
| do { |
| src += 8; |
| load_8bit_8x8(src, src_stride, &s[4]); |
| // 08 09 18 19 28 29 38 39 48 49 58 59 68 69 78 79 |
| // 0A 0B 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B 7A 7B |
| // OC 0D 1C 1D 2C 2D 3C 3D 4C 4D 5C 5D 6C 6D 7C 7D |
| // 0E 0F 1E 1F 2E 2F 3E 3F 4E 4F 5E 5F 6E 6F 7E 7F |
| transpose_16bit_4x8(&s[4], &s[4]); |
| |
| // 00 10 20 30 40 50 60 70 |
| // 01 11 21 31 41 51 61 71 |
| // 02 12 22 32 42 52 62 72 |
| // 03 13 23 33 43 53 63 73 |
| // 04 14 24 34 44 54 64 74 |
| // 05 15 25 35 45 55 65 75 |
| d[0] = convolve8_8_even_offset_ssse3(&s[0], f0); |
| d[1] = convolve8_func_list[offset_idx1](&s[offset1_q4 >> 5], f1); |
| d[2] = convolve8_func_list[offset_idx2](&s[offset2_q4 >> 5], f2); |
| d[3] = convolve8_8_even_offset_ssse3(&s[2], f0); |
| d[4] = convolve8_func_list[offset_idx1](&s[2 + (offset1_q4 >> 5)], f1); |
| d[5] = convolve8_func_list[offset_idx2](&s[2 + (offset2_q4 >> 5)], f2); |
| |
| // 00 10 20 30 40 50 60 70 02 12 22 32 42 52 62 72 |
| // 01 11 21 31 41 51 61 71 03 13 23 33 43 53 63 73 |
| // 04 14 24 34 44 54 64 74 xx xx xx xx xx xx xx xx |
| // 05 15 25 35 45 55 65 75 xx xx xx xx xx xx xx xx |
| dd[0] = _mm_packus_epi16(d[0], d[2]); |
| dd[1] = _mm_packus_epi16(d[1], d[3]); |
| dd[2] = _mm_packus_epi16(d[4], d[4]); |
| dd[3] = _mm_packus_epi16(d[5], d[5]); |
| |
| // 00 10 01 11 20 30 21 31 40 50 41 51 60 70 61 71 |
| // 02 12 03 13 22 32 23 33 42 52 43 53 62 72 63 73 |
| // 04 14 05 15 24 34 25 35 44 54 45 55 64 74 65 75 |
| d[0] = _mm_unpacklo_epi16(dd[0], dd[1]); |
| d[1] = _mm_unpackhi_epi16(dd[0], dd[1]); |
| d[2] = _mm_unpacklo_epi16(dd[2], dd[3]); |
| |
| // 00 10 01 11 02 12 03 13 20 30 21 31 22 32 23 33 |
| // 40 50 41 51 42 52 43 53 60 70 61 71 62 72 63 73 |
| // 04 14 05 15 xx xx xx xx 24 34 25 35 xx xx xx xx |
| // 44 54 45 55 xx xx xx xx 64 74 65 75 xx xx xx xx |
| dd[0] = _mm_unpacklo_epi32(d[0], d[1]); |
| dd[1] = _mm_unpackhi_epi32(d[0], d[1]); |
| dd[2] = _mm_unpacklo_epi32(d[2], d[2]); |
| dd[3] = _mm_unpackhi_epi32(d[2], d[2]); |
| |
| // 00 10 01 11 02 12 03 13 04 14 05 15 xx xx xx xx |
| // 20 30 21 31 22 32 23 33 24 34 25 35 xx xx xx xx |
| // 40 50 41 51 42 52 43 53 44 54 45 55 xx xx xx xx |
| // 60 70 61 71 62 72 63 73 64 74 65 75 xx xx xx xx |
| d[0] = _mm_unpacklo_epi64(dd[0], dd[2]); |
| d[1] = _mm_unpackhi_epi64(dd[0], dd[2]); |
| d[2] = _mm_unpacklo_epi64(dd[1], dd[3]); |
| d[3] = _mm_unpackhi_epi64(dd[1], dd[3]); |
| |
| // store 4 extra pixels |
| storeu_8bit_16x4(d, t, stride_hor); |
| |
| s[0] = s[4]; |
| s[1] = s[5]; |
| s[2] = s[6]; |
| s[3] = s[7]; |
| |
| t += 12; |
| x -= 6; |
| } while (x); |
| src += 8 * src_stride - 4 * width_hor / 3; |
| t += 3 * stride_hor + 4; |
| y -= 8; |
| } while (y); |
| |
| // vertical 8x6 |
| x = width_ver; |
| t = temp_buffer; |
| do { |
| // 00 10 01 11 02 12 03 13 04 14 05 15 06 16 07 17 |
| // 20 30 21 31 22 32 23 33 24 34 25 35 26 36 27 37 |
| // 40 50 41 51 42 52 43 53 44 54 45 55 46 56 47 57 |
| // 60 70 61 71 62 72 63 73 64 74 65 75 66 76 67 77 |
| loadu_8bit_16x4(t, stride_hor, s); |
| y = height_ver; |
| |
| do { |
| // 80 90 81 91 82 92 83 93 84 94 85 95 86 96 87 97 |
| // A0 B0 A1 B1 A2 B2 A3 B3 A4 B4 A5 B5 A6 B6 A7 B7 |
| // C0 D0 C1 D1 C2 D2 C3 D3 C4 D4 C5 D5 C6 D6 C7 D7 |
| // E0 F0 E1 F1 E2 F2 E3 F3 E4 F4 E5 F5 E6 F6 E7 F7 |
| t += 4 * stride_hor; |
| loadu_8bit_16x4(t, stride_hor, &s[4]); |
| |
| d[0] = convolve8_8_even_offset_ssse3(&s[0], f0); |
| d[1] = convolve8_func_list[offset_idx1](&s[offset1_q4 >> 5], f1); |
| d[2] = convolve8_func_list[offset_idx2](&s[offset2_q4 >> 5], f2); |
| d[3] = convolve8_8_even_offset_ssse3(&s[2], f0); |
| d[4] = convolve8_func_list[offset_idx1](&s[2 + (offset1_q4 >> 5)], f1); |
| d[5] = convolve8_func_list[offset_idx2](&s[2 + (offset2_q4 >> 5)], f2); |
| |
| // 00 01 02 03 04 05 06 07 10 11 12 13 14 15 16 17 |
| // 20 21 22 23 24 25 26 27 30 31 32 33 34 35 36 37 |
| // 40 41 42 43 44 45 46 47 50 51 52 53 54 55 56 57 |
| d[0] = _mm_packus_epi16(d[0], d[1]); |
| d[2] = _mm_packus_epi16(d[2], d[3]); |
| d[4] = _mm_packus_epi16(d[4], d[5]); |
| |
| _mm_storel_epi64((__m128i *)(dst + 0 * dst_stride), d[0]); |
| _mm_storeh_epi64((__m128i *)(dst + 1 * dst_stride), d[0]); |
| _mm_storel_epi64((__m128i *)(dst + 2 * dst_stride), d[2]); |
| _mm_storeh_epi64((__m128i *)(dst + 3 * dst_stride), d[2]); |
| _mm_storel_epi64((__m128i *)(dst + 4 * dst_stride), d[4]); |
| _mm_storeh_epi64((__m128i *)(dst + 5 * dst_stride), d[4]); |
| |
| s[0] = s[4]; |
| s[1] = s[5]; |
| s[2] = s[6]; |
| s[3] = s[7]; |
| |
| dst += 6 * dst_stride; |
| y -= 6; |
| } while (y); |
| t -= stride_hor * 2 * height_ver / 3; |
| t += 16; |
| dst -= height_ver * dst_stride; |
| dst += 8; |
| x -= 8; |
| } while (x); |
| } |
| |
| static INLINE __m128i scale_1_to_2_phase_0_kernel(const __m128i *const s, |
| const __m128i *const f) { |
| __m128i ss[4], temp; |
| |
| ss[0] = _mm_unpacklo_epi8(s[0], s[1]); |
| ss[1] = _mm_unpacklo_epi8(s[2], s[3]); |
| ss[2] = _mm_unpacklo_epi8(s[4], s[5]); |
| ss[3] = _mm_unpacklo_epi8(s[6], s[7]); |
| temp = convolve8_8_ssse3(ss, f); |
| return _mm_packus_epi16(temp, temp); |
| } |
| |
| // Only calculate odd columns since even columns are just src pixels' copies. |
| static void scale_1_to_2_phase_0_row(const uint8_t *src, uint8_t *dst, |
| const int w, const __m128i *const f) { |
| int x = w; |
| |
| do { |
| __m128i s[8], temp; |
| s[0] = _mm_loadl_epi64((const __m128i *)(src + 0)); |
| s[1] = _mm_loadl_epi64((const __m128i *)(src + 1)); |
| s[2] = _mm_loadl_epi64((const __m128i *)(src + 2)); |
| s[3] = _mm_loadl_epi64((const __m128i *)(src + 3)); |
| s[4] = _mm_loadl_epi64((const __m128i *)(src + 4)); |
| s[5] = _mm_loadl_epi64((const __m128i *)(src + 5)); |
| s[6] = _mm_loadl_epi64((const __m128i *)(src + 6)); |
| s[7] = _mm_loadl_epi64((const __m128i *)(src + 7)); |
| temp = scale_1_to_2_phase_0_kernel(s, f); |
| _mm_storel_epi64((__m128i *)dst, temp); |
| src += 8; |
| dst += 8; |
| x -= 8; |
| } while (x); |
| } |
| |
| static void scale_plane_1_to_2_phase_0(const uint8_t *src, |
| const ptrdiff_t src_stride, uint8_t *dst, |
| const ptrdiff_t dst_stride, |
| const int src_w, const int src_h, |
| const int16_t *const coef, |
| uint8_t *const temp_buffer) { |
| int max_width; |
| int y; |
| uint8_t *tmp[9]; |
| __m128i f[4]; |
| |
| max_width = (src_w + 7) & ~7; |
| tmp[0] = temp_buffer + 0 * max_width; |
| tmp[1] = temp_buffer + 1 * max_width; |
| tmp[2] = temp_buffer + 2 * max_width; |
| tmp[3] = temp_buffer + 3 * max_width; |
| tmp[4] = temp_buffer + 4 * max_width; |
| tmp[5] = temp_buffer + 5 * max_width; |
| tmp[6] = temp_buffer + 6 * max_width; |
| tmp[7] = temp_buffer + 7 * max_width; |
| |
| shuffle_filter_ssse3(coef, f); |
| |
| scale_1_to_2_phase_0_row(src - 3 * src_stride - 3, tmp[0], max_width, f); |
| scale_1_to_2_phase_0_row(src - 2 * src_stride - 3, tmp[1], max_width, f); |
| scale_1_to_2_phase_0_row(src - 1 * src_stride - 3, tmp[2], max_width, f); |
| scale_1_to_2_phase_0_row(src + 0 * src_stride - 3, tmp[3], max_width, f); |
| scale_1_to_2_phase_0_row(src + 1 * src_stride - 3, tmp[4], max_width, f); |
| scale_1_to_2_phase_0_row(src + 2 * src_stride - 3, tmp[5], max_width, f); |
| scale_1_to_2_phase_0_row(src + 3 * src_stride - 3, tmp[6], max_width, f); |
| |
| y = src_h; |
| do { |
| int x; |
| scale_1_to_2_phase_0_row(src + 4 * src_stride - 3, tmp[7], max_width, f); |
| for (x = 0; x < max_width; x += 8) { |
| __m128i s[8], C, D, CD; |
| |
| // Even rows |
| const __m128i a = _mm_loadl_epi64((const __m128i *)(src + x)); |
| const __m128i b = _mm_loadl_epi64((const __m128i *)(tmp[3] + x)); |
| const __m128i ab = _mm_unpacklo_epi8(a, b); |
| _mm_storeu_si128((__m128i *)(dst + 2 * x), ab); |
| |
| // Odd rows |
| // Even columns |
| load_8bit_8x8(src + x - 3 * src_stride, src_stride, s); |
| C = scale_1_to_2_phase_0_kernel(s, f); |
| |
| // Odd columns |
| s[0] = _mm_loadl_epi64((const __m128i *)(tmp[0] + x)); |
| s[1] = _mm_loadl_epi64((const __m128i *)(tmp[1] + x)); |
| s[2] = _mm_loadl_epi64((const __m128i *)(tmp[2] + x)); |
| s[3] = _mm_loadl_epi64((const __m128i *)(tmp[3] + x)); |
| s[4] = _mm_loadl_epi64((const __m128i *)(tmp[4] + x)); |
| s[5] = _mm_loadl_epi64((const __m128i *)(tmp[5] + x)); |
| s[6] = _mm_loadl_epi64((const __m128i *)(tmp[6] + x)); |
| s[7] = _mm_loadl_epi64((const __m128i *)(tmp[7] + x)); |
| D = scale_1_to_2_phase_0_kernel(s, f); |
| |
| CD = _mm_unpacklo_epi8(C, D); |
| _mm_storeu_si128((__m128i *)(dst + dst_stride + 2 * x), CD); |
| } |
| |
| src += src_stride; |
| dst += 2 * dst_stride; |
| tmp[8] = tmp[0]; |
| tmp[0] = tmp[1]; |
| tmp[1] = tmp[2]; |
| tmp[2] = tmp[3]; |
| tmp[3] = tmp[4]; |
| tmp[4] = tmp[5]; |
| tmp[5] = tmp[6]; |
| tmp[6] = tmp[7]; |
| tmp[7] = tmp[8]; |
| } while (--y); |
| } |
| |
| // There's SIMD optimizations for 1/4, 1/2 and 3/4 downscaling and 2x upscaling |
| // in SSSE3. |
| static INLINE bool has_normative_scaler_ssse3(const int src_width, |
| const int src_height, |
| const int dst_width, |
| const int dst_height) { |
| const bool has_normative_scaler = |
| (2 * dst_width == src_width && 2 * dst_height == src_height) || |
| (4 * dst_width == src_width && 4 * dst_height == src_height) || |
| (4 * dst_width == 3 * src_width && 4 * dst_height == 3 * src_height) || |
| (dst_width == src_width * 2 && dst_height == src_height * 2); |
| |
| return has_normative_scaler; |
| } |
| |
| void av1_resize_and_extend_frame_ssse3(const YV12_BUFFER_CONFIG *src, |
| YV12_BUFFER_CONFIG *dst, |
| const InterpFilter filter, |
| const int phase, const int num_planes) { |
| bool has_normative_scaler = |
| has_normative_scaler_ssse3(src->y_crop_width, src->y_crop_height, |
| dst->y_crop_width, dst->y_crop_height); |
| |
| if (num_planes > 1) { |
| has_normative_scaler = |
| has_normative_scaler && |
| has_normative_scaler_ssse3(src->uv_crop_width, src->uv_crop_height, |
| dst->uv_crop_width, dst->uv_crop_height); |
| } |
| |
| if (!has_normative_scaler) { |
| av1_resize_and_extend_frame_c(src, dst, filter, phase, num_planes); |
| return; |
| } |
| |
| // We use AOMMIN(num_planes, MAX_MB_PLANE) instead of num_planes to quiet |
| // the static analysis warnings. |
| int malloc_failed = 0; |
| for (int i = 0; i < AOMMIN(num_planes, MAX_MB_PLANE); ++i) { |
| const int is_uv = i > 0; |
| const int src_w = src->crop_widths[is_uv]; |
| const int src_h = src->crop_heights[is_uv]; |
| const int src_y_w = (src->crop_widths[0] + 1) & ~1; |
| const int dst_w = dst->crop_widths[is_uv]; |
| const int dst_h = dst->crop_heights[is_uv]; |
| const int dst_y_w = (dst->crop_widths[0] + 1) & ~1; |
| const int dst_y_h = (dst->crop_heights[0] + 1) & ~1; |
| |
| if (2 * dst_w == src_w && 2 * dst_h == src_h) { |
| // 2 to 1 |
| if (phase == 0) { |
| scale_plane_2_to_1_phase_0(src->buffers[i], src->strides[is_uv], |
| dst->buffers[i], dst->strides[is_uv], dst_w, |
| dst_h); |
| } else if (filter == BILINEAR) { |
| const int16_t c0 = av1_bilinear_filters[phase][3]; |
| const int16_t c1 = av1_bilinear_filters[phase][4]; |
| const __m128i c0c1 = _mm_set1_epi16(c0 | (c1 << 8)); // c0 and c1 >= 0 |
| scale_plane_2_to_1_bilinear(src->buffers[i], src->strides[is_uv], |
| dst->buffers[i], dst->strides[is_uv], dst_w, |
| dst_h, c0c1); |
| } else { |
| const int buffer_stride = (dst_y_w + 3) & ~3; |
| const int buffer_height = (2 * dst_y_h + SUBPEL_TAPS - 2 + 7) & ~7; |
| uint8_t *const temp_buffer = |
| (uint8_t *)malloc(buffer_stride * buffer_height); |
| if (!temp_buffer) { |
| malloc_failed = 1; |
| break; |
| } |
| const InterpKernel *interp_kernel = |
| (const InterpKernel *)av1_interp_filter_params_list[filter] |
| .filter_ptr; |
| scale_plane_2_to_1_general(src->buffers[i], src->strides[is_uv], |
| dst->buffers[i], dst->strides[is_uv], dst_w, |
| dst_h, interp_kernel[phase], temp_buffer); |
| free(temp_buffer); |
| } |
| } else if (4 * dst_w == src_w && 4 * dst_h == src_h) { |
| // 4 to 1 |
| if (phase == 0) { |
| scale_plane_4_to_1_phase_0(src->buffers[i], src->strides[is_uv], |
| dst->buffers[i], dst->strides[is_uv], dst_w, |
| dst_h); |
| } else if (filter == BILINEAR) { |
| const int16_t c0 = av1_bilinear_filters[phase][3]; |
| const int16_t c1 = av1_bilinear_filters[phase][4]; |
| const __m128i c0c1 = _mm_set1_epi16(c0 | (c1 << 8)); // c0 and c1 >= 0 |
| scale_plane_4_to_1_bilinear(src->buffers[i], src->strides[is_uv], |
| dst->buffers[i], dst->strides[is_uv], dst_w, |
| dst_h, c0c1); |
| } else { |
| const int buffer_stride = (dst_y_w + 1) & ~1; |
| const int buffer_height = (4 * dst_y_h + SUBPEL_TAPS - 2 + 7) & ~7; |
| // When dst_w is 1 or 2, we need extra padding to avoid heap read |
| // overflow |
| const int extra_padding = 16; |
| uint8_t *const temp_buffer = |
| (uint8_t *)malloc(buffer_stride * buffer_height + extra_padding); |
| if (!temp_buffer) { |
| malloc_failed = 1; |
| break; |
| } |
| const InterpKernel *interp_kernel = |
| (const InterpKernel *)av1_interp_filter_params_list[filter] |
| .filter_ptr; |
| scale_plane_4_to_1_general(src->buffers[i], src->strides[is_uv], |
| dst->buffers[i], dst->strides[is_uv], dst_w, |
| dst_h, interp_kernel[phase], temp_buffer); |
| free(temp_buffer); |
| } |
| } else if (4 * dst_w == 3 * src_w && 4 * dst_h == 3 * src_h) { |
| // 4 to 3 |
| const int buffer_stride_hor = (dst_y_w + 5) - ((dst_y_w + 5) % 6) + 2; |
| const int buffer_stride_ver = (dst_y_w + 7) & ~7; |
| const int buffer_height = (4 * dst_y_h / 3 + SUBPEL_TAPS - 1 + 7) & ~7; |
| // When the vertical filter reads more pixels than the horizontal filter |
| // generated in each row, we need extra padding to avoid heap read |
| // overflow. For example, the horizontal filter generates 18 pixels but |
| // the vertical filter reads 24 pixels in a row. The difference is |
| // multiplied by 2 since two rows are interlaced together in the |
| // optimization. |
| const int extra_padding = |
| (buffer_stride_ver > buffer_stride_hor) |
| ? 2 * (buffer_stride_ver - buffer_stride_hor) |
| : 0; |
| const int buffer_size = buffer_stride_hor * buffer_height + extra_padding; |
| uint8_t *const temp_buffer = (uint8_t *)malloc(buffer_size); |
| if (!temp_buffer) { |
| malloc_failed = 1; |
| break; |
| } |
| const InterpKernel *interp_kernel = |
| (const InterpKernel *)av1_interp_filter_params_list[filter] |
| .filter_ptr; |
| scale_plane_4_to_3_general(src->buffers[i], src->strides[is_uv], |
| dst->buffers[i], dst->strides[is_uv], dst_w, |
| dst_h, interp_kernel, phase, temp_buffer); |
| free(temp_buffer); |
| } else { |
| assert(dst_w == src_w * 2 && dst_h == src_h * 2); |
| // 1 to 2 |
| uint8_t *const temp_buffer = (uint8_t *)malloc(8 * ((src_y_w + 7) & ~7)); |
| if (!temp_buffer) { |
| malloc_failed = 1; |
| break; |
| } |
| const InterpKernel *interp_kernel = |
| (const InterpKernel *)av1_interp_filter_params_list[filter] |
| .filter_ptr; |
| scale_plane_1_to_2_phase_0(src->buffers[i], src->strides[is_uv], |
| dst->buffers[i], dst->strides[is_uv], src_w, |
| src_h, interp_kernel[8], temp_buffer); |
| free(temp_buffer); |
| } |
| } |
| |
| if (malloc_failed) { |
| av1_resize_and_extend_frame_c(src, dst, filter, phase, num_planes); |
| } else { |
| aom_extend_frame_borders(dst, num_planes); |
| } |
| } |