blob: a584753223084a0978a9b54ad80f3ed642ca7500 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#ifndef AOM_AV1_DECODER_DECODER_H_
#define AOM_AV1_DECODER_DECODER_H_
#include "config/aom_config.h"
#include "aom/aom_codec.h"
#include "aom_dsp/bitreader.h"
#include "aom_scale/yv12config.h"
#include "aom_util/aom_thread.h"
#include "av1/common/av1_common_int.h"
#include "av1/common/thread_common.h"
#include "av1/decoder/dthread.h"
#if CONFIG_ACCOUNTING
#include "av1/decoder/accounting.h"
#endif
#if CONFIG_INSPECTION
#include "av1/decoder/inspection.h"
#endif
#ifdef __cplusplus
extern "C" {
#endif
/*!
* \brief Contains coding block data required by the decoder.
*
* This includes:
* - Coding block info that is common between encoder and decoder.
* - Other coding block info only needed by the decoder.
* Contrast this with a similar struct MACROBLOCK on encoder side.
* This data is also common between ThreadData and AV1Decoder structs.
*/
typedef struct DecoderCodingBlock {
/*!
* Coding block info that is common between encoder and decoder.
*/
DECLARE_ALIGNED(32, MACROBLOCKD, xd);
/*!
* True if the at least one of the coding blocks decoded was corrupted.
*/
int corrupted;
/*!
* Pointer to 'mc_buf' inside 'pbi->td' (single-threaded decoding) or
* 'pbi->thread_data[i].td' (multi-threaded decoding).
*/
uint8_t *mc_buf[2];
/*!
* Pointer to 'dqcoeff' inside 'td->cb_buffer_base' or 'pbi->cb_buffer_base'
* with appropriate offset for the current superblock, for each plane.
*/
tran_low_t *dqcoeff_block[MAX_MB_PLANE];
/*!
* cb_offset[p] is the offset into the dqcoeff_block[p] for the current coding
* block, for each plane 'p'.
*/
uint16_t cb_offset[MAX_MB_PLANE];
/*!
* Pointer to 'eob_data' inside 'td->cb_buffer_base' or 'pbi->cb_buffer_base'
* with appropriate offset for the current superblock, for each plane.
*/
eob_info *eob_data[MAX_MB_PLANE];
/*!
* txb_offset[p] is the offset into the eob_data[p] for the current coding
* block, for each plane 'p'.
*/
uint16_t txb_offset[MAX_MB_PLANE];
/*!
* ref_mv_count[i] specifies the number of number of motion vector candidates
* in xd->ref_mv_stack[i].
*/
uint8_t ref_mv_count[MODE_CTX_REF_FRAMES];
} DecoderCodingBlock;
/*!\cond */
typedef void (*decode_block_visitor_fn_t)(const AV1_COMMON *const cm,
DecoderCodingBlock *dcb,
aom_reader *const r, const int plane,
const int row, const int col,
const TX_SIZE tx_size);
typedef void (*predict_inter_block_visitor_fn_t)(AV1_COMMON *const cm,
DecoderCodingBlock *dcb,
BLOCK_SIZE bsize);
typedef void (*cfl_store_inter_block_visitor_fn_t)(AV1_COMMON *const cm,
MACROBLOCKD *const xd);
typedef struct ThreadData {
DecoderCodingBlock dcb;
// Coding block buffer for the current superblock.
// Used only for single-threaded decoding and multi-threaded decoding with
// row_mt == 1 cases.
// See also: similar buffer in 'AV1Decoder'.
CB_BUFFER cb_buffer_base;
aom_reader *bit_reader;
// Motion compensation buffer used to get a prediction buffer with extended
// borders. One buffer for each of the two possible references.
uint8_t *mc_buf[2];
// Mask for this block used for compound prediction.
uint8_t *seg_mask;
// Allocated size of 'mc_buf'.
int32_t mc_buf_size;
// If true, the pointers in 'mc_buf' were converted from highbd pointers.
int mc_buf_use_highbd; // Boolean: whether the byte pointers stored in
// mc_buf were converted from highbd pointers.
CONV_BUF_TYPE *tmp_conv_dst;
uint8_t *tmp_obmc_bufs[2];
decode_block_visitor_fn_t read_coeffs_tx_intra_block_visit;
decode_block_visitor_fn_t predict_and_recon_intra_block_visit;
decode_block_visitor_fn_t read_coeffs_tx_inter_block_visit;
decode_block_visitor_fn_t inverse_tx_inter_block_visit;
predict_inter_block_visitor_fn_t predict_inter_block_visit;
cfl_store_inter_block_visitor_fn_t cfl_store_inter_block_visit;
} ThreadData;
typedef struct AV1DecRowMTJobInfo {
int tile_row;
int tile_col;
int mi_row;
} AV1DecRowMTJobInfo;
typedef struct AV1DecRowMTSyncData {
#if CONFIG_MULTITHREAD
pthread_mutex_t *mutex_;
pthread_cond_t *cond_;
#endif
int allocated_sb_rows;
int *cur_sb_col;
// Denotes the superblock interval at which conditional signalling should
// happen. Also denotes the minimum number of extra superblocks of the top row
// to be complete to start decoding the current superblock. A value of 1
// indicates top-right dependency.
int sync_range;
// Denotes the additional number of superblocks in the previous row to be
// complete to start decoding the current superblock when intraBC tool is
// enabled. This additional top-right delay is required to satisfy the
// hardware constraints for intraBC tool when row multithreading is enabled.
int intrabc_extra_top_right_sb_delay;
int mi_rows;
int mi_cols;
int mi_rows_parse_done;
int mi_rows_decode_started;
int num_threads_working;
} AV1DecRowMTSync;
typedef struct AV1DecRowMTInfo {
int tile_rows_start;
int tile_rows_end;
int tile_cols_start;
int tile_cols_end;
int start_tile;
int end_tile;
int mi_rows_to_decode;
// Invariant:
// mi_rows_parse_done >= mi_rows_decode_started.
// mi_rows_parse_done and mi_rows_decode_started are both initialized to 0.
// mi_rows_parse_done is incremented freely. mi_rows_decode_started may only
// be incremented to catch up with mi_rows_parse_done but is not allowed to
// surpass mi_rows_parse_done.
//
// When mi_rows_decode_started reaches mi_rows_to_decode, there are no more
// decode jobs.
// Indicates the progress of the bit-stream parsing of superblocks.
// Initialized to 0. Incremented by sb_mi_size when parse sb row is done.
int mi_rows_parse_done;
// Indicates the progress of the decoding of superblocks.
// Initialized to 0. Incremented by sb_mi_size when decode sb row is started.
int mi_rows_decode_started;
// Boolean: Initialized to 0 (false). Set to 1 (true) on error to abort
// decoding.
int row_mt_exit;
} AV1DecRowMTInfo;
typedef struct TileDataDec {
TileInfo tile_info;
aom_reader bit_reader;
DECLARE_ALIGNED(16, FRAME_CONTEXT, tctx);
AV1DecRowMTSync dec_row_mt_sync;
} TileDataDec;
typedef struct TileBufferDec {
const uint8_t *data;
size_t size;
} TileBufferDec;
typedef struct DataBuffer {
const uint8_t *data;
size_t size;
} DataBuffer;
typedef struct EXTERNAL_REFERENCES {
YV12_BUFFER_CONFIG refs[MAX_EXTERNAL_REFERENCES];
int num;
} EXTERNAL_REFERENCES;
typedef struct TileJobsDec {
TileBufferDec *tile_buffer;
TileDataDec *tile_data;
} TileJobsDec;
typedef struct AV1DecTileMTData {
#if CONFIG_MULTITHREAD
pthread_mutex_t *job_mutex;
#endif
TileJobsDec *job_queue;
int jobs_enqueued;
int jobs_dequeued;
int alloc_tile_rows;
int alloc_tile_cols;
} AV1DecTileMT;
typedef struct AV1Decoder {
DecoderCodingBlock dcb;
DECLARE_ALIGNED(32, AV1_COMMON, common);
AVxWorker lf_worker;
AV1LfSync lf_row_sync;
AV1LrSync lr_row_sync;
AV1LrStruct lr_ctxt;
AV1CdefSync cdef_sync;
AV1CdefWorkerData *cdef_worker;
AVxWorker *tile_workers;
int num_workers;
DecWorkerData *thread_data;
ThreadData td;
TileDataDec *tile_data;
int allocated_tiles;
TileBufferDec tile_buffers[MAX_TILE_ROWS][MAX_TILE_COLS];
AV1DecTileMT tile_mt_info;
// Each time the decoder is called, we expect to receive a full temporal unit.
// This can contain up to one shown frame per spatial layer in the current
// operating point (note that some layers may be entirely omitted).
// If the 'output_all_layers' option is true, we save all of these shown
// frames so that they can be returned to the application. If the
// 'output_all_layers' option is false, then we only output one image per
// temporal unit.
//
// Note: The saved buffers are released at the start of the next time the
// application calls aom_codec_decode().
int output_all_layers;
RefCntBuffer *output_frames[MAX_NUM_SPATIAL_LAYERS];
size_t num_output_frames; // How many frames are queued up so far?
// In order to properly support random-access decoding, we need
// to behave slightly differently for the very first frame we decode.
// So we track whether this is the first frame or not.
int decoding_first_frame;
int allow_lowbitdepth;
int max_threads;
int inv_tile_order;
int need_resync; // wait for key/intra-only frame.
int reset_decoder_state;
int tile_size_bytes;
int tile_col_size_bytes;
int dec_tile_row, dec_tile_col; // always -1 for non-VR tile encoding
#if CONFIG_ACCOUNTING
int acct_enabled;
Accounting accounting;
#endif
int sequence_header_ready;
int sequence_header_changed;
#if CONFIG_INSPECTION
aom_inspect_cb inspect_cb;
void *inspect_ctx;
#endif
int operating_point;
int current_operating_point;
int seen_frame_header;
// The expected start_tile (tg_start syntax element) of the next tile group.
int next_start_tile;
// State if the camera frame header is already decoded while
// large_scale_tile = 1.
int camera_frame_header_ready;
size_t frame_header_size;
DataBuffer obu_size_hdr;
int output_frame_width_in_tiles_minus_1;
int output_frame_height_in_tiles_minus_1;
int tile_count_minus_1;
uint32_t coded_tile_data_size;
unsigned int ext_tile_debug; // for ext-tile software debug & testing
// Decoder has 3 modes of operation:
// (1) Single-threaded decoding.
// (2) Multi-threaded decoding with each tile decoded in parallel.
// (3) In addition to (2), each thread decodes 1 superblock row in parallel.
// row_mt = 1 triggers mode (3) above, while row_mt = 0, will trigger mode (1)
// or (2) depending on 'max_threads'.
unsigned int row_mt;
EXTERNAL_REFERENCES ext_refs;
YV12_BUFFER_CONFIG tile_list_outbuf;
// Coding block buffer for the current frame.
// Allocated and used only for multi-threaded decoding with 'row_mt == 0'.
// See also: similar buffer in 'ThreadData' struct.
CB_BUFFER *cb_buffer_base;
// Allocated size of 'cb_buffer_base'. Currently same as the number of
// superblocks in the coded frame.
int cb_buffer_alloc_size;
int allocated_row_mt_sync_rows;
#if CONFIG_MULTITHREAD
pthread_mutex_t *row_mt_mutex_;
pthread_cond_t *row_mt_cond_;
#endif
AV1DecRowMTInfo frame_row_mt_info;
aom_metadata_array_t *metadata;
int context_update_tile_id;
int skip_loop_filter;
int skip_film_grain;
int is_annexb;
int valid_for_referencing[REF_FRAMES];
int is_fwd_kf_present;
int is_arf_frame_present;
int num_tile_groups;
aom_s_frame_info sframe_info;
/*!
* Elements part of the sequence header, that are applicable for all the
* frames in the video.
*/
SequenceHeader seq_params;
/*!
* If true, buffer removal times are present.
*/
bool buffer_removal_time_present;
/*!
* Code and details about current error status.
*/
struct aom_internal_error_info error;
/*!
* Number of temporal layers: may be > 1 for SVC (scalable vector coding).
*/
unsigned int number_temporal_layers;
/*!
* Number of spatial layers: may be > 1 for SVC (scalable vector coding).
*/
unsigned int number_spatial_layers;
} AV1Decoder;
// Returns 0 on success. Sets pbi->common.error.error_code to a nonzero error
// code and returns a nonzero value on failure.
int av1_receive_compressed_data(struct AV1Decoder *pbi, size_t size,
const uint8_t **psource);
// Get the frame at a particular index in the output queue
int av1_get_raw_frame(AV1Decoder *pbi, size_t index, YV12_BUFFER_CONFIG **sd,
aom_film_grain_t **grain_params);
int av1_get_frame_to_show(struct AV1Decoder *pbi, YV12_BUFFER_CONFIG *frame);
aom_codec_err_t av1_copy_reference_dec(struct AV1Decoder *pbi, int idx,
YV12_BUFFER_CONFIG *sd);
aom_codec_err_t av1_set_reference_dec(AV1_COMMON *cm, int idx,
int use_external_ref,
YV12_BUFFER_CONFIG *sd);
aom_codec_err_t av1_copy_new_frame_dec(AV1_COMMON *cm,
YV12_BUFFER_CONFIG *new_frame,
YV12_BUFFER_CONFIG *sd);
struct AV1Decoder *av1_decoder_create(BufferPool *const pool);
void av1_decoder_remove(struct AV1Decoder *pbi);
void av1_dealloc_dec_jobs(struct AV1DecTileMTData *tile_mt_info);
void av1_dec_row_mt_dealloc(AV1DecRowMTSync *dec_row_mt_sync);
void av1_dec_free_cb_buf(AV1Decoder *pbi);
static INLINE void decrease_ref_count(RefCntBuffer *const buf,
BufferPool *const pool) {
if (buf != NULL) {
--buf->ref_count;
// Reference counts should never become negative. If this assertion fails,
// there is a bug in our reference count management.
assert(buf->ref_count >= 0);
// A worker may only get a free framebuffer index when calling get_free_fb.
// But the raw frame buffer is not set up until we finish decoding header.
// So if any error happens during decoding header, frame_bufs[idx] will not
// have a valid raw frame buffer.
if (buf->ref_count == 0 && buf->raw_frame_buffer.data) {
pool->release_fb_cb(pool->cb_priv, &buf->raw_frame_buffer);
buf->raw_frame_buffer.data = NULL;
buf->raw_frame_buffer.size = 0;
buf->raw_frame_buffer.priv = NULL;
}
}
}
#define ACCT_STR __func__
static INLINE int av1_read_uniform(aom_reader *r, int n) {
const int l = get_unsigned_bits(n);
const int m = (1 << l) - n;
const int v = aom_read_literal(r, l - 1, ACCT_STR);
assert(l != 0);
if (v < m)
return v;
else
return (v << 1) - m + aom_read_literal(r, 1, ACCT_STR);
}
typedef void (*palette_visitor_fn_t)(MACROBLOCKD *const xd, int plane,
aom_reader *r);
void av1_visit_palette(AV1Decoder *const pbi, MACROBLOCKD *const xd,
aom_reader *r, palette_visitor_fn_t visit);
typedef void (*block_visitor_fn_t)(AV1Decoder *const pbi, ThreadData *const td,
int mi_row, int mi_col, aom_reader *r,
PARTITION_TYPE partition, BLOCK_SIZE bsize);
/*!\endcond */
#ifdef __cplusplus
} // extern "C"
#endif
#endif // AOM_AV1_DECODER_DECODER_H_