blob: 5fadeb9dc8353f891590e6cb9419ec5a5042e466 [file] [log] [blame]
/*
* Copyright (c) 2023, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <arm_neon.h>
#include "config/aom_config.h"
#include "config/av1_rtcd.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/temporal_filter.h"
#include "aom_dsp/mathutils.h"
#include "aom_dsp/arm/mem_neon.h"
#include "aom_dsp/arm/sum_neon.h"
// For the squared error buffer, add padding for 4 samples.
#define SSE_STRIDE (BW + 4)
// clang-format off
// Table used to pad the first and last columns and apply the sliding window.
DECLARE_ALIGNED(16, static const uint8_t, kLoadPad[4][16]) = {
{ 2, 2, 2, 3, 4, 255, 255, 255, 255, 2, 2, 3, 4, 5, 255, 255 },
{ 255, 255, 2, 3, 4, 5, 6, 255, 255, 255, 255, 3, 4, 5, 6, 7 },
{ 0, 1, 2, 3, 4, 255, 255, 255, 255, 1, 2, 3, 4, 5, 255, 255 },
{ 255, 255, 2, 3, 4, 5, 5, 255, 255, 255, 255, 3, 4, 5, 5, 5 }
};
// For columns that don't need to be padded it's just a simple mask.
DECLARE_ALIGNED(16, static const uint8_t, kSlidingWindowMask[]) = {
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00,
0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00,
0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00,
0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
};
// clang-format on
static INLINE void get_abs_diff(const uint8_t *frame1, const uint32_t stride1,
const uint8_t *frame2, const uint32_t stride2,
const uint32_t block_width,
const uint32_t block_height,
uint8_t *frame_abs_diff,
const unsigned int dst_stride) {
uint8_t *dst = frame_abs_diff;
uint32_t i = 0;
do {
uint32_t j = 0;
do {
uint8x16_t s = vld1q_u8(frame1 + i * stride1 + j);
uint8x16_t r = vld1q_u8(frame2 + i * stride2 + j);
uint8x16_t abs_diff = vabdq_u8(s, r);
vst1q_u8(dst + j + 2, abs_diff);
j += 16;
} while (j < block_width);
dst += dst_stride;
} while (++i < block_height);
}
static void apply_temporal_filter(
const uint8_t *frame, const unsigned int stride, const uint32_t block_width,
const uint32_t block_height, const int *subblock_mses,
unsigned int *accumulator, uint16_t *count, const uint8_t *frame_abs_diff,
const uint32_t *luma_sse_sum, const double inv_num_ref_pixels,
const double decay_factor, const double inv_factor,
const double weight_factor, const double *d_factor, int tf_wgt_calc_lvl) {
assert(((block_width == 16) || (block_width == 32)) &&
((block_height == 16) || (block_height == 32)));
uint32_t acc_5x5_neon[BH][BW];
const uint8x16x2_t vmask = vld1q_u8_x2(kSlidingWindowMask);
const uint8x16_t pad_tbl0 = vld1q_u8(kLoadPad[0]);
const uint8x16_t pad_tbl1 = vld1q_u8(kLoadPad[1]);
const uint8x16_t pad_tbl2 = vld1q_u8(kLoadPad[2]);
const uint8x16_t pad_tbl3 = vld1q_u8(kLoadPad[3]);
// Traverse 4 columns at a time - first and last two columns need padding.
for (uint32_t col = 0; col < block_width; col += 4) {
uint8x16_t vsrc[5][2];
const uint8_t *src = frame_abs_diff + col;
// Load, pad (for first and last two columns) and mask 3 rows from the top.
for (int i = 2; i < 5; i++) {
uint8x8_t s = vld1_u8(src);
uint8x16_t s_dup = vcombine_u8(s, s);
if (col == 0) {
vsrc[i][0] = vqtbl1q_u8(s_dup, pad_tbl0);
vsrc[i][1] = vqtbl1q_u8(s_dup, pad_tbl1);
} else if (col >= block_width - 4) {
vsrc[i][0] = vqtbl1q_u8(s_dup, pad_tbl2);
vsrc[i][1] = vqtbl1q_u8(s_dup, pad_tbl3);
} else {
vsrc[i][0] = vandq_u8(s_dup, vmask.val[0]);
vsrc[i][1] = vandq_u8(s_dup, vmask.val[1]);
}
src += SSE_STRIDE;
}
// Pad the top 2 rows.
vsrc[0][0] = vsrc[2][0];
vsrc[0][1] = vsrc[2][1];
vsrc[1][0] = vsrc[2][0];
vsrc[1][1] = vsrc[2][1];
for (unsigned int row = 0; row < block_height; row++) {
uint32x4_t sum_01 = vdupq_n_u32(0);
uint32x4_t sum_23 = vdupq_n_u32(0);
sum_01 = vdotq_u32(sum_01, vsrc[0][0], vsrc[0][0]);
sum_01 = vdotq_u32(sum_01, vsrc[1][0], vsrc[1][0]);
sum_01 = vdotq_u32(sum_01, vsrc[2][0], vsrc[2][0]);
sum_01 = vdotq_u32(sum_01, vsrc[3][0], vsrc[3][0]);
sum_01 = vdotq_u32(sum_01, vsrc[4][0], vsrc[4][0]);
sum_23 = vdotq_u32(sum_23, vsrc[0][1], vsrc[0][1]);
sum_23 = vdotq_u32(sum_23, vsrc[1][1], vsrc[1][1]);
sum_23 = vdotq_u32(sum_23, vsrc[2][1], vsrc[2][1]);
sum_23 = vdotq_u32(sum_23, vsrc[3][1], vsrc[3][1]);
sum_23 = vdotq_u32(sum_23, vsrc[4][1], vsrc[4][1]);
vst1q_u32(&acc_5x5_neon[row][col], vpaddq_u32(sum_01, sum_23));
// Push all rows in the sliding window up one.
for (int i = 0; i < 4; i++) {
vsrc[i][0] = vsrc[i + 1][0];
vsrc[i][1] = vsrc[i + 1][1];
}
if (row <= block_height - 4) {
// Load next row into the bottom of the sliding window.
uint8x8_t s = vld1_u8(src);
uint8x16_t s_dup = vcombine_u8(s, s);
if (col == 0) {
vsrc[4][0] = vqtbl1q_u8(s_dup, pad_tbl0);
vsrc[4][1] = vqtbl1q_u8(s_dup, pad_tbl1);
} else if (col >= block_width - 4) {
vsrc[4][0] = vqtbl1q_u8(s_dup, pad_tbl2);
vsrc[4][1] = vqtbl1q_u8(s_dup, pad_tbl3);
} else {
vsrc[4][0] = vandq_u8(s_dup, vmask.val[0]);
vsrc[4][1] = vandq_u8(s_dup, vmask.val[1]);
}
src += SSE_STRIDE;
} else {
// Pad the bottom 2 rows.
vsrc[4][0] = vsrc[3][0];
vsrc[4][1] = vsrc[3][1];
}
}
}
// Perform filtering.
if (tf_wgt_calc_lvl == 0) {
for (unsigned int i = 0, k = 0; i < block_height; i++) {
for (unsigned int j = 0; j < block_width; j++, k++) {
const int pixel_value = frame[i * stride + j];
const uint32_t diff_sse = acc_5x5_neon[i][j] + luma_sse_sum[i * BW + j];
const double window_error = diff_sse * inv_num_ref_pixels;
const int subblock_idx =
(i >= block_height / 2) * 2 + (j >= block_width / 2);
const double block_error = (double)subblock_mses[subblock_idx];
const double combined_error =
weight_factor * window_error + block_error * inv_factor;
// Compute filter weight.
double scaled_error =
combined_error * d_factor[subblock_idx] * decay_factor;
scaled_error = AOMMIN(scaled_error, 7);
const int weight = (int)(exp(-scaled_error) * TF_WEIGHT_SCALE);
accumulator[k] += weight * pixel_value;
count[k] += weight;
}
}
} else {
for (unsigned int i = 0, k = 0; i < block_height; i++) {
for (unsigned int j = 0; j < block_width; j++, k++) {
const int pixel_value = frame[i * stride + j];
const uint32_t diff_sse = acc_5x5_neon[i][j] + luma_sse_sum[i * BW + j];
const double window_error = diff_sse * inv_num_ref_pixels;
const int subblock_idx =
(i >= block_height / 2) * 2 + (j >= block_width / 2);
const double block_error = (double)subblock_mses[subblock_idx];
const double combined_error =
weight_factor * window_error + block_error * inv_factor;
// Compute filter weight.
double scaled_error =
combined_error * d_factor[subblock_idx] * decay_factor;
scaled_error = AOMMIN(scaled_error, 7);
const float fweight =
approx_exp((float)-scaled_error) * TF_WEIGHT_SCALE;
const int weight = iroundpf(fweight);
accumulator[k] += weight * pixel_value;
count[k] += weight;
}
}
}
}
void av1_apply_temporal_filter_neon_dotprod(
const YV12_BUFFER_CONFIG *frame_to_filter, const MACROBLOCKD *mbd,
const BLOCK_SIZE block_size, const int mb_row, const int mb_col,
const int num_planes, const double *noise_levels, const MV *subblock_mvs,
const int *subblock_mses, const int q_factor, const int filter_strength,
int tf_wgt_calc_lvl, const uint8_t *pred, uint32_t *accum,
uint16_t *count) {
const int is_high_bitdepth = frame_to_filter->flags & YV12_FLAG_HIGHBITDEPTH;
assert(block_size == BLOCK_32X32 && "Only support 32x32 block with Neon!");
assert(TF_WINDOW_LENGTH == 5 && "Only support window length 5 with Neon!");
assert(!is_high_bitdepth && "Only support low bit-depth with Neon!");
assert(num_planes >= 1 && num_planes <= MAX_MB_PLANE);
(void)is_high_bitdepth;
// Block information.
const int mb_height = block_size_high[block_size];
const int mb_width = block_size_wide[block_size];
// Frame information.
const int frame_height = frame_to_filter->y_crop_height;
const int frame_width = frame_to_filter->y_crop_width;
const int min_frame_size = AOMMIN(frame_height, frame_width);
// Variables to simplify combined error calculation.
const double inv_factor = 1.0 / ((TF_WINDOW_BLOCK_BALANCE_WEIGHT + 1) *
TF_SEARCH_ERROR_NORM_WEIGHT);
const double weight_factor =
(double)TF_WINDOW_BLOCK_BALANCE_WEIGHT * inv_factor;
// Adjust filtering based on q.
// Larger q -> stronger filtering -> larger weight.
// Smaller q -> weaker filtering -> smaller weight.
double q_decay = pow((double)q_factor / TF_Q_DECAY_THRESHOLD, 2);
q_decay = CLIP(q_decay, 1e-5, 1);
if (q_factor >= TF_QINDEX_CUTOFF) {
// Max q_factor is 255, therefore the upper bound of q_decay is 8.
// We do not need a clip here.
q_decay = 0.5 * pow((double)q_factor / 64, 2);
}
// Smaller strength -> smaller filtering weight.
double s_decay = pow((double)filter_strength / TF_STRENGTH_THRESHOLD, 2);
s_decay = CLIP(s_decay, 1e-5, 1);
double d_factor[4] = { 0 };
uint8_t frame_abs_diff[SSE_STRIDE * BH] = { 0 };
uint32_t luma_sse_sum[BW * BH] = { 0 };
for (int subblock_idx = 0; subblock_idx < 4; subblock_idx++) {
// Larger motion vector -> smaller filtering weight.
const MV mv = subblock_mvs[subblock_idx];
const double distance = sqrt(pow(mv.row, 2) + pow(mv.col, 2));
double distance_threshold = min_frame_size * TF_SEARCH_DISTANCE_THRESHOLD;
distance_threshold = AOMMAX(distance_threshold, 1);
d_factor[subblock_idx] = distance / distance_threshold;
d_factor[subblock_idx] = AOMMAX(d_factor[subblock_idx], 1);
}
// Handle planes in sequence.
int plane_offset = 0;
for (int plane = 0; plane < num_planes; ++plane) {
const uint32_t plane_h = mb_height >> mbd->plane[plane].subsampling_y;
const uint32_t plane_w = mb_width >> mbd->plane[plane].subsampling_x;
const uint32_t frame_stride =
frame_to_filter->strides[plane == AOM_PLANE_Y ? 0 : 1];
const int frame_offset = mb_row * plane_h * frame_stride + mb_col * plane_w;
const uint8_t *ref = frame_to_filter->buffers[plane] + frame_offset;
const int ss_x_shift =
mbd->plane[plane].subsampling_x - mbd->plane[AOM_PLANE_Y].subsampling_x;
const int ss_y_shift =
mbd->plane[plane].subsampling_y - mbd->plane[AOM_PLANE_Y].subsampling_y;
const int num_ref_pixels = TF_WINDOW_LENGTH * TF_WINDOW_LENGTH +
((plane) ? (1 << (ss_x_shift + ss_y_shift)) : 0);
const double inv_num_ref_pixels = 1.0 / num_ref_pixels;
// Larger noise -> larger filtering weight.
const double n_decay = 0.5 + log(2 * noise_levels[plane] + 5.0);
// Decay factors for non-local mean approach.
const double decay_factor = 1 / (n_decay * q_decay * s_decay);
// Filter U-plane and V-plane using Y-plane. This is because motion
// search is only done on Y-plane, so the information from Y-plane
// will be more accurate. The luma sse sum is reused in both chroma
// planes.
if (plane == AOM_PLANE_U) {
for (unsigned int i = 0; i < plane_h; i++) {
for (unsigned int j = 0; j < plane_w; j++) {
for (int ii = 0; ii < (1 << ss_y_shift); ++ii) {
for (int jj = 0; jj < (1 << ss_x_shift); ++jj) {
const int yy = (i << ss_y_shift) + ii; // Y-coord on Y-plane.
const int xx = (j << ss_x_shift) + jj; // X-coord on Y-plane.
luma_sse_sum[i * BW + j] +=
(frame_abs_diff[yy * SSE_STRIDE + xx + 2] *
frame_abs_diff[yy * SSE_STRIDE + xx + 2]);
}
}
}
}
}
get_abs_diff(ref, frame_stride, pred + plane_offset, plane_w, plane_w,
plane_h, frame_abs_diff, SSE_STRIDE);
apply_temporal_filter(pred + plane_offset, plane_w, plane_w, plane_h,
subblock_mses, accum + plane_offset,
count + plane_offset, frame_abs_diff, luma_sse_sum,
inv_num_ref_pixels, decay_factor, inv_factor,
weight_factor, d_factor, tf_wgt_calc_lvl);
plane_offset += plane_h * plane_w;
}
}