blob: bcda2f0799accab26069c440b926474982c017fc [file] [log] [blame]
/*
* Copyright (c) 2023, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "config/aom_dsp_rtcd.h"
#include "config/av1_rtcd.h"
#include "av1/common/reconinter.h"
#include "av1/encoder/encodemv.h"
#include "av1/encoder/nonrd_opt.h"
#include "av1/encoder/rdopt.h"
static const SCAN_ORDER av1_fast_idtx_scan_order_16x16 = {
av1_fast_idtx_scan_16x16, av1_fast_idtx_iscan_16x16
};
#define DECLARE_BLOCK_YRD_BUFFERS() \
DECLARE_ALIGNED(64, tran_low_t, dqcoeff_buf[16 * 16]); \
DECLARE_ALIGNED(64, tran_low_t, qcoeff_buf[16 * 16]); \
DECLARE_ALIGNED(64, tran_low_t, coeff_buf[16 * 16]); \
uint16_t eob[1];
#define DECLARE_BLOCK_YRD_VARS() \
/* When is_tx_8x8_dual_applicable is true, we compute the txfm for the \
* entire bsize and write macroblock_plane::coeff. So low_coeff is kept \
* as a non-const so we can reassign it to macroblock_plane::coeff. */ \
int16_t *low_coeff = (int16_t *)coeff_buf; \
int16_t *const low_qcoeff = (int16_t *)qcoeff_buf; \
int16_t *const low_dqcoeff = (int16_t *)dqcoeff_buf; \
const int diff_stride = bw;
#define DECLARE_LOOP_VARS_BLOCK_YRD() \
const int16_t *src_diff = &p->src_diff[(r * diff_stride + c) << 2];
static AOM_FORCE_INLINE void update_yrd_loop_vars(
MACROBLOCK *x, int *skippable, int step, int ncoeffs,
int16_t *const low_coeff, int16_t *const low_qcoeff,
int16_t *const low_dqcoeff, RD_STATS *this_rdc, int *eob_cost,
int tx_blk_id) {
const int is_txfm_skip = (ncoeffs == 0);
*skippable &= is_txfm_skip;
x->txfm_search_info.blk_skip[tx_blk_id] = is_txfm_skip;
*eob_cost += get_msb(ncoeffs + 1);
if (ncoeffs == 1)
this_rdc->rate += (int)abs(low_qcoeff[0]);
else if (ncoeffs > 1)
this_rdc->rate += aom_satd_lp(low_qcoeff, step << 4);
this_rdc->dist += av1_block_error_lp(low_coeff, low_dqcoeff, step << 4) >> 2;
}
static INLINE void aom_process_hadamard_lp_8x16(MACROBLOCK *x,
int max_blocks_high,
int max_blocks_wide,
int num_4x4_w, int step,
int block_step) {
struct macroblock_plane *const p = &x->plane[AOM_PLANE_Y];
const int bw = 4 * num_4x4_w;
const int num_4x4 = AOMMIN(num_4x4_w, max_blocks_wide);
int block = 0;
for (int r = 0; r < max_blocks_high; r += block_step) {
for (int c = 0; c < num_4x4; c += 2 * block_step) {
const int16_t *src_diff = &p->src_diff[(r * bw + c) << 2];
int16_t *low_coeff = (int16_t *)p->coeff + BLOCK_OFFSET(block);
aom_hadamard_lp_8x8_dual(src_diff, (ptrdiff_t)bw, low_coeff);
block += 2 * step;
}
}
}
#if CONFIG_AV1_HIGHBITDEPTH
#define DECLARE_BLOCK_YRD_HBD_VARS() \
tran_low_t *const coeff = coeff_buf; \
tran_low_t *const qcoeff = qcoeff_buf; \
tran_low_t *const dqcoeff = dqcoeff_buf;
static AOM_FORCE_INLINE void update_yrd_loop_vars_hbd(
MACROBLOCK *x, int *skippable, int step, int ncoeffs,
tran_low_t *const coeff, tran_low_t *const qcoeff,
tran_low_t *const dqcoeff, RD_STATS *this_rdc, int *eob_cost,
int tx_blk_id) {
const MACROBLOCKD *xd = &x->e_mbd;
const int is_txfm_skip = (ncoeffs == 0);
*skippable &= is_txfm_skip;
x->txfm_search_info.blk_skip[tx_blk_id] = is_txfm_skip;
*eob_cost += get_msb(ncoeffs + 1);
int64_t dummy;
if (ncoeffs == 1)
this_rdc->rate += (int)abs(qcoeff[0]);
else if (ncoeffs > 1)
this_rdc->rate += aom_satd(qcoeff, step << 4);
this_rdc->dist +=
av1_highbd_block_error(coeff, dqcoeff, step << 4, &dummy, xd->bd) >> 2;
}
#endif
/*!\brief Calculates RD Cost using Hadamard transform.
*
* \ingroup nonrd_mode_search
* \callgraph
* \callergraph
* Calculates RD Cost using Hadamard transform. For low bit depth this function
* uses low-precision set of functions (16-bit) and 32 bit for high bit depth
* \param[in] x Pointer to structure holding all the data for
the current macroblock
* \param[in] this_rdc Pointer to calculated RD Cost
* \param[in] skippable Pointer to a flag indicating possible tx skip
* \param[in] bsize Current block size
* \param[in] tx_size Transform size
* \param[in] is_inter_mode Flag to indicate inter mode
*
* \remark Nothing is returned. Instead, calculated RD cost is placed to
* \c this_rdc. \c skippable flag is set if there is no non-zero quantized
* coefficients for Hadamard transform
*/
void av1_block_yrd(MACROBLOCK *x, RD_STATS *this_rdc, int *skippable,
BLOCK_SIZE bsize, TX_SIZE tx_size) {
MACROBLOCKD *xd = &x->e_mbd;
const struct macroblockd_plane *pd = &xd->plane[AOM_PLANE_Y];
struct macroblock_plane *const p = &x->plane[AOM_PLANE_Y];
assert(bsize < BLOCK_SIZES_ALL);
const int num_4x4_w = mi_size_wide[bsize];
const int num_4x4_h = mi_size_high[bsize];
const int step = 1 << (tx_size << 1);
const int block_step = (1 << tx_size);
const int row_step = step * num_4x4_w >> tx_size;
int block = 0;
const int max_blocks_wide =
num_4x4_w + (xd->mb_to_right_edge >= 0 ? 0 : xd->mb_to_right_edge >> 5);
const int max_blocks_high =
num_4x4_h + (xd->mb_to_bottom_edge >= 0 ? 0 : xd->mb_to_bottom_edge >> 5);
int eob_cost = 0;
const int bw = 4 * num_4x4_w;
const int bh = 4 * num_4x4_h;
const int use_hbd = is_cur_buf_hbd(xd);
int num_blk_skip_w = num_4x4_w;
#if CONFIG_AV1_HIGHBITDEPTH
if (use_hbd) {
aom_highbd_subtract_block(bh, bw, p->src_diff, bw, p->src.buf,
p->src.stride, pd->dst.buf, pd->dst.stride);
} else {
aom_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride,
pd->dst.buf, pd->dst.stride);
}
#else
aom_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride,
pd->dst.buf, pd->dst.stride);
#endif
// Keep the intermediate value on the stack here. Writing directly to
// skippable causes speed regression due to load-and-store issues in
// update_yrd_loop_vars.
int temp_skippable = 1;
this_rdc->dist = 0;
this_rdc->rate = 0;
// For block sizes 8x16 or above, Hadamard txfm of two adjacent 8x8 blocks
// can be done per function call. Hence the call of Hadamard txfm is
// abstracted here for the specified cases.
int is_tx_8x8_dual_applicable =
(tx_size == TX_8X8 && block_size_wide[bsize] >= 16 &&
block_size_high[bsize] >= 8);
#if CONFIG_AV1_HIGHBITDEPTH
// As of now, dual implementation of hadamard txfm is available for low
// bitdepth.
if (use_hbd) is_tx_8x8_dual_applicable = 0;
#endif
if (is_tx_8x8_dual_applicable) {
aom_process_hadamard_lp_8x16(x, max_blocks_high, max_blocks_wide, num_4x4_w,
step, block_step);
}
const SCAN_ORDER *const scan_order = &av1_scan_orders[tx_size][DCT_DCT];
DECLARE_BLOCK_YRD_BUFFERS()
DECLARE_BLOCK_YRD_VARS()
#if CONFIG_AV1_HIGHBITDEPTH
DECLARE_BLOCK_YRD_HBD_VARS()
#else
(void)use_hbd;
#endif
// Keep track of the row and column of the blocks we use so that we know
// if we are in the unrestricted motion border.
for (int r = 0; r < max_blocks_high; r += block_step) {
for (int c = 0, s = 0; c < max_blocks_wide; c += block_step, s += step) {
DECLARE_LOOP_VARS_BLOCK_YRD()
switch (tx_size) {
#if CONFIG_AV1_HIGHBITDEPTH
case TX_16X16:
if (use_hbd) {
aom_hadamard_16x16(src_diff, diff_stride, coeff);
av1_quantize_fp(coeff, 16 * 16, p->zbin_QTX, p->round_fp_QTX,
p->quant_fp_QTX, p->quant_shift_QTX, qcoeff,
dqcoeff, p->dequant_QTX, eob,
// default_scan_fp_16x16_transpose and
// av1_default_iscan_fp_16x16_transpose have to be
// used together.
default_scan_fp_16x16_transpose,
av1_default_iscan_fp_16x16_transpose);
} else {
aom_hadamard_lp_16x16(src_diff, diff_stride, low_coeff);
av1_quantize_lp(low_coeff, 16 * 16, p->round_fp_QTX,
p->quant_fp_QTX, low_qcoeff, low_dqcoeff,
p->dequant_QTX, eob,
// default_scan_lp_16x16_transpose and
// av1_default_iscan_lp_16x16_transpose have to be
// used together.
default_scan_lp_16x16_transpose,
av1_default_iscan_lp_16x16_transpose);
}
break;
case TX_8X8:
if (use_hbd) {
aom_hadamard_8x8(src_diff, diff_stride, coeff);
av1_quantize_fp(
coeff, 8 * 8, p->zbin_QTX, p->round_fp_QTX, p->quant_fp_QTX,
p->quant_shift_QTX, qcoeff, dqcoeff, p->dequant_QTX, eob,
default_scan_8x8_transpose, av1_default_iscan_8x8_transpose);
} else {
if (is_tx_8x8_dual_applicable) {
// The coeffs are pre-computed for the whole block, so re-assign
// low_coeff to the appropriate location.
const int block_offset = BLOCK_OFFSET(block + s);
low_coeff = (int16_t *)p->coeff + block_offset;
} else {
aom_hadamard_lp_8x8(src_diff, diff_stride, low_coeff);
}
av1_quantize_lp(
low_coeff, 8 * 8, p->round_fp_QTX, p->quant_fp_QTX, low_qcoeff,
low_dqcoeff, p->dequant_QTX, eob,
// default_scan_8x8_transpose and
// av1_default_iscan_8x8_transpose have to be used together.
default_scan_8x8_transpose, av1_default_iscan_8x8_transpose);
}
break;
default:
assert(tx_size == TX_4X4);
// In tx_size=4x4 case, aom_fdct4x4 and aom_fdct4x4_lp generate
// normal coefficients order, so we don't need to change the scan
// order here.
if (use_hbd) {
aom_fdct4x4(src_diff, coeff, diff_stride);
av1_quantize_fp(coeff, 4 * 4, p->zbin_QTX, p->round_fp_QTX,
p->quant_fp_QTX, p->quant_shift_QTX, qcoeff,
dqcoeff, p->dequant_QTX, eob, scan_order->scan,
scan_order->iscan);
} else {
aom_fdct4x4_lp(src_diff, low_coeff, diff_stride);
av1_quantize_lp(low_coeff, 4 * 4, p->round_fp_QTX, p->quant_fp_QTX,
low_qcoeff, low_dqcoeff, p->dequant_QTX, eob,
scan_order->scan, scan_order->iscan);
}
break;
#else
case TX_16X16:
aom_hadamard_lp_16x16(src_diff, diff_stride, low_coeff);
av1_quantize_lp(low_coeff, 16 * 16, p->round_fp_QTX, p->quant_fp_QTX,
low_qcoeff, low_dqcoeff, p->dequant_QTX, eob,
default_scan_lp_16x16_transpose,
av1_default_iscan_lp_16x16_transpose);
break;
case TX_8X8:
if (is_tx_8x8_dual_applicable) {
// The coeffs are pre-computed for the whole block, so re-assign
// low_coeff to the appropriate location.
const int block_offset = BLOCK_OFFSET(block + s);
low_coeff = (int16_t *)p->coeff + block_offset;
} else {
aom_hadamard_lp_8x8(src_diff, diff_stride, low_coeff);
}
av1_quantize_lp(low_coeff, 8 * 8, p->round_fp_QTX, p->quant_fp_QTX,
low_qcoeff, low_dqcoeff, p->dequant_QTX, eob,
default_scan_8x8_transpose,
av1_default_iscan_8x8_transpose);
break;
default:
aom_fdct4x4_lp(src_diff, low_coeff, diff_stride);
av1_quantize_lp(low_coeff, 4 * 4, p->round_fp_QTX, p->quant_fp_QTX,
low_qcoeff, low_dqcoeff, p->dequant_QTX, eob,
scan_order->scan, scan_order->iscan);
break;
#endif
}
assert(*eob <= 1024);
#if CONFIG_AV1_HIGHBITDEPTH
if (use_hbd)
update_yrd_loop_vars_hbd(x, &temp_skippable, step, *eob, coeff, qcoeff,
dqcoeff, this_rdc, &eob_cost,
r * num_blk_skip_w + c);
else
#endif
update_yrd_loop_vars(x, &temp_skippable, step, *eob, low_coeff,
low_qcoeff, low_dqcoeff, this_rdc, &eob_cost,
r * num_blk_skip_w + c);
}
block += row_step;
}
this_rdc->skip_txfm = *skippable = temp_skippable;
if (this_rdc->sse < INT64_MAX) {
this_rdc->sse = (this_rdc->sse << 6) >> 2;
if (temp_skippable) {
this_rdc->dist = 0;
this_rdc->dist = this_rdc->sse;
return;
}
}
// If skippable is set, rate gets clobbered later.
this_rdc->rate <<= (2 + AV1_PROB_COST_SHIFT);
this_rdc->rate += (eob_cost << AV1_PROB_COST_SHIFT);
}
// Explicitly enumerate the cases so the compiler can generate SIMD for the
// function. According to the disassembler, gcc generates SSE codes for each of
// the possible block sizes. The hottest case is tx_width 16, which takes up
// about 8% of the self cycle of av1_nonrd_pick_inter_mode_sb. Since
// av1_nonrd_pick_inter_mode_sb takes up about 3% of total encoding time, the
// potential room of improvement for writing AVX2 optimization is only 3% * 8% =
// 0.24% of total encoding time.
static AOM_INLINE void scale_square_buf_vals(int16_t *dst, int tx_width,
const int16_t *src,
int src_stride) {
#define DO_SCALING \
do { \
for (int idy = 0; idy < tx_width; ++idy) { \
for (int idx = 0; idx < tx_width; ++idx) { \
dst[idy * tx_width + idx] = src[idy * src_stride + idx] * 8; \
} \
} \
} while (0)
if (tx_width == 4) {
DO_SCALING;
} else if (tx_width == 8) {
DO_SCALING;
} else if (tx_width == 16) {
DO_SCALING;
} else {
assert(0);
}
#undef DO_SCALING
}
/*!\brief Calculates RD Cost when the block uses Identity transform.
* Note that this function is only for low bit depth encoding, since it
* is called in real-time mode for now, which sets high bit depth to 0:
* -DCONFIG_AV1_HIGHBITDEPTH=0
*
* \ingroup nonrd_mode_search
* \callgraph
* \callergraph
* Calculates RD Cost. For low bit depth this function
* uses low-precision set of functions (16-bit) and 32 bit for high bit depth
* \param[in] x Pointer to structure holding all the data for
the current macroblock
* \param[in] pred_buf Pointer to the prediction buffer
* \param[in] pred_stride Stride for the prediction buffer
* \param[in] this_rdc Pointer to calculated RD Cost
* \param[in] skippable Pointer to a flag indicating possible tx skip
* \param[in] bsize Current block size
* \param[in] tx_size Transform size
*
* \remark Nothing is returned. Instead, calculated RD cost is placed to
* \c this_rdc. \c skippable flag is set if all coefficients are zero.
*/
void av1_block_yrd_idtx(MACROBLOCK *x, const uint8_t *const pred_buf,
int pred_stride, RD_STATS *this_rdc, int *skippable,
BLOCK_SIZE bsize, TX_SIZE tx_size) {
MACROBLOCKD *xd = &x->e_mbd;
struct macroblock_plane *const p = &x->plane[AOM_PLANE_Y];
assert(bsize < BLOCK_SIZES_ALL);
const int num_4x4_w = mi_size_wide[bsize];
const int num_4x4_h = mi_size_high[bsize];
const int step = 1 << (tx_size << 1);
const int block_step = (1 << tx_size);
const int max_blocks_wide =
num_4x4_w + (xd->mb_to_right_edge >= 0 ? 0 : xd->mb_to_right_edge >> 5);
const int max_blocks_high =
num_4x4_h + (xd->mb_to_bottom_edge >= 0 ? 0 : xd->mb_to_bottom_edge >> 5);
int eob_cost = 0;
const int bw = 4 * num_4x4_w;
const int bh = 4 * num_4x4_h;
const int num_blk_skip_w = num_4x4_w;
// Keep the intermediate value on the stack here. Writing directly to
// skippable causes speed regression due to load-and-store issues in
// update_yrd_loop_vars.
int temp_skippable = 1;
int tx_wd = 0;
const SCAN_ORDER *scan_order = NULL;
switch (tx_size) {
case TX_64X64:
assert(0); // Not implemented
break;
case TX_32X32:
assert(0); // Not used
break;
case TX_16X16:
scan_order = &av1_fast_idtx_scan_order_16x16;
tx_wd = 16;
break;
case TX_8X8:
scan_order = &av1_fast_idtx_scan_order_8x8;
tx_wd = 8;
break;
default:
assert(tx_size == TX_4X4);
scan_order = &av1_fast_idtx_scan_order_4x4;
tx_wd = 4;
break;
}
assert(scan_order != NULL);
this_rdc->dist = 0;
this_rdc->rate = 0;
aom_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride,
pred_buf, pred_stride);
// Keep track of the row and column of the blocks we use so that we know
// if we are in the unrestricted motion border.
DECLARE_BLOCK_YRD_BUFFERS()
DECLARE_BLOCK_YRD_VARS()
for (int r = 0; r < max_blocks_high; r += block_step) {
for (int c = 0, s = 0; c < max_blocks_wide; c += block_step, s += step) {
DECLARE_LOOP_VARS_BLOCK_YRD()
scale_square_buf_vals(low_coeff, tx_wd, src_diff, diff_stride);
av1_quantize_lp(low_coeff, tx_wd * tx_wd, p->round_fp_QTX,
p->quant_fp_QTX, low_qcoeff, low_dqcoeff, p->dequant_QTX,
eob, scan_order->scan, scan_order->iscan);
assert(*eob <= 1024);
update_yrd_loop_vars(x, &temp_skippable, step, *eob, low_coeff,
low_qcoeff, low_dqcoeff, this_rdc, &eob_cost,
r * num_blk_skip_w + c);
}
}
this_rdc->skip_txfm = *skippable = temp_skippable;
if (this_rdc->sse < INT64_MAX) {
this_rdc->sse = (this_rdc->sse << 6) >> 2;
if (temp_skippable) {
this_rdc->dist = 0;
this_rdc->dist = this_rdc->sse;
return;
}
}
// If skippable is set, rate gets clobbered later.
this_rdc->rate <<= (2 + AV1_PROB_COST_SHIFT);
this_rdc->rate += (eob_cost << AV1_PROB_COST_SHIFT);
}
int64_t av1_model_rd_for_sb_uv(AV1_COMP *cpi, BLOCK_SIZE plane_bsize,
MACROBLOCK *x, MACROBLOCKD *xd,
RD_STATS *this_rdc, int start_plane,
int stop_plane) {
// Note our transform coeffs are 8 times an orthogonal transform.
// Hence quantizer step is also 8 times. To get effective quantizer
// we need to divide by 8 before sending to modeling function.
unsigned int sse;
int rate;
int64_t dist;
int plane;
int64_t tot_sse = 0;
this_rdc->rate = 0;
this_rdc->dist = 0;
this_rdc->skip_txfm = 0;
for (plane = start_plane; plane <= stop_plane; ++plane) {
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
const uint32_t dc_quant = p->dequant_QTX[0];
const uint32_t ac_quant = p->dequant_QTX[1];
const BLOCK_SIZE bs = plane_bsize;
unsigned int var;
if (!x->color_sensitivity[COLOR_SENS_IDX(plane)]) continue;
var = cpi->ppi->fn_ptr[bs].vf(p->src.buf, p->src.stride, pd->dst.buf,
pd->dst.stride, &sse);
assert(sse >= var);
tot_sse += sse;
av1_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bs],
dc_quant >> 3, &rate, &dist);
this_rdc->rate += rate >> 1;
this_rdc->dist += dist << 3;
av1_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bs], ac_quant >> 3,
&rate, &dist);
this_rdc->rate += rate;
this_rdc->dist += dist << 4;
}
if (this_rdc->rate == 0) {
this_rdc->skip_txfm = 1;
}
if (RDCOST(x->rdmult, this_rdc->rate, this_rdc->dist) >=
RDCOST(x->rdmult, 0, tot_sse << 4)) {
this_rdc->rate = 0;
this_rdc->dist = tot_sse << 4;
this_rdc->skip_txfm = 1;
}
return tot_sse;
}
static void compute_intra_yprediction(const AV1_COMMON *cm,
PREDICTION_MODE mode, BLOCK_SIZE bsize,
MACROBLOCK *x, MACROBLOCKD *xd) {
const SequenceHeader *seq_params = cm->seq_params;
struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y];
struct macroblock_plane *const p = &x->plane[AOM_PLANE_Y];
uint8_t *const src_buf_base = p->src.buf;
uint8_t *const dst_buf_base = pd->dst.buf;
const int src_stride = p->src.stride;
const int dst_stride = pd->dst.stride;
int plane = 0;
int row, col;
// block and transform sizes, in number of 4x4 blocks log 2 ("*_b")
// 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8
// transform size varies per plane, look it up in a common way.
const TX_SIZE tx_size = max_txsize_lookup[bsize];
const BLOCK_SIZE plane_bsize =
get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y);
// If mb_to_right_edge is < 0 we are in a situation in which
// the current block size extends into the UMV and we won't
// visit the sub blocks that are wholly within the UMV.
const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
// Keep track of the row and column of the blocks we use so that we know
// if we are in the unrestricted motion border.
for (row = 0; row < max_blocks_high; row += (1 << tx_size)) {
// Skip visiting the sub blocks that are wholly within the UMV.
for (col = 0; col < max_blocks_wide; col += (1 << tx_size)) {
p->src.buf = &src_buf_base[4 * (row * (int64_t)src_stride + col)];
pd->dst.buf = &dst_buf_base[4 * (row * (int64_t)dst_stride + col)];
av1_predict_intra_block(
xd, seq_params->sb_size, seq_params->enable_intra_edge_filter,
block_size_wide[bsize], block_size_high[bsize], tx_size, mode, 0, 0,
FILTER_INTRA_MODES, pd->dst.buf, dst_stride, pd->dst.buf, dst_stride,
0, 0, plane);
}
}
p->src.buf = src_buf_base;
pd->dst.buf = dst_buf_base;
}
// Checks whether Intra mode needs to be pruned based on
// 'intra_y_mode_bsize_mask_nrd' and 'prune_hv_pred_modes_using_blksad'
// speed features.
static INLINE bool is_prune_intra_mode(
AV1_COMP *cpi, int mode_index, int force_intra_check, BLOCK_SIZE bsize,
uint8_t segment_id, SOURCE_SAD source_sad_nonrd,
uint8_t color_sensitivity[MAX_MB_PLANE - 1]) {
const PREDICTION_MODE this_mode = intra_mode_list[mode_index];
if (mode_index > 2 || force_intra_check == 0) {
if (!((1 << this_mode) & cpi->sf.rt_sf.intra_y_mode_bsize_mask_nrd[bsize]))
return true;
if (this_mode == DC_PRED) return false;
if (!cpi->sf.rt_sf.prune_hv_pred_modes_using_src_sad) return false;
const bool has_color_sensitivity =
color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_U)] &&
color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_V)];
if (has_color_sensitivity &&
(cpi->rc.frame_source_sad > 1.1 * cpi->rc.avg_source_sad ||
cyclic_refresh_segment_id_boosted(segment_id) ||
source_sad_nonrd > kMedSad))
return false;
return true;
}
return false;
}
/*!\brief Estimation of RD cost of an intra mode for Non-RD optimized case.
*
* \ingroup nonrd_mode_search
* \callgraph
* \callergraph
* Calculates RD Cost for an intra mode for a single TX block using Hadamard
* transform.
* \param[in] plane Color plane
* \param[in] block Index of a TX block in a prediction block
* \param[in] row Row of a current TX block
* \param[in] col Column of a current TX block
* \param[in] plane_bsize Block size of a current prediction block
* \param[in] tx_size Transform size
* \param[in] arg Pointer to a structure that holds parameters
* for intra mode search
*
* \remark Nothing is returned. Instead, best mode and RD Cost of the best mode
* are set in \c args->rdc and \c args->mode
*/
void av1_estimate_block_intra(int plane, int block, int row, int col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
void *arg) {
struct estimate_block_intra_args *const args = arg;
AV1_COMP *const cpi = args->cpi;
AV1_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
const BLOCK_SIZE bsize_tx = txsize_to_bsize[tx_size];
uint8_t *const src_buf_base = p->src.buf;
uint8_t *const dst_buf_base = pd->dst.buf;
const int64_t src_stride = p->src.stride;
const int64_t dst_stride = pd->dst.stride;
(void)block;
av1_predict_intra_block_facade(cm, xd, plane, col, row, tx_size);
if (args->prune_mode_based_on_sad) {
unsigned int this_sad = cpi->ppi->fn_ptr[plane_bsize].sdf(
p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride);
const unsigned int sad_threshold =
args->best_sad != UINT_MAX ? args->best_sad + (args->best_sad >> 4)
: UINT_MAX;
// Skip the evaluation of current mode if its SAD is more than a threshold.
if (this_sad > sad_threshold) {
// For the current mode, set rate and distortion to maximum possible
// values and return.
// Note: args->rdc->rate is checked in av1_nonrd_pick_intra_mode() to skip
// the evaluation of the current mode.
args->rdc->rate = INT_MAX;
args->rdc->dist = INT64_MAX;
return;
}
if (this_sad < args->best_sad) {
args->best_sad = this_sad;
}
}
RD_STATS this_rdc;
av1_invalid_rd_stats(&this_rdc);
p->src.buf = &src_buf_base[4 * (row * src_stride + col)];
pd->dst.buf = &dst_buf_base[4 * (row * dst_stride + col)];
if (plane == 0) {
av1_block_yrd(x, &this_rdc, &args->skippable, bsize_tx,
AOMMIN(tx_size, TX_16X16));
} else {
av1_model_rd_for_sb_uv(cpi, bsize_tx, x, xd, &this_rdc, plane, plane);
}
p->src.buf = src_buf_base;
pd->dst.buf = dst_buf_base;
assert(args->rdc->rate != INT_MAX && args->rdc->dist != INT64_MAX);
args->rdc->rate += this_rdc.rate;
args->rdc->dist += this_rdc.dist;
}
/*!\brief Estimates best intra mode for inter mode search
*
* \ingroup nonrd_mode_search
* \callgraph
* \callergraph
*
* Using heuristics based on best inter mode, block size, and other decides
* whether to check intra modes. If so, estimates and selects best intra mode
* from the reduced set of intra modes (max 4 intra modes checked)
*
* \param[in] cpi Top-level encoder structure
* \param[in] x Pointer to structure holding all the
* data for the current macroblock
* \param[in] bsize Current block size
* \param[in] best_early_term Flag, indicating that TX for the
* best inter mode was skipped
* \param[in] ref_cost_intra Cost of signalling intra mode
* \param[in] reuse_prediction Flag, indicating prediction re-use
* \param[in] orig_dst Original destination buffer
* \param[in] tmp_buffers Pointer to a temporary buffers for
* prediction re-use
* \param[out] this_mode_pred Pointer to store prediction buffer
* for prediction re-use
* \param[in] best_rdc Pointer to RD cost for the best
* selected intra mode
* \param[in] best_pickmode Pointer to a structure containing
* best mode picked so far
* \param[in] ctx Pointer to structure holding coding
* contexts and modes for the block
*
* \remark Nothing is returned. Instead, calculated RD cost is placed to
* \c best_rdc and best selected mode is placed to \c best_pickmode
*
*/
void av1_estimate_intra_mode(AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize,
int best_early_term, unsigned int ref_cost_intra,
int reuse_prediction, struct buf_2d *orig_dst,
PRED_BUFFER *tmp_buffers,
PRED_BUFFER **this_mode_pred, RD_STATS *best_rdc,
BEST_PICKMODE *best_pickmode,
PICK_MODE_CONTEXT *ctx) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mi = xd->mi[0];
const TxfmSearchParams *txfm_params = &x->txfm_search_params;
const unsigned char segment_id = mi->segment_id;
const int *const rd_threshes = cpi->rd.threshes[segment_id][bsize];
const int *const rd_thresh_freq_fact = x->thresh_freq_fact[bsize];
const bool is_screen_content =
cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN;
struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y];
const REAL_TIME_SPEED_FEATURES *const rt_sf = &cpi->sf.rt_sf;
const CommonQuantParams *quant_params = &cm->quant_params;
RD_STATS this_rdc;
int intra_cost_penalty = av1_get_intra_cost_penalty(
quant_params->base_qindex, quant_params->y_dc_delta_q,
cm->seq_params->bit_depth);
int64_t inter_mode_thresh =
RDCOST(x->rdmult, ref_cost_intra + intra_cost_penalty, 0);
int perform_intra_pred = rt_sf->check_intra_pred_nonrd;
int force_intra_check = 0;
// For spatial enhancement layer: turn off intra prediction if the
// previous spatial layer as golden ref is not chosen as best reference.
// only do this for temporal enhancement layer and on non-key frames.
if (cpi->svc.spatial_layer_id > 0 &&
best_pickmode->best_ref_frame != GOLDEN_FRAME &&
cpi->svc.temporal_layer_id > 0 &&
!cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame)
perform_intra_pred = 0;
int do_early_exit_rdthresh = 1;
uint32_t spatial_var_thresh = 50;
int motion_thresh = 32;
// Adjust thresholds to make intra mode likely tested if the other
// references (golden, alt) are skipped/not checked. For now always
// adjust for svc mode.
if (cpi->ppi->use_svc || (rt_sf->use_nonrd_altref_frame == 0 &&
rt_sf->nonrd_prune_ref_frame_search > 0)) {
spatial_var_thresh = 150;
motion_thresh = 0;
}
// Some adjustments to checking intra mode based on source variance.
if (x->source_variance < spatial_var_thresh) {
// If the best inter mode is large motion or non-LAST ref reduce intra cost
// penalty, so intra mode is more likely tested.
if (best_rdc->rdcost != INT64_MAX &&
(best_pickmode->best_ref_frame != LAST_FRAME ||
abs(mi->mv[0].as_mv.row) >= motion_thresh ||
abs(mi->mv[0].as_mv.col) >= motion_thresh)) {
intra_cost_penalty = intra_cost_penalty >> 2;
inter_mode_thresh =
RDCOST(x->rdmult, ref_cost_intra + intra_cost_penalty, 0);
do_early_exit_rdthresh = 0;
}
if ((x->source_variance < AOMMAX(50, (spatial_var_thresh >> 1)) &&
x->content_state_sb.source_sad_nonrd >= kHighSad) ||
(is_screen_content && x->source_variance < 50 &&
((bsize >= BLOCK_32X32 &&
x->content_state_sb.source_sad_nonrd != kZeroSad) ||
x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_U)] == 1 ||
x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_V)] == 1)))
force_intra_check = 1;
// For big blocks worth checking intra (since only DC will be checked),
// even if best_early_term is set.
if (bsize >= BLOCK_32X32) best_early_term = 0;
} else if (rt_sf->source_metrics_sb_nonrd &&
x->content_state_sb.source_sad_nonrd <= kLowSad) {
perform_intra_pred = 0;
}
if (best_rdc->skip_txfm && best_pickmode->best_mode_initial_skip_flag) {
if (rt_sf->skip_intra_pred == 1 && best_pickmode->best_mode != NEWMV)
perform_intra_pred = 0;
else if (rt_sf->skip_intra_pred == 2)
perform_intra_pred = 0;
}
if (!(best_rdc->rdcost == INT64_MAX || force_intra_check ||
(perform_intra_pred && !best_early_term &&
bsize <= cpi->sf.part_sf.max_intra_bsize))) {
return;
}
// Early exit based on RD cost calculated using known rate. When
// is_screen_content is true, more bias is given to intra modes. Hence,
// considered conservative threshold in early exit for the same.
const int64_t known_rd = is_screen_content
? CALC_BIASED_RDCOST(inter_mode_thresh)
: inter_mode_thresh;
if (known_rd > best_rdc->rdcost) return;
struct estimate_block_intra_args args;
init_estimate_block_intra_args(&args, cpi, x);
TX_SIZE intra_tx_size = AOMMIN(
AOMMIN(max_txsize_lookup[bsize],
tx_mode_to_biggest_tx_size[txfm_params->tx_mode_search_type]),
TX_16X16);
if (is_screen_content && cpi->rc.high_source_sad &&
x->source_variance > spatial_var_thresh && bsize <= BLOCK_16X16)
intra_tx_size = TX_4X4;
PRED_BUFFER *const best_pred = best_pickmode->best_pred;
if (reuse_prediction && best_pred != NULL) {
const int bh = block_size_high[bsize];
const int bw = block_size_wide[bsize];
if (best_pred->data == orig_dst->buf) {
*this_mode_pred = &tmp_buffers[get_pred_buffer(tmp_buffers, 3)];
aom_convolve_copy(best_pred->data, best_pred->stride,
(*this_mode_pred)->data, (*this_mode_pred)->stride, bw,
bh);
best_pickmode->best_pred = *this_mode_pred;
}
}
pd->dst = *orig_dst;
for (int midx = 0; midx < RTC_INTRA_MODES; ++midx) {
const PREDICTION_MODE this_mode = intra_mode_list[midx];
const THR_MODES mode_index = mode_idx[INTRA_FRAME][mode_offset(this_mode)];
const int64_t mode_rd_thresh = rd_threshes[mode_index];
if (is_prune_intra_mode(cpi, midx, force_intra_check, bsize, segment_id,
x->content_state_sb.source_sad_nonrd,
x->color_sensitivity))
continue;
if (is_screen_content && rt_sf->source_metrics_sb_nonrd) {
// For spatially flat blocks with zero motion only check
// DC mode.
if (x->content_state_sb.source_sad_nonrd == kZeroSad &&
x->source_variance == 0 && this_mode != DC_PRED)
continue;
// Only test Intra for big blocks if spatial_variance is small.
else if (bsize > BLOCK_32X32 && x->source_variance > 50)
continue;
}
if (rd_less_than_thresh(best_rdc->rdcost, mode_rd_thresh,
rd_thresh_freq_fact[mode_index]) &&
(do_early_exit_rdthresh || this_mode == SMOOTH_PRED)) {
continue;
}
const BLOCK_SIZE uv_bsize =
get_plane_block_size(bsize, xd->plane[AOM_PLANE_U].subsampling_x,
xd->plane[AOM_PLANE_U].subsampling_y);
mi->mode = this_mode;
mi->ref_frame[0] = INTRA_FRAME;
mi->ref_frame[1] = NONE_FRAME;
av1_invalid_rd_stats(&this_rdc);
args.mode = this_mode;
args.skippable = 1;
args.rdc = &this_rdc;
mi->tx_size = intra_tx_size;
compute_intra_yprediction(cm, this_mode, bsize, x, xd);
// Look into selecting tx_size here, based on prediction residual.
av1_block_yrd(x, &this_rdc, &args.skippable, bsize, mi->tx_size);
// TODO(kyslov@) Need to account for skippable
if (x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_U)]) {
av1_foreach_transformed_block_in_plane(xd, uv_bsize, AOM_PLANE_U,
av1_estimate_block_intra, &args);
}
if (x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_V)]) {
av1_foreach_transformed_block_in_plane(xd, uv_bsize, AOM_PLANE_V,
av1_estimate_block_intra, &args);
}
int mode_cost = 0;
if (av1_is_directional_mode(this_mode) && av1_use_angle_delta(bsize)) {
mode_cost +=
x->mode_costs.angle_delta_cost[this_mode - V_PRED]
[MAX_ANGLE_DELTA +
mi->angle_delta[PLANE_TYPE_Y]];
}
if (this_mode == DC_PRED && av1_filter_intra_allowed_bsize(cm, bsize)) {
mode_cost += x->mode_costs.filter_intra_cost[bsize][0];
}
this_rdc.rate += ref_cost_intra;
this_rdc.rate += intra_cost_penalty;
this_rdc.rate += mode_cost;
this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist);
if (is_screen_content && rt_sf->source_metrics_sb_nonrd) {
// For blocks with low spatial variance and color sad,
// favor the intra-modes, only on scene/slide change.
if (cpi->rc.high_source_sad && x->source_variance < 800 &&
(x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_U)] ||
x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_V)]))
this_rdc.rdcost = CALC_BIASED_RDCOST(this_rdc.rdcost);
// Otherwise bias against intra for blocks with zero
// motion and no color, on non-scene/slide changes.
else if (!cpi->rc.high_source_sad && x->source_variance > 0 &&
x->content_state_sb.source_sad_nonrd == kZeroSad &&
x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_U)] == 0 &&
x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_V)] == 0)
this_rdc.rdcost = (3 * this_rdc.rdcost) >> 1;
}
if (this_rdc.rdcost < best_rdc->rdcost) {
*best_rdc = this_rdc;
best_pickmode->best_mode = this_mode;
best_pickmode->best_tx_size = mi->tx_size;
best_pickmode->best_ref_frame = INTRA_FRAME;
best_pickmode->best_second_ref_frame = NONE;
best_pickmode->best_mode_skip_txfm = this_rdc.skip_txfm;
mi->uv_mode = this_mode;
mi->mv[0].as_int = INVALID_MV;
mi->mv[1].as_int = INVALID_MV;
if (!this_rdc.skip_txfm)
memset(ctx->blk_skip, 0,
sizeof(x->txfm_search_info.blk_skip[0]) * ctx->num_4x4_blk);
}
}
if (best_pickmode->best_ref_frame == INTRA_FRAME)
memset(ctx->blk_skip, 0,
sizeof(x->txfm_search_info.blk_skip[0]) * ctx->num_4x4_blk);
mi->tx_size = best_pickmode->best_tx_size;
}