| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved. |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include "av1/encoder/hash.h" |
| #include "config/av1_rtcd.h" |
| |
| static void crc_calculator_process_data(CRC_CALCULATOR *p_crc_calculator, |
| uint8_t *pData, uint32_t dataLength) { |
| for (uint32_t i = 0; i < dataLength; i++) { |
| const uint8_t index = (uint8_t)( |
| (p_crc_calculator->remainder >> (p_crc_calculator->bits - 8)) ^ |
| pData[i]); |
| p_crc_calculator->remainder <<= 8; |
| p_crc_calculator->remainder ^= p_crc_calculator->table[index]; |
| } |
| } |
| |
| static void crc_calculator_reset(CRC_CALCULATOR *p_crc_calculator) { |
| p_crc_calculator->remainder = 0; |
| } |
| |
| static uint32_t crc_calculator_get_crc(CRC_CALCULATOR *p_crc_calculator) { |
| return p_crc_calculator->remainder & p_crc_calculator->final_result_mask; |
| } |
| |
| static void crc_calculator_init_table(CRC_CALCULATOR *p_crc_calculator) { |
| const uint32_t high_bit = 1 << (p_crc_calculator->bits - 1); |
| const uint32_t byte_high_bit = 1 << (8 - 1); |
| |
| for (uint32_t value = 0; value < 256; value++) { |
| uint32_t remainder = 0; |
| for (uint8_t mask = byte_high_bit; mask != 0; mask >>= 1) { |
| if (value & mask) { |
| remainder ^= high_bit; |
| } |
| |
| if (remainder & high_bit) { |
| remainder <<= 1; |
| remainder ^= p_crc_calculator->trunc_poly; |
| } else { |
| remainder <<= 1; |
| } |
| } |
| p_crc_calculator->table[value] = remainder; |
| } |
| } |
| |
| void av1_crc_calculator_init(CRC_CALCULATOR *p_crc_calculator, uint32_t bits, |
| uint32_t truncPoly) { |
| p_crc_calculator->remainder = 0; |
| p_crc_calculator->bits = bits; |
| p_crc_calculator->trunc_poly = truncPoly; |
| p_crc_calculator->final_result_mask = (1 << bits) - 1; |
| crc_calculator_init_table(p_crc_calculator); |
| } |
| |
| uint32_t av1_get_crc_value(CRC_CALCULATOR *p_crc_calculator, uint8_t *p, |
| int length) { |
| crc_calculator_reset(p_crc_calculator); |
| crc_calculator_process_data(p_crc_calculator, p, length); |
| return crc_calculator_get_crc(p_crc_calculator); |
| } |
| |
| /* CRC-32C (iSCSI) polynomial in reversed bit order. */ |
| #define POLY 0x82f63b78 |
| |
| /* Construct table for software CRC-32C calculation. */ |
| void av1_crc32c_calculator_init(CRC32C *p_crc32c) { |
| uint32_t crc; |
| |
| for (int n = 0; n < 256; n++) { |
| crc = n; |
| crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1; |
| crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1; |
| crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1; |
| crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1; |
| crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1; |
| crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1; |
| crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1; |
| crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1; |
| p_crc32c->table[0][n] = crc; |
| } |
| for (int n = 0; n < 256; n++) { |
| crc = p_crc32c->table[0][n]; |
| for (int k = 1; k < 8; k++) { |
| crc = p_crc32c->table[0][crc & 0xff] ^ (crc >> 8); |
| p_crc32c->table[k][n] = crc; |
| } |
| } |
| } |
| |
| /* Table-driven software version as a fall-back. This is about 15 times slower |
| than using the hardware instructions. This assumes little-endian integers, |
| as is the case on Intel processors that the assembler code here is for. */ |
| uint32_t av1_get_crc32c_value_c(void *c, uint8_t *buf, size_t len) { |
| const uint8_t *next = (const uint8_t *)(buf); |
| uint64_t crc; |
| CRC32C *p = (CRC32C *)c; |
| crc = 0 ^ 0xffffffff; |
| while (len && ((uintptr_t)next & 7) != 0) { |
| crc = p->table[0][(crc ^ *next++) & 0xff] ^ (crc >> 8); |
| len--; |
| } |
| while (len >= 8) { |
| crc ^= *(uint64_t *)next; |
| crc = p->table[7][crc & 0xff] ^ p->table[6][(crc >> 8) & 0xff] ^ |
| p->table[5][(crc >> 16) & 0xff] ^ p->table[4][(crc >> 24) & 0xff] ^ |
| p->table[3][(crc >> 32) & 0xff] ^ p->table[2][(crc >> 40) & 0xff] ^ |
| p->table[1][(crc >> 48) & 0xff] ^ p->table[0][crc >> 56]; |
| next += 8; |
| len -= 8; |
| } |
| while (len) { |
| crc = p->table[0][(crc ^ *next++) & 0xff] ^ (crc >> 8); |
| len--; |
| } |
| return (uint32_t)crc ^ 0xffffffff; |
| } |