| /* |
| * Copyright (c) 2024, Alliance for Open Media. All rights reserved. |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <arm_neon.h> |
| #include <arm_sve.h> |
| #include <assert.h> |
| #include <string.h> |
| |
| #include "config/aom_config.h" |
| #include "config/av1_rtcd.h" |
| |
| #include "aom_dsp/arm/aom_neon_sve_bridge.h" |
| #include "aom_dsp/arm/mem_neon.h" |
| #include "aom_dsp/arm/sum_neon.h" |
| #include "aom_dsp/arm/transpose_neon.h" |
| #include "av1/common/restoration.h" |
| #include "av1/encoder/pickrst.h" |
| #include "av1/encoder/arm/pickrst_sve.h" |
| |
| static INLINE uint8_t find_average_sve(const uint8_t *src, int src_stride, |
| int width, int height) { |
| uint32x4_t avg_u32 = vdupq_n_u32(0); |
| uint8x16_t ones = vdupq_n_u8(1); |
| |
| // Use a predicate to compute the last columns. |
| svbool_t pattern = svwhilelt_b8_u32(0, width % 16); |
| |
| int h = height; |
| do { |
| int j = width; |
| const uint8_t *src_ptr = src; |
| while (j >= 16) { |
| uint8x16_t s = vld1q_u8(src_ptr); |
| avg_u32 = vdotq_u32(avg_u32, s, ones); |
| |
| j -= 16; |
| src_ptr += 16; |
| } |
| uint8x16_t s_end = svget_neonq_u8(svld1_u8(pattern, src_ptr)); |
| avg_u32 = vdotq_u32(avg_u32, s_end, ones); |
| |
| src += src_stride; |
| } while (--h != 0); |
| return (uint8_t)(vaddlvq_u32(avg_u32) / (width * height)); |
| } |
| |
| static INLINE void compute_sub_avg(const uint8_t *buf, int buf_stride, int avg, |
| int16_t *buf_avg, int buf_avg_stride, |
| int width, int height, |
| int downsample_factor) { |
| uint8x8_t avg_u8 = vdup_n_u8(avg); |
| |
| // Use a predicate to compute the last columns. |
| svbool_t pattern = svwhilelt_b8_u32(0, width % 8); |
| |
| uint8x8_t avg_end = vget_low_u8(svget_neonq_u8(svdup_n_u8_z(pattern, avg))); |
| |
| do { |
| int j = width; |
| const uint8_t *buf_ptr = buf; |
| int16_t *buf_avg_ptr = buf_avg; |
| while (j >= 8) { |
| uint8x8_t d = vld1_u8(buf_ptr); |
| vst1q_s16(buf_avg_ptr, vreinterpretq_s16_u16(vsubl_u8(d, avg_u8))); |
| |
| j -= 8; |
| buf_ptr += 8; |
| buf_avg_ptr += 8; |
| } |
| uint8x8_t d_end = vget_low_u8(svget_neonq_u8(svld1_u8(pattern, buf_ptr))); |
| vst1q_s16(buf_avg_ptr, vreinterpretq_s16_u16(vsubl_u8(d_end, avg_end))); |
| |
| buf += buf_stride; |
| buf_avg += buf_avg_stride; |
| height -= downsample_factor; |
| } while (height > 0); |
| } |
| |
| static INLINE void copy_upper_triangle(int64_t *H, int64_t *H_tmp, |
| const int wiener_win2, const int scale) { |
| for (int i = 0; i < wiener_win2 - 2; i = i + 2) { |
| // Transpose the first 2x2 square. It needs a special case as the element |
| // of the bottom left is on the diagonal. |
| int64x2_t row0 = vld1q_s64(H_tmp + i * wiener_win2 + i + 1); |
| int64x2_t row1 = vld1q_s64(H_tmp + (i + 1) * wiener_win2 + i + 1); |
| |
| int64x2_t tr_row = aom_vtrn2q_s64(row0, row1); |
| |
| vst1_s64(H_tmp + (i + 1) * wiener_win2 + i, vget_low_s64(row0)); |
| vst1q_s64(H_tmp + (i + 2) * wiener_win2 + i, tr_row); |
| |
| // Transpose and store all the remaining 2x2 squares of the line. |
| for (int j = i + 3; j < wiener_win2; j = j + 2) { |
| row0 = vld1q_s64(H_tmp + i * wiener_win2 + j); |
| row1 = vld1q_s64(H_tmp + (i + 1) * wiener_win2 + j); |
| |
| int64x2_t tr_row0 = aom_vtrn1q_s64(row0, row1); |
| int64x2_t tr_row1 = aom_vtrn2q_s64(row0, row1); |
| |
| vst1q_s64(H_tmp + j * wiener_win2 + i, tr_row0); |
| vst1q_s64(H_tmp + (j + 1) * wiener_win2 + i, tr_row1); |
| } |
| } |
| for (int i = 0; i < wiener_win2 * wiener_win2; i++) { |
| H[i] += H_tmp[i] * scale; |
| } |
| } |
| |
| // Transpose the matrix that has just been computed and accumulate it in M. |
| static INLINE void acc_transpose_M(int64_t *M, const int64_t *M_trn, |
| const int wiener_win, int scale) { |
| for (int i = 0; i < wiener_win; ++i) { |
| for (int j = 0; j < wiener_win; ++j) { |
| int tr_idx = j * wiener_win + i; |
| *M++ += (int64_t)(M_trn[tr_idx] * scale); |
| } |
| } |
| } |
| |
| // This function computes two matrices: the cross-correlation between the src |
| // buffer and dgd buffer (M), and the auto-covariance of the dgd buffer (H). |
| // |
| // M is of size 7 * 7. It needs to be filled such that multiplying one element |
| // from src with each element of a row of the wiener window will fill one |
| // column of M. However this is not very convenient in terms of memory |
| // accesses, as it means we do contiguous loads of dgd but strided stores to M. |
| // As a result, we use an intermediate matrix M_trn which is instead filled |
| // such that one row of the wiener window gives one row of M_trn. Once fully |
| // computed, M_trn is then transposed to return M. |
| // |
| // H is of size 49 * 49. It is filled by multiplying every pair of elements of |
| // the wiener window together. Since it is a symmetric matrix, we only compute |
| // the upper triangle, and then copy it down to the lower one. Here we fill it |
| // by taking each different pair of columns, and multiplying all the elements of |
| // the first one with all the elements of the second one, with a special case |
| // when multiplying a column by itself. |
| static INLINE void compute_stats_win7_sve(int16_t *dgd_avg, int dgd_avg_stride, |
| int16_t *src_avg, int src_avg_stride, |
| int width, int height, int64_t *M, |
| int64_t *H, int downsample_factor) { |
| const int wiener_win = 7; |
| const int wiener_win2 = wiener_win * wiener_win; |
| |
| // Use a predicate to compute the last columns of the block for H. |
| svbool_t pattern = svwhilelt_b16_u32(0, width % 8); |
| |
| // Use intermediate matrices for H and M to perform the computation, they |
| // will be accumulated into the original H and M at the end. |
| int64_t M_trn[49]; |
| memset(M_trn, 0, sizeof(M_trn)); |
| |
| int64_t H_tmp[49 * 49]; |
| memset(H_tmp, 0, sizeof(H_tmp)); |
| |
| assert(height > 0); |
| do { |
| // Cross-correlation (M). |
| for (int row = 0; row < wiener_win; row++) { |
| int j = 0; |
| while (j < width) { |
| int16x8_t dgd[7]; |
| load_s16_8x7(dgd_avg + row * dgd_avg_stride + j, 1, &dgd[0], &dgd[1], |
| &dgd[2], &dgd[3], &dgd[4], &dgd[5], &dgd[6]); |
| int16x8_t s = vld1q_s16(src_avg + j); |
| |
| // Compute all the elements of one row of M. |
| compute_M_one_row_win7(s, dgd, M_trn, row); |
| |
| j += 8; |
| } |
| } |
| |
| // Auto-covariance (H). |
| int j = 0; |
| while (j <= width - 8) { |
| for (int col0 = 0; col0 < wiener_win; col0++) { |
| int16x8_t dgd0[7]; |
| load_s16_8x7(dgd_avg + j + col0, dgd_avg_stride, &dgd0[0], &dgd0[1], |
| &dgd0[2], &dgd0[3], &dgd0[4], &dgd0[5], &dgd0[6]); |
| |
| // Perform computation of the first column with itself (28 elements). |
| // For the first column this will fill the upper triangle of the 7x7 |
| // matrix at the top left of the H matrix. For the next columns this |
| // will fill the upper triangle of the other 7x7 matrices around H's |
| // diagonal. |
| compute_H_one_col(dgd0, col0, H_tmp, wiener_win, wiener_win2); |
| |
| // All computation next to the matrix diagonal has already been done. |
| for (int col1 = col0 + 1; col1 < wiener_win; col1++) { |
| // Load second column and scale based on downsampling factor. |
| int16x8_t dgd1[7]; |
| load_s16_8x7(dgd_avg + j + col1, dgd_avg_stride, &dgd1[0], &dgd1[1], |
| &dgd1[2], &dgd1[3], &dgd1[4], &dgd1[5], &dgd1[6]); |
| |
| // Compute all elements from the combination of both columns (49 |
| // elements). |
| compute_H_two_rows_win7(dgd0, dgd1, col0, col1, H_tmp); |
| } |
| } |
| j += 8; |
| } |
| |
| if (j < width) { |
| // Process remaining columns using a predicate to discard excess elements. |
| for (int col0 = 0; col0 < wiener_win; col0++) { |
| // Load first column. |
| int16x8_t dgd0[7]; |
| dgd0[0] = svget_neonq_s16( |
| svld1_s16(pattern, dgd_avg + 0 * dgd_avg_stride + j + col0)); |
| dgd0[1] = svget_neonq_s16( |
| svld1_s16(pattern, dgd_avg + 1 * dgd_avg_stride + j + col0)); |
| dgd0[2] = svget_neonq_s16( |
| svld1_s16(pattern, dgd_avg + 2 * dgd_avg_stride + j + col0)); |
| dgd0[3] = svget_neonq_s16( |
| svld1_s16(pattern, dgd_avg + 3 * dgd_avg_stride + j + col0)); |
| dgd0[4] = svget_neonq_s16( |
| svld1_s16(pattern, dgd_avg + 4 * dgd_avg_stride + j + col0)); |
| dgd0[5] = svget_neonq_s16( |
| svld1_s16(pattern, dgd_avg + 5 * dgd_avg_stride + j + col0)); |
| dgd0[6] = svget_neonq_s16( |
| svld1_s16(pattern, dgd_avg + 6 * dgd_avg_stride + j + col0)); |
| |
| // Perform computation of the first column with itself (28 elements). |
| // For the first column this will fill the upper triangle of the 7x7 |
| // matrix at the top left of the H matrix. For the next columns this |
| // will fill the upper triangle of the other 7x7 matrices around H's |
| // diagonal. |
| compute_H_one_col(dgd0, col0, H_tmp, wiener_win, wiener_win2); |
| |
| // All computation next to the matrix diagonal has already been done. |
| for (int col1 = col0 + 1; col1 < wiener_win; col1++) { |
| // Load second column and scale based on downsampling factor. |
| int16x8_t dgd1[7]; |
| load_s16_8x7(dgd_avg + j + col1, dgd_avg_stride, &dgd1[0], &dgd1[1], |
| &dgd1[2], &dgd1[3], &dgd1[4], &dgd1[5], &dgd1[6]); |
| |
| // Compute all elements from the combination of both columns (49 |
| // elements). |
| compute_H_two_rows_win7(dgd0, dgd1, col0, col1, H_tmp); |
| } |
| } |
| } |
| dgd_avg += downsample_factor * dgd_avg_stride; |
| src_avg += src_avg_stride; |
| } while (--height != 0); |
| |
| // Transpose M_trn. |
| acc_transpose_M(M, M_trn, 7, downsample_factor); |
| |
| // Copy upper triangle of H in the lower one. |
| copy_upper_triangle(H, H_tmp, wiener_win2, downsample_factor); |
| } |
| |
| // This function computes two matrices: the cross-correlation between the src |
| // buffer and dgd buffer (M), and the auto-covariance of the dgd buffer (H). |
| // |
| // M is of size 5 * 5. It needs to be filled such that multiplying one element |
| // from src with each element of a row of the wiener window will fill one |
| // column of M. However this is not very convenient in terms of memory |
| // accesses, as it means we do contiguous loads of dgd but strided stores to M. |
| // As a result, we use an intermediate matrix M_trn which is instead filled |
| // such that one row of the wiener window gives one row of M_trn. Once fully |
| // computed, M_trn is then transposed to return M. |
| // |
| // H is of size 25 * 25. It is filled by multiplying every pair of elements of |
| // the wiener window together. Since it is a symmetric matrix, we only compute |
| // the upper triangle, and then copy it down to the lower one. Here we fill it |
| // by taking each different pair of columns, and multiplying all the elements of |
| // the first one with all the elements of the second one, with a special case |
| // when multiplying a column by itself. |
| static INLINE void compute_stats_win5_sve(int16_t *dgd_avg, int dgd_avg_stride, |
| int16_t *src_avg, int src_avg_stride, |
| int width, int height, int64_t *M, |
| int64_t *H, int downsample_factor) { |
| const int wiener_win = 5; |
| const int wiener_win2 = wiener_win * wiener_win; |
| |
| // Use a predicate to compute the last columns of the block for H. |
| svbool_t pattern = svwhilelt_b16_u32(0, width % 8); |
| |
| // Use intermediate matrices for H and M to perform the computation, they |
| // will be accumulated into the original H and M at the end. |
| int64_t M_trn[25]; |
| memset(M_trn, 0, sizeof(M_trn)); |
| |
| int64_t H_tmp[25 * 25]; |
| memset(H_tmp, 0, sizeof(H_tmp)); |
| |
| assert(height > 0); |
| do { |
| // Cross-correlation (M). |
| for (int row = 0; row < wiener_win; row++) { |
| int j = 0; |
| while (j < width) { |
| int16x8_t dgd[5]; |
| load_s16_8x5(dgd_avg + row * dgd_avg_stride + j, 1, &dgd[0], &dgd[1], |
| &dgd[2], &dgd[3], &dgd[4]); |
| int16x8_t s = vld1q_s16(src_avg + j); |
| |
| // Compute all the elements of one row of M. |
| compute_M_one_row_win5(s, dgd, M_trn, row); |
| |
| j += 8; |
| } |
| } |
| |
| // Auto-covariance (H). |
| int j = 0; |
| while (j <= width - 8) { |
| for (int col0 = 0; col0 < wiener_win; col0++) { |
| // Load first column. |
| int16x8_t dgd0[5]; |
| load_s16_8x5(dgd_avg + j + col0, dgd_avg_stride, &dgd0[0], &dgd0[1], |
| &dgd0[2], &dgd0[3], &dgd0[4]); |
| |
| // Perform computation of the first column with itself (15 elements). |
| // For the first column this will fill the upper triangle of the 5x5 |
| // matrix at the top left of the H matrix. For the next columns this |
| // will fill the upper triangle of the other 5x5 matrices around H's |
| // diagonal. |
| compute_H_one_col(dgd0, col0, H_tmp, wiener_win, wiener_win2); |
| |
| // All computation next to the matrix diagonal has already been done. |
| for (int col1 = col0 + 1; col1 < wiener_win; col1++) { |
| // Load second column and scale based on downsampling factor. |
| int16x8_t dgd1[5]; |
| load_s16_8x5(dgd_avg + j + col1, dgd_avg_stride, &dgd1[0], &dgd1[1], |
| &dgd1[2], &dgd1[3], &dgd1[4]); |
| |
| // Compute all elements from the combination of both columns (25 |
| // elements). |
| compute_H_two_rows_win5(dgd0, dgd1, col0, col1, H_tmp); |
| } |
| } |
| j += 8; |
| } |
| |
| // Process remaining columns using a predicate to discard excess elements. |
| if (j < width) { |
| for (int col0 = 0; col0 < wiener_win; col0++) { |
| int16x8_t dgd0[5]; |
| dgd0[0] = svget_neonq_s16( |
| svld1_s16(pattern, dgd_avg + 0 * dgd_avg_stride + j + col0)); |
| dgd0[1] = svget_neonq_s16( |
| svld1_s16(pattern, dgd_avg + 1 * dgd_avg_stride + j + col0)); |
| dgd0[2] = svget_neonq_s16( |
| svld1_s16(pattern, dgd_avg + 2 * dgd_avg_stride + j + col0)); |
| dgd0[3] = svget_neonq_s16( |
| svld1_s16(pattern, dgd_avg + 3 * dgd_avg_stride + j + col0)); |
| dgd0[4] = svget_neonq_s16( |
| svld1_s16(pattern, dgd_avg + 4 * dgd_avg_stride + j + col0)); |
| |
| // Perform computation of the first column with itself (15 elements). |
| // For the first column this will fill the upper triangle of the 5x5 |
| // matrix at the top left of the H matrix. For the next columns this |
| // will fill the upper triangle of the other 5x5 matrices around H's |
| // diagonal. |
| compute_H_one_col(dgd0, col0, H_tmp, wiener_win, wiener_win2); |
| |
| // All computation next to the matrix diagonal has already been done. |
| for (int col1 = col0 + 1; col1 < wiener_win; col1++) { |
| // Load second column and scale based on downsampling factor. |
| int16x8_t dgd1[5]; |
| load_s16_8x5(dgd_avg + j + col1, dgd_avg_stride, &dgd1[0], &dgd1[1], |
| &dgd1[2], &dgd1[3], &dgd1[4]); |
| |
| // Compute all elements from the combination of both columns (25 |
| // elements). |
| compute_H_two_rows_win5(dgd0, dgd1, col0, col1, H_tmp); |
| } |
| } |
| } |
| dgd_avg += downsample_factor * dgd_avg_stride; |
| src_avg += src_avg_stride; |
| } while (--height != 0); |
| |
| // Transpose M_trn. |
| acc_transpose_M(M, M_trn, 5, downsample_factor); |
| |
| // Copy upper triangle of H in the lower one. |
| copy_upper_triangle(H, H_tmp, wiener_win2, downsample_factor); |
| } |
| |
| void av1_compute_stats_sve(int wiener_win, const uint8_t *dgd, |
| const uint8_t *src, int16_t *dgd_avg, |
| int16_t *src_avg, int h_start, int h_end, |
| int v_start, int v_end, int dgd_stride, |
| int src_stride, int64_t *M, int64_t *H, |
| int use_downsampled_wiener_stats) { |
| assert(wiener_win == WIENER_WIN || wiener_win == WIENER_WIN_CHROMA); |
| |
| const int wiener_win2 = wiener_win * wiener_win; |
| const int wiener_halfwin = wiener_win >> 1; |
| const int32_t width = h_end - h_start; |
| const int32_t height = v_end - v_start; |
| const uint8_t *dgd_start = &dgd[v_start * dgd_stride + h_start]; |
| memset(H, 0, sizeof(*H) * wiener_win2 * wiener_win2); |
| memset(M, 0, sizeof(*M) * wiener_win * wiener_win); |
| |
| const uint8_t avg = find_average_sve(dgd_start, dgd_stride, width, height); |
| const int downsample_factor = |
| use_downsampled_wiener_stats ? WIENER_STATS_DOWNSAMPLE_FACTOR : 1; |
| |
| // dgd_avg and src_avg have been memset to zero before calling this |
| // function, so round up the stride to the next multiple of 8 so that we |
| // don't have to worry about a tail loop when computing M. |
| const int dgd_avg_stride = ((width + 2 * wiener_halfwin) & ~7) + 8; |
| const int src_avg_stride = (width & ~7) + 8; |
| |
| // Compute (dgd - avg) and store it in dgd_avg. |
| // The wiener window will slide along the dgd frame, centered on each pixel. |
| // For the top left pixel and all the pixels on the side of the frame this |
| // means half of the window will be outside of the frame. As such the actual |
| // buffer that we need to subtract the avg from will be 2 * wiener_halfwin |
| // wider and 2 * wiener_halfwin higher than the original dgd buffer. |
| const int vert_offset = v_start - wiener_halfwin; |
| const int horiz_offset = h_start - wiener_halfwin; |
| const uint8_t *dgd_win = dgd + horiz_offset + vert_offset * dgd_stride; |
| compute_sub_avg(dgd_win, dgd_stride, avg, dgd_avg, dgd_avg_stride, |
| width + 2 * wiener_halfwin, height + 2 * wiener_halfwin, 1); |
| |
| // Compute (src - avg), downsample if necessary and store in src-avg. |
| const uint8_t *src_start = src + h_start + v_start * src_stride; |
| compute_sub_avg(src_start, src_stride * downsample_factor, avg, src_avg, |
| src_avg_stride, width, height, downsample_factor); |
| |
| const int downsample_height = height / downsample_factor; |
| |
| // Since the height is not necessarily a multiple of the downsample factor, |
| // the last line of src will be scaled according to how many rows remain. |
| const int downsample_remainder = height % downsample_factor; |
| |
| if (downsample_height > 0) { |
| if (wiener_win == WIENER_WIN) { |
| compute_stats_win7_sve(dgd_avg, dgd_avg_stride, src_avg, src_avg_stride, |
| width, downsample_height, M, H, downsample_factor); |
| } else { |
| compute_stats_win5_sve(dgd_avg, dgd_avg_stride, src_avg, src_avg_stride, |
| width, downsample_height, M, H, downsample_factor); |
| } |
| } |
| |
| if (downsample_remainder > 0) { |
| const int remainder_offset = height - downsample_remainder; |
| if (wiener_win == WIENER_WIN) { |
| compute_stats_win7_sve( |
| dgd_avg + remainder_offset * dgd_avg_stride, dgd_avg_stride, |
| src_avg + downsample_height * src_avg_stride, src_avg_stride, width, |
| 1, M, H, downsample_remainder); |
| } else { |
| compute_stats_win5_sve( |
| dgd_avg + remainder_offset * dgd_avg_stride, dgd_avg_stride, |
| src_avg + downsample_height * src_avg_stride, src_avg_stride, width, |
| 1, M, H, downsample_remainder); |
| } |
| } |
| } |