blob: 8a719160fb95b1592f3190e14f1b9b030b00000c [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include "aom_dsp/aom_dsp_common.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/bitops.h"
#include "aom_ports/mem.h"
#include "aom_ports/aom_once.h"
#include "av1/common/common.h"
#include "av1/common/entropy.h"
#include "av1/common/entropymode.h"
#include "av1/common/pred_common.h"
#include "av1/common/quant_common.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/common/seg_common.h"
#include "av1/encoder/cost.h"
#include "av1/encoder/encodemv.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/nonrd_opt.h"
#include "av1/encoder/ratectrl.h"
#include "av1/encoder/rd.h"
#define RD_THRESH_POW 1.25
// The baseline rd thresholds for breaking out of the rd loop for
// certain modes are assumed to be based on 8x8 blocks.
// This table is used to correct for block size.
// The factors here are << 2 (2 = x0.5, 32 = x8 etc).
static const uint8_t rd_thresh_block_size_factor[BLOCK_SIZES_ALL] = {
2, 3, 3, 4, 6, 6, 8, 12, 12, 16, 24, 24, 32, 48, 48, 64, 4, 4, 8, 8, 16, 16
};
static const int use_intra_ext_tx_for_txsize[EXT_TX_SETS_INTRA]
[EXT_TX_SIZES] = {
{ 1, 1, 1, 1 }, // unused
{ 1, 1, 0, 0 },
{ 0, 0, 1, 0 },
};
static const int use_inter_ext_tx_for_txsize[EXT_TX_SETS_INTER]
[EXT_TX_SIZES] = {
{ 1, 1, 1, 1 }, // unused
{ 1, 1, 0, 0 },
{ 0, 0, 1, 0 },
{ 0, 1, 1, 1 },
};
static const int av1_ext_tx_set_idx_to_type[2][AOMMAX(EXT_TX_SETS_INTRA,
EXT_TX_SETS_INTER)] = {
{
// Intra
EXT_TX_SET_DCTONLY,
EXT_TX_SET_DTT4_IDTX_1DDCT,
EXT_TX_SET_DTT4_IDTX,
},
{
// Inter
EXT_TX_SET_DCTONLY,
EXT_TX_SET_ALL16,
EXT_TX_SET_DTT9_IDTX_1DDCT,
EXT_TX_SET_DCT_IDTX,
},
};
void av1_fill_mode_rates(AV1_COMMON *const cm, ModeCosts *mode_costs,
FRAME_CONTEXT *fc) {
int i, j;
for (i = 0; i < PARTITION_CONTEXTS; ++i)
av1_cost_tokens_from_cdf(mode_costs->partition_cost[i],
fc->partition_cdf[i], NULL);
if (cm->current_frame.skip_mode_info.skip_mode_flag) {
for (i = 0; i < SKIP_MODE_CONTEXTS; ++i) {
av1_cost_tokens_from_cdf(mode_costs->skip_mode_cost[i],
fc->skip_mode_cdfs[i], NULL);
}
}
for (i = 0; i < SKIP_CONTEXTS; ++i) {
av1_cost_tokens_from_cdf(mode_costs->skip_txfm_cost[i],
fc->skip_txfm_cdfs[i], NULL);
}
for (i = 0; i < KF_MODE_CONTEXTS; ++i)
for (j = 0; j < KF_MODE_CONTEXTS; ++j)
av1_cost_tokens_from_cdf(mode_costs->y_mode_costs[i][j],
fc->kf_y_cdf[i][j], NULL);
for (i = 0; i < BLOCK_SIZE_GROUPS; ++i)
av1_cost_tokens_from_cdf(mode_costs->mbmode_cost[i], fc->y_mode_cdf[i],
NULL);
for (i = 0; i < CFL_ALLOWED_TYPES; ++i)
for (j = 0; j < INTRA_MODES; ++j)
av1_cost_tokens_from_cdf(mode_costs->intra_uv_mode_cost[i][j],
fc->uv_mode_cdf[i][j], NULL);
av1_cost_tokens_from_cdf(mode_costs->filter_intra_mode_cost,
fc->filter_intra_mode_cdf, NULL);
for (i = 0; i < BLOCK_SIZES_ALL; ++i) {
if (av1_filter_intra_allowed_bsize(cm, i))
av1_cost_tokens_from_cdf(mode_costs->filter_intra_cost[i],
fc->filter_intra_cdfs[i], NULL);
}
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
av1_cost_tokens_from_cdf(mode_costs->switchable_interp_costs[i],
fc->switchable_interp_cdf[i], NULL);
for (i = 0; i < PALATTE_BSIZE_CTXS; ++i) {
av1_cost_tokens_from_cdf(mode_costs->palette_y_size_cost[i],
fc->palette_y_size_cdf[i], NULL);
av1_cost_tokens_from_cdf(mode_costs->palette_uv_size_cost[i],
fc->palette_uv_size_cdf[i], NULL);
for (j = 0; j < PALETTE_Y_MODE_CONTEXTS; ++j) {
av1_cost_tokens_from_cdf(mode_costs->palette_y_mode_cost[i][j],
fc->palette_y_mode_cdf[i][j], NULL);
}
}
for (i = 0; i < PALETTE_UV_MODE_CONTEXTS; ++i) {
av1_cost_tokens_from_cdf(mode_costs->palette_uv_mode_cost[i],
fc->palette_uv_mode_cdf[i], NULL);
}
for (i = 0; i < PALETTE_SIZES; ++i) {
for (j = 0; j < PALETTE_COLOR_INDEX_CONTEXTS; ++j) {
av1_cost_tokens_from_cdf(mode_costs->palette_y_color_cost[i][j],
fc->palette_y_color_index_cdf[i][j], NULL);
av1_cost_tokens_from_cdf(mode_costs->palette_uv_color_cost[i][j],
fc->palette_uv_color_index_cdf[i][j], NULL);
}
}
int sign_cost[CFL_JOINT_SIGNS];
av1_cost_tokens_from_cdf(sign_cost, fc->cfl_sign_cdf, NULL);
for (int joint_sign = 0; joint_sign < CFL_JOINT_SIGNS; joint_sign++) {
int *cost_u = mode_costs->cfl_cost[joint_sign][CFL_PRED_U];
int *cost_v = mode_costs->cfl_cost[joint_sign][CFL_PRED_V];
if (CFL_SIGN_U(joint_sign) == CFL_SIGN_ZERO) {
memset(cost_u, 0, CFL_ALPHABET_SIZE * sizeof(*cost_u));
} else {
const aom_cdf_prob *cdf_u = fc->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)];
av1_cost_tokens_from_cdf(cost_u, cdf_u, NULL);
}
if (CFL_SIGN_V(joint_sign) == CFL_SIGN_ZERO) {
memset(cost_v, 0, CFL_ALPHABET_SIZE * sizeof(*cost_v));
} else {
const aom_cdf_prob *cdf_v = fc->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)];
av1_cost_tokens_from_cdf(cost_v, cdf_v, NULL);
}
for (int u = 0; u < CFL_ALPHABET_SIZE; u++)
cost_u[u] += sign_cost[joint_sign];
}
for (i = 0; i < MAX_TX_CATS; ++i)
for (j = 0; j < TX_SIZE_CONTEXTS; ++j)
av1_cost_tokens_from_cdf(mode_costs->tx_size_cost[i][j],
fc->tx_size_cdf[i][j], NULL);
for (i = 0; i < TXFM_PARTITION_CONTEXTS; ++i) {
av1_cost_tokens_from_cdf(mode_costs->txfm_partition_cost[i],
fc->txfm_partition_cdf[i], NULL);
}
for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
int s;
for (s = 1; s < EXT_TX_SETS_INTER; ++s) {
if (use_inter_ext_tx_for_txsize[s][i]) {
av1_cost_tokens_from_cdf(
mode_costs->inter_tx_type_costs[s][i], fc->inter_ext_tx_cdf[s][i],
av1_ext_tx_inv[av1_ext_tx_set_idx_to_type[1][s]]);
}
}
for (s = 1; s < EXT_TX_SETS_INTRA; ++s) {
if (use_intra_ext_tx_for_txsize[s][i]) {
for (j = 0; j < INTRA_MODES; ++j) {
av1_cost_tokens_from_cdf(
mode_costs->intra_tx_type_costs[s][i][j],
fc->intra_ext_tx_cdf[s][i][j],
av1_ext_tx_inv[av1_ext_tx_set_idx_to_type[0][s]]);
}
}
}
}
for (i = 0; i < DIRECTIONAL_MODES; ++i) {
av1_cost_tokens_from_cdf(mode_costs->angle_delta_cost[i],
fc->angle_delta_cdf[i], NULL);
}
av1_cost_tokens_from_cdf(mode_costs->intrabc_cost, fc->intrabc_cdf, NULL);
for (i = 0; i < SPATIAL_PREDICTION_PROBS; ++i) {
av1_cost_tokens_from_cdf(mode_costs->spatial_pred_cost[i],
fc->seg.spatial_pred_seg_cdf[i], NULL);
}
for (i = 0; i < SEG_TEMPORAL_PRED_CTXS; ++i) {
av1_cost_tokens_from_cdf(mode_costs->tmp_pred_cost[i], fc->seg.pred_cdf[i],
NULL);
}
if (!frame_is_intra_only(cm)) {
for (i = 0; i < COMP_INTER_CONTEXTS; ++i) {
av1_cost_tokens_from_cdf(mode_costs->comp_inter_cost[i],
fc->comp_inter_cdf[i], NULL);
}
for (i = 0; i < REF_CONTEXTS; ++i) {
for (j = 0; j < SINGLE_REFS - 1; ++j) {
av1_cost_tokens_from_cdf(mode_costs->single_ref_cost[i][j],
fc->single_ref_cdf[i][j], NULL);
}
}
for (i = 0; i < COMP_REF_TYPE_CONTEXTS; ++i) {
av1_cost_tokens_from_cdf(mode_costs->comp_ref_type_cost[i],
fc->comp_ref_type_cdf[i], NULL);
}
for (i = 0; i < UNI_COMP_REF_CONTEXTS; ++i) {
for (j = 0; j < UNIDIR_COMP_REFS - 1; ++j) {
av1_cost_tokens_from_cdf(mode_costs->uni_comp_ref_cost[i][j],
fc->uni_comp_ref_cdf[i][j], NULL);
}
}
for (i = 0; i < REF_CONTEXTS; ++i) {
for (j = 0; j < FWD_REFS - 1; ++j) {
av1_cost_tokens_from_cdf(mode_costs->comp_ref_cost[i][j],
fc->comp_ref_cdf[i][j], NULL);
}
}
for (i = 0; i < REF_CONTEXTS; ++i) {
for (j = 0; j < BWD_REFS - 1; ++j) {
av1_cost_tokens_from_cdf(mode_costs->comp_bwdref_cost[i][j],
fc->comp_bwdref_cdf[i][j], NULL);
}
}
for (i = 0; i < INTRA_INTER_CONTEXTS; ++i) {
av1_cost_tokens_from_cdf(mode_costs->intra_inter_cost[i],
fc->intra_inter_cdf[i], NULL);
}
for (i = 0; i < NEWMV_MODE_CONTEXTS; ++i) {
av1_cost_tokens_from_cdf(mode_costs->newmv_mode_cost[i], fc->newmv_cdf[i],
NULL);
}
for (i = 0; i < GLOBALMV_MODE_CONTEXTS; ++i) {
av1_cost_tokens_from_cdf(mode_costs->zeromv_mode_cost[i],
fc->zeromv_cdf[i], NULL);
}
for (i = 0; i < REFMV_MODE_CONTEXTS; ++i) {
av1_cost_tokens_from_cdf(mode_costs->refmv_mode_cost[i], fc->refmv_cdf[i],
NULL);
}
for (i = 0; i < DRL_MODE_CONTEXTS; ++i) {
av1_cost_tokens_from_cdf(mode_costs->drl_mode_cost0[i], fc->drl_cdf[i],
NULL);
}
for (i = 0; i < INTER_MODE_CONTEXTS; ++i)
av1_cost_tokens_from_cdf(mode_costs->inter_compound_mode_cost[i],
fc->inter_compound_mode_cdf[i], NULL);
for (i = 0; i < BLOCK_SIZES_ALL; ++i)
av1_cost_tokens_from_cdf(mode_costs->compound_type_cost[i],
fc->compound_type_cdf[i], NULL);
for (i = 0; i < BLOCK_SIZES_ALL; ++i) {
if (av1_is_wedge_used(i)) {
av1_cost_tokens_from_cdf(mode_costs->wedge_idx_cost[i],
fc->wedge_idx_cdf[i], NULL);
}
}
for (i = 0; i < BLOCK_SIZE_GROUPS; ++i) {
av1_cost_tokens_from_cdf(mode_costs->interintra_cost[i],
fc->interintra_cdf[i], NULL);
av1_cost_tokens_from_cdf(mode_costs->interintra_mode_cost[i],
fc->interintra_mode_cdf[i], NULL);
}
for (i = 0; i < BLOCK_SIZES_ALL; ++i) {
av1_cost_tokens_from_cdf(mode_costs->wedge_interintra_cost[i],
fc->wedge_interintra_cdf[i], NULL);
}
for (i = BLOCK_8X8; i < BLOCK_SIZES_ALL; i++) {
av1_cost_tokens_from_cdf(mode_costs->motion_mode_cost[i],
fc->motion_mode_cdf[i], NULL);
}
for (i = BLOCK_8X8; i < BLOCK_SIZES_ALL; i++) {
av1_cost_tokens_from_cdf(mode_costs->motion_mode_cost1[i],
fc->obmc_cdf[i], NULL);
}
for (i = 0; i < COMP_INDEX_CONTEXTS; ++i) {
av1_cost_tokens_from_cdf(mode_costs->comp_idx_cost[i],
fc->compound_index_cdf[i], NULL);
}
for (i = 0; i < COMP_GROUP_IDX_CONTEXTS; ++i) {
av1_cost_tokens_from_cdf(mode_costs->comp_group_idx_cost[i],
fc->comp_group_idx_cdf[i], NULL);
}
}
}
void av1_fill_lr_rates(ModeCosts *mode_costs, FRAME_CONTEXT *fc) {
av1_cost_tokens_from_cdf(mode_costs->switchable_restore_cost,
fc->switchable_restore_cdf, NULL);
av1_cost_tokens_from_cdf(mode_costs->wiener_restore_cost,
fc->wiener_restore_cdf, NULL);
av1_cost_tokens_from_cdf(mode_costs->sgrproj_restore_cost,
fc->sgrproj_restore_cdf, NULL);
}
// Values are now correlated to quantizer.
static int sad_per_bit_lut_8[QINDEX_RANGE];
static int sad_per_bit_lut_10[QINDEX_RANGE];
static int sad_per_bit_lut_12[QINDEX_RANGE];
static void init_me_luts_bd(int *bit16lut, int range,
aom_bit_depth_t bit_depth) {
int i;
// Initialize the sad lut tables using a formulaic calculation for now.
// This is to make it easier to resolve the impact of experimental changes
// to the quantizer tables.
for (i = 0; i < range; i++) {
const double q = av1_convert_qindex_to_q(i, bit_depth);
bit16lut[i] = (int)(0.0418 * q + 2.4107);
}
}
static void init_me_luts(void) {
init_me_luts_bd(sad_per_bit_lut_8, QINDEX_RANGE, AOM_BITS_8);
init_me_luts_bd(sad_per_bit_lut_10, QINDEX_RANGE, AOM_BITS_10);
init_me_luts_bd(sad_per_bit_lut_12, QINDEX_RANGE, AOM_BITS_12);
}
void av1_init_me_luts(void) { aom_once(init_me_luts); }
static const int rd_boost_factor[16] = { 64, 32, 32, 32, 24, 16, 12, 12,
8, 8, 4, 4, 2, 2, 1, 0 };
static const int rd_layer_depth_factor[7] = {
160, 160, 160, 160, 192, 208, 224
};
// Returns the default rd multiplier for inter frames for a given qindex.
// The function here is a first pass estimate based on data from
// a previous Vizer run
static double def_inter_rd_multiplier(int qindex) {
return 3.2 + (0.0015 * (double)qindex);
}
// Returns the default rd multiplier for ARF/Golden Frames for a given qindex.
// The function here is a first pass estimate based on data from
// a previous Vizer run
static double def_arf_rd_multiplier(int qindex) {
return 3.25 + (0.0015 * (double)qindex);
}
// Returns the default rd multiplier for key frames for a given qindex.
// The function here is a first pass estimate based on data from
// a previous Vizer run
static double def_kf_rd_multiplier(int qindex) {
return 3.3 + (0.0015 * (double)qindex);
}
int av1_compute_rd_mult_based_on_qindex(aom_bit_depth_t bit_depth,
FRAME_UPDATE_TYPE update_type,
int qindex) {
const int q = av1_dc_quant_QTX(qindex, 0, bit_depth);
int64_t rdmult = q * q;
if (update_type == KF_UPDATE) {
double def_rd_q_mult = def_kf_rd_multiplier(q);
rdmult = (int64_t)((double)rdmult * def_rd_q_mult);
} else if ((update_type == GF_UPDATE) || (update_type == ARF_UPDATE)) {
double def_rd_q_mult = def_arf_rd_multiplier(q);
rdmult = (int64_t)((double)rdmult * def_rd_q_mult);
} else {
double def_rd_q_mult = def_inter_rd_multiplier(q);
rdmult = (int64_t)((double)rdmult * def_rd_q_mult);
}
switch (bit_depth) {
case AOM_BITS_8: break;
case AOM_BITS_10: rdmult = ROUND_POWER_OF_TWO(rdmult, 4); break;
case AOM_BITS_12: rdmult = ROUND_POWER_OF_TWO(rdmult, 8); break;
default:
assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12");
return -1;
}
return rdmult > 0 ? (int)AOMMIN(rdmult, INT_MAX) : 1;
}
int av1_compute_rd_mult(const int qindex, const aom_bit_depth_t bit_depth,
const FRAME_UPDATE_TYPE update_type,
const int layer_depth, const int boost_index,
const FRAME_TYPE frame_type,
const int use_fixed_qp_offsets,
const int is_stat_consumption_stage) {
int64_t rdmult =
av1_compute_rd_mult_based_on_qindex(bit_depth, update_type, qindex);
if (is_stat_consumption_stage && !use_fixed_qp_offsets &&
(frame_type != KEY_FRAME)) {
// Layer depth adjustment
rdmult = (rdmult * rd_layer_depth_factor[layer_depth]) >> 7;
// ARF boost adjustment
rdmult += ((rdmult * rd_boost_factor[boost_index]) >> 7);
}
return (int)rdmult;
}
int av1_get_deltaq_offset(aom_bit_depth_t bit_depth, int qindex, double beta) {
assert(beta > 0.0);
int q = av1_dc_quant_QTX(qindex, 0, bit_depth);
int newq = (int)rint(q / sqrt(beta));
int orig_qindex = qindex;
if (newq == q) {
return 0;
}
if (newq < q) {
while (qindex > 0) {
qindex--;
q = av1_dc_quant_QTX(qindex, 0, bit_depth);
if (newq >= q) {
break;
}
}
} else {
while (qindex < MAXQ) {
qindex++;
q = av1_dc_quant_QTX(qindex, 0, bit_depth);
if (newq <= q) {
break;
}
}
}
return qindex - orig_qindex;
}
int av1_adjust_q_from_delta_q_res(int delta_q_res, int prev_qindex,
int curr_qindex) {
curr_qindex = clamp(curr_qindex, delta_q_res, 256 - delta_q_res);
const int sign_deltaq_index = curr_qindex - prev_qindex >= 0 ? 1 : -1;
const int deltaq_deadzone = delta_q_res / 4;
const int qmask = ~(delta_q_res - 1);
int abs_deltaq_index = abs(curr_qindex - prev_qindex);
abs_deltaq_index = (abs_deltaq_index + deltaq_deadzone) & qmask;
int adjust_qindex = prev_qindex + sign_deltaq_index * abs_deltaq_index;
adjust_qindex = AOMMAX(adjust_qindex, MINQ + 1);
return adjust_qindex;
}
int av1_get_adaptive_rdmult(const AV1_COMP *cpi, double beta) {
assert(beta > 0.0);
const AV1_COMMON *cm = &cpi->common;
const GF_GROUP *const gf_group = &cpi->ppi->gf_group;
const int boost_index = AOMMIN(15, (cpi->ppi->p_rc.gfu_boost / 100));
const int layer_depth = AOMMIN(gf_group->layer_depth[cpi->gf_frame_index], 6);
const FRAME_TYPE frame_type = cm->current_frame.frame_type;
const int qindex_rdmult = cm->quant_params.base_qindex;
return (int)(av1_compute_rd_mult(
qindex_rdmult, cm->seq_params->bit_depth,
cpi->ppi->gf_group.update_type[cpi->gf_frame_index],
layer_depth, boost_index, frame_type,
cpi->oxcf.q_cfg.use_fixed_qp_offsets,
is_stat_consumption_stage(cpi)) /
beta);
}
static int compute_rd_thresh_factor(int qindex, aom_bit_depth_t bit_depth) {
double q;
switch (bit_depth) {
case AOM_BITS_8: q = av1_dc_quant_QTX(qindex, 0, AOM_BITS_8) / 4.0; break;
case AOM_BITS_10:
q = av1_dc_quant_QTX(qindex, 0, AOM_BITS_10) / 16.0;
break;
case AOM_BITS_12:
q = av1_dc_quant_QTX(qindex, 0, AOM_BITS_12) / 64.0;
break;
default:
assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12");
return -1;
}
// TODO(debargha): Adjust the function below.
return AOMMAX((int)(pow(q, RD_THRESH_POW) * 5.12), 8);
}
void av1_set_sad_per_bit(const AV1_COMP *cpi, int *sadperbit, int qindex) {
switch (cpi->common.seq_params->bit_depth) {
case AOM_BITS_8: *sadperbit = sad_per_bit_lut_8[qindex]; break;
case AOM_BITS_10: *sadperbit = sad_per_bit_lut_10[qindex]; break;
case AOM_BITS_12: *sadperbit = sad_per_bit_lut_12[qindex]; break;
default:
assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12");
}
}
static void set_block_thresholds(const AV1_COMMON *cm, RD_OPT *rd,
int use_nonrd_pick_mode) {
int i, bsize, segment_id;
THR_MODES mode_indices[RTC_REFS * RTC_MODES] = { 0 };
int num_modes_count = use_nonrd_pick_mode ? 0 : MAX_MODES;
if (use_nonrd_pick_mode) {
for (int r_idx = 0; r_idx < RTC_REFS; r_idx++) {
const MV_REFERENCE_FRAME ref = real_time_ref_combos[r_idx][0];
if (ref != INTRA_FRAME) {
for (i = 0; i < RTC_INTER_MODES; i++)
mode_indices[num_modes_count++] =
mode_idx[ref][mode_offset(inter_mode_list[i])];
} else {
for (i = 0; i < RTC_INTRA_MODES; i++)
mode_indices[num_modes_count++] =
mode_idx[ref][mode_offset(intra_mode_list[i])];
}
}
}
for (segment_id = 0; segment_id < MAX_SEGMENTS; ++segment_id) {
const int qindex = clamp(
av1_get_qindex(&cm->seg, segment_id, cm->quant_params.base_qindex) +
cm->quant_params.y_dc_delta_q,
0, MAXQ);
const int q = compute_rd_thresh_factor(qindex, cm->seq_params->bit_depth);
for (bsize = 0; bsize < BLOCK_SIZES_ALL; ++bsize) {
// Threshold here seems unnecessarily harsh but fine given actual
// range of values used for cpi->sf.thresh_mult[].
const int t = q * rd_thresh_block_size_factor[bsize];
const int thresh_max = INT_MAX / t;
for (i = 0; i < num_modes_count; ++i) {
const int mode_index = use_nonrd_pick_mode ? mode_indices[i] : i;
rd->threshes[segment_id][bsize][mode_index] =
rd->thresh_mult[mode_index] < thresh_max
? rd->thresh_mult[mode_index] * t / 4
: INT_MAX;
}
}
}
}
void av1_fill_coeff_costs(CoeffCosts *coeff_costs, FRAME_CONTEXT *fc,
const int num_planes) {
const int nplanes = AOMMIN(num_planes, PLANE_TYPES);
for (int eob_multi_size = 0; eob_multi_size < 7; ++eob_multi_size) {
for (int plane = 0; plane < nplanes; ++plane) {
LV_MAP_EOB_COST *pcost = &coeff_costs->eob_costs[eob_multi_size][plane];
for (int ctx = 0; ctx < 2; ++ctx) {
aom_cdf_prob *pcdf;
switch (eob_multi_size) {
case 0: pcdf = fc->eob_flag_cdf16[plane][ctx]; break;
case 1: pcdf = fc->eob_flag_cdf32[plane][ctx]; break;
case 2: pcdf = fc->eob_flag_cdf64[plane][ctx]; break;
case 3: pcdf = fc->eob_flag_cdf128[plane][ctx]; break;
case 4: pcdf = fc->eob_flag_cdf256[plane][ctx]; break;
case 5: pcdf = fc->eob_flag_cdf512[plane][ctx]; break;
case 6:
default: pcdf = fc->eob_flag_cdf1024[plane][ctx]; break;
}
av1_cost_tokens_from_cdf(pcost->eob_cost[ctx], pcdf, NULL);
}
}
}
for (int tx_size = 0; tx_size < TX_SIZES; ++tx_size) {
for (int plane = 0; plane < nplanes; ++plane) {
LV_MAP_COEFF_COST *pcost = &coeff_costs->coeff_costs[tx_size][plane];
for (int ctx = 0; ctx < TXB_SKIP_CONTEXTS; ++ctx)
av1_cost_tokens_from_cdf(pcost->txb_skip_cost[ctx],
fc->txb_skip_cdf[tx_size][ctx], NULL);
for (int ctx = 0; ctx < SIG_COEF_CONTEXTS_EOB; ++ctx)
av1_cost_tokens_from_cdf(pcost->base_eob_cost[ctx],
fc->coeff_base_eob_cdf[tx_size][plane][ctx],
NULL);
for (int ctx = 0; ctx < SIG_COEF_CONTEXTS; ++ctx)
av1_cost_tokens_from_cdf(pcost->base_cost[ctx],
fc->coeff_base_cdf[tx_size][plane][ctx], NULL);
for (int ctx = 0; ctx < SIG_COEF_CONTEXTS; ++ctx) {
pcost->base_cost[ctx][4] = 0;
pcost->base_cost[ctx][5] = pcost->base_cost[ctx][1] +
av1_cost_literal(1) -
pcost->base_cost[ctx][0];
pcost->base_cost[ctx][6] =
pcost->base_cost[ctx][2] - pcost->base_cost[ctx][1];
pcost->base_cost[ctx][7] =
pcost->base_cost[ctx][3] - pcost->base_cost[ctx][2];
}
for (int ctx = 0; ctx < EOB_COEF_CONTEXTS; ++ctx)
av1_cost_tokens_from_cdf(pcost->eob_extra_cost[ctx],
fc->eob_extra_cdf[tx_size][plane][ctx], NULL);
for (int ctx = 0; ctx < DC_SIGN_CONTEXTS; ++ctx)
av1_cost_tokens_from_cdf(pcost->dc_sign_cost[ctx],
fc->dc_sign_cdf[plane][ctx], NULL);
for (int ctx = 0; ctx < LEVEL_CONTEXTS; ++ctx) {
int br_rate[BR_CDF_SIZE];
int prev_cost = 0;
int i, j;
av1_cost_tokens_from_cdf(
br_rate, fc->coeff_br_cdf[AOMMIN(tx_size, TX_32X32)][plane][ctx],
NULL);
// printf("br_rate: ");
// for(j = 0; j < BR_CDF_SIZE; j++)
// printf("%4d ", br_rate[j]);
// printf("\n");
for (i = 0; i < COEFF_BASE_RANGE; i += BR_CDF_SIZE - 1) {
for (j = 0; j < BR_CDF_SIZE - 1; j++) {
pcost->lps_cost[ctx][i + j] = prev_cost + br_rate[j];
}
prev_cost += br_rate[j];
}
pcost->lps_cost[ctx][i] = prev_cost;
// printf("lps_cost: %d %d %2d : ", tx_size, plane, ctx);
// for (i = 0; i <= COEFF_BASE_RANGE; i++)
// printf("%5d ", pcost->lps_cost[ctx][i]);
// printf("\n");
}
for (int ctx = 0; ctx < LEVEL_CONTEXTS; ++ctx) {
pcost->lps_cost[ctx][0 + COEFF_BASE_RANGE + 1] =
pcost->lps_cost[ctx][0];
for (int i = 1; i <= COEFF_BASE_RANGE; ++i) {
pcost->lps_cost[ctx][i + COEFF_BASE_RANGE + 1] =
pcost->lps_cost[ctx][i] - pcost->lps_cost[ctx][i - 1];
}
}
}
}
}
void av1_fill_mv_costs(const nmv_context *nmvc, int integer_mv, int usehp,
MvCosts *mv_costs) {
// Avoid accessing 'mv_costs' when it is not allocated.
if (mv_costs == NULL) return;
mv_costs->nmv_cost[0] = &mv_costs->nmv_cost_alloc[0][MV_MAX];
mv_costs->nmv_cost[1] = &mv_costs->nmv_cost_alloc[1][MV_MAX];
mv_costs->nmv_cost_hp[0] = &mv_costs->nmv_cost_hp_alloc[0][MV_MAX];
mv_costs->nmv_cost_hp[1] = &mv_costs->nmv_cost_hp_alloc[1][MV_MAX];
if (integer_mv) {
mv_costs->mv_cost_stack = (int **)&mv_costs->nmv_cost;
av1_build_nmv_cost_table(mv_costs->nmv_joint_cost, mv_costs->mv_cost_stack,
nmvc, MV_SUBPEL_NONE);
} else {
mv_costs->mv_cost_stack =
usehp ? mv_costs->nmv_cost_hp : mv_costs->nmv_cost;
av1_build_nmv_cost_table(mv_costs->nmv_joint_cost, mv_costs->mv_cost_stack,
nmvc, usehp);
}
}
void av1_fill_dv_costs(const nmv_context *ndvc, IntraBCMVCosts *dv_costs) {
dv_costs->dv_costs[0] = &dv_costs->dv_costs_alloc[0][MV_MAX];
dv_costs->dv_costs[1] = &dv_costs->dv_costs_alloc[1][MV_MAX];
av1_build_nmv_cost_table(dv_costs->joint_mv, dv_costs->dv_costs, ndvc,
MV_SUBPEL_NONE);
}
// Populates speed features based on codec control settings (of type
// COST_UPDATE_TYPE) and expected speed feature settings (of type
// INTERNAL_COST_UPDATE_TYPE) by considering the least frequent cost update.
// The populated/updated speed features are used for cost updates in the
// encoder.
// WARNING: Population of unified cost update frequency needs to be taken care
// accordingly, in case of any modifications/additions to the enum
// COST_UPDATE_TYPE/INTERNAL_COST_UPDATE_TYPE.
static INLINE void populate_unified_cost_update_freq(
const CostUpdateFreq cost_upd_freq, SPEED_FEATURES *const sf) {
INTER_MODE_SPEED_FEATURES *const inter_sf = &sf->inter_sf;
// Mapping of entropy cost update frequency from the encoder's codec control
// settings of type COST_UPDATE_TYPE to speed features of type
// INTERNAL_COST_UPDATE_TYPE.
static const INTERNAL_COST_UPDATE_TYPE
map_cost_upd_to_internal_cost_upd[NUM_COST_UPDATE_TYPES] = {
INTERNAL_COST_UPD_SB, INTERNAL_COST_UPD_SBROW, INTERNAL_COST_UPD_TILE,
INTERNAL_COST_UPD_OFF
};
inter_sf->mv_cost_upd_level =
AOMMIN(inter_sf->mv_cost_upd_level,
map_cost_upd_to_internal_cost_upd[cost_upd_freq.mv]);
inter_sf->coeff_cost_upd_level =
AOMMIN(inter_sf->coeff_cost_upd_level,
map_cost_upd_to_internal_cost_upd[cost_upd_freq.coeff]);
inter_sf->mode_cost_upd_level =
AOMMIN(inter_sf->mode_cost_upd_level,
map_cost_upd_to_internal_cost_upd[cost_upd_freq.mode]);
sf->intra_sf.dv_cost_upd_level =
AOMMIN(sf->intra_sf.dv_cost_upd_level,
map_cost_upd_to_internal_cost_upd[cost_upd_freq.dv]);
}
// Checks if entropy costs should be initialized/updated at frame level or not.
static INLINE int is_frame_level_cost_upd_freq_set(
const AV1_COMMON *const cm, const INTERNAL_COST_UPDATE_TYPE cost_upd_level,
const int use_nonrd_pick_mode, const int frames_since_key) {
const int fill_costs =
frame_is_intra_only(cm) ||
(use_nonrd_pick_mode ? frames_since_key < 2
: (cm->current_frame.frame_number & 0x07) == 1);
return ((!use_nonrd_pick_mode && cost_upd_level != INTERNAL_COST_UPD_OFF) ||
cost_upd_level == INTERNAL_COST_UPD_TILE || fill_costs);
}
// Decide whether we want to update the mode entropy cost for the current frame.
// The logit is currently inherited from selective_disable_cdf_rtc.
static AOM_INLINE int should_force_mode_cost_update(const AV1_COMP *cpi) {
const REAL_TIME_SPEED_FEATURES *const rt_sf = &cpi->sf.rt_sf;
if (!rt_sf->frame_level_mode_cost_update) {
return false;
}
if (cpi->oxcf.algo_cfg.cdf_update_mode == 2) {
return cpi->frames_since_last_update == 1;
} else if (cpi->oxcf.algo_cfg.cdf_update_mode == 1) {
if (cpi->svc.number_spatial_layers == 1 &&
cpi->svc.number_temporal_layers == 1) {
const AV1_COMMON *const cm = &cpi->common;
const RATE_CONTROL *const rc = &cpi->rc;
return frame_is_intra_only(cm) || is_frame_resize_pending(cpi) ||
rc->high_source_sad || rc->frames_since_key < 10 ||
cpi->cyclic_refresh->counter_encode_maxq_scene_change < 10 ||
cm->current_frame.frame_number % 8 == 0;
} else if (cpi->svc.number_temporal_layers > 1) {
return cpi->svc.temporal_layer_id != cpi->svc.number_temporal_layers - 1;
}
}
return false;
}
void av1_initialize_rd_consts(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->td.mb;
SPEED_FEATURES *const sf = &cpi->sf;
RD_OPT *const rd = &cpi->rd;
int use_nonrd_pick_mode = cpi->sf.rt_sf.use_nonrd_pick_mode;
int frames_since_key = cpi->rc.frames_since_key;
const GF_GROUP *const gf_group = &cpi->ppi->gf_group;
const int boost_index = AOMMIN(15, (cpi->ppi->p_rc.gfu_boost / 100));
const int layer_depth = AOMMIN(gf_group->layer_depth[cpi->gf_frame_index], 6);
const FRAME_TYPE frame_type = cm->current_frame.frame_type;
const int qindex_rdmult =
cm->quant_params.base_qindex + cm->quant_params.y_dc_delta_q;
rd->RDMULT = av1_compute_rd_mult(
qindex_rdmult, cm->seq_params->bit_depth,
cpi->ppi->gf_group.update_type[cpi->gf_frame_index], layer_depth,
boost_index, frame_type, cpi->oxcf.q_cfg.use_fixed_qp_offsets,
is_stat_consumption_stage(cpi));
#if CONFIG_RD_COMMAND
if (cpi->oxcf.pass == 2) {
const RD_COMMAND *rd_command = &cpi->rd_command;
if (rd_command->option_ls[rd_command->frame_index] ==
RD_OPTION_SET_Q_RDMULT) {
rd->RDMULT = rd_command->rdmult_ls[rd_command->frame_index];
}
}
#endif // CONFIG_RD_COMMAND
av1_set_error_per_bit(&x->errorperbit, rd->RDMULT);
set_block_thresholds(cm, rd, cpi->sf.rt_sf.use_nonrd_pick_mode);
populate_unified_cost_update_freq(cpi->oxcf.cost_upd_freq, sf);
const INTER_MODE_SPEED_FEATURES *const inter_sf = &cpi->sf.inter_sf;
// Frame level mv cost update
if (is_frame_level_cost_upd_freq_set(cm, inter_sf->mv_cost_upd_level,
use_nonrd_pick_mode, frames_since_key))
av1_fill_mv_costs(&cm->fc->nmvc, cm->features.cur_frame_force_integer_mv,
cm->features.allow_high_precision_mv, x->mv_costs);
// Frame level coefficient cost update
if (is_frame_level_cost_upd_freq_set(cm, inter_sf->coeff_cost_upd_level,
use_nonrd_pick_mode, frames_since_key))
av1_fill_coeff_costs(&x->coeff_costs, cm->fc, av1_num_planes(cm));
// Frame level mode cost update
if (should_force_mode_cost_update(cpi) ||
is_frame_level_cost_upd_freq_set(cm, inter_sf->mode_cost_upd_level,
use_nonrd_pick_mode, frames_since_key))
av1_fill_mode_rates(cm, &x->mode_costs, cm->fc);
// Frame level dv cost update
if (av1_need_dv_costs(cpi)) {
if (cpi->td.dv_costs_alloc == NULL) {
CHECK_MEM_ERROR(
cm, cpi->td.dv_costs_alloc,
(IntraBCMVCosts *)aom_malloc(sizeof(*cpi->td.dv_costs_alloc)));
cpi->td.mb.dv_costs = cpi->td.dv_costs_alloc;
}
av1_fill_dv_costs(&cm->fc->ndvc, x->dv_costs);
}
}
static void model_rd_norm(int xsq_q10, int *r_q10, int *d_q10) {
// NOTE: The tables below must be of the same size.
// The functions described below are sampled at the four most significant
// bits of x^2 + 8 / 256.
// Normalized rate:
// This table models the rate for a Laplacian source with given variance
// when quantized with a uniform quantizer with given stepsize. The
// closed form expression is:
// Rn(x) = H(sqrt(r)) + sqrt(r)*[1 + H(r)/(1 - r)],
// where r = exp(-sqrt(2) * x) and x = qpstep / sqrt(variance),
// and H(x) is the binary entropy function.
static const int rate_tab_q10[] = {
65536, 6086, 5574, 5275, 5063, 4899, 4764, 4651, 4553, 4389, 4255, 4142,
4044, 3958, 3881, 3811, 3748, 3635, 3538, 3453, 3376, 3307, 3244, 3186,
3133, 3037, 2952, 2877, 2809, 2747, 2690, 2638, 2589, 2501, 2423, 2353,
2290, 2232, 2179, 2130, 2084, 2001, 1928, 1862, 1802, 1748, 1698, 1651,
1608, 1530, 1460, 1398, 1342, 1290, 1243, 1199, 1159, 1086, 1021, 963,
911, 864, 821, 781, 745, 680, 623, 574, 530, 490, 455, 424,
395, 345, 304, 269, 239, 213, 190, 171, 154, 126, 104, 87,
73, 61, 52, 44, 38, 28, 21, 16, 12, 10, 8, 6,
5, 3, 2, 1, 1, 1, 0, 0,
};
// Normalized distortion:
// This table models the normalized distortion for a Laplacian source
// with given variance when quantized with a uniform quantizer
// with given stepsize. The closed form expression is:
// Dn(x) = 1 - 1/sqrt(2) * x / sinh(x/sqrt(2))
// where x = qpstep / sqrt(variance).
// Note the actual distortion is Dn * variance.
static const int dist_tab_q10[] = {
0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5,
5, 6, 7, 7, 8, 9, 11, 12, 13, 15, 16, 17,
18, 21, 24, 26, 29, 31, 34, 36, 39, 44, 49, 54,
59, 64, 69, 73, 78, 88, 97, 106, 115, 124, 133, 142,
151, 167, 184, 200, 215, 231, 245, 260, 274, 301, 327, 351,
375, 397, 418, 439, 458, 495, 528, 559, 587, 613, 637, 659,
680, 717, 749, 777, 801, 823, 842, 859, 874, 899, 919, 936,
949, 960, 969, 977, 983, 994, 1001, 1006, 1010, 1013, 1015, 1017,
1018, 1020, 1022, 1022, 1023, 1023, 1023, 1024,
};
static const int xsq_iq_q10[] = {
0, 4, 8, 12, 16, 20, 24, 28, 32,
40, 48, 56, 64, 72, 80, 88, 96, 112,
128, 144, 160, 176, 192, 208, 224, 256, 288,
320, 352, 384, 416, 448, 480, 544, 608, 672,
736, 800, 864, 928, 992, 1120, 1248, 1376, 1504,
1632, 1760, 1888, 2016, 2272, 2528, 2784, 3040, 3296,
3552, 3808, 4064, 4576, 5088, 5600, 6112, 6624, 7136,
7648, 8160, 9184, 10208, 11232, 12256, 13280, 14304, 15328,
16352, 18400, 20448, 22496, 24544, 26592, 28640, 30688, 32736,
36832, 40928, 45024, 49120, 53216, 57312, 61408, 65504, 73696,
81888, 90080, 98272, 106464, 114656, 122848, 131040, 147424, 163808,
180192, 196576, 212960, 229344, 245728,
};
const int tmp = (xsq_q10 >> 2) + 8;
const int k = get_msb(tmp) - 3;
const int xq = (k << 3) + ((tmp >> k) & 0x7);
const int one_q10 = 1 << 10;
const int a_q10 = ((xsq_q10 - xsq_iq_q10[xq]) << 10) >> (2 + k);
const int b_q10 = one_q10 - a_q10;
*r_q10 = (rate_tab_q10[xq] * b_q10 + rate_tab_q10[xq + 1] * a_q10) >> 10;
*d_q10 = (dist_tab_q10[xq] * b_q10 + dist_tab_q10[xq + 1] * a_q10) >> 10;
}
void av1_model_rd_from_var_lapndz(int64_t var, unsigned int n_log2,
unsigned int qstep, int *rate,
int64_t *dist) {
// This function models the rate and distortion for a Laplacian
// source with given variance when quantized with a uniform quantizer
// with given stepsize. The closed form expressions are in:
// Hang and Chen, "Source Model for transform video coder and its
// application - Part I: Fundamental Theory", IEEE Trans. Circ.
// Sys. for Video Tech., April 1997.
if (var == 0) {
*rate = 0;
*dist = 0;
} else {
int d_q10, r_q10;
static const uint32_t MAX_XSQ_Q10 = 245727;
const uint64_t xsq_q10_64 =
(((uint64_t)qstep * qstep << (n_log2 + 10)) + (var >> 1)) / var;
const int xsq_q10 = (int)AOMMIN(xsq_q10_64, MAX_XSQ_Q10);
model_rd_norm(xsq_q10, &r_q10, &d_q10);
*rate = ROUND_POWER_OF_TWO(r_q10 << n_log2, 10 - AV1_PROB_COST_SHIFT);
*dist = (var * (int64_t)d_q10 + 512) >> 10;
}
}
static double interp_cubic(const double *p, double x) {
return p[1] + 0.5 * x *
(p[2] - p[0] +
x * (2.0 * p[0] - 5.0 * p[1] + 4.0 * p[2] - p[3] +
x * (3.0 * (p[1] - p[2]) + p[3] - p[0])));
}
/*
static double interp_bicubic(const double *p, int p_stride, double x,
double y) {
double q[4];
q[0] = interp_cubic(p, x);
q[1] = interp_cubic(p + p_stride, x);
q[2] = interp_cubic(p + 2 * p_stride, x);
q[3] = interp_cubic(p + 3 * p_stride, x);
return interp_cubic(q, y);
}
*/
static const uint8_t bsize_curvfit_model_cat_lookup[BLOCK_SIZES_ALL] = {
0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 1, 1, 2, 2, 3, 3
};
static int sse_norm_curvfit_model_cat_lookup(double sse_norm) {
return (sse_norm > 16.0);
}
// Models distortion by sse using a logistic function on
// l = log2(sse / q^2) as:
// dbysse = 16 / (1 + k exp(l + c))
static double get_dbysse_logistic(double l, double c, double k) {
const double A = 16.0;
const double dbysse = A / (1 + k * exp(l + c));
return dbysse;
}
// Models rate using a clamped linear function on
// l = log2(sse / q^2) as:
// rate = max(0, a + b * l)
static double get_rate_clamplinear(double l, double a, double b) {
const double rate = a + b * l;
return (rate < 0 ? 0 : rate);
}
static const uint8_t bsize_surffit_model_cat_lookup[BLOCK_SIZES_ALL] = {
0, 0, 0, 0, 1, 1, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 0, 0, 2, 2, 4, 4
};
static const double surffit_rate_params[9][4] = {
{
638.390212,
2.253108,
166.585650,
-3.939401,
},
{
5.256905,
81.997240,
-1.321771,
17.694216,
},
{
-74.193045,
72.431868,
-19.033152,
15.407276,
},
{
416.770113,
14.794188,
167.686830,
-6.997756,
},
{
378.511276,
9.558376,
154.658843,
-6.635663,
},
{
277.818787,
4.413180,
150.317637,
-9.893038,
},
{
142.212132,
11.542038,
94.393964,
-5.518517,
},
{
219.100256,
4.007421,
108.932852,
-6.981310,
},
{
222.261971,
3.251049,
95.972916,
-5.609789,
},
};
static const double surffit_dist_params[7] = { 1.475844, 4.328362, -5.680233,
-0.500994, 0.554585, 4.839478,
-0.695837 };
static void rate_surffit_model_params_lookup(BLOCK_SIZE bsize, double xm,
double *rpar) {
const int cat = bsize_surffit_model_cat_lookup[bsize];
rpar[0] = surffit_rate_params[cat][0] + surffit_rate_params[cat][1] * xm;
rpar[1] = surffit_rate_params[cat][2] + surffit_rate_params[cat][3] * xm;
}
static void dist_surffit_model_params_lookup(BLOCK_SIZE bsize, double xm,
double *dpar) {
(void)bsize;
const double *params = surffit_dist_params;
dpar[0] = params[0] + params[1] / (1 + exp((xm + params[2]) * params[3]));
dpar[1] = params[4] + params[5] * exp(params[6] * xm);
}
void av1_model_rd_surffit(BLOCK_SIZE bsize, double sse_norm, double xm,
double yl, double *rate_f, double *distbysse_f) {
(void)sse_norm;
double rpar[2], dpar[2];
rate_surffit_model_params_lookup(bsize, xm, rpar);
dist_surffit_model_params_lookup(bsize, xm, dpar);
*rate_f = get_rate_clamplinear(yl, rpar[0], rpar[1]);
*distbysse_f = get_dbysse_logistic(yl, dpar[0], dpar[1]);
}
static const double interp_rgrid_curv[4][65] = {
{
0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000, 118.257702, 120.210658, 121.434853, 122.100487,
122.377758, 122.436865, 72.290102, 96.974289, 101.652727,
126.830141, 140.417377, 157.644879, 184.315291, 215.823873,
262.300169, 335.919859, 420.624173, 519.185032, 619.854243,
726.053595, 827.663369, 933.127475, 1037.988755, 1138.839609,
1233.342933, 1333.508064, 1428.760126, 1533.396364, 1616.952052,
1744.539319, 1803.413586, 1951.466618, 1994.227838, 2086.031680,
2148.635443, 2239.068450, 2222.590637, 2338.859809, 2402.929011,
2418.727875, 2435.342670, 2471.159469, 2523.187446, 2591.183827,
2674.905840, 2774.110714, 2888.555675, 3017.997952, 3162.194773,
3320.903365, 3493.880956, 3680.884773, 3881.672045, 4096.000000,
},
{
0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000, 13.087244, 15.919735, 25.930313, 24.412411,
28.567417, 29.924194, 30.857010, 32.742979, 36.382570,
39.210386, 42.265690, 47.378572, 57.014850, 82.740067,
137.346562, 219.968084, 316.781856, 415.643773, 516.706538,
614.914364, 714.303763, 815.512135, 911.210485, 1008.501528,
1109.787854, 1213.772279, 1322.922561, 1414.752579, 1510.505641,
1615.741888, 1697.989032, 1780.123933, 1847.453790, 1913.742309,
1960.828122, 2047.500168, 2085.454095, 2129.230668, 2158.171824,
2182.231724, 2217.684864, 2269.589211, 2337.264824, 2420.618694,
2519.557814, 2633.989178, 2763.819779, 2908.956609, 3069.306660,
3244.776927, 3435.274401, 3640.706076, 3860.978945, 4096.000000,
},
{
0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000, 4.656893, 5.123633, 5.594132, 6.162376,
6.918433, 7.768444, 8.739415, 10.105862, 11.477328,
13.236604, 15.421030, 19.093623, 25.801871, 46.724612,
98.841054, 181.113466, 272.586364, 359.499769, 445.546343,
525.944439, 605.188743, 681.793483, 756.668359, 838.486885,
926.950356, 1015.482542, 1113.353926, 1204.897193, 1288.871992,
1373.464145, 1455.746628, 1527.796460, 1588.475066, 1658.144771,
1710.302500, 1807.563351, 1863.197608, 1927.281616, 1964.450872,
2022.719898, 2100.041145, 2185.205712, 2280.993936, 2387.616216,
2505.282950, 2634.204540, 2774.591385, 2926.653884, 3090.602436,
3266.647443, 3454.999303, 3655.868416, 3869.465182, 4096.000000,
},
{
0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000, 0.337370, 0.391916, 0.468839, 0.566334,
0.762564, 1.069225, 1.384361, 1.787581, 2.293948,
3.251909, 4.412991, 8.050068, 11.606073, 27.668092,
65.227758, 128.463938, 202.097653, 262.715851, 312.464873,
355.601398, 400.609054, 447.201352, 495.761568, 552.871938,
619.067625, 691.984883, 773.753288, 860.628503, 946.262808,
1019.805896, 1106.061360, 1178.422145, 1244.852258, 1302.173987,
1399.650266, 1548.092912, 1545.928652, 1670.817500, 1694.523823,
1779.195362, 1882.155494, 1990.662097, 2108.325181, 2235.456119,
2372.366287, 2519.367059, 2676.769812, 2844.885918, 3024.026754,
3214.503695, 3416.628115, 3630.711389, 3857.064892, 4096.000000,
},
};
static const double interp_dgrid_curv[3][65] = {
{
16.000000, 15.962891, 15.925174, 15.886888, 15.848074, 15.808770,
15.769015, 15.728850, 15.688313, 15.647445, 15.606284, 15.564870,
15.525918, 15.483820, 15.373330, 15.126844, 14.637442, 14.184387,
13.560070, 12.880717, 12.165995, 11.378144, 10.438769, 9.130790,
7.487633, 5.688649, 4.267515, 3.196300, 2.434201, 1.834064,
1.369920, 1.035921, 0.775279, 0.574895, 0.427232, 0.314123,
0.233236, 0.171440, 0.128188, 0.092762, 0.067569, 0.049324,
0.036330, 0.027008, 0.019853, 0.015539, 0.011093, 0.008733,
0.007624, 0.008105, 0.005427, 0.004065, 0.003427, 0.002848,
0.002328, 0.001865, 0.001457, 0.001103, 0.000801, 0.000550,
0.000348, 0.000193, 0.000085, 0.000021, 0.000000,
},
{
16.000000, 15.996116, 15.984769, 15.966413, 15.941505, 15.910501,
15.873856, 15.832026, 15.785466, 15.734633, 15.679981, 15.621967,
15.560961, 15.460157, 15.288367, 15.052462, 14.466922, 13.921212,
13.073692, 12.222005, 11.237799, 9.985848, 8.898823, 7.423519,
5.995325, 4.773152, 3.744032, 2.938217, 2.294526, 1.762412,
1.327145, 1.020728, 0.765535, 0.570548, 0.425833, 0.313825,
0.232959, 0.171324, 0.128174, 0.092750, 0.067558, 0.049319,
0.036330, 0.027008, 0.019853, 0.015539, 0.011093, 0.008733,
0.007624, 0.008105, 0.005427, 0.004065, 0.003427, 0.002848,
0.002328, 0.001865, 0.001457, 0.001103, 0.000801, 0.000550,
0.000348, 0.000193, 0.000085, 0.000021, -0.000000,
},
};
void av1_model_rd_curvfit(BLOCK_SIZE bsize, double sse_norm, double xqr,
double *rate_f, double *distbysse_f) {
const double x_start = -15.5;
const double x_end = 16.5;
const double x_step = 0.5;
const double epsilon = 1e-6;
const int rcat = bsize_curvfit_model_cat_lookup[bsize];
const int dcat = sse_norm_curvfit_model_cat_lookup(sse_norm);
(void)x_end;
xqr = AOMMAX(xqr, x_start + x_step + epsilon);
xqr = AOMMIN(xqr, x_end - x_step - epsilon);
const double x = (xqr - x_start) / x_step;
const int xi = (int)floor(x);
const double xo = x - xi;
assert(xi > 0);
const double *prate = &interp_rgrid_curv[rcat][(xi - 1)];
*rate_f = interp_cubic(prate, xo);
const double *pdist = &interp_dgrid_curv[dcat][(xi - 1)];
*distbysse_f = interp_cubic(pdist, xo);
}
static void get_entropy_contexts_plane(BLOCK_SIZE plane_bsize,
const struct macroblockd_plane *pd,
ENTROPY_CONTEXT t_above[MAX_MIB_SIZE],
ENTROPY_CONTEXT t_left[MAX_MIB_SIZE]) {
const int num_4x4_w = mi_size_wide[plane_bsize];
const int num_4x4_h = mi_size_high[plane_bsize];
const ENTROPY_CONTEXT *const above = pd->above_entropy_context;
const ENTROPY_CONTEXT *const left = pd->left_entropy_context;
memcpy(t_above, above, sizeof(ENTROPY_CONTEXT) * num_4x4_w);
memcpy(t_left, left, sizeof(ENTROPY_CONTEXT) * num_4x4_h);
}
void av1_get_entropy_contexts(BLOCK_SIZE plane_bsize,
const struct macroblockd_plane *pd,
ENTROPY_CONTEXT t_above[MAX_MIB_SIZE],
ENTROPY_CONTEXT t_left[MAX_MIB_SIZE]) {
assert(plane_bsize < BLOCK_SIZES_ALL);
get_entropy_contexts_plane(plane_bsize, pd, t_above, t_left);
}
// Special clamping used in the encoder when calculating a prediction
//
// Logically, all pixel fetches used for prediction are clamped against the
// edges of the frame. But doing this directly is slow, so instead we allocate
// a finite border around the frame and fill it with copies of the outermost
// pixels.
//
// Since this border is finite, we need to clamp the motion vector before
// prediction in order to avoid out-of-bounds reads. At the same time, this
// clamp must not change the prediction result.
//
// We can balance both of these concerns by calculating how far we would have
// to go in each direction before the extended prediction region (the current
// block + AOM_INTERP_EXTEND many pixels around the block) would be mapped
// so that it touches the frame only at one row or column. This is a special
// point because any more extreme MV will always lead to the same prediction.
// So it is safe to clamp at that point.
//
// In the worst case, this requires a border of
// max_block_width + 2*AOM_INTERP_EXTEND = 128 + 2*4 = 136 pixels
// around the frame edges.
static INLINE void enc_clamp_mv(const AV1_COMMON *cm, const MACROBLOCKD *xd,
MV *mv) {
int bw = xd->width << MI_SIZE_LOG2;
int bh = xd->height << MI_SIZE_LOG2;
int px_to_left_edge = xd->mi_col << MI_SIZE_LOG2;
int px_to_right_edge = (cm->mi_params.mi_cols - xd->mi_col) << MI_SIZE_LOG2;
int px_to_top_edge = xd->mi_row << MI_SIZE_LOG2;
int px_to_bottom_edge = (cm->mi_params.mi_rows - xd->mi_row) << MI_SIZE_LOG2;
const SubpelMvLimits mv_limits = {
.col_min = -GET_MV_SUBPEL(px_to_left_edge + bw + AOM_INTERP_EXTEND),
.col_max = GET_MV_SUBPEL(px_to_right_edge + AOM_INTERP_EXTEND),
.row_min = -GET_MV_SUBPEL(px_to_top_edge + bh + AOM_INTERP_EXTEND),
.row_max = GET_MV_SUBPEL(px_to_bottom_edge + AOM_INTERP_EXTEND)
};
clamp_mv(mv, &mv_limits);
}
void av1_mv_pred(const AV1_COMP *cpi, MACROBLOCK *x, uint8_t *ref_y_buffer,
int ref_y_stride, int ref_frame, BLOCK_SIZE block_size) {
const MV_REFERENCE_FRAME ref_frames[2] = { ref_frame, NONE_FRAME };
const int_mv ref_mv =
av1_get_ref_mv_from_stack(0, ref_frames, 0, &x->mbmi_ext);
const int_mv ref_mv1 =
av1_get_ref_mv_from_stack(0, ref_frames, 1, &x->mbmi_ext);
MV pred_mv[MAX_MV_REF_CANDIDATES + 1];
int num_mv_refs = 0;
pred_mv[num_mv_refs++] = ref_mv.as_mv;
if (ref_mv.as_int != ref_mv1.as_int) {
pred_mv[num_mv_refs++] = ref_mv1.as_mv;
}
assert(num_mv_refs <= (int)(sizeof(pred_mv) / sizeof(pred_mv[0])));
const uint8_t *const src_y_ptr = x->plane[0].src.buf;
int zero_seen = 0;
int best_sad = INT_MAX;
int max_mv = 0;
// Get the sad for each candidate reference mv.
for (int i = 0; i < num_mv_refs; ++i) {
MV *this_mv = &pred_mv[i];
enc_clamp_mv(&cpi->common, &x->e_mbd, this_mv);
const int fp_row = (this_mv->row + 3 + (this_mv->row >= 0)) >> 3;
const int fp_col = (this_mv->col + 3 + (this_mv->col >= 0)) >> 3;
max_mv = AOMMAX(max_mv, AOMMAX(abs(this_mv->row), abs(this_mv->col)) >> 3);
if (fp_row == 0 && fp_col == 0 && zero_seen) continue;
zero_seen |= (fp_row == 0 && fp_col == 0);
const uint8_t *const ref_y_ptr =
&ref_y_buffer[ref_y_stride * fp_row + fp_col];
// Find sad for current vector.
const int this_sad = cpi->ppi->fn_ptr[block_size].sdf(
src_y_ptr, x->plane[0].src.stride, ref_y_ptr, ref_y_stride);
// Note if it is the best so far.
if (this_sad < best_sad) {
best_sad = this_sad;
}
if (i == 0)
x->pred_mv0_sad[ref_frame] = this_sad;
else if (i == 1)
x->pred_mv1_sad[ref_frame] = this_sad;
}
// Note the index of the mv that worked best in the reference list.
x->max_mv_context[ref_frame] = max_mv;
x->pred_mv_sad[ref_frame] = best_sad;
}
void av1_setup_pred_block(const MACROBLOCKD *xd,
struct buf_2d dst[MAX_MB_PLANE],
const YV12_BUFFER_CONFIG *src,
const struct scale_factors *scale,
const struct scale_factors *scale_uv,
const int num_planes) {
dst[0].buf = src->y_buffer;
dst[0].stride = src->y_stride;
dst[1].buf = src->u_buffer;
dst[2].buf = src->v_buffer;
dst[1].stride = dst[2].stride = src->uv_stride;
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
for (int i = 0; i < num_planes; ++i) {
setup_pred_plane(dst + i, xd->mi[0]->bsize, dst[i].buf,
i ? src->uv_crop_width : src->y_crop_width,
i ? src->uv_crop_height : src->y_crop_height,
dst[i].stride, mi_row, mi_col, i ? scale_uv : scale,
xd->plane[i].subsampling_x, xd->plane[i].subsampling_y);
}
}
YV12_BUFFER_CONFIG *av1_get_scaled_ref_frame(const AV1_COMP *cpi,
int ref_frame) {
assert(ref_frame >= LAST_FRAME && ref_frame <= ALTREF_FRAME);
RefCntBuffer *const scaled_buf = cpi->scaled_ref_buf[ref_frame - 1];
const RefCntBuffer *const ref_buf =
get_ref_frame_buf(&cpi->common, ref_frame);
return (scaled_buf != ref_buf && scaled_buf != NULL) ? &scaled_buf->buf
: NULL;
}
int av1_get_switchable_rate(const MACROBLOCK *x, const MACROBLOCKD *xd,
InterpFilter interp_filter, int dual_filter) {
if (interp_filter == SWITCHABLE) {
const MB_MODE_INFO *const mbmi = xd->mi[0];
int inter_filter_cost = 0;
for (int dir = 0; dir < 2; ++dir) {
if (dir && !dual_filter) break;
const int ctx = av1_get_pred_context_switchable_interp(xd, dir);
const InterpFilter filter =
av1_extract_interp_filter(mbmi->interp_filters, dir);
inter_filter_cost += x->mode_costs.switchable_interp_costs[ctx][filter];
}
return SWITCHABLE_INTERP_RATE_FACTOR * inter_filter_cost;
} else {
return 0;
}
}
void av1_set_rd_speed_thresholds(AV1_COMP *cpi) {
RD_OPT *const rd = &cpi->rd;
// Set baseline threshold values.
av1_zero(rd->thresh_mult);
rd->thresh_mult[THR_NEARESTMV] = 300;
rd->thresh_mult[THR_NEARESTL2] = 300;
rd->thresh_mult[THR_NEARESTL3] = 300;
rd->thresh_mult[THR_NEARESTB] = 300;
rd->thresh_mult[THR_NEARESTA2] = 300;
rd->thresh_mult[THR_NEARESTA] = 300;
rd->thresh_mult[THR_NEARESTG] = 300;
rd->thresh_mult[THR_NEWMV] = 1000;
rd->thresh_mult[THR_NEWL2] = 1000;
rd->thresh_mult[THR_NEWL3] = 1000;
rd->thresh_mult[THR_NEWB] = 1000;
rd->thresh_mult[THR_NEWA2] = 1100;
rd->thresh_mult[THR_NEWA] = 1000;
rd->thresh_mult[THR_NEWG] = 1000;
rd->thresh_mult[THR_NEARMV] = 1000;
rd->thresh_mult[THR_NEARL2] = 1000;
rd->thresh_mult[THR_NEARL3] = 1000;
rd->thresh_mult[THR_NEARB] = 1000;
rd->thresh_mult[THR_NEARA2] = 1000;
rd->thresh_mult[THR_NEARA] = 1000;
rd->thresh_mult[THR_NEARG] = 1000;
rd->thresh_mult[THR_GLOBALMV] = 2200;
rd->thresh_mult[THR_GLOBALL2] = 2000;
rd->thresh_mult[THR_GLOBALL3] = 2000;
rd->thresh_mult[THR_GLOBALB] = 2400;
rd->thresh_mult[THR_GLOBALA2] = 2000;
rd->thresh_mult[THR_GLOBALG] = 2000;
rd->thresh_mult[THR_GLOBALA] = 2400;
rd->thresh_mult[THR_COMP_NEAREST_NEARESTLA] = 1100;
rd->thresh_mult[THR_COMP_NEAREST_NEARESTL2A] = 1000;
rd->thresh_mult[THR_COMP_NEAREST_NEARESTL3A] = 800;
rd->thresh_mult[THR_COMP_NEAREST_NEARESTGA] = 900;
rd->thresh_mult[THR_COMP_NEAREST_NEARESTLB] = 1000;
rd->thresh_mult[THR_COMP_NEAREST_NEARESTL2B] = 1000;
rd->thresh_mult[THR_COMP_NEAREST_NEARESTL3B] = 1000;
rd->thresh_mult[THR_COMP_NEAREST_NEARESTGB] = 1000;
rd->thresh_mult[THR_COMP_NEAREST_NEARESTLA2] = 1000;
rd->thresh_mult[THR_COMP_NEAREST_NEARESTL2A2] = 1000;
rd->thresh_mult[THR_COMP_NEAREST_NEARESTL3A2] = 1000;
rd->thresh_mult[THR_COMP_NEAREST_NEARESTGA2] = 1000;
rd->thresh_mult[THR_COMP_NEAREST_NEARESTLL2] = 2000;
rd->thresh_mult[THR_COMP_NEAREST_NEARESTLL3] = 2000;
rd->thresh_mult[THR_COMP_NEAREST_NEARESTLG] = 2000;
rd->thresh_mult[THR_COMP_NEAREST_NEARESTBA] = 2000;
rd->thresh_mult[THR_COMP_NEAR_NEARLA] = 1200;
rd->thresh_mult[THR_COMP_NEAREST_NEWLA] = 1500;
rd->thresh_mult[THR_COMP_NEW_NEARESTLA] = 1500;
rd->thresh_mult[THR_COMP_NEAR_NEWLA] = 1530;
rd->thresh_mult[THR_COMP_NEW_NEARLA] = 1870;
rd->thresh_mult[THR_COMP_NEW_NEWLA] = 2400;
rd->thresh_mult[THR_COMP_GLOBAL_GLOBALLA] = 2750;
rd->thresh_mult[THR_COMP_NEAR_NEARL2A] = 1200;
rd->thresh_mult[THR_COMP_NEAREST_NEWL2A] = 1500;
rd->thresh_mult[THR_COMP_NEW_NEARESTL2A] = 1500;
rd->thresh_mult[THR_COMP_NEAR_NEWL2A] = 1870;
rd->thresh_mult[THR_COMP_NEW_NEARL2A] = 1700;
rd->thresh_mult[THR_COMP_NEW_NEWL2A] = 1800;
rd->thresh_mult[THR_COMP_GLOBAL_GLOBALL2A] = 2500;
rd->thresh_mult[THR_COMP_NEAR_NEARL3A] = 1200;
rd->thresh_mult[THR_COMP_NEAREST_NEWL3A] = 1500;
rd->thresh_mult[THR_COMP_NEW_NEARESTL3A] = 1500;
rd->thresh_mult[THR_COMP_NEAR_NEWL3A] = 1700;
rd->thresh_mult[THR_COMP_NEW_NEARL3A] = 1700;
rd->thresh_mult[THR_COMP_NEW_NEWL3A] = 2000;
rd->thresh_mult[THR_COMP_GLOBAL_GLOBALL3A] = 3000;
rd->thresh_mult[THR_COMP_NEAR_NEARGA] = 1320;
rd->thresh_mult[THR_COMP_NEAREST_NEWGA] = 1500;
rd->thresh_mult[THR_COMP_NEW_NEARESTGA] = 1500;
rd->thresh_mult[THR_COMP_NEAR_NEWGA] = 2040;
rd->thresh_mult[THR_COMP_NEW_NEARGA] = 1700;
rd->thresh_mult[THR_COMP_NEW_NEWGA] = 2000;
rd->thresh_mult[THR_COMP_GLOBAL_GLOBALGA] = 2250;
rd->thresh_mult[THR_COMP_NEAR_NEARLB] = 1200;
rd->thresh_mult[THR_COMP_NEAREST_NEWLB] = 1500;
rd->thresh_mult[THR_COMP_NEW_NEARESTLB] = 1500;
rd->thresh_mult[THR_COMP_NEAR_NEWLB] = 1360;
rd->thresh_mult[THR_COMP_NEW_NEARLB] = 1700;
rd->thresh_mult[THR_COMP_NEW_NEWLB] = 2400;
rd->thresh_mult[THR_COMP_GLOBAL_GLOBALLB] = 2250;
rd->thresh_mult[THR_COMP_NEAR_NEARL2B] = 1200;
rd->thresh_mult[THR_COMP_NEAREST_NEWL2B] = 1500;
rd->thresh_mult[THR_COMP_NEW_NEARESTL2B] = 1500;
rd->thresh_mult[THR_COMP_NEAR_NEWL2B] = 1700;
rd->thresh_mult[THR_COMP_NEW_NEARL2B] = 1700;
rd->thresh_mult[THR_COMP_NEW_NEWL2B] = 2000;
rd->thresh_mult[THR_COMP_GLOBAL_GLOBALL2B] = 2500;
rd->thresh_mult[THR_COMP_NEAR_NEARL3B] = 1200;
rd->thresh_mult[THR_COMP_NEAREST_NEWL3B] = 1500;
rd->thresh_mult[THR_COMP_NEW_NEARESTL3B] = 1500;
rd->thresh_mult[THR_COMP_NEAR_NEWL3B] = 1870;
rd->thresh_mult[THR_COMP_NEW_NEARL3B] = 1700;
rd->thresh_mult[THR_COMP_NEW_NEWL3B] = 2000;
rd->thresh_mult[THR_COMP_GLOBAL_GLOBALL3B] = 2500;
rd->thresh_mult[THR_COMP_NEAR_NEARGB] = 1200;
rd->thresh_mult[THR_COMP_NEAREST_NEWGB] = 1500;
rd->thresh_mult[THR_COMP_NEW_NEARESTGB] = 1500;
rd->thresh_mult[THR_COMP_NEAR_NEWGB] = 1700;
rd->thresh_mult[THR_COMP_NEW_NEARGB] = 1700;
rd->thresh_mult[THR_COMP_NEW_NEWGB] = 2000;
rd->thresh_mult[THR_COMP_GLOBAL_GLOBALGB] = 2500;
rd->thresh_mult[THR_COMP_NEAR_NEARLA2] = 1200;
rd->thresh_mult[THR_COMP_NEAREST_NEWLA2] = 1800;
rd->thresh_mult[THR_COMP_NEW_NEARESTLA2] = 1500;
rd->thresh_mult[THR_COMP_NEAR_NEWLA2] = 1700;
rd->thresh_mult[THR_COMP_NEW_NEARLA2] = 1700;
rd->thresh_mult[THR_COMP_NEW_NEWLA2] = 2000;
rd->thresh_mult[THR_COMP_GLOBAL_GLOBALLA2] = 2500;
rd->thresh_mult[THR_COMP_NEAR_NEARL2A2] = 1200;
rd->thresh_mult[THR_COMP_NEAREST_NEWL2A2] = 1500;
rd->thresh_mult[THR_COMP_NEW_NEARESTL2A2] = 1500;
rd->thresh_mult[THR_COMP_NEAR_NEWL2A2] = 1700;
rd->thresh_mult[THR_COMP_NEW_NEARL2A2] = 1700;
rd->thresh_mult[THR_COMP_NEW_NEWL2A2] = 2000;
rd->thresh_mult[THR_COMP_GLOBAL_GLOBALL2A2] = 2500;
rd->thresh_mult[THR_COMP_NEAR_NEARL3A2] = 1440;
rd->thresh_mult[THR_COMP_NEAREST_NEWL3A2] = 1500;
rd->thresh_mult[THR_COMP_NEW_NEARESTL3A2] = 1500;
rd->thresh_mult[THR_COMP_NEAR_NEWL3A2] = 1700;
rd->thresh_mult[THR_COMP_NEW_NEARL3A2] = 1700;
rd->thresh_mult[THR_COMP_NEW_NEWL3A2] = 2000;
rd->thresh_mult[THR_COMP_GLOBAL_GLOBALL3A2] = 2500;
rd->thresh_mult[THR_COMP_NEAR_NEARGA2] = 1200;
rd->thresh_mult[THR_COMP_NEAREST_NEWGA2] = 1500;
rd->thresh_mult[THR_COMP_NEW_NEARESTGA2] = 1500;
rd->thresh_mult[THR_COMP_NEAR_NEWGA2] = 1700;
rd->thresh_mult[THR_COMP_NEW_NEARGA2] = 1700;
rd->thresh_mult[THR_COMP_NEW_NEWGA2] = 2000;
rd->thresh_mult[THR_COMP_GLOBAL_GLOBALGA2] = 2750;
rd->thresh_mult[THR_COMP_NEAR_NEARLL2] = 1600;
rd->thresh_mult[THR_COMP_NEAREST_NEWLL2] = 2000;
rd->thresh_mult[THR_COMP_NEW_NEARESTLL2] = 2000;
rd->thresh_mult[THR_COMP_NEAR_NEWLL2] = 2640;
rd->thresh_mult[THR_COMP_NEW_NEARLL2] = 2200;
rd->thresh_mult[THR_COMP_NEW_NEWLL2] = 2400;
rd->thresh_mult[THR_COMP_GLOBAL_GLOBALLL2] = 3200;
rd->thresh_mult[THR_COMP_NEAR_NEARLL3] = 1600;
rd->thresh_mult[THR_COMP_NEAREST_NEWLL3] = 2000;
rd->thresh_mult[THR_COMP_NEW_NEARESTLL3] = 1800;
rd->thresh_mult[THR_COMP_NEAR_NEWLL3] = 2200;
rd->thresh_mult[THR_COMP_NEW_NEARLL3] = 2200;
rd->thresh_mult[THR_COMP_NEW_NEWLL3] = 2400;
rd->thresh_mult[THR_COMP_GLOBAL_GLOBALLL3] = 3200;
rd->thresh_mult[THR_COMP_NEAR_NEARLG] = 1760;
rd->thresh_mult[THR_COMP_NEAREST_NEWLG] = 2400;
rd->thresh_mult[THR_COMP_NEW_NEARESTLG] = 2000;
rd->thresh_mult[THR_COMP_NEAR_NEWLG] = 1760;
rd->thresh_mult[THR_COMP_NEW_NEARLG] = 2640;
rd->thresh_mult[THR_COMP_NEW_NEWLG] = 2400;
rd->thresh_mult[THR_COMP_GLOBAL_GLOBALLG] = 3200;
rd->thresh_mult[THR_COMP_NEAR_NEARBA] = 1600;
rd->thresh_mult[THR_COMP_NEAREST_NEWBA] = 2000;
rd->thresh_mult[THR_COMP_NEW_NEARESTBA] = 2000;
rd->thresh_mult[THR_COMP_NEAR_NEWBA] = 2200;
rd->thresh_mult[THR_COMP_NEW_NEARBA] = 1980;
rd->thresh_mult[THR_COMP_NEW_NEWBA] = 2640;
rd->thresh_mult[THR_COMP_GLOBAL_GLOBALBA] = 3200;
rd->thresh_mult[THR_DC] = 1000;
rd->thresh_mult[THR_PAETH] = 1000;
rd->thresh_mult[THR_SMOOTH] = 2200;
rd->thresh_mult[THR_SMOOTH_V] = 2000;
rd->thresh_mult[THR_SMOOTH_H] = 2000;
rd->thresh_mult[THR_H_PRED] = 2000;
rd->thresh_mult[THR_V_PRED] = 1800;
rd->thresh_mult[THR_D135_PRED] = 2500;
rd->thresh_mult[THR_D203_PRED] = 2000;
rd->thresh_mult[THR_D157_PRED] = 2500;
rd->thresh_mult[THR_D67_PRED] = 2000;
rd->thresh_mult[THR_D113_PRED] = 2500;
rd->thresh_mult[THR_D45_PRED] = 2500;
}
static INLINE void update_thr_fact(int (*factor_buf)[MAX_MODES],
THR_MODES best_mode_index,
THR_MODES mode_start, THR_MODES mode_end,
BLOCK_SIZE min_size, BLOCK_SIZE max_size,
int max_rd_thresh_factor) {
for (THR_MODES mode = mode_start; mode < mode_end; ++mode) {
for (BLOCK_SIZE bs = min_size; bs <= max_size; ++bs) {
int *const fact = &factor_buf[bs][mode];
if (mode == best_mode_index) {
*fact -= (*fact >> RD_THRESH_LOG_DEC_FACTOR);
} else {
*fact = AOMMIN(*fact + RD_THRESH_INC, max_rd_thresh_factor);
}
}
}
}
void av1_update_rd_thresh_fact(
const AV1_COMMON *const cm, int (*factor_buf)[MAX_MODES],
int use_adaptive_rd_thresh, BLOCK_SIZE bsize, THR_MODES best_mode_index,
THR_MODES inter_mode_start, THR_MODES inter_mode_end,
THR_MODES intra_mode_start, THR_MODES intra_mode_end) {
assert(use_adaptive_rd_thresh > 0);
const int max_rd_thresh_factor = use_adaptive_rd_thresh * RD_THRESH_MAX_FACT;
const int bsize_is_1_to_4 = bsize > cm->seq_params->sb_size;
BLOCK_SIZE min_size, max_size;
if (bsize_is_1_to_4) {
// This part handles block sizes with 1:4 and 4:1 aspect ratios
// TODO(any): Experiment with threshold update for parent/child blocks
min_size = bsize;
max_size = bsize;
} else {
min_size = AOMMAX(bsize - 2, BLOCK_4X4);
max_size = AOMMIN(bsize + 2, (int)cm->seq_params->sb_size);
}
update_thr_fact(factor_buf, best_mode_index, inter_mode_start, inter_mode_end,
min_size, max_size, max_rd_thresh_factor);
update_thr_fact(factor_buf, best_mode_index, intra_mode_start, intra_mode_end,
min_size, max_size, max_rd_thresh_factor);
}
int av1_get_intra_cost_penalty(int qindex, int qdelta,
aom_bit_depth_t bit_depth) {
const int q = av1_dc_quant_QTX(qindex, qdelta, bit_depth);
switch (bit_depth) {
case AOM_BITS_8: return 20 * q;
case AOM_BITS_10: return 5 * q;
case AOM_BITS_12: return ROUND_POWER_OF_TWO(5 * q, 2);
default:
assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12");
return -1;
}
}