| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved. |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <assert.h> |
| #include <math.h> |
| #include <stdbool.h> |
| |
| #include "config/aom_config.h" |
| #include "config/aom_dsp_rtcd.h" |
| #include "config/av1_rtcd.h" |
| |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_dsp/blend.h" |
| #include "aom_mem/aom_mem.h" |
| #include "aom_ports/aom_timer.h" |
| #include "aom_ports/mem.h" |
| |
| #include "av1/common/av1_common_int.h" |
| #include "av1/common/cfl.h" |
| #include "av1/common/blockd.h" |
| #include "av1/common/common.h" |
| #include "av1/common/common_data.h" |
| #include "av1/common/entropy.h" |
| #include "av1/common/entropymode.h" |
| #include "av1/common/idct.h" |
| #include "av1/common/mvref_common.h" |
| #include "av1/common/obmc.h" |
| #include "av1/common/pred_common.h" |
| #include "av1/common/quant_common.h" |
| #include "av1/common/reconinter.h" |
| #include "av1/common/reconintra.h" |
| #include "av1/common/scan.h" |
| #include "av1/common/seg_common.h" |
| #include "av1/common/txb_common.h" |
| #include "av1/common/warped_motion.h" |
| |
| #include "av1/encoder/aq_variance.h" |
| #include "av1/encoder/av1_quantize.h" |
| #include "av1/encoder/cost.h" |
| #include "av1/encoder/compound_type.h" |
| #include "av1/encoder/encodemb.h" |
| #include "av1/encoder/encodemv.h" |
| #include "av1/encoder/encoder.h" |
| #include "av1/encoder/encodetxb.h" |
| #include "av1/encoder/hybrid_fwd_txfm.h" |
| #include "av1/encoder/interp_search.h" |
| #include "av1/encoder/intra_mode_search.h" |
| #include "av1/encoder/intra_mode_search_utils.h" |
| #include "av1/encoder/mcomp.h" |
| #include "av1/encoder/ml.h" |
| #include "av1/encoder/mode_prune_model_weights.h" |
| #include "av1/encoder/model_rd.h" |
| #include "av1/encoder/motion_search_facade.h" |
| #include "av1/encoder/palette.h" |
| #include "av1/encoder/pustats.h" |
| #include "av1/encoder/random.h" |
| #include "av1/encoder/ratectrl.h" |
| #include "av1/encoder/rd.h" |
| #include "av1/encoder/rdopt.h" |
| #include "av1/encoder/reconinter_enc.h" |
| #include "av1/encoder/tokenize.h" |
| #include "av1/encoder/tpl_model.h" |
| #include "av1/encoder/tx_search.h" |
| #include "av1/encoder/var_based_part.h" |
| |
| #define LAST_NEW_MV_INDEX 6 |
| |
| // Mode_threshold multiplication factor table for prune_inter_modes_if_skippable |
| // The values are kept in Q12 format and equation used to derive is |
| // (2.5 - ((float)x->qindex / MAXQ) * 1.5) |
| #define MODE_THRESH_QBITS 12 |
| static const int mode_threshold_mul_factor[QINDEX_RANGE] = { |
| 10240, 10216, 10192, 10168, 10144, 10120, 10095, 10071, 10047, 10023, 9999, |
| 9975, 9951, 9927, 9903, 9879, 9854, 9830, 9806, 9782, 9758, 9734, |
| 9710, 9686, 9662, 9638, 9614, 9589, 9565, 9541, 9517, 9493, 9469, |
| 9445, 9421, 9397, 9373, 9349, 9324, 9300, 9276, 9252, 9228, 9204, |
| 9180, 9156, 9132, 9108, 9083, 9059, 9035, 9011, 8987, 8963, 8939, |
| 8915, 8891, 8867, 8843, 8818, 8794, 8770, 8746, 8722, 8698, 8674, |
| 8650, 8626, 8602, 8578, 8553, 8529, 8505, 8481, 8457, 8433, 8409, |
| 8385, 8361, 8337, 8312, 8288, 8264, 8240, 8216, 8192, 8168, 8144, |
| 8120, 8096, 8072, 8047, 8023, 7999, 7975, 7951, 7927, 7903, 7879, |
| 7855, 7831, 7806, 7782, 7758, 7734, 7710, 7686, 7662, 7638, 7614, |
| 7590, 7566, 7541, 7517, 7493, 7469, 7445, 7421, 7397, 7373, 7349, |
| 7325, 7301, 7276, 7252, 7228, 7204, 7180, 7156, 7132, 7108, 7084, |
| 7060, 7035, 7011, 6987, 6963, 6939, 6915, 6891, 6867, 6843, 6819, |
| 6795, 6770, 6746, 6722, 6698, 6674, 6650, 6626, 6602, 6578, 6554, |
| 6530, 6505, 6481, 6457, 6433, 6409, 6385, 6361, 6337, 6313, 6289, |
| 6264, 6240, 6216, 6192, 6168, 6144, 6120, 6096, 6072, 6048, 6024, |
| 5999, 5975, 5951, 5927, 5903, 5879, 5855, 5831, 5807, 5783, 5758, |
| 5734, 5710, 5686, 5662, 5638, 5614, 5590, 5566, 5542, 5518, 5493, |
| 5469, 5445, 5421, 5397, 5373, 5349, 5325, 5301, 5277, 5253, 5228, |
| 5204, 5180, 5156, 5132, 5108, 5084, 5060, 5036, 5012, 4987, 4963, |
| 4939, 4915, 4891, 4867, 4843, 4819, 4795, 4771, 4747, 4722, 4698, |
| 4674, 4650, 4626, 4602, 4578, 4554, 4530, 4506, 4482, 4457, 4433, |
| 4409, 4385, 4361, 4337, 4313, 4289, 4265, 4241, 4216, 4192, 4168, |
| 4144, 4120, 4096 |
| }; |
| |
| static const THR_MODES av1_default_mode_order[MAX_MODES] = { |
| THR_NEARESTMV, |
| THR_NEARESTL2, |
| THR_NEARESTL3, |
| THR_NEARESTB, |
| THR_NEARESTA2, |
| THR_NEARESTA, |
| THR_NEARESTG, |
| |
| THR_NEWMV, |
| THR_NEWL2, |
| THR_NEWL3, |
| THR_NEWB, |
| THR_NEWA2, |
| THR_NEWA, |
| THR_NEWG, |
| |
| THR_NEARMV, |
| THR_NEARL2, |
| THR_NEARL3, |
| THR_NEARB, |
| THR_NEARA2, |
| THR_NEARA, |
| THR_NEARG, |
| |
| THR_GLOBALMV, |
| THR_GLOBALL2, |
| THR_GLOBALL3, |
| THR_GLOBALB, |
| THR_GLOBALA2, |
| THR_GLOBALA, |
| THR_GLOBALG, |
| |
| THR_COMP_NEAREST_NEARESTLA, |
| THR_COMP_NEAREST_NEARESTL2A, |
| THR_COMP_NEAREST_NEARESTL3A, |
| THR_COMP_NEAREST_NEARESTGA, |
| THR_COMP_NEAREST_NEARESTLB, |
| THR_COMP_NEAREST_NEARESTL2B, |
| THR_COMP_NEAREST_NEARESTL3B, |
| THR_COMP_NEAREST_NEARESTGB, |
| THR_COMP_NEAREST_NEARESTLA2, |
| THR_COMP_NEAREST_NEARESTL2A2, |
| THR_COMP_NEAREST_NEARESTL3A2, |
| THR_COMP_NEAREST_NEARESTGA2, |
| THR_COMP_NEAREST_NEARESTLL2, |
| THR_COMP_NEAREST_NEARESTLL3, |
| THR_COMP_NEAREST_NEARESTLG, |
| THR_COMP_NEAREST_NEARESTBA, |
| |
| THR_COMP_NEAR_NEARLB, |
| THR_COMP_NEW_NEWLB, |
| THR_COMP_NEW_NEARESTLB, |
| THR_COMP_NEAREST_NEWLB, |
| THR_COMP_NEW_NEARLB, |
| THR_COMP_NEAR_NEWLB, |
| THR_COMP_GLOBAL_GLOBALLB, |
| |
| THR_COMP_NEAR_NEARLA, |
| THR_COMP_NEW_NEWLA, |
| THR_COMP_NEW_NEARESTLA, |
| THR_COMP_NEAREST_NEWLA, |
| THR_COMP_NEW_NEARLA, |
| THR_COMP_NEAR_NEWLA, |
| THR_COMP_GLOBAL_GLOBALLA, |
| |
| THR_COMP_NEAR_NEARL2A, |
| THR_COMP_NEW_NEWL2A, |
| THR_COMP_NEW_NEARESTL2A, |
| THR_COMP_NEAREST_NEWL2A, |
| THR_COMP_NEW_NEARL2A, |
| THR_COMP_NEAR_NEWL2A, |
| THR_COMP_GLOBAL_GLOBALL2A, |
| |
| THR_COMP_NEAR_NEARL3A, |
| THR_COMP_NEW_NEWL3A, |
| THR_COMP_NEW_NEARESTL3A, |
| THR_COMP_NEAREST_NEWL3A, |
| THR_COMP_NEW_NEARL3A, |
| THR_COMP_NEAR_NEWL3A, |
| THR_COMP_GLOBAL_GLOBALL3A, |
| |
| THR_COMP_NEAR_NEARGA, |
| THR_COMP_NEW_NEWGA, |
| THR_COMP_NEW_NEARESTGA, |
| THR_COMP_NEAREST_NEWGA, |
| THR_COMP_NEW_NEARGA, |
| THR_COMP_NEAR_NEWGA, |
| THR_COMP_GLOBAL_GLOBALGA, |
| |
| THR_COMP_NEAR_NEARL2B, |
| THR_COMP_NEW_NEWL2B, |
| THR_COMP_NEW_NEARESTL2B, |
| THR_COMP_NEAREST_NEWL2B, |
| THR_COMP_NEW_NEARL2B, |
| THR_COMP_NEAR_NEWL2B, |
| THR_COMP_GLOBAL_GLOBALL2B, |
| |
| THR_COMP_NEAR_NEARL3B, |
| THR_COMP_NEW_NEWL3B, |
| THR_COMP_NEW_NEARESTL3B, |
| THR_COMP_NEAREST_NEWL3B, |
| THR_COMP_NEW_NEARL3B, |
| THR_COMP_NEAR_NEWL3B, |
| THR_COMP_GLOBAL_GLOBALL3B, |
| |
| THR_COMP_NEAR_NEARGB, |
| THR_COMP_NEW_NEWGB, |
| THR_COMP_NEW_NEARESTGB, |
| THR_COMP_NEAREST_NEWGB, |
| THR_COMP_NEW_NEARGB, |
| THR_COMP_NEAR_NEWGB, |
| THR_COMP_GLOBAL_GLOBALGB, |
| |
| THR_COMP_NEAR_NEARLA2, |
| THR_COMP_NEW_NEWLA2, |
| THR_COMP_NEW_NEARESTLA2, |
| THR_COMP_NEAREST_NEWLA2, |
| THR_COMP_NEW_NEARLA2, |
| THR_COMP_NEAR_NEWLA2, |
| THR_COMP_GLOBAL_GLOBALLA2, |
| |
| THR_COMP_NEAR_NEARL2A2, |
| THR_COMP_NEW_NEWL2A2, |
| THR_COMP_NEW_NEARESTL2A2, |
| THR_COMP_NEAREST_NEWL2A2, |
| THR_COMP_NEW_NEARL2A2, |
| THR_COMP_NEAR_NEWL2A2, |
| THR_COMP_GLOBAL_GLOBALL2A2, |
| |
| THR_COMP_NEAR_NEARL3A2, |
| THR_COMP_NEW_NEWL3A2, |
| THR_COMP_NEW_NEARESTL3A2, |
| THR_COMP_NEAREST_NEWL3A2, |
| THR_COMP_NEW_NEARL3A2, |
| THR_COMP_NEAR_NEWL3A2, |
| THR_COMP_GLOBAL_GLOBALL3A2, |
| |
| THR_COMP_NEAR_NEARGA2, |
| THR_COMP_NEW_NEWGA2, |
| THR_COMP_NEW_NEARESTGA2, |
| THR_COMP_NEAREST_NEWGA2, |
| THR_COMP_NEW_NEARGA2, |
| THR_COMP_NEAR_NEWGA2, |
| THR_COMP_GLOBAL_GLOBALGA2, |
| |
| THR_COMP_NEAR_NEARLL2, |
| THR_COMP_NEW_NEWLL2, |
| THR_COMP_NEW_NEARESTLL2, |
| THR_COMP_NEAREST_NEWLL2, |
| THR_COMP_NEW_NEARLL2, |
| THR_COMP_NEAR_NEWLL2, |
| THR_COMP_GLOBAL_GLOBALLL2, |
| |
| THR_COMP_NEAR_NEARLL3, |
| THR_COMP_NEW_NEWLL3, |
| THR_COMP_NEW_NEARESTLL3, |
| THR_COMP_NEAREST_NEWLL3, |
| THR_COMP_NEW_NEARLL3, |
| THR_COMP_NEAR_NEWLL3, |
| THR_COMP_GLOBAL_GLOBALLL3, |
| |
| THR_COMP_NEAR_NEARLG, |
| THR_COMP_NEW_NEWLG, |
| THR_COMP_NEW_NEARESTLG, |
| THR_COMP_NEAREST_NEWLG, |
| THR_COMP_NEW_NEARLG, |
| THR_COMP_NEAR_NEWLG, |
| THR_COMP_GLOBAL_GLOBALLG, |
| |
| THR_COMP_NEAR_NEARBA, |
| THR_COMP_NEW_NEWBA, |
| THR_COMP_NEW_NEARESTBA, |
| THR_COMP_NEAREST_NEWBA, |
| THR_COMP_NEW_NEARBA, |
| THR_COMP_NEAR_NEWBA, |
| THR_COMP_GLOBAL_GLOBALBA, |
| |
| THR_DC, |
| THR_PAETH, |
| THR_SMOOTH, |
| THR_SMOOTH_V, |
| THR_SMOOTH_H, |
| THR_H_PRED, |
| THR_V_PRED, |
| THR_D135_PRED, |
| THR_D203_PRED, |
| THR_D157_PRED, |
| THR_D67_PRED, |
| THR_D113_PRED, |
| THR_D45_PRED, |
| }; |
| |
| /*!\cond */ |
| typedef struct SingleInterModeState { |
| int64_t rd; |
| MV_REFERENCE_FRAME ref_frame; |
| int valid; |
| } SingleInterModeState; |
| |
| typedef struct InterModeSearchState { |
| int64_t best_rd; |
| int64_t best_skip_rd[2]; |
| MB_MODE_INFO best_mbmode; |
| int best_rate_y; |
| int best_rate_uv; |
| int best_mode_skippable; |
| int best_skip2; |
| THR_MODES best_mode_index; |
| int num_available_refs; |
| int64_t dist_refs[REF_FRAMES]; |
| int dist_order_refs[REF_FRAMES]; |
| int64_t mode_threshold[MAX_MODES]; |
| int64_t best_intra_rd; |
| unsigned int best_pred_sse; |
| |
| /*! |
| * \brief Keep track of best intra rd for use in compound mode. |
| */ |
| int64_t best_pred_rd[REFERENCE_MODES]; |
| // Save a set of single_newmv for each checked ref_mv. |
| int_mv single_newmv[MAX_REF_MV_SEARCH][REF_FRAMES]; |
| int single_newmv_rate[MAX_REF_MV_SEARCH][REF_FRAMES]; |
| int single_newmv_valid[MAX_REF_MV_SEARCH][REF_FRAMES]; |
| int64_t modelled_rd[MB_MODE_COUNT][MAX_REF_MV_SEARCH][REF_FRAMES]; |
| // The rd of simple translation in single inter modes |
| int64_t simple_rd[MB_MODE_COUNT][MAX_REF_MV_SEARCH][REF_FRAMES]; |
| int64_t best_single_rd[REF_FRAMES]; |
| PREDICTION_MODE best_single_mode[REF_FRAMES]; |
| |
| // Single search results by [directions][modes][reference frames] |
| SingleInterModeState single_state[2][SINGLE_INTER_MODE_NUM][FWD_REFS]; |
| int single_state_cnt[2][SINGLE_INTER_MODE_NUM]; |
| SingleInterModeState single_state_modelled[2][SINGLE_INTER_MODE_NUM] |
| [FWD_REFS]; |
| int single_state_modelled_cnt[2][SINGLE_INTER_MODE_NUM]; |
| MV_REFERENCE_FRAME single_rd_order[2][SINGLE_INTER_MODE_NUM][FWD_REFS]; |
| IntraModeSearchState intra_search_state; |
| RD_STATS best_y_rdcost; |
| } InterModeSearchState; |
| /*!\endcond */ |
| |
| void av1_inter_mode_data_init(TileDataEnc *tile_data) { |
| for (int i = 0; i < BLOCK_SIZES_ALL; ++i) { |
| InterModeRdModel *md = &tile_data->inter_mode_rd_models[i]; |
| md->ready = 0; |
| md->num = 0; |
| md->dist_sum = 0; |
| md->ld_sum = 0; |
| md->sse_sum = 0; |
| md->sse_sse_sum = 0; |
| md->sse_ld_sum = 0; |
| } |
| } |
| |
| static int get_est_rate_dist(const TileDataEnc *tile_data, BLOCK_SIZE bsize, |
| int64_t sse, int *est_residue_cost, |
| int64_t *est_dist) { |
| const InterModeRdModel *md = &tile_data->inter_mode_rd_models[bsize]; |
| if (md->ready) { |
| if (sse < md->dist_mean) { |
| *est_residue_cost = 0; |
| *est_dist = sse; |
| } else { |
| *est_dist = (int64_t)round(md->dist_mean); |
| const double est_ld = md->a * sse + md->b; |
| // Clamp estimated rate cost by INT_MAX / 2. |
| // TODO(angiebird@google.com): find better solution than clamping. |
| if (fabs(est_ld) < 1e-2) { |
| *est_residue_cost = INT_MAX / 2; |
| } else { |
| double est_residue_cost_dbl = ((sse - md->dist_mean) / est_ld); |
| if (est_residue_cost_dbl < 0) { |
| *est_residue_cost = 0; |
| } else { |
| *est_residue_cost = |
| (int)AOMMIN((int64_t)round(est_residue_cost_dbl), INT_MAX / 2); |
| } |
| } |
| if (*est_residue_cost <= 0) { |
| *est_residue_cost = 0; |
| *est_dist = sse; |
| } |
| } |
| return 1; |
| } |
| return 0; |
| } |
| |
| void av1_inter_mode_data_fit(TileDataEnc *tile_data, int rdmult) { |
| for (int bsize = 0; bsize < BLOCK_SIZES_ALL; ++bsize) { |
| const int block_idx = inter_mode_data_block_idx(bsize); |
| InterModeRdModel *md = &tile_data->inter_mode_rd_models[bsize]; |
| if (block_idx == -1) continue; |
| if ((md->ready == 0 && md->num < 200) || (md->ready == 1 && md->num < 64)) { |
| continue; |
| } else { |
| if (md->ready == 0) { |
| md->dist_mean = md->dist_sum / md->num; |
| md->ld_mean = md->ld_sum / md->num; |
| md->sse_mean = md->sse_sum / md->num; |
| md->sse_sse_mean = md->sse_sse_sum / md->num; |
| md->sse_ld_mean = md->sse_ld_sum / md->num; |
| } else { |
| const double factor = 3; |
| md->dist_mean = |
| (md->dist_mean * factor + (md->dist_sum / md->num)) / (factor + 1); |
| md->ld_mean = |
| (md->ld_mean * factor + (md->ld_sum / md->num)) / (factor + 1); |
| md->sse_mean = |
| (md->sse_mean * factor + (md->sse_sum / md->num)) / (factor + 1); |
| md->sse_sse_mean = |
| (md->sse_sse_mean * factor + (md->sse_sse_sum / md->num)) / |
| (factor + 1); |
| md->sse_ld_mean = |
| (md->sse_ld_mean * factor + (md->sse_ld_sum / md->num)) / |
| (factor + 1); |
| } |
| |
| const double my = md->ld_mean; |
| const double mx = md->sse_mean; |
| const double dx = sqrt(md->sse_sse_mean); |
| const double dxy = md->sse_ld_mean; |
| |
| md->a = (dxy - mx * my) / (dx * dx - mx * mx); |
| md->b = my - md->a * mx; |
| md->ready = 1; |
| |
| md->num = 0; |
| md->dist_sum = 0; |
| md->ld_sum = 0; |
| md->sse_sum = 0; |
| md->sse_sse_sum = 0; |
| md->sse_ld_sum = 0; |
| } |
| (void)rdmult; |
| } |
| } |
| |
| static AOM_INLINE void inter_mode_data_push(TileDataEnc *tile_data, |
| BLOCK_SIZE bsize, int64_t sse, |
| int64_t dist, int residue_cost) { |
| if (residue_cost == 0 || sse == dist) return; |
| const int block_idx = inter_mode_data_block_idx(bsize); |
| if (block_idx == -1) return; |
| InterModeRdModel *rd_model = &tile_data->inter_mode_rd_models[bsize]; |
| if (rd_model->num < INTER_MODE_RD_DATA_OVERALL_SIZE) { |
| const double ld = (sse - dist) * 1. / residue_cost; |
| ++rd_model->num; |
| rd_model->dist_sum += dist; |
| rd_model->ld_sum += ld; |
| rd_model->sse_sum += sse; |
| rd_model->sse_sse_sum += (double)sse * (double)sse; |
| rd_model->sse_ld_sum += sse * ld; |
| } |
| } |
| |
| static AOM_INLINE void inter_modes_info_push(InterModesInfo *inter_modes_info, |
| int mode_rate, int64_t sse, |
| int64_t rd, RD_STATS *rd_cost, |
| RD_STATS *rd_cost_y, |
| RD_STATS *rd_cost_uv, |
| const MB_MODE_INFO *mbmi) { |
| const int num = inter_modes_info->num; |
| assert(num < MAX_INTER_MODES); |
| inter_modes_info->mbmi_arr[num] = *mbmi; |
| inter_modes_info->mode_rate_arr[num] = mode_rate; |
| inter_modes_info->sse_arr[num] = sse; |
| inter_modes_info->est_rd_arr[num] = rd; |
| inter_modes_info->rd_cost_arr[num] = *rd_cost; |
| inter_modes_info->rd_cost_y_arr[num] = *rd_cost_y; |
| inter_modes_info->rd_cost_uv_arr[num] = *rd_cost_uv; |
| ++inter_modes_info->num; |
| } |
| |
| static int compare_rd_idx_pair(const void *a, const void *b) { |
| if (((RdIdxPair *)a)->rd == ((RdIdxPair *)b)->rd) { |
| // To avoid inconsistency in qsort() ordering when two elements are equal, |
| // using idx as tie breaker. Refer aomedia:2928 |
| if (((RdIdxPair *)a)->idx == ((RdIdxPair *)b)->idx) |
| return 0; |
| else if (((RdIdxPair *)a)->idx > ((RdIdxPair *)b)->idx) |
| return 1; |
| else |
| return -1; |
| } else if (((const RdIdxPair *)a)->rd > ((const RdIdxPair *)b)->rd) { |
| return 1; |
| } else { |
| return -1; |
| } |
| } |
| |
| static AOM_INLINE void inter_modes_info_sort( |
| const InterModesInfo *inter_modes_info, RdIdxPair *rd_idx_pair_arr) { |
| if (inter_modes_info->num == 0) { |
| return; |
| } |
| for (int i = 0; i < inter_modes_info->num; ++i) { |
| rd_idx_pair_arr[i].idx = i; |
| rd_idx_pair_arr[i].rd = inter_modes_info->est_rd_arr[i]; |
| } |
| qsort(rd_idx_pair_arr, inter_modes_info->num, sizeof(rd_idx_pair_arr[0]), |
| compare_rd_idx_pair); |
| } |
| |
| // Similar to get_horver_correlation, but also takes into account first |
| // row/column, when computing horizontal/vertical correlation. |
| void av1_get_horver_correlation_full_c(const int16_t *diff, int stride, |
| int width, int height, float *hcorr, |
| float *vcorr) { |
| // The following notation is used: |
| // x - current pixel |
| // y - left neighbor pixel |
| // z - top neighbor pixel |
| int64_t x_sum = 0, x2_sum = 0, xy_sum = 0, xz_sum = 0; |
| int64_t x_firstrow = 0, x_finalrow = 0, x_firstcol = 0, x_finalcol = 0; |
| int64_t x2_firstrow = 0, x2_finalrow = 0, x2_firstcol = 0, x2_finalcol = 0; |
| |
| // First, process horizontal correlation on just the first row |
| x_sum += diff[0]; |
| x2_sum += diff[0] * diff[0]; |
| x_firstrow += diff[0]; |
| x2_firstrow += diff[0] * diff[0]; |
| for (int j = 1; j < width; ++j) { |
| const int16_t x = diff[j]; |
| const int16_t y = diff[j - 1]; |
| x_sum += x; |
| x_firstrow += x; |
| x2_sum += x * x; |
| x2_firstrow += x * x; |
| xy_sum += x * y; |
| } |
| |
| // Process vertical correlation in the first column |
| x_firstcol += diff[0]; |
| x2_firstcol += diff[0] * diff[0]; |
| for (int i = 1; i < height; ++i) { |
| const int16_t x = diff[i * stride]; |
| const int16_t z = diff[(i - 1) * stride]; |
| x_sum += x; |
| x_firstcol += x; |
| x2_sum += x * x; |
| x2_firstcol += x * x; |
| xz_sum += x * z; |
| } |
| |
| // Now process horiz and vert correlation through the rest unit |
| for (int i = 1; i < height; ++i) { |
| for (int j = 1; j < width; ++j) { |
| const int16_t x = diff[i * stride + j]; |
| const int16_t y = diff[i * stride + j - 1]; |
| const int16_t z = diff[(i - 1) * stride + j]; |
| x_sum += x; |
| x2_sum += x * x; |
| xy_sum += x * y; |
| xz_sum += x * z; |
| } |
| } |
| |
| for (int j = 0; j < width; ++j) { |
| x_finalrow += diff[(height - 1) * stride + j]; |
| x2_finalrow += |
| diff[(height - 1) * stride + j] * diff[(height - 1) * stride + j]; |
| } |
| for (int i = 0; i < height; ++i) { |
| x_finalcol += diff[i * stride + width - 1]; |
| x2_finalcol += diff[i * stride + width - 1] * diff[i * stride + width - 1]; |
| } |
| |
| int64_t xhor_sum = x_sum - x_finalcol; |
| int64_t xver_sum = x_sum - x_finalrow; |
| int64_t y_sum = x_sum - x_firstcol; |
| int64_t z_sum = x_sum - x_firstrow; |
| int64_t x2hor_sum = x2_sum - x2_finalcol; |
| int64_t x2ver_sum = x2_sum - x2_finalrow; |
| int64_t y2_sum = x2_sum - x2_firstcol; |
| int64_t z2_sum = x2_sum - x2_firstrow; |
| |
| const float num_hor = (float)(height * (width - 1)); |
| const float num_ver = (float)((height - 1) * width); |
| |
| const float xhor_var_n = x2hor_sum - (xhor_sum * xhor_sum) / num_hor; |
| const float xver_var_n = x2ver_sum - (xver_sum * xver_sum) / num_ver; |
| |
| const float y_var_n = y2_sum - (y_sum * y_sum) / num_hor; |
| const float z_var_n = z2_sum - (z_sum * z_sum) / num_ver; |
| |
| const float xy_var_n = xy_sum - (xhor_sum * y_sum) / num_hor; |
| const float xz_var_n = xz_sum - (xver_sum * z_sum) / num_ver; |
| |
| if (xhor_var_n > 0 && y_var_n > 0) { |
| *hcorr = xy_var_n / sqrtf(xhor_var_n * y_var_n); |
| *hcorr = *hcorr < 0 ? 0 : *hcorr; |
| } else { |
| *hcorr = 1.0; |
| } |
| if (xver_var_n > 0 && z_var_n > 0) { |
| *vcorr = xz_var_n / sqrtf(xver_var_n * z_var_n); |
| *vcorr = *vcorr < 0 ? 0 : *vcorr; |
| } else { |
| *vcorr = 1.0; |
| } |
| } |
| |
| static int64_t get_sse(const AV1_COMP *cpi, const MACROBLOCK *x, |
| int64_t *sse_y) { |
| const AV1_COMMON *cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| const MACROBLOCKD *xd = &x->e_mbd; |
| const MB_MODE_INFO *mbmi = xd->mi[0]; |
| int64_t total_sse = 0; |
| for (int plane = 0; plane < num_planes; ++plane) { |
| if (plane && !xd->is_chroma_ref) break; |
| const struct macroblock_plane *const p = &x->plane[plane]; |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const BLOCK_SIZE bs = |
| get_plane_block_size(mbmi->bsize, pd->subsampling_x, pd->subsampling_y); |
| unsigned int sse; |
| |
| cpi->ppi->fn_ptr[bs].vf(p->src.buf, p->src.stride, pd->dst.buf, |
| pd->dst.stride, &sse); |
| total_sse += sse; |
| if (!plane && sse_y) *sse_y = sse; |
| } |
| total_sse <<= 4; |
| return total_sse; |
| } |
| |
| int64_t av1_block_error_c(const tran_low_t *coeff, const tran_low_t *dqcoeff, |
| intptr_t block_size, int64_t *ssz) { |
| int i; |
| int64_t error = 0, sqcoeff = 0; |
| |
| for (i = 0; i < block_size; i++) { |
| const int diff = coeff[i] - dqcoeff[i]; |
| error += diff * diff; |
| sqcoeff += coeff[i] * coeff[i]; |
| } |
| |
| *ssz = sqcoeff; |
| return error; |
| } |
| |
| int64_t av1_block_error_lp_c(const int16_t *coeff, const int16_t *dqcoeff, |
| intptr_t block_size) { |
| int64_t error = 0; |
| |
| for (int i = 0; i < block_size; i++) { |
| const int diff = coeff[i] - dqcoeff[i]; |
| error += diff * diff; |
| } |
| |
| return error; |
| } |
| |
| #if CONFIG_AV1_HIGHBITDEPTH |
| int64_t av1_highbd_block_error_c(const tran_low_t *coeff, |
| const tran_low_t *dqcoeff, intptr_t block_size, |
| int64_t *ssz, int bd) { |
| int i; |
| int64_t error = 0, sqcoeff = 0; |
| int shift = 2 * (bd - 8); |
| int rounding = shift > 0 ? 1 << (shift - 1) : 0; |
| |
| for (i = 0; i < block_size; i++) { |
| const int64_t diff = coeff[i] - dqcoeff[i]; |
| error += diff * diff; |
| sqcoeff += (int64_t)coeff[i] * (int64_t)coeff[i]; |
| } |
| assert(error >= 0 && sqcoeff >= 0); |
| error = (error + rounding) >> shift; |
| sqcoeff = (sqcoeff + rounding) >> shift; |
| |
| *ssz = sqcoeff; |
| return error; |
| } |
| #endif |
| |
| static int conditional_skipintra(PREDICTION_MODE mode, |
| PREDICTION_MODE best_intra_mode) { |
| if (mode == D113_PRED && best_intra_mode != V_PRED && |
| best_intra_mode != D135_PRED) |
| return 1; |
| if (mode == D67_PRED && best_intra_mode != V_PRED && |
| best_intra_mode != D45_PRED) |
| return 1; |
| if (mode == D203_PRED && best_intra_mode != H_PRED && |
| best_intra_mode != D45_PRED) |
| return 1; |
| if (mode == D157_PRED && best_intra_mode != H_PRED && |
| best_intra_mode != D135_PRED) |
| return 1; |
| return 0; |
| } |
| |
| static int cost_mv_ref(const ModeCosts *const mode_costs, PREDICTION_MODE mode, |
| int16_t mode_context) { |
| if (is_inter_compound_mode(mode)) { |
| return mode_costs |
| ->inter_compound_mode_cost[mode_context][INTER_COMPOUND_OFFSET(mode)]; |
| } |
| |
| int mode_cost = 0; |
| int16_t mode_ctx = mode_context & NEWMV_CTX_MASK; |
| |
| assert(is_inter_mode(mode)); |
| |
| if (mode == NEWMV) { |
| mode_cost = mode_costs->newmv_mode_cost[mode_ctx][0]; |
| return mode_cost; |
| } else { |
| mode_cost = mode_costs->newmv_mode_cost[mode_ctx][1]; |
| mode_ctx = (mode_context >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK; |
| |
| if (mode == GLOBALMV) { |
| mode_cost += mode_costs->zeromv_mode_cost[mode_ctx][0]; |
| return mode_cost; |
| } else { |
| mode_cost += mode_costs->zeromv_mode_cost[mode_ctx][1]; |
| mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK; |
| mode_cost += mode_costs->refmv_mode_cost[mode_ctx][mode != NEARESTMV]; |
| return mode_cost; |
| } |
| } |
| } |
| |
| static INLINE PREDICTION_MODE get_single_mode(PREDICTION_MODE this_mode, |
| int ref_idx) { |
| return ref_idx ? compound_ref1_mode(this_mode) |
| : compound_ref0_mode(this_mode); |
| } |
| |
| static AOM_INLINE void estimate_ref_frame_costs( |
| const AV1_COMMON *cm, const MACROBLOCKD *xd, const ModeCosts *mode_costs, |
| int segment_id, unsigned int *ref_costs_single, |
| unsigned int (*ref_costs_comp)[REF_FRAMES]) { |
| int seg_ref_active = |
| segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME); |
| if (seg_ref_active) { |
| memset(ref_costs_single, 0, REF_FRAMES * sizeof(*ref_costs_single)); |
| int ref_frame; |
| for (ref_frame = 0; ref_frame < REF_FRAMES; ++ref_frame) |
| memset(ref_costs_comp[ref_frame], 0, |
| REF_FRAMES * sizeof((*ref_costs_comp)[0])); |
| } else { |
| int intra_inter_ctx = av1_get_intra_inter_context(xd); |
| ref_costs_single[INTRA_FRAME] = |
| mode_costs->intra_inter_cost[intra_inter_ctx][0]; |
| unsigned int base_cost = mode_costs->intra_inter_cost[intra_inter_ctx][1]; |
| |
| for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i) |
| ref_costs_single[i] = base_cost; |
| |
| const int ctx_p1 = av1_get_pred_context_single_ref_p1(xd); |
| const int ctx_p2 = av1_get_pred_context_single_ref_p2(xd); |
| const int ctx_p3 = av1_get_pred_context_single_ref_p3(xd); |
| const int ctx_p4 = av1_get_pred_context_single_ref_p4(xd); |
| const int ctx_p5 = av1_get_pred_context_single_ref_p5(xd); |
| const int ctx_p6 = av1_get_pred_context_single_ref_p6(xd); |
| |
| // Determine cost of a single ref frame, where frame types are represented |
| // by a tree: |
| // Level 0: add cost whether this ref is a forward or backward ref |
| ref_costs_single[LAST_FRAME] += mode_costs->single_ref_cost[ctx_p1][0][0]; |
| ref_costs_single[LAST2_FRAME] += mode_costs->single_ref_cost[ctx_p1][0][0]; |
| ref_costs_single[LAST3_FRAME] += mode_costs->single_ref_cost[ctx_p1][0][0]; |
| ref_costs_single[GOLDEN_FRAME] += mode_costs->single_ref_cost[ctx_p1][0][0]; |
| ref_costs_single[BWDREF_FRAME] += mode_costs->single_ref_cost[ctx_p1][0][1]; |
| ref_costs_single[ALTREF2_FRAME] += |
| mode_costs->single_ref_cost[ctx_p1][0][1]; |
| ref_costs_single[ALTREF_FRAME] += mode_costs->single_ref_cost[ctx_p1][0][1]; |
| |
| // Level 1: if this ref is forward ref, |
| // add cost whether it is last/last2 or last3/golden |
| ref_costs_single[LAST_FRAME] += mode_costs->single_ref_cost[ctx_p3][2][0]; |
| ref_costs_single[LAST2_FRAME] += mode_costs->single_ref_cost[ctx_p3][2][0]; |
| ref_costs_single[LAST3_FRAME] += mode_costs->single_ref_cost[ctx_p3][2][1]; |
| ref_costs_single[GOLDEN_FRAME] += mode_costs->single_ref_cost[ctx_p3][2][1]; |
| |
| // Level 1: if this ref is backward ref |
| // then add cost whether this ref is altref or backward ref |
| ref_costs_single[BWDREF_FRAME] += mode_costs->single_ref_cost[ctx_p2][1][0]; |
| ref_costs_single[ALTREF2_FRAME] += |
| mode_costs->single_ref_cost[ctx_p2][1][0]; |
| ref_costs_single[ALTREF_FRAME] += mode_costs->single_ref_cost[ctx_p2][1][1]; |
| |
| // Level 2: further add cost whether this ref is last or last2 |
| ref_costs_single[LAST_FRAME] += mode_costs->single_ref_cost[ctx_p4][3][0]; |
| ref_costs_single[LAST2_FRAME] += mode_costs->single_ref_cost[ctx_p4][3][1]; |
| |
| // Level 2: last3 or golden |
| ref_costs_single[LAST3_FRAME] += mode_costs->single_ref_cost[ctx_p5][4][0]; |
| ref_costs_single[GOLDEN_FRAME] += mode_costs->single_ref_cost[ctx_p5][4][1]; |
| |
| // Level 2: bwdref or altref2 |
| ref_costs_single[BWDREF_FRAME] += mode_costs->single_ref_cost[ctx_p6][5][0]; |
| ref_costs_single[ALTREF2_FRAME] += |
| mode_costs->single_ref_cost[ctx_p6][5][1]; |
| |
| if (cm->current_frame.reference_mode != SINGLE_REFERENCE) { |
| // Similar to single ref, determine cost of compound ref frames. |
| // cost_compound_refs = cost_first_ref + cost_second_ref |
| const int bwdref_comp_ctx_p = av1_get_pred_context_comp_bwdref_p(xd); |
| const int bwdref_comp_ctx_p1 = av1_get_pred_context_comp_bwdref_p1(xd); |
| const int ref_comp_ctx_p = av1_get_pred_context_comp_ref_p(xd); |
| const int ref_comp_ctx_p1 = av1_get_pred_context_comp_ref_p1(xd); |
| const int ref_comp_ctx_p2 = av1_get_pred_context_comp_ref_p2(xd); |
| |
| const int comp_ref_type_ctx = av1_get_comp_reference_type_context(xd); |
| unsigned int ref_bicomp_costs[REF_FRAMES] = { 0 }; |
| |
| ref_bicomp_costs[LAST_FRAME] = ref_bicomp_costs[LAST2_FRAME] = |
| ref_bicomp_costs[LAST3_FRAME] = ref_bicomp_costs[GOLDEN_FRAME] = |
| base_cost + mode_costs->comp_ref_type_cost[comp_ref_type_ctx][1]; |
| ref_bicomp_costs[BWDREF_FRAME] = ref_bicomp_costs[ALTREF2_FRAME] = 0; |
| ref_bicomp_costs[ALTREF_FRAME] = 0; |
| |
| // cost of first ref frame |
| ref_bicomp_costs[LAST_FRAME] += |
| mode_costs->comp_ref_cost[ref_comp_ctx_p][0][0]; |
| ref_bicomp_costs[LAST2_FRAME] += |
| mode_costs->comp_ref_cost[ref_comp_ctx_p][0][0]; |
| ref_bicomp_costs[LAST3_FRAME] += |
| mode_costs->comp_ref_cost[ref_comp_ctx_p][0][1]; |
| ref_bicomp_costs[GOLDEN_FRAME] += |
| mode_costs->comp_ref_cost[ref_comp_ctx_p][0][1]; |
| |
| ref_bicomp_costs[LAST_FRAME] += |
| mode_costs->comp_ref_cost[ref_comp_ctx_p1][1][0]; |
| ref_bicomp_costs[LAST2_FRAME] += |
| mode_costs->comp_ref_cost[ref_comp_ctx_p1][1][1]; |
| |
| ref_bicomp_costs[LAST3_FRAME] += |
| mode_costs->comp_ref_cost[ref_comp_ctx_p2][2][0]; |
| ref_bicomp_costs[GOLDEN_FRAME] += |
| mode_costs->comp_ref_cost[ref_comp_ctx_p2][2][1]; |
| |
| // cost of second ref frame |
| ref_bicomp_costs[BWDREF_FRAME] += |
| mode_costs->comp_bwdref_cost[bwdref_comp_ctx_p][0][0]; |
| ref_bicomp_costs[ALTREF2_FRAME] += |
| mode_costs->comp_bwdref_cost[bwdref_comp_ctx_p][0][0]; |
| ref_bicomp_costs[ALTREF_FRAME] += |
| mode_costs->comp_bwdref_cost[bwdref_comp_ctx_p][0][1]; |
| |
| ref_bicomp_costs[BWDREF_FRAME] += |
| mode_costs->comp_bwdref_cost[bwdref_comp_ctx_p1][1][0]; |
| ref_bicomp_costs[ALTREF2_FRAME] += |
| mode_costs->comp_bwdref_cost[bwdref_comp_ctx_p1][1][1]; |
| |
| // cost: if one ref frame is forward ref, the other ref is backward ref |
| int ref0, ref1; |
| for (ref0 = LAST_FRAME; ref0 <= GOLDEN_FRAME; ++ref0) { |
| for (ref1 = BWDREF_FRAME; ref1 <= ALTREF_FRAME; ++ref1) { |
| ref_costs_comp[ref0][ref1] = |
| ref_bicomp_costs[ref0] + ref_bicomp_costs[ref1]; |
| } |
| } |
| |
| // cost: if both ref frames are the same side. |
| const int uni_comp_ref_ctx_p = av1_get_pred_context_uni_comp_ref_p(xd); |
| const int uni_comp_ref_ctx_p1 = av1_get_pred_context_uni_comp_ref_p1(xd); |
| const int uni_comp_ref_ctx_p2 = av1_get_pred_context_uni_comp_ref_p2(xd); |
| ref_costs_comp[LAST_FRAME][LAST2_FRAME] = |
| base_cost + mode_costs->comp_ref_type_cost[comp_ref_type_ctx][0] + |
| mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][0] + |
| mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p1][1][0]; |
| ref_costs_comp[LAST_FRAME][LAST3_FRAME] = |
| base_cost + mode_costs->comp_ref_type_cost[comp_ref_type_ctx][0] + |
| mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][0] + |
| mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p1][1][1] + |
| mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p2][2][0]; |
| ref_costs_comp[LAST_FRAME][GOLDEN_FRAME] = |
| base_cost + mode_costs->comp_ref_type_cost[comp_ref_type_ctx][0] + |
| mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][0] + |
| mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p1][1][1] + |
| mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p2][2][1]; |
| ref_costs_comp[BWDREF_FRAME][ALTREF_FRAME] = |
| base_cost + mode_costs->comp_ref_type_cost[comp_ref_type_ctx][0] + |
| mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][1]; |
| } else { |
| int ref0, ref1; |
| for (ref0 = LAST_FRAME; ref0 <= GOLDEN_FRAME; ++ref0) { |
| for (ref1 = BWDREF_FRAME; ref1 <= ALTREF_FRAME; ++ref1) |
| ref_costs_comp[ref0][ref1] = 512; |
| } |
| ref_costs_comp[LAST_FRAME][LAST2_FRAME] = 512; |
| ref_costs_comp[LAST_FRAME][LAST3_FRAME] = 512; |
| ref_costs_comp[LAST_FRAME][GOLDEN_FRAME] = 512; |
| ref_costs_comp[BWDREF_FRAME][ALTREF_FRAME] = 512; |
| } |
| } |
| } |
| |
| static AOM_INLINE void store_coding_context( |
| #if CONFIG_INTERNAL_STATS |
| MACROBLOCK *x, PICK_MODE_CONTEXT *ctx, int mode_index, |
| #else |
| MACROBLOCK *x, PICK_MODE_CONTEXT *ctx, |
| #endif // CONFIG_INTERNAL_STATS |
| int skippable) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| |
| // Take a snapshot of the coding context so it can be |
| // restored if we decide to encode this way |
| ctx->rd_stats.skip_txfm = x->txfm_search_info.skip_txfm; |
| ctx->skippable = skippable; |
| #if CONFIG_INTERNAL_STATS |
| ctx->best_mode_index = mode_index; |
| #endif // CONFIG_INTERNAL_STATS |
| ctx->mic = *xd->mi[0]; |
| av1_copy_mbmi_ext_to_mbmi_ext_frame(&ctx->mbmi_ext_best, &x->mbmi_ext, |
| av1_ref_frame_type(xd->mi[0]->ref_frame)); |
| } |
| |
| static AOM_INLINE void setup_buffer_ref_mvs_inter( |
| const AV1_COMP *const cpi, MACROBLOCK *x, MV_REFERENCE_FRAME ref_frame, |
| BLOCK_SIZE block_size, struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE]) { |
| const AV1_COMMON *cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| const YV12_BUFFER_CONFIG *scaled_ref_frame = |
| av1_get_scaled_ref_frame(cpi, ref_frame); |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext; |
| const struct scale_factors *const sf = |
| get_ref_scale_factors_const(cm, ref_frame); |
| const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_yv12_buf(cm, ref_frame); |
| assert(yv12 != NULL); |
| |
| if (scaled_ref_frame) { |
| // Setup pred block based on scaled reference, because av1_mv_pred() doesn't |
| // support scaling. |
| av1_setup_pred_block(xd, yv12_mb[ref_frame], scaled_ref_frame, NULL, NULL, |
| num_planes); |
| } else { |
| av1_setup_pred_block(xd, yv12_mb[ref_frame], yv12, sf, sf, num_planes); |
| } |
| |
| // Gets an initial list of candidate vectors from neighbours and orders them |
| av1_find_mv_refs(cm, xd, mbmi, ref_frame, mbmi_ext->ref_mv_count, |
| xd->ref_mv_stack, xd->weight, NULL, mbmi_ext->global_mvs, |
| mbmi_ext->mode_context); |
| // TODO(Ravi): Populate mbmi_ext->ref_mv_stack[ref_frame][4] and |
| // mbmi_ext->weight[ref_frame][4] inside av1_find_mv_refs. |
| av1_copy_usable_ref_mv_stack_and_weight(xd, mbmi_ext, ref_frame); |
| // Further refinement that is encode side only to test the top few candidates |
| // in full and choose the best as the center point for subsequent searches. |
| // The current implementation doesn't support scaling. |
| av1_mv_pred(cpi, x, yv12_mb[ref_frame][0].buf, yv12_mb[ref_frame][0].stride, |
| ref_frame, block_size); |
| |
| // Go back to unscaled reference. |
| if (scaled_ref_frame) { |
| // We had temporarily setup pred block based on scaled reference above. Go |
| // back to unscaled reference now, for subsequent use. |
| av1_setup_pred_block(xd, yv12_mb[ref_frame], yv12, sf, sf, num_planes); |
| } |
| } |
| |
| #define LEFT_TOP_MARGIN ((AOM_BORDER_IN_PIXELS - AOM_INTERP_EXTEND) << 3) |
| #define RIGHT_BOTTOM_MARGIN ((AOM_BORDER_IN_PIXELS - AOM_INTERP_EXTEND) << 3) |
| |
| // TODO(jingning): this mv clamping function should be block size dependent. |
| static INLINE void clamp_mv2(MV *mv, const MACROBLOCKD *xd) { |
| const SubpelMvLimits mv_limits = { xd->mb_to_left_edge - LEFT_TOP_MARGIN, |
| xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN, |
| xd->mb_to_top_edge - LEFT_TOP_MARGIN, |
| xd->mb_to_bottom_edge + |
| RIGHT_BOTTOM_MARGIN }; |
| clamp_mv(mv, &mv_limits); |
| } |
| |
| /* If the current mode shares the same mv with other modes with higher cost, |
| * skip this mode. */ |
| static int skip_repeated_mv(const AV1_COMMON *const cm, |
| const MACROBLOCK *const x, |
| PREDICTION_MODE this_mode, |
| const MV_REFERENCE_FRAME ref_frames[2], |
| InterModeSearchState *search_state) { |
| const int is_comp_pred = ref_frames[1] > INTRA_FRAME; |
| const uint8_t ref_frame_type = av1_ref_frame_type(ref_frames); |
| const MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext; |
| const int ref_mv_count = mbmi_ext->ref_mv_count[ref_frame_type]; |
| PREDICTION_MODE compare_mode = MB_MODE_COUNT; |
| if (!is_comp_pred) { |
| if (this_mode == NEARMV) { |
| if (ref_mv_count == 0) { |
| // NEARMV has the same motion vector as NEARESTMV |
| compare_mode = NEARESTMV; |
| } |
| if (ref_mv_count == 1 && |
| cm->global_motion[ref_frames[0]].wmtype <= TRANSLATION) { |
| // NEARMV has the same motion vector as GLOBALMV |
| compare_mode = GLOBALMV; |
| } |
| } |
| if (this_mode == GLOBALMV) { |
| if (ref_mv_count == 0 && |
| cm->global_motion[ref_frames[0]].wmtype <= TRANSLATION) { |
| // GLOBALMV has the same motion vector as NEARESTMV |
| compare_mode = NEARESTMV; |
| } |
| if (ref_mv_count == 1) { |
| // GLOBALMV has the same motion vector as NEARMV |
| compare_mode = NEARMV; |
| } |
| } |
| |
| if (compare_mode != MB_MODE_COUNT) { |
| // Use modelled_rd to check whether compare mode was searched |
| if (search_state->modelled_rd[compare_mode][0][ref_frames[0]] != |
| INT64_MAX) { |
| const int16_t mode_ctx = |
| av1_mode_context_analyzer(mbmi_ext->mode_context, ref_frames); |
| const int compare_cost = |
| cost_mv_ref(&x->mode_costs, compare_mode, mode_ctx); |
| const int this_cost = cost_mv_ref(&x->mode_costs, this_mode, mode_ctx); |
| |
| // Only skip if the mode cost is larger than compare mode cost |
| if (this_cost > compare_cost) { |
| search_state->modelled_rd[this_mode][0][ref_frames[0]] = |
| search_state->modelled_rd[compare_mode][0][ref_frames[0]]; |
| return 1; |
| } |
| } |
| } |
| } |
| return 0; |
| } |
| |
| static INLINE int clamp_and_check_mv(int_mv *out_mv, int_mv in_mv, |
| const AV1_COMMON *cm, |
| const MACROBLOCK *x) { |
| const MACROBLOCKD *const xd = &x->e_mbd; |
| *out_mv = in_mv; |
| lower_mv_precision(&out_mv->as_mv, cm->features.allow_high_precision_mv, |
| cm->features.cur_frame_force_integer_mv); |
| clamp_mv2(&out_mv->as_mv, xd); |
| return av1_is_fullmv_in_range(&x->mv_limits, |
| get_fullmv_from_mv(&out_mv->as_mv)); |
| } |
| |
| // To use single newmv directly for compound modes, need to clamp the mv to the |
| // valid mv range. Without this, encoder would generate out of range mv, and |
| // this is seen in 8k encoding. |
| static INLINE void clamp_mv_in_range(MACROBLOCK *const x, int_mv *mv, |
| int ref_idx) { |
| const int_mv ref_mv = av1_get_ref_mv(x, ref_idx); |
| SubpelMvLimits mv_limits; |
| |
| av1_set_subpel_mv_search_range(&mv_limits, &x->mv_limits, &ref_mv.as_mv); |
| clamp_mv(&mv->as_mv, &mv_limits); |
| } |
| |
| static int64_t handle_newmv(const AV1_COMP *const cpi, MACROBLOCK *const x, |
| const BLOCK_SIZE bsize, int_mv *cur_mv, |
| int *const rate_mv, HandleInterModeArgs *const args, |
| inter_mode_info *mode_info) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const int is_comp_pred = has_second_ref(mbmi); |
| const PREDICTION_MODE this_mode = mbmi->mode; |
| const int refs[2] = { mbmi->ref_frame[0], |
| mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1] }; |
| const int ref_mv_idx = mbmi->ref_mv_idx; |
| |
| if (is_comp_pred) { |
| const int valid_mv0 = args->single_newmv_valid[ref_mv_idx][refs[0]]; |
| const int valid_mv1 = args->single_newmv_valid[ref_mv_idx][refs[1]]; |
| if (this_mode == NEW_NEWMV) { |
| if (valid_mv0) { |
| cur_mv[0].as_int = args->single_newmv[ref_mv_idx][refs[0]].as_int; |
| clamp_mv_in_range(x, &cur_mv[0], 0); |
| } |
| if (valid_mv1) { |
| cur_mv[1].as_int = args->single_newmv[ref_mv_idx][refs[1]].as_int; |
| clamp_mv_in_range(x, &cur_mv[1], 1); |
| } |
| *rate_mv = 0; |
| for (int i = 0; i < 2; ++i) { |
| const int_mv ref_mv = av1_get_ref_mv(x, i); |
| *rate_mv += av1_mv_bit_cost(&cur_mv[i].as_mv, &ref_mv.as_mv, |
| x->mv_costs->nmv_joint_cost, |
| x->mv_costs->mv_cost_stack, MV_COST_WEIGHT); |
| } |
| } else if (this_mode == NEAREST_NEWMV || this_mode == NEAR_NEWMV) { |
| if (valid_mv1) { |
| cur_mv[1].as_int = args->single_newmv[ref_mv_idx][refs[1]].as_int; |
| clamp_mv_in_range(x, &cur_mv[1], 1); |
| } |
| const int_mv ref_mv = av1_get_ref_mv(x, 1); |
| *rate_mv = av1_mv_bit_cost(&cur_mv[1].as_mv, &ref_mv.as_mv, |
| x->mv_costs->nmv_joint_cost, |
| x->mv_costs->mv_cost_stack, MV_COST_WEIGHT); |
| } else { |
| assert(this_mode == NEW_NEARESTMV || this_mode == NEW_NEARMV); |
| if (valid_mv0) { |
| cur_mv[0].as_int = args->single_newmv[ref_mv_idx][refs[0]].as_int; |
| clamp_mv_in_range(x, &cur_mv[0], 0); |
| } |
| const int_mv ref_mv = av1_get_ref_mv(x, 0); |
| *rate_mv = av1_mv_bit_cost(&cur_mv[0].as_mv, &ref_mv.as_mv, |
| x->mv_costs->nmv_joint_cost, |
| x->mv_costs->mv_cost_stack, MV_COST_WEIGHT); |
| } |
| } else { |
| // Single ref case. |
| const int ref_idx = 0; |
| int search_range = INT_MAX; |
| |
| if (cpi->sf.mv_sf.reduce_search_range && mbmi->ref_mv_idx > 0) { |
| const MV ref_mv = av1_get_ref_mv(x, ref_idx).as_mv; |
| int min_mv_diff = INT_MAX; |
| int best_match = -1; |
| MV prev_ref_mv[2] = { { 0 } }; |
| for (int idx = 0; idx < mbmi->ref_mv_idx; ++idx) { |
| prev_ref_mv[idx] = av1_get_ref_mv_from_stack(ref_idx, mbmi->ref_frame, |
| idx, &x->mbmi_ext) |
| .as_mv; |
| const int ref_mv_diff = AOMMAX(abs(ref_mv.row - prev_ref_mv[idx].row), |
| abs(ref_mv.col - prev_ref_mv[idx].col)); |
| |
| if (min_mv_diff > ref_mv_diff) { |
| min_mv_diff = ref_mv_diff; |
| best_match = idx; |
| } |
| } |
| |
| if (min_mv_diff < (16 << 3)) { |
| if (args->single_newmv_valid[best_match][refs[0]]) { |
| search_range = min_mv_diff; |
| search_range += |
| AOMMAX(abs(args->single_newmv[best_match][refs[0]].as_mv.row - |
| prev_ref_mv[best_match].row), |
| abs(args->single_newmv[best_match][refs[0]].as_mv.col - |
| prev_ref_mv[best_match].col)); |
| // Get full pixel search range. |
| search_range = (search_range + 4) >> 3; |
| } |
| } |
| } |
| |
| int_mv best_mv; |
| av1_single_motion_search(cpi, x, bsize, ref_idx, rate_mv, search_range, |
| mode_info, &best_mv, args); |
| if (best_mv.as_int == INVALID_MV) return INT64_MAX; |
| |
| args->single_newmv[ref_mv_idx][refs[0]] = best_mv; |
| args->single_newmv_rate[ref_mv_idx][refs[0]] = *rate_mv; |
| args->single_newmv_valid[ref_mv_idx][refs[0]] = 1; |
| cur_mv[0].as_int = best_mv.as_int; |
| |
| // Return after single_newmv is set. |
| if (mode_info[mbmi->ref_mv_idx].skip) return INT64_MAX; |
| } |
| |
| return 0; |
| } |
| |
| static INLINE void update_mode_start_end_index( |
| const AV1_COMP *const cpi, const MB_MODE_INFO *const mbmi, |
| int *mode_index_start, int *mode_index_end, int last_motion_mode_allowed, |
| int interintra_allowed, int eval_motion_mode) { |
| *mode_index_start = (int)SIMPLE_TRANSLATION; |
| *mode_index_end = (int)last_motion_mode_allowed + interintra_allowed; |
| if (cpi->sf.winner_mode_sf.motion_mode_for_winner_cand) { |
| if (!eval_motion_mode) { |
| *mode_index_end = (int)SIMPLE_TRANSLATION; |
| } else { |
| // Set the start index appropriately to process motion modes other than |
| // simple translation |
| *mode_index_start = 1; |
| } |
| } |
| if (cpi->sf.inter_sf.extra_prune_warped && mbmi->bsize > BLOCK_16X16) |
| *mode_index_end = SIMPLE_TRANSLATION; |
| } |
| |
| /*!\brief AV1 motion mode search |
| * |
| * \ingroup inter_mode_search |
| * Function to search over and determine the motion mode. It will update |
| * mbmi->motion_mode to one of SIMPLE_TRANSLATION, OBMC_CAUSAL, or |
| * WARPED_CAUSAL and determine any necessary side information for the selected |
| * motion mode. It will also perform the full transform search, unless the |
| * input parameter do_tx_search indicates to do an estimation of the RD rather |
| * than an RD corresponding to a full transform search. It will return the |
| * RD for the final motion_mode. |
| * Do the RD search for a given inter mode and compute all information relevant |
| * to the input mode. It will compute the best MV, |
| * compound parameters (if the mode is a compound mode) and interpolation filter |
| * parameters. |
| * |
| * \param[in] cpi Top-level encoder structure. |
| * \param[in] tile_data Pointer to struct holding adaptive |
| * data/contexts/models for the tile during |
| * encoding. |
| * \param[in] x Pointer to struct holding all the data for |
| * the current macroblock. |
| * \param[in] bsize Current block size. |
| * \param[in,out] rd_stats Struct to keep track of the overall RD |
| * information. |
| * \param[in,out] rd_stats_y Struct to keep track of the RD information |
| * for only the Y plane. |
| * \param[in,out] rd_stats_uv Struct to keep track of the RD information |
| * for only the UV planes. |
| * \param[in] args HandleInterModeArgs struct holding |
| * miscellaneous arguments for inter mode |
| * search. See the documentation for this |
| * struct for a description of each member. |
| * \param[in] ref_best_rd Best RD found so far for this block. |
| * It is used for early termination of this |
| * search if the RD exceeds this value. |
| * \param[in,out] ref_skip_rd A length 2 array, where skip_rd[0] is the |
| * best total RD for a skip mode so far, and |
| * skip_rd[1] is the best RD for a skip mode so |
| * far in luma. This is used as a speed feature |
| * to skip the transform search if the computed |
| * skip RD for the current mode is not better |
| * than the best skip_rd so far. |
| * \param[in,out] rate_mv The rate associated with the motion vectors. |
| * This will be modified if a motion search is |
| * done in the motion mode search. |
| * \param[in,out] orig_dst A prediction buffer to hold a computed |
| * prediction. This will eventually hold the |
| * final prediction, and the tmp_dst info will |
| * be copied here. |
| * \param[in,out] best_est_rd Estimated RD for motion mode search if |
| * do_tx_search (see below) is 0. |
| * \param[in] do_tx_search Parameter to indicate whether or not to do |
| * a full transform search. This will compute |
| * an estimated RD for the modes without the |
| * transform search and later perform the full |
| * transform search on the best candidates. |
| * \param[in] inter_modes_info InterModesInfo struct to hold inter mode |
| * information to perform a full transform |
| * search only on winning candidates searched |
| * with an estimate for transform coding RD. |
| * \param[in] eval_motion_mode Boolean whether or not to evaluate motion |
| * motion modes other than SIMPLE_TRANSLATION. |
| * \param[out] yrd Stores the rdcost corresponding to encoding |
| * the luma plane. |
| * \return Returns INT64_MAX if the determined motion mode is invalid and the |
| * current motion mode being tested should be skipped. It returns 0 if the |
| * motion mode search is a success. |
| */ |
| static int64_t motion_mode_rd( |
| const AV1_COMP *const cpi, TileDataEnc *tile_data, MACROBLOCK *const x, |
| BLOCK_SIZE bsize, RD_STATS *rd_stats, RD_STATS *rd_stats_y, |
| RD_STATS *rd_stats_uv, HandleInterModeArgs *const args, int64_t ref_best_rd, |
| int64_t *ref_skip_rd, int *rate_mv, const BUFFER_SET *orig_dst, |
| int64_t *best_est_rd, int do_tx_search, InterModesInfo *inter_modes_info, |
| int eval_motion_mode, int64_t *yrd) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const FeatureFlags *const features = &cm->features; |
| TxfmSearchInfo *txfm_info = &x->txfm_search_info; |
| const int num_planes = av1_num_planes(cm); |
| MACROBLOCKD *xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| const int is_comp_pred = has_second_ref(mbmi); |
| const PREDICTION_MODE this_mode = mbmi->mode; |
| const int rate2_nocoeff = rd_stats->rate; |
| int best_xskip_txfm = 0; |
| RD_STATS best_rd_stats, best_rd_stats_y, best_rd_stats_uv; |
| uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE]; |
| uint8_t best_tx_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE]; |
| const int rate_mv0 = *rate_mv; |
| const int interintra_allowed = cm->seq_params->enable_interintra_compound && |
| is_interintra_allowed(mbmi) && |
| mbmi->compound_idx; |
| WARP_SAMPLE_INFO *const warp_sample_info = |
| &x->warp_sample_info[mbmi->ref_frame[0]]; |
| int *pts0 = warp_sample_info->pts; |
| int *pts_inref0 = warp_sample_info->pts_inref; |
| |
| assert(mbmi->ref_frame[1] != INTRA_FRAME); |
| const MV_REFERENCE_FRAME ref_frame_1 = mbmi->ref_frame[1]; |
| av1_invalid_rd_stats(&best_rd_stats); |
| mbmi->num_proj_ref = 1; // assume num_proj_ref >=1 |
| MOTION_MODE last_motion_mode_allowed = SIMPLE_TRANSLATION; |
| *yrd = INT64_MAX; |
| if (features->switchable_motion_mode) { |
| // Determine which motion modes to search if more than SIMPLE_TRANSLATION |
| // is allowed. |
| last_motion_mode_allowed = motion_mode_allowed( |
| xd->global_motion, xd, mbmi, features->allow_warped_motion); |
| } |
| |
| if (last_motion_mode_allowed == WARPED_CAUSAL) { |
| // Collect projection samples used in least squares approximation of |
| // the warped motion parameters if WARPED_CAUSAL is going to be searched. |
| if (warp_sample_info->num < 0) { |
| warp_sample_info->num = av1_findSamples(cm, xd, pts0, pts_inref0); |
| } |
| mbmi->num_proj_ref = warp_sample_info->num; |
| } |
| const int total_samples = mbmi->num_proj_ref; |
| if (total_samples == 0) { |
| // Do not search WARPED_CAUSAL if there are no samples to use to determine |
| // warped parameters. |
| last_motion_mode_allowed = OBMC_CAUSAL; |
| } |
| |
| const MB_MODE_INFO base_mbmi = *mbmi; |
| MB_MODE_INFO best_mbmi; |
| const int interp_filter = features->interp_filter; |
| const int switchable_rate = |
| av1_is_interp_needed(xd) |
| ? av1_get_switchable_rate(x, xd, interp_filter, |
| cm->seq_params->enable_dual_filter) |
| : 0; |
| int64_t best_rd = INT64_MAX; |
| int best_rate_mv = rate_mv0; |
| const int mi_row = xd->mi_row; |
| const int mi_col = xd->mi_col; |
| int mode_index_start, mode_index_end; |
| const int txfm_rd_gate_level = |
| get_txfm_rd_gate_level(cm->seq_params->enable_masked_compound, |
| cpi->sf.inter_sf.txfm_rd_gate_level, bsize, |
| TX_SEARCH_MOTION_MODE, eval_motion_mode); |
| |
| // Modify the start and end index according to speed features. For example, |
| // if SIMPLE_TRANSLATION has already been searched according to |
| // the motion_mode_for_winner_cand speed feature, update the mode_index_start |
| // to avoid searching it again. |
| update_mode_start_end_index(cpi, mbmi, &mode_index_start, &mode_index_end, |
| last_motion_mode_allowed, interintra_allowed, |
| eval_motion_mode); |
| // Main function loop. This loops over all of the possible motion modes and |
| // computes RD to determine the best one. This process includes computing |
| // any necessary side information for the motion mode and performing the |
| // transform search. |
| for (int mode_index = mode_index_start; mode_index <= mode_index_end; |
| mode_index++) { |
| if (args->skip_motion_mode && mode_index) continue; |
| int tmp_rate2 = rate2_nocoeff; |
| const int is_interintra_mode = mode_index > (int)last_motion_mode_allowed; |
| int tmp_rate_mv = rate_mv0; |
| |
| *mbmi = base_mbmi; |
| if (is_interintra_mode) { |
| // Only use SIMPLE_TRANSLATION for interintra |
| mbmi->motion_mode = SIMPLE_TRANSLATION; |
| } else { |
| mbmi->motion_mode = (MOTION_MODE)mode_index; |
| assert(mbmi->ref_frame[1] != INTRA_FRAME); |
| } |
| |
| // Do not search OBMC if the probability of selecting it is below a |
| // predetermined threshold for this update_type and block size. |
| const FRAME_UPDATE_TYPE update_type = |
| get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index); |
| int use_actual_frame_probs = 1; |
| int prune_obmc; |
| #if CONFIG_FPMT_TEST |
| use_actual_frame_probs = |
| (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) ? 0 : 1; |
| if (!use_actual_frame_probs) { |
| prune_obmc = cpi->ppi->temp_frame_probs.obmc_probs[update_type][bsize] < |
| cpi->sf.inter_sf.prune_obmc_prob_thresh; |
| } |
| #endif |
| if (use_actual_frame_probs) { |
| prune_obmc = cpi->ppi->frame_probs.obmc_probs[update_type][bsize] < |
| cpi->sf.inter_sf.prune_obmc_prob_thresh; |
| } |
| if ((!cpi->oxcf.motion_mode_cfg.enable_obmc || prune_obmc) && |
| mbmi->motion_mode == OBMC_CAUSAL) |
| continue; |
| |
| if (mbmi->motion_mode == SIMPLE_TRANSLATION && !is_interintra_mode) { |
| // SIMPLE_TRANSLATION mode: no need to recalculate. |
| // The prediction is calculated before motion_mode_rd() is called in |
| // handle_inter_mode() |
| } else if (mbmi->motion_mode == OBMC_CAUSAL) { |
| const uint32_t cur_mv = mbmi->mv[0].as_int; |
| // OBMC_CAUSAL not allowed for compound prediction |
| assert(!is_comp_pred); |
| if (have_newmv_in_inter_mode(this_mode)) { |
| av1_single_motion_search(cpi, x, bsize, 0, &tmp_rate_mv, INT_MAX, NULL, |
| &mbmi->mv[0], NULL); |
| tmp_rate2 = rate2_nocoeff - rate_mv0 + tmp_rate_mv; |
| } |
| if ((mbmi->mv[0].as_int != cur_mv) || eval_motion_mode) { |
| // Build the predictor according to the current motion vector if it has |
| // not already been built |
| av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst, bsize, |
| 0, av1_num_planes(cm) - 1); |
| } |
| // Build the inter predictor by blending the predictor corresponding to |
| // this MV, and the neighboring blocks using the OBMC model |
| av1_build_obmc_inter_prediction( |
| cm, xd, args->above_pred_buf, args->above_pred_stride, |
| args->left_pred_buf, args->left_pred_stride); |
| #if !CONFIG_REALTIME_ONLY |
| } else if (mbmi->motion_mode == WARPED_CAUSAL) { |
| int pts[SAMPLES_ARRAY_SIZE], pts_inref[SAMPLES_ARRAY_SIZE]; |
| mbmi->motion_mode = WARPED_CAUSAL; |
| mbmi->wm_params.wmtype = DEFAULT_WMTYPE; |
| mbmi->interp_filters = |
| av1_broadcast_interp_filter(av1_unswitchable_filter(interp_filter)); |
| |
| memcpy(pts, pts0, total_samples * 2 * sizeof(*pts0)); |
| memcpy(pts_inref, pts_inref0, total_samples * 2 * sizeof(*pts_inref0)); |
| // Select the samples according to motion vector difference |
| if (mbmi->num_proj_ref > 1) { |
| mbmi->num_proj_ref = av1_selectSamples( |
| &mbmi->mv[0].as_mv, pts, pts_inref, mbmi->num_proj_ref, bsize); |
| } |
| |
| // Compute the warped motion parameters with a least squares fit |
| // using the collected samples |
| if (!av1_find_projection(mbmi->num_proj_ref, pts, pts_inref, bsize, |
| mbmi->mv[0].as_mv.row, mbmi->mv[0].as_mv.col, |
| &mbmi->wm_params, mi_row, mi_col)) { |
| assert(!is_comp_pred); |
| if (have_newmv_in_inter_mode(this_mode)) { |
| // Refine MV for NEWMV mode |
| const int_mv mv0 = mbmi->mv[0]; |
| const WarpedMotionParams wm_params0 = mbmi->wm_params; |
| const int num_proj_ref0 = mbmi->num_proj_ref; |
| |
| const int_mv ref_mv = av1_get_ref_mv(x, 0); |
| SUBPEL_MOTION_SEARCH_PARAMS ms_params; |
| av1_make_default_subpel_ms_params(&ms_params, cpi, x, bsize, |
| &ref_mv.as_mv, NULL); |
| |
| // Refine MV in a small range. |
| av1_refine_warped_mv(xd, cm, &ms_params, bsize, pts0, pts_inref0, |
| total_samples, cpi->sf.mv_sf.warp_search_method, |
| cpi->sf.mv_sf.warp_search_iters); |
| |
| if (mv0.as_int != mbmi->mv[0].as_int) { |
| // Keep the refined MV and WM parameters. |
| tmp_rate_mv = av1_mv_bit_cost( |
| &mbmi->mv[0].as_mv, &ref_mv.as_mv, x->mv_costs->nmv_joint_cost, |
| x->mv_costs->mv_cost_stack, MV_COST_WEIGHT); |
| tmp_rate2 = rate2_nocoeff - rate_mv0 + tmp_rate_mv; |
| } else { |
| // Restore the old MV and WM parameters. |
| mbmi->mv[0] = mv0; |
| mbmi->wm_params = wm_params0; |
| mbmi->num_proj_ref = num_proj_ref0; |
| } |
| } |
| |
| // Build the warped predictor |
| av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0, |
| av1_num_planes(cm) - 1); |
| } else { |
| continue; |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| } else if (is_interintra_mode) { |
| const int ret = |
| av1_handle_inter_intra_mode(cpi, x, bsize, mbmi, args, ref_best_rd, |
| &tmp_rate_mv, &tmp_rate2, orig_dst); |
| if (ret < 0) continue; |
| } |
| |
| // If we are searching newmv and the mv is the same as refmv, skip the |
| // current mode |
| if (!av1_check_newmv_joint_nonzero(cm, x)) continue; |
| |
| // Update rd_stats for the current motion mode |
| txfm_info->skip_txfm = 0; |
| rd_stats->dist = 0; |
| rd_stats->sse = 0; |
| rd_stats->skip_txfm = 1; |
| rd_stats->rate = tmp_rate2; |
| const ModeCosts *mode_costs = &x->mode_costs; |
| if (mbmi->motion_mode != WARPED_CAUSAL) rd_stats->rate += switchable_rate; |
| if (interintra_allowed) { |
| rd_stats->rate += |
| mode_costs->interintra_cost[size_group_lookup[bsize]] |
| [mbmi->ref_frame[1] == INTRA_FRAME]; |
| } |
| if ((last_motion_mode_allowed > SIMPLE_TRANSLATION) && |
| (mbmi->ref_frame[1] != INTRA_FRAME)) { |
| if (last_motion_mode_allowed == WARPED_CAUSAL) { |
| rd_stats->rate += |
| mode_costs->motion_mode_cost[bsize][mbmi->motion_mode]; |
| } else { |
| rd_stats->rate += |
| mode_costs->motion_mode_cost1[bsize][mbmi->motion_mode]; |
| } |
| } |
| |
| int64_t this_yrd = INT64_MAX; |
| |
| if (!do_tx_search) { |
| // Avoid doing a transform search here to speed up the overall mode |
| // search. It will be done later in the mode search if the current |
| // motion mode seems promising. |
| int64_t curr_sse = -1; |
| int64_t sse_y = -1; |
| int est_residue_cost = 0; |
| int64_t est_dist = 0; |
| int64_t est_rd = 0; |
| if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1) { |
| curr_sse = get_sse(cpi, x, &sse_y); |
| const int has_est_rd = get_est_rate_dist(tile_data, bsize, curr_sse, |
| &est_residue_cost, &est_dist); |
| (void)has_est_rd; |
| assert(has_est_rd); |
| } else if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 2 || |
| cpi->sf.rt_sf.use_nonrd_pick_mode) { |
| model_rd_sb_fn[MODELRD_TYPE_MOTION_MODE_RD]( |
| cpi, bsize, x, xd, 0, num_planes - 1, &est_residue_cost, &est_dist, |
| NULL, &curr_sse, NULL, NULL, NULL); |
| sse_y = x->pred_sse[xd->mi[0]->ref_frame[0]]; |
| } |
| est_rd = RDCOST(x->rdmult, rd_stats->rate + est_residue_cost, est_dist); |
| if (est_rd * 0.80 > *best_est_rd) { |
| mbmi->ref_frame[1] = ref_frame_1; |
| continue; |
| } |
| const int mode_rate = rd_stats->rate; |
| rd_stats->rate += est_residue_cost; |
| rd_stats->dist = est_dist; |
| rd_stats->rdcost = est_rd; |
| if (rd_stats->rdcost < *best_est_rd) { |
| *best_est_rd = rd_stats->rdcost; |
| assert(sse_y >= 0); |
| ref_skip_rd[1] = txfm_rd_gate_level |
| ? RDCOST(x->rdmult, mode_rate, (sse_y << 4)) |
| : INT64_MAX; |
| } |
| if (cm->current_frame.reference_mode == SINGLE_REFERENCE) { |
| if (!is_comp_pred) { |
| assert(curr_sse >= 0); |
| inter_modes_info_push(inter_modes_info, mode_rate, curr_sse, |
| rd_stats->rdcost, rd_stats, rd_stats_y, |
| rd_stats_uv, mbmi); |
| } |
| } else { |
| assert(curr_sse >= 0); |
| inter_modes_info_push(inter_modes_info, mode_rate, curr_sse, |
| rd_stats->rdcost, rd_stats, rd_stats_y, |
| rd_stats_uv, mbmi); |
| } |
| mbmi->skip_txfm = 0; |
| } else { |
| // Perform full transform search |
| int64_t skip_rd = INT64_MAX; |
| int64_t skip_rdy = INT64_MAX; |
| if (txfm_rd_gate_level) { |
| // Check if the mode is good enough based on skip RD |
| int64_t sse_y = INT64_MAX; |
| int64_t curr_sse = get_sse(cpi, x, &sse_y); |
| skip_rd = RDCOST(x->rdmult, rd_stats->rate, curr_sse); |
| skip_rdy = RDCOST(x->rdmult, rd_stats->rate, (sse_y << 4)); |
| int eval_txfm = check_txfm_eval(x, bsize, ref_skip_rd[0], skip_rd, |
| txfm_rd_gate_level, 0); |
| if (!eval_txfm) continue; |
| } |
| |
| // Do transform search |
| const int mode_rate = rd_stats->rate; |
| if (!av1_txfm_search(cpi, x, bsize, rd_stats, rd_stats_y, rd_stats_uv, |
| rd_stats->rate, ref_best_rd)) { |
| if (rd_stats_y->rate == INT_MAX && mode_index == 0) { |
| return INT64_MAX; |
| } |
| continue; |
| } |
| const int skip_ctx = av1_get_skip_txfm_context(xd); |
| const int y_rate = |
| rd_stats->skip_txfm |
| ? x->mode_costs.skip_txfm_cost[skip_ctx][1] |
| : (rd_stats_y->rate + x->mode_costs.skip_txfm_cost[skip_ctx][0]); |
| this_yrd = RDCOST(x->rdmult, y_rate + mode_rate, rd_stats_y->dist); |
| |
| const int64_t curr_rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist); |
| if (curr_rd < ref_best_rd) { |
| ref_best_rd = curr_rd; |
| ref_skip_rd[0] = skip_rd; |
| ref_skip_rd[1] = skip_rdy; |
| } |
| if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1) { |
| inter_mode_data_push( |
| tile_data, mbmi->bsize, rd_stats->sse, rd_stats->dist, |
| rd_stats_y->rate + rd_stats_uv->rate + |
| mode_costs->skip_txfm_cost[skip_ctx][mbmi->skip_txfm]); |
| } |
| } |
| |
| if (this_mode == GLOBALMV || this_mode == GLOBAL_GLOBALMV) { |
| if (is_nontrans_global_motion(xd, xd->mi[0])) { |
| mbmi->interp_filters = |
| av1_broadcast_interp_filter(av1_unswitchable_filter(interp_filter)); |
| } |
| } |
| |
| const int64_t tmp_rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist); |
| if (mode_index == 0) { |
| args->simple_rd[this_mode][mbmi->ref_mv_idx][mbmi->ref_frame[0]] = tmp_rd; |
| } |
| if (mode_index == 0 || tmp_rd < best_rd) { |
| // Update best_rd data if this is the best motion mode so far |
| best_mbmi = *mbmi; |
| best_rd = tmp_rd; |
| best_rd_stats = *rd_stats; |
| best_rd_stats_y = *rd_stats_y; |
| best_rate_mv = tmp_rate_mv; |
| *yrd = this_yrd; |
| if (num_planes > 1) best_rd_stats_uv = *rd_stats_uv; |
| memcpy(best_blk_skip, txfm_info->blk_skip, |
| sizeof(txfm_info->blk_skip[0]) * xd->height * xd->width); |
| av1_copy_array(best_tx_type_map, xd->tx_type_map, xd->height * xd->width); |
| best_xskip_txfm = mbmi->skip_txfm; |
| } |
| } |
| // Update RD and mbmi stats for selected motion mode |
| mbmi->ref_frame[1] = ref_frame_1; |
| *rate_mv = best_rate_mv; |
| if (best_rd == INT64_MAX || !av1_check_newmv_joint_nonzero(cm, x)) { |
| av1_invalid_rd_stats(rd_stats); |
| restore_dst_buf(xd, *orig_dst, num_planes); |
| return INT64_MAX; |
| } |
| *mbmi = best_mbmi; |
| *rd_stats = best_rd_stats; |
| *rd_stats_y = best_rd_stats_y; |
| if (num_planes > 1) *rd_stats_uv = best_rd_stats_uv; |
| memcpy(txfm_info->blk_skip, best_blk_skip, |
| sizeof(txfm_info->blk_skip[0]) * xd->height * xd->width); |
| av1_copy_array(xd->tx_type_map, best_tx_type_map, xd->height * xd->width); |
| txfm_info->skip_txfm = best_xskip_txfm; |
| |
| restore_dst_buf(xd, *orig_dst, num_planes); |
| return 0; |
| } |
| |
| static int64_t skip_mode_rd(RD_STATS *rd_stats, const AV1_COMP *const cpi, |
| MACROBLOCK *const x, BLOCK_SIZE bsize, |
| const BUFFER_SET *const orig_dst, int64_t best_rd) { |
| assert(bsize < BLOCK_SIZES_ALL); |
| const AV1_COMMON *cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const int mi_row = xd->mi_row; |
| const int mi_col = xd->mi_col; |
| int64_t total_sse = 0; |
| int64_t this_rd = INT64_MAX; |
| const int skip_mode_ctx = av1_get_skip_mode_context(xd); |
| rd_stats->rate = x->mode_costs.skip_mode_cost[skip_mode_ctx][1]; |
| |
| for (int plane = 0; plane < num_planes; ++plane) { |
| // Call av1_enc_build_inter_predictor() for one plane at a time. |
| av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst, bsize, |
| plane, plane); |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const BLOCK_SIZE plane_bsize = |
| get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); |
| |
| av1_subtract_plane(x, plane_bsize, plane); |
| |
| int64_t sse = |
| av1_pixel_diff_dist(x, plane, 0, 0, plane_bsize, plane_bsize, NULL); |
| if (is_cur_buf_hbd(xd)) sse = ROUND_POWER_OF_TWO(sse, (xd->bd - 8) * 2); |
| sse <<= 4; |
| total_sse += sse; |
| // When current rd cost is more than the best rd, skip evaluation of |
| // remaining planes. |
| this_rd = RDCOST(x->rdmult, rd_stats->rate, total_sse); |
| if (this_rd > best_rd) break; |
| } |
| |
| rd_stats->dist = rd_stats->sse = total_sse; |
| rd_stats->rdcost = this_rd; |
| |
| restore_dst_buf(xd, *orig_dst, num_planes); |
| return 0; |
| } |
| |
| // Check NEARESTMV, NEARMV, GLOBALMV ref mvs for duplicate and skip the relevant |
| // mode |
| // Note(rachelbarker): This speed feature currently does not interact correctly |
| // with global motion. The issue is that, when global motion is used, GLOBALMV |
| // produces a different prediction to NEARESTMV/NEARMV even if the motion |
| // vectors are the same. Thus GLOBALMV should not be pruned in this case. |
| static INLINE int check_repeat_ref_mv(const MB_MODE_INFO_EXT *mbmi_ext, |
| int ref_idx, |
| const MV_REFERENCE_FRAME *ref_frame, |
| PREDICTION_MODE single_mode) { |
| const uint8_t ref_frame_type = av1_ref_frame_type(ref_frame); |
| const int ref_mv_count = mbmi_ext->ref_mv_count[ref_frame_type]; |
| assert(single_mode != NEWMV); |
| if (single_mode == NEARESTMV) { |
| return 0; |
| } else if (single_mode == NEARMV) { |
| // when ref_mv_count = 0, NEARESTMV and NEARMV are same as GLOBALMV |
| // when ref_mv_count = 1, NEARMV is same as GLOBALMV |
| if (ref_mv_count < 2) return 1; |
| } else if (single_mode == GLOBALMV) { |
| // when ref_mv_count == 0, GLOBALMV is same as NEARESTMV |
| if (ref_mv_count == 0) return 1; |
| // when ref_mv_count == 1, NEARMV is same as GLOBALMV |
| else if (ref_mv_count == 1) |
| return 0; |
| |
| int stack_size = AOMMIN(USABLE_REF_MV_STACK_SIZE, ref_mv_count); |
| // Check GLOBALMV is matching with any mv in ref_mv_stack |
| for (int ref_mv_idx = 0; ref_mv_idx < stack_size; ref_mv_idx++) { |
| int_mv this_mv; |
| |
| if (ref_idx == 0) |
| this_mv = mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_idx].this_mv; |
| else |
| this_mv = mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_idx].comp_mv; |
| |
| if (this_mv.as_int == mbmi_ext->global_mvs[ref_frame[ref_idx]].as_int) |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| static INLINE int get_this_mv(int_mv *this_mv, PREDICTION_MODE this_mode, |
| int ref_idx, int ref_mv_idx, |
| int skip_repeated_ref_mv, |
| const MV_REFERENCE_FRAME *ref_frame, |
| const MB_MODE_INFO_EXT *mbmi_ext) { |
| const PREDICTION_MODE single_mode = get_single_mode(this_mode, ref_idx); |
| assert(is_inter_singleref_mode(single_mode)); |
| if (single_mode == NEWMV) { |
| this_mv->as_int = INVALID_MV; |
| } else if (single_mode == GLOBALMV) { |
| if (skip_repeated_ref_mv && |
| check_repeat_ref_mv(mbmi_ext, ref_idx, ref_frame, single_mode)) |
| return 0; |
| *this_mv = mbmi_ext->global_mvs[ref_frame[ref_idx]]; |
| } else { |
| assert(single_mode == NEARMV || single_mode == NEARESTMV); |
| const uint8_t ref_frame_type = av1_ref_frame_type(ref_frame); |
| const int ref_mv_offset = single_mode == NEARESTMV ? 0 : ref_mv_idx + 1; |
| if (ref_mv_offset < mbmi_ext->ref_mv_count[ref_frame_type]) { |
| assert(ref_mv_offset >= 0); |
| if (ref_idx == 0) { |
| *this_mv = |
| mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_offset].this_mv; |
| } else { |
| *this_mv = |
| mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_offset].comp_mv; |
| } |
| } else { |
| if (skip_repeated_ref_mv && |
| check_repeat_ref_mv(mbmi_ext, ref_idx, ref_frame, single_mode)) |
| return 0; |
| *this_mv = mbmi_ext->global_mvs[ref_frame[ref_idx]]; |
| } |
| } |
| return 1; |
| } |
| |
| // Skip NEARESTMV and NEARMV modes based on refmv weight computed in ref mv list |
| // population |
| static INLINE int skip_nearest_near_mv_using_refmv_weight( |
| const MACROBLOCK *const x, const PREDICTION_MODE this_mode, |
| const int8_t ref_frame_type, PREDICTION_MODE best_mode) { |
| if (this_mode != NEARESTMV && this_mode != NEARMV) return 0; |
| // Do not skip the mode if the current block has not yet obtained a valid |
| // inter mode. |
| if (!is_inter_mode(best_mode)) return 0; |
| |
| const MACROBLOCKD *xd = &x->e_mbd; |
| // Do not skip the mode if both the top and left neighboring blocks are not |
| // available. |
| if (!xd->left_available || !xd->up_available) return 0; |
| const MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext; |
| const uint16_t *const ref_mv_weight = mbmi_ext->weight[ref_frame_type]; |
| const int ref_mv_count = |
| AOMMIN(MAX_REF_MV_SEARCH, mbmi_ext->ref_mv_count[ref_frame_type]); |
| |
| if (ref_mv_count == 0) return 0; |
| // If ref mv list has at least one nearest candidate do not prune NEARESTMV |
| if (this_mode == NEARESTMV && ref_mv_weight[0] >= REF_CAT_LEVEL) return 0; |
| |
| // Count number of ref mvs populated from nearest candidates |
| int nearest_refmv_count = 0; |
| for (int ref_mv_idx = 0; ref_mv_idx < ref_mv_count; ref_mv_idx++) { |
| if (ref_mv_weight[ref_mv_idx] >= REF_CAT_LEVEL) nearest_refmv_count++; |
| } |
| |
| // nearest_refmv_count indicates the closeness of block motion characteristics |
| // with respect to its spatial neighbor. Smaller value of nearest_refmv_count |
| // w.r.t to ref_mv_count means less correlation with its spatial neighbors. |
| // Hence less possibility for NEARESTMV and NEARMV modes becoming the best |
| // mode since these modes work well for blocks that shares similar motion |
| // characteristics with its neighbor. Thus, NEARMV mode is pruned when |
| // nearest_refmv_count is relatively smaller than ref_mv_count and NEARESTMV |
| // mode is pruned if none of the ref mvs are populated from nearest candidate. |
| const int prune_thresh = 1 + (ref_mv_count >= 2); |
| if (nearest_refmv_count < prune_thresh) return 1; |
| return 0; |
| } |
| |
| // This function update the non-new mv for the current prediction mode |
| static INLINE int build_cur_mv(int_mv *cur_mv, PREDICTION_MODE this_mode, |
| const AV1_COMMON *cm, const MACROBLOCK *x, |
| int skip_repeated_ref_mv) { |
| const MACROBLOCKD *xd = &x->e_mbd; |
| const MB_MODE_INFO *mbmi = xd->mi[0]; |
| const int is_comp_pred = has_second_ref(mbmi); |
| |
| int ret = 1; |
| for (int i = 0; i < is_comp_pred + 1; ++i) { |
| int_mv this_mv; |
| this_mv.as_int = INVALID_MV; |
| ret = get_this_mv(&this_mv, this_mode, i, mbmi->ref_mv_idx, |
| skip_repeated_ref_mv, mbmi->ref_frame, &x->mbmi_ext); |
| if (!ret) return 0; |
| const PREDICTION_MODE single_mode = get_single_mode(this_mode, i); |
| if (single_mode == NEWMV) { |
| const uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); |
| cur_mv[i] = |
| (i == 0) ? x->mbmi_ext.ref_mv_stack[ref_frame_type][mbmi->ref_mv_idx] |
| .this_mv |
| : x->mbmi_ext.ref_mv_stack[ref_frame_type][mbmi->ref_mv_idx] |
| .comp_mv; |
| } else { |
| ret &= clamp_and_check_mv(cur_mv + i, this_mv, cm, x); |
| } |
| } |
| return ret; |
| } |
| |
| static INLINE int get_drl_cost(const MB_MODE_INFO *mbmi, |
| const MB_MODE_INFO_EXT *mbmi_ext, |
| const int (*const drl_mode_cost0)[2], |
| int8_t ref_frame_type) { |
| int cost = 0; |
| if (mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV) { |
| for (int idx = 0; idx < 2; ++idx) { |
| if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) { |
| uint8_t drl_ctx = av1_drl_ctx(mbmi_ext->weight[ref_frame_type], idx); |
| cost += drl_mode_cost0[drl_ctx][mbmi->ref_mv_idx != idx]; |
| if (mbmi->ref_mv_idx == idx) return cost; |
| } |
| } |
| return cost; |
| } |
| |
| if (have_nearmv_in_inter_mode(mbmi->mode)) { |
| for (int idx = 1; idx < 3; ++idx) { |
| if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) { |
| uint8_t drl_ctx = av1_drl_ctx(mbmi_ext->weight[ref_frame_type], idx); |
| cost += drl_mode_cost0[drl_ctx][mbmi->ref_mv_idx != (idx - 1)]; |
| if (mbmi->ref_mv_idx == (idx - 1)) return cost; |
| } |
| } |
| return cost; |
| } |
| return cost; |
| } |
| |
| static INLINE int is_single_newmv_valid(const HandleInterModeArgs *const args, |
| const MB_MODE_INFO *const mbmi, |
| PREDICTION_MODE this_mode) { |
| for (int ref_idx = 0; ref_idx < 2; ++ref_idx) { |
| const PREDICTION_MODE single_mode = get_single_mode(this_mode, ref_idx); |
| const MV_REFERENCE_FRAME ref = mbmi->ref_frame[ref_idx]; |
| if (single_mode == NEWMV && |
| args->single_newmv_valid[mbmi->ref_mv_idx][ref] == 0) { |
| return 0; |
| } |
| } |
| return 1; |
| } |
| |
| static int get_drl_refmv_count(const MACROBLOCK *const x, |
| const MV_REFERENCE_FRAME *ref_frame, |
| PREDICTION_MODE mode) { |
| const MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext; |
| const int8_t ref_frame_type = av1_ref_frame_type(ref_frame); |
| const int has_nearmv = have_nearmv_in_inter_mode(mode) ? 1 : 0; |
| const int ref_mv_count = mbmi_ext->ref_mv_count[ref_frame_type]; |
| const int only_newmv = (mode == NEWMV || mode == NEW_NEWMV); |
| const int has_drl = |
| (has_nearmv && ref_mv_count > 2) || (only_newmv && ref_mv_count > 1); |
| const int ref_set = |
| has_drl ? AOMMIN(MAX_REF_MV_SEARCH, ref_mv_count - has_nearmv) : 1; |
| |
| return ref_set; |
| } |
| |
| // Checks if particular ref_mv_idx should be pruned. |
| static int prune_ref_mv_idx_using_qindex(const int reduce_inter_modes, |
| const int qindex, |
| const int ref_mv_idx) { |
| if (reduce_inter_modes >= 3) return 1; |
| // Q-index logic based pruning is enabled only for |
| // reduce_inter_modes = 2. |
| assert(reduce_inter_modes == 2); |
| // When reduce_inter_modes=2, pruning happens as below based on q index. |
| // For q index range between 0 and 85: prune if ref_mv_idx >= 1. |
| // For q index range between 86 and 170: prune if ref_mv_idx == 2. |
| // For q index range between 171 and 255: no pruning. |
| const int min_prune_ref_mv_idx = (qindex * 3 / QINDEX_RANGE) + 1; |
| return (ref_mv_idx >= min_prune_ref_mv_idx); |
| } |
| |
| // Whether this reference motion vector can be skipped, based on initial |
| // heuristics. |
| static bool ref_mv_idx_early_breakout( |
| const SPEED_FEATURES *const sf, |
| const RefFrameDistanceInfo *const ref_frame_dist_info, MACROBLOCK *x, |
| const HandleInterModeArgs *const args, int64_t ref_best_rd, |
| int ref_mv_idx) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| const MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext; |
| const int8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); |
| const int is_comp_pred = has_second_ref(mbmi); |
| if (sf->inter_sf.reduce_inter_modes && ref_mv_idx > 0) { |
| if (mbmi->ref_frame[0] == LAST2_FRAME || |
| mbmi->ref_frame[0] == LAST3_FRAME || |
| mbmi->ref_frame[1] == LAST2_FRAME || |
| mbmi->ref_frame[1] == LAST3_FRAME) { |
| const int has_nearmv = have_nearmv_in_inter_mode(mbmi->mode) ? 1 : 0; |
| if (mbmi_ext->weight[ref_frame_type][ref_mv_idx + has_nearmv] < |
| REF_CAT_LEVEL) { |
| return true; |
| } |
| } |
| // TODO(any): Experiment with reduce_inter_modes for compound prediction |
| if (sf->inter_sf.reduce_inter_modes >= 2 && !is_comp_pred && |
| have_newmv_in_inter_mode(mbmi->mode)) { |
| if (mbmi->ref_frame[0] != ref_frame_dist_info->nearest_past_ref && |
| mbmi->ref_frame[0] != ref_frame_dist_info->nearest_future_ref) { |
| const int has_nearmv = have_nearmv_in_inter_mode(mbmi->mode) ? 1 : 0; |
| const int do_prune = prune_ref_mv_idx_using_qindex( |
| sf->inter_sf.reduce_inter_modes, x->qindex, ref_mv_idx); |
| if (do_prune && |
| (mbmi_ext->weight[ref_frame_type][ref_mv_idx + has_nearmv] < |
| REF_CAT_LEVEL)) { |
| return true; |
| } |
| } |
| } |
| } |
| |
| mbmi->ref_mv_idx = ref_mv_idx; |
| if (is_comp_pred && (!is_single_newmv_valid(args, mbmi, mbmi->mode))) { |
| return true; |
| } |
| size_t est_rd_rate = args->ref_frame_cost + args->single_comp_cost; |
| const int drl_cost = get_drl_cost( |
| mbmi, mbmi_ext, x->mode_costs.drl_mode_cost0, ref_frame_type); |
| est_rd_rate += drl_cost; |
| if (RDCOST(x->rdmult, est_rd_rate, 0) > ref_best_rd && |
| mbmi->mode != NEARESTMV && mbmi->mode != NEAREST_NEARESTMV) { |
| return true; |
| } |
| return false; |
| } |
| |
| // Compute the estimated RD cost for the motion vector with simple translation. |
| static int64_t simple_translation_pred_rd(AV1_COMP *const cpi, MACROBLOCK *x, |
| RD_STATS *rd_stats, |
| HandleInterModeArgs *args, |
| int ref_mv_idx, int64_t ref_best_rd, |
| BLOCK_SIZE bsize) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext; |
| const int8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); |
| const AV1_COMMON *cm = &cpi->common; |
| const int is_comp_pred = has_second_ref(mbmi); |
| const ModeCosts *mode_costs = &x->mode_costs; |
| |
| struct macroblockd_plane *p = xd->plane; |
| const BUFFER_SET orig_dst = { |
| { p[0].dst.buf, p[1].dst.buf, p[2].dst.buf }, |
| { p[0].dst.stride, p[1].dst.stride, p[2].dst.stride }, |
| }; |
| av1_init_rd_stats(rd_stats); |
| |
| mbmi->interinter_comp.type = COMPOUND_AVERAGE; |
| mbmi->comp_group_idx = 0; |
| mbmi->compound_idx = 1; |
| if (mbmi->ref_frame[1] == INTRA_FRAME) { |
| mbmi->ref_frame[1] = NONE_FRAME; |
| } |
| int16_t mode_ctx = |
| av1_mode_context_analyzer(mbmi_ext->mode_context, mbmi->ref_frame); |
| |
| mbmi->num_proj_ref = 0; |
| mbmi->motion_mode = SIMPLE_TRANSLATION; |
| mbmi->ref_mv_idx = ref_mv_idx; |
| |
| rd_stats->rate += args->ref_frame_cost + args->single_comp_cost; |
| const int drl_cost = |
| get_drl_cost(mbmi, mbmi_ext, mode_costs->drl_mode_cost0, ref_frame_type); |
| rd_stats->rate += drl_cost; |
| |
| int_mv cur_mv[2]; |
| if (!build_cur_mv(cur_mv, mbmi->mode, cm, x, 0)) { |
| return INT64_MAX; |
| } |
| assert(have_nearmv_in_inter_mode(mbmi->mode)); |
| for (int i = 0; i < is_comp_pred + 1; ++i) { |
| mbmi->mv[i].as_int = cur_mv[i].as_int; |
| } |
| const int ref_mv_cost = cost_mv_ref(mode_costs, mbmi->mode, mode_ctx); |
| rd_stats->rate += ref_mv_cost; |
| |
| if (RDCOST(x->rdmult, rd_stats->rate, 0) > ref_best_rd) { |
| return INT64_MAX; |
| } |
| |
| mbmi->motion_mode = SIMPLE_TRANSLATION; |
| mbmi->num_proj_ref = 0; |
| if (is_comp_pred) { |
| // Only compound_average |
| mbmi->interinter_comp.type = COMPOUND_AVERAGE; |
| mbmi->comp_group_idx = 0; |
| mbmi->compound_idx = 1; |
| } |
| set_default_interp_filters(mbmi, cm->features.interp_filter); |
| |
| const int mi_row = xd->mi_row; |
| const int mi_col = xd->mi_col; |
| av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, &orig_dst, bsize, |
| AOM_PLANE_Y, AOM_PLANE_Y); |
| int est_rate; |
| int64_t est_dist; |
| model_rd_sb_fn[MODELRD_CURVFIT](cpi, bsize, x, xd, 0, 0, &est_rate, &est_dist, |
| NULL, NULL, NULL, NULL, NULL); |
| return RDCOST(x->rdmult, rd_stats->rate + est_rate, est_dist); |
| } |
| |
| // Represents a set of integers, from 0 to sizeof(int) * 8, as bits in |
| // an integer. 0 for the i-th bit means that integer is excluded, 1 means |
| // it is included. |
| static INLINE void mask_set_bit(int *mask, int index) { *mask |= (1 << index); } |
| |
| static INLINE bool mask_check_bit(int mask, int index) { |
| return (mask >> index) & 0x1; |
| } |
| |
| // Before performing the full MV search in handle_inter_mode, do a simple |
| // translation search and see if we can eliminate any motion vectors. |
| // Returns an integer where, if the i-th bit is set, it means that the i-th |
| // motion vector should be searched. This is only set for NEAR_MV. |
| static int ref_mv_idx_to_search(AV1_COMP *const cpi, MACROBLOCK *x, |
| RD_STATS *rd_stats, |
| HandleInterModeArgs *const args, |
| int64_t ref_best_rd, BLOCK_SIZE bsize, |
| const int ref_set) { |
| // If the number of ref mv count is equal to 1, do not prune the same. It |
| // is better to evaluate the same than to prune it. |
| if (ref_set == 1) return 1; |
| AV1_COMMON *const cm = &cpi->common; |
| const MACROBLOCKD *const xd = &x->e_mbd; |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const PREDICTION_MODE this_mode = mbmi->mode; |
| |
| // Only search indices if they have some chance of being good. |
| int good_indices = 0; |
| for (int i = 0; i < ref_set; ++i) { |
| if (ref_mv_idx_early_breakout(&cpi->sf, &cpi->ref_frame_dist_info, x, args, |
| ref_best_rd, i)) { |
| continue; |
| } |
| mask_set_bit(&good_indices, i); |
| } |
| |
| // Only prune in NEARMV mode, if the speed feature is set, and the block size |
| // is large enough. If these conditions are not met, return all good indices |
| // found so far. |
| if (!cpi->sf.inter_sf.prune_mode_search_simple_translation) |
| return good_indices; |
| if (!have_nearmv_in_inter_mode(this_mode)) return good_indices; |
| if (num_pels_log2_lookup[bsize] <= 6) return good_indices; |
| // Do not prune when there is internal resizing. TODO(elliottk) fix this |
| // so b/2384 can be resolved. |
| if (av1_is_scaled(get_ref_scale_factors(cm, mbmi->ref_frame[0])) || |
| (mbmi->ref_frame[1] > 0 && |
| av1_is_scaled(get_ref_scale_factors(cm, mbmi->ref_frame[1])))) { |
| return good_indices; |
| } |
| |
| // Calculate the RD cost for the motion vectors using simple translation. |
| int64_t idx_rdcost[] = { INT64_MAX, INT64_MAX, INT64_MAX }; |
| for (int ref_mv_idx = 0; ref_mv_idx < ref_set; ++ref_mv_idx) { |
| // If this index is bad, ignore it. |
| if (!mask_check_bit(good_indices, ref_mv_idx)) { |
| continue; |
| } |
| idx_rdcost[ref_mv_idx] = simple_translation_pred_rd( |
| cpi, x, rd_stats, args, ref_mv_idx, ref_best_rd, bsize); |
| } |
| // Find the index with the best RD cost. |
| int best_idx = 0; |
| for (int i = 1; i < MAX_REF_MV_SEARCH; ++i) { |
| if (idx_rdcost[i] < idx_rdcost[best_idx]) { |
| best_idx = i; |
| } |
| } |
| // Only include indices that are good and within a % of the best. |
| const double dth = has_second_ref(mbmi) ? 1.05 : 1.001; |
| // If the simple translation cost is not within this multiple of the |
| // best RD, skip it. Note that the cutoff is derived experimentally. |
| const double ref_dth = 5; |
| int result = 0; |
| for (int i = 0; i < ref_set; ++i) { |
| if (mask_check_bit(good_indices, i) && |
| (1.0 * idx_rdcost[i]) / idx_rdcost[best_idx] < dth && |
| (1.0 * idx_rdcost[i]) / ref_best_rd < ref_dth) { |
| mask_set_bit(&result, i); |
| } |
| } |
| return result; |
| } |
| |
| /*!\brief Motion mode information for inter mode search speedup. |
| * |
| * Used in a speed feature to search motion modes other than |
| * SIMPLE_TRANSLATION only on winning candidates. |
| */ |
| typedef struct motion_mode_candidate { |
| /*! |
| * Mode info for the motion mode candidate. |
| */ |
| MB_MODE_INFO mbmi; |
| /*! |
| * Rate describing the cost of the motion vectors for this candidate. |
| */ |
| int rate_mv; |
| /*! |
| * Rate before motion mode search and transform coding is applied. |
| */ |
| int rate2_nocoeff; |
| /*! |
| * An integer value 0 or 1 which indicates whether or not to skip the motion |
| * mode search and default to SIMPLE_TRANSLATION as a speed feature for this |
| * candidate. |
| */ |
| int skip_motion_mode; |
| /*! |
| * Total RD cost for this candidate. |
| */ |
| int64_t rd_cost; |
| } motion_mode_candidate; |
| |
| /*!\cond */ |
| typedef struct motion_mode_best_st_candidate { |
| motion_mode_candidate motion_mode_cand[MAX_WINNER_MOTION_MODES]; |
| int num_motion_mode_cand; |
| } motion_mode_best_st_candidate; |
| |
| // Checks if the current reference frame matches with neighbouring block's |
| // (top/left) reference frames |
| static AOM_INLINE int ref_match_found_in_nb_blocks(MB_MODE_INFO *cur_mbmi, |
| MB_MODE_INFO *nb_mbmi) { |
| MV_REFERENCE_FRAME nb_ref_frames[2] = { nb_mbmi->ref_frame[0], |
| nb_mbmi->ref_frame[1] }; |
| MV_REFERENCE_FRAME cur_ref_frames[2] = { cur_mbmi->ref_frame[0], |
| cur_mbmi->ref_frame[1] }; |
| const int is_cur_comp_pred = has_second_ref(cur_mbmi); |
| int match_found = 0; |
| |
| for (int i = 0; i < (is_cur_comp_pred + 1); i++) { |
| if ((cur_ref_frames[i] == nb_ref_frames[0]) || |
| (cur_ref_frames[i] == nb_ref_frames[1])) |
| match_found = 1; |
| } |
| return match_found; |
| } |
| |
| static AOM_INLINE int find_ref_match_in_above_nbs(const int total_mi_cols, |
| MACROBLOCKD *xd) { |
| if (!xd->up_available) return 1; |
| const int mi_col = xd->mi_col; |
| MB_MODE_INFO **cur_mbmi = xd->mi; |
| // prev_row_mi points into the mi array, starting at the beginning of the |
| // previous row. |
| MB_MODE_INFO **prev_row_mi = xd->mi - mi_col - 1 * xd->mi_stride; |
| const int end_col = AOMMIN(mi_col + xd->width, total_mi_cols); |
| uint8_t mi_step; |
| for (int above_mi_col = mi_col; above_mi_col < end_col; |
| above_mi_col += mi_step) { |
| MB_MODE_INFO **above_mi = prev_row_mi + above_mi_col; |
| mi_step = mi_size_wide[above_mi[0]->bsize]; |
| int match_found = 0; |
| if (is_inter_block(*above_mi)) |
| match_found = ref_match_found_in_nb_blocks(*cur_mbmi, *above_mi); |
| if (match_found) return 1; |
| } |
| return 0; |
| } |
| |
| static AOM_INLINE int find_ref_match_in_left_nbs(const int total_mi_rows, |
| MACROBLOCKD *xd) { |
| if (!xd->left_available) return 1; |
| const int mi_row = xd->mi_row; |
| MB_MODE_INFO **cur_mbmi = xd->mi; |
| // prev_col_mi points into the mi array, starting at the top of the |
| // previous column |
| MB_MODE_INFO **prev_col_mi = xd->mi - 1 - mi_row * xd->mi_stride; |
| const int end_row = AOMMIN(mi_row + xd->height, total_mi_rows); |
| uint8_t mi_step; |
| for (int left_mi_row = mi_row; left_mi_row < end_row; |
| left_mi_row += mi_step) { |
| MB_MODE_INFO **left_mi = prev_col_mi + left_mi_row * xd->mi_stride; |
| mi_step = mi_size_high[left_mi[0]->bsize]; |
| int match_found = 0; |
| if (is_inter_block(*left_mi)) |
| match_found = ref_match_found_in_nb_blocks(*cur_mbmi, *left_mi); |
| if (match_found) return 1; |
| } |
| return 0; |
| } |
| /*!\endcond */ |
| |
| /*! \brief Struct used to hold TPL data to |
| * narrow down parts of the inter mode search. |
| */ |
| typedef struct { |
| /*! |
| * The best inter cost out of all of the reference frames. |
| */ |
| int64_t best_inter_cost; |
| /*! |
| * The inter cost for each reference frame. |
| */ |
| int64_t ref_inter_cost[INTER_REFS_PER_FRAME]; |
| } PruneInfoFromTpl; |
| |
| #if !CONFIG_REALTIME_ONLY |
| // TODO(Remya): Check if get_tpl_stats_b() can be reused |
| static AOM_INLINE void get_block_level_tpl_stats( |
| AV1_COMP *cpi, BLOCK_SIZE bsize, int mi_row, int mi_col, int *valid_refs, |
| PruneInfoFromTpl *inter_cost_info_from_tpl) { |
| AV1_COMMON *const cm = &cpi->common; |
| |
| assert(IMPLIES(cpi->ppi->gf_group.size > 0, |
| cpi->gf_frame_index < cpi->ppi->gf_group.size)); |
| const int tpl_idx = cpi->gf_frame_index; |
| TplParams *const tpl_data = &cpi->ppi->tpl_data; |
| if (!av1_tpl_stats_ready(tpl_data, tpl_idx)) return; |
| const TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx]; |
| const TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr; |
| const int mi_wide = mi_size_wide[bsize]; |
| const int mi_high = mi_size_high[bsize]; |
| const int tpl_stride = tpl_frame->stride; |
| const int step = 1 << tpl_data->tpl_stats_block_mis_log2; |
| const int mi_col_sr = |
| coded_to_superres_mi(mi_col, cm->superres_scale_denominator); |
| const int mi_col_end_sr = |
| coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator); |
| const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width); |
| |
| const int row_step = step; |
| const int col_step_sr = |
| coded_to_superres_mi(step, cm->superres_scale_denominator); |
| for (int row = mi_row; row < AOMMIN(mi_row + mi_high, cm->mi_params.mi_rows); |
| row += row_step) { |
| for (int col = mi_col_sr; col < AOMMIN(mi_col_end_sr, mi_cols_sr); |
| col += col_step_sr) { |
| const TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos( |
| row, col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)]; |
| |
| // Sums up the inter cost of corresponding ref frames |
| for (int ref_idx = 0; ref_idx < INTER_REFS_PER_FRAME; ref_idx++) { |
| inter_cost_info_from_tpl->ref_inter_cost[ref_idx] += |
| this_stats->pred_error[ref_idx]; |
| } |
| } |
| } |
| |
| // Computes the best inter cost (minimum inter_cost) |
| int64_t best_inter_cost = INT64_MAX; |
| for (int ref_idx = 0; ref_idx < INTER_REFS_PER_FRAME; ref_idx++) { |
| const int64_t cur_inter_cost = |
| inter_cost_info_from_tpl->ref_inter_cost[ref_idx]; |
| // For invalid ref frames, cur_inter_cost = 0 and has to be handled while |
| // calculating the minimum inter_cost |
| if (cur_inter_cost != 0 && (cur_inter_cost < best_inter_cost) && |
| valid_refs[ref_idx]) |
| best_inter_cost = cur_inter_cost; |
| } |
| inter_cost_info_from_tpl->best_inter_cost = best_inter_cost; |
| } |
| #endif |
| |
| static AOM_INLINE int prune_modes_based_on_tpl_stats( |
| PruneInfoFromTpl *inter_cost_info_from_tpl, const int *refs, int ref_mv_idx, |
| const PREDICTION_MODE this_mode, int prune_mode_level) { |
| const int have_newmv = have_newmv_in_inter_mode(this_mode); |
| if ((prune_mode_level < 2) && have_newmv) return 0; |
| |
| const int64_t best_inter_cost = inter_cost_info_from_tpl->best_inter_cost; |
| if (best_inter_cost == INT64_MAX) return 0; |
| |
| const int prune_level = prune_mode_level - 1; |
| int64_t cur_inter_cost; |
| |
| const int is_globalmv = |
| (this_mode == GLOBALMV) || (this_mode == GLOBAL_GLOBALMV); |
| const int prune_index = is_globalmv ? MAX_REF_MV_SEARCH : ref_mv_idx; |
| |
| // Thresholds used for pruning: |
| // Lower value indicates aggressive pruning and higher value indicates |
| // conservative pruning which is set based on ref_mv_idx and speed feature. |
| // 'prune_index' 0, 1, 2 corresponds to ref_mv indices 0, 1 and 2. prune_index |
| // 3 corresponds to GLOBALMV/GLOBAL_GLOBALMV |
| static const int tpl_inter_mode_prune_mul_factor[3][MAX_REF_MV_SEARCH + 1] = { |
| { 6, 6, 6, 4 }, { 6, 4, 4, 4 }, { 5, 4, 4, 4 } |
| }; |
| |
| const int is_comp_pred = (refs[1] > INTRA_FRAME); |
| if (!is_comp_pred) { |
| cur_inter_cost = inter_cost_info_from_tpl->ref_inter_cost[refs[0] - 1]; |
| } else { |
| const int64_t inter_cost_ref0 = |
| inter_cost_info_from_tpl->ref_inter_cost[refs[0] - 1]; |
| const int64_t inter_cost_ref1 = |
| inter_cost_info_from_tpl->ref_inter_cost[refs[1] - 1]; |
| // Choose maximum inter_cost among inter_cost_ref0 and inter_cost_ref1 for |
| // more aggressive pruning |
| cur_inter_cost = AOMMAX(inter_cost_ref0, inter_cost_ref1); |
| } |
| |
| // Prune the mode if cur_inter_cost is greater than threshold times |
| // best_inter_cost |
| if (cur_inter_cost > |
| ((tpl_inter_mode_prune_mul_factor[prune_level][prune_index] * |
| best_inter_cost) >> |
| 2)) |
| return 1; |
| return 0; |
| } |
| |
| /*!\brief High level function to select parameters for compound mode. |
| * |
| * \ingroup inter_mode_search |
| * The main search functionality is done in the call to av1_compound_type_rd(). |
| * |
| * \param[in] cpi Top-level encoder structure. |
| * \param[in] x Pointer to struct holding all the data for |
| * the current macroblock. |
| * \param[in] args HandleInterModeArgs struct holding |
| * miscellaneous arguments for inter mode |
| * search. See the documentation for this |
| * struct for a description of each member. |
| * \param[in] ref_best_rd Best RD found so far for this block. |
| * It is used for early termination of this |
| * search if the RD exceeds this value. |
| * \param[in,out] cur_mv Current motion vector. |
| * \param[in] bsize Current block size. |
| * \param[in,out] compmode_interinter_cost RD of the selected interinter |
| compound mode. |
| * \param[in,out] rd_buffers CompoundTypeRdBuffers struct to hold all |
| * allocated buffers for the compound |
| * predictors and masks in the compound type |
| * search. |
| * \param[in,out] orig_dst A prediction buffer to hold a computed |
| * prediction. This will eventually hold the |
| * final prediction, and the tmp_dst info will |
| * be copied here. |
| * \param[in] tmp_dst A temporary prediction buffer to hold a |
| * computed prediction. |
| * \param[in,out] rate_mv The rate associated with the motion vectors. |
| * This will be modified if a motion search is |
| * done in the motion mode search. |
| * \param[in,out] rd_stats Struct to keep track of the overall RD |
| * information. |
| * \param[in,out] skip_rd An array of length 2 where skip_rd[0] is the |
| * best total RD for a skip mode so far, and |
| * skip_rd[1] is the best RD for a skip mode so |
| * far in luma. This is used as a speed feature |
| * to skip the transform search if the computed |
| * skip RD for the current mode is not better |
| * than the best skip_rd so far. |
| * \param[in,out] skip_build_pred Indicates whether or not to build the inter |
| * predictor. If this is 0, the inter predictor |
| * has already been built and thus we can avoid |
| * repeating computation. |
| * \return Returns 1 if this mode is worse than one already seen and 0 if it is |
| * a viable candidate. |
| */ |
| static int process_compound_inter_mode( |
| AV1_COMP *const cpi, MACROBLOCK *x, HandleInterModeArgs *args, |
| int64_t ref_best_rd, int_mv *cur_mv, BLOCK_SIZE bsize, |
| int *compmode_interinter_cost, const CompoundTypeRdBuffers *rd_buffers, |
| const BUFFER_SET *orig_dst, const BUFFER_SET *tmp_dst, int *rate_mv, |
| RD_STATS *rd_stats, int64_t *skip_rd, int *skip_build_pred) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| const AV1_COMMON *cm = &cpi->common; |
| const int masked_compound_used = is_any_masked_compound_used(bsize) && |
| cm->seq_params->enable_masked_compound; |
| int mode_search_mask = (1 << COMPOUND_AVERAGE) | (1 << COMPOUND_DISTWTD) | |
| (1 << COMPOUND_WEDGE) | (1 << COMPOUND_DIFFWTD); |
| |
| const int num_planes = av1_num_planes(cm); |
| const int mi_row = xd->mi_row; |
| const int mi_col = xd->mi_col; |
| int is_luma_interp_done = 0; |
| set_default_interp_filters(mbmi, cm->features.interp_filter); |
| |
| int64_t best_rd_compound; |
| int64_t rd_thresh; |
| const int comp_type_rd_shift = COMP_TYPE_RD_THRESH_SHIFT; |
| const int comp_type_rd_scale = COMP_TYPE_RD_THRESH_SCALE; |
| rd_thresh = get_rd_thresh_from_best_rd(ref_best_rd, (1 << comp_type_rd_shift), |
| comp_type_rd_scale); |
| // Select compound type and any parameters related to that type |
| // (for example, the mask parameters if it is a masked mode) and compute |
| // the RD |
| *compmode_interinter_cost = av1_compound_type_rd( |
| cpi, x, args, bsize, cur_mv, mode_search_mask, masked_compound_used, |
| orig_dst, tmp_dst, rd_buffers, rate_mv, &best_rd_compound, rd_stats, |
| ref_best_rd, skip_rd[1], &is_luma_interp_done, rd_thresh); |
| if (ref_best_rd < INT64_MAX && |
| (best_rd_compound >> comp_type_rd_shift) * comp_type_rd_scale > |
| ref_best_rd) { |
| restore_dst_buf(xd, *orig_dst, num_planes); |
| return 1; |
| } |
| |
| // Build only uv predictor for COMPOUND_AVERAGE. |
| // Note there is no need to call av1_enc_build_inter_predictor |
| // for luma if COMPOUND_AVERAGE is selected because it is the first |
| // candidate in av1_compound_type_rd, which means it used the dst_buf |
| // rather than the tmp_buf. |
| if (mbmi->interinter_comp.type == COMPOUND_AVERAGE && is_luma_interp_done) { |
| if (num_planes > 1) { |
| av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst, bsize, |
| AOM_PLANE_U, num_planes - 1); |
| } |
| *skip_build_pred = 1; |
| } |
| return 0; |
| } |
| |
| // Speed feature to prune out MVs that are similar to previous MVs if they |
| // don't achieve the best RD advantage. |
| static int prune_ref_mv_idx_search(int ref_mv_idx, int best_ref_mv_idx, |
| int_mv save_mv[MAX_REF_MV_SEARCH - 1][2], |
| MB_MODE_INFO *mbmi, int pruning_factor) { |
| int i; |
| const int is_comp_pred = has_second_ref(mbmi); |
| const int thr = (1 + is_comp_pred) << (pruning_factor + 1); |
| |
| // Skip the evaluation if an MV match is found. |
| if (ref_mv_idx > 0) { |
| for (int idx = 0; idx < ref_mv_idx; ++idx) { |
| if (save_mv[idx][0].as_int == INVALID_MV) continue; |
| |
| int mv_diff = 0; |
| for (i = 0; i < 1 + is_comp_pred; ++i) { |
| mv_diff += abs(save_mv[idx][i].as_mv.row - mbmi->mv[i].as_mv.row) + |
| abs(save_mv[idx][i].as_mv.col - mbmi->mv[i].as_mv.col); |
| } |
| |
| // If this mode is not the best one, and current MV is similar to |
| // previous stored MV, terminate this ref_mv_idx evaluation. |
| if (best_ref_mv_idx == -1 && mv_diff <= thr) return 1; |
| } |
| } |
| |
| if (ref_mv_idx < MAX_REF_MV_SEARCH - 1) { |
| for (i = 0; i < is_comp_pred + 1; ++i) |
| save_mv[ref_mv_idx][i].as_int = mbmi->mv[i].as_int; |
| } |
| |
| return 0; |
| } |
| |
| /*!\brief Prunes ZeroMV Search Using Best NEWMV's SSE |
| * |
| * \ingroup inter_mode_search |
| * |
| * Compares the sse of zero mv and the best sse found in single new_mv. If the |
| * sse of the zero_mv is higher, returns 1 to signal zero_mv can be skipped. |
| * Else returns 0. |
| * |
| * Note that the sse of here comes from single_motion_search. So it is |
| * interpolated with the filter in motion search, not the actual interpolation |
| * filter used in encoding. |
| * |
| * \param[in] fn_ptr A table of function pointers to compute SSE. |
| * \param[in] x Pointer to struct holding all the data for |
| * the current macroblock. |
| * \param[in] bsize The current block_size. |
| * \param[in] args The args to handle_inter_mode, used to track |
| * the best SSE. |
| * \param[in] prune_zero_mv_with_sse The argument holds speed feature |
| * prune_zero_mv_with_sse value |
| * \return Returns 1 if zero_mv is pruned, 0 otherwise. |
| */ |
| static AOM_INLINE int prune_zero_mv_with_sse( |
| const aom_variance_fn_ptr_t *fn_ptr, const MACROBLOCK *x, BLOCK_SIZE bsize, |
| const HandleInterModeArgs *args, int prune_zero_mv_with_sse) { |
| const MACROBLOCKD *xd = &x->e_mbd; |
| const MB_MODE_INFO *mbmi = xd->mi[0]; |
| |
| const int is_comp_pred = has_second_ref(mbmi); |
| const MV_REFERENCE_FRAME *refs = mbmi->ref_frame; |
| |
| for (int idx = 0; idx < 1 + is_comp_pred; idx++) { |
| if (xd->global_motion[refs[idx]].wmtype != IDENTITY) { |
| // Pruning logic only works for IDENTITY type models |
| // Note: In theory we could apply similar logic for TRANSLATION |
| // type models, but we do not code these due to a spec bug |
| // (see comments in gm_get_motion_vector() in av1/common/mv.h) |
| assert(xd->global_motion[refs[idx]].wmtype != TRANSLATION); |
| return 0; |
| } |
| |
| // Don't prune if we have invalid data |
| assert(mbmi->mv[idx].as_int == 0); |
| if (args->best_single_sse_in_refs[refs[idx]] == INT32_MAX) { |
| return 0; |
| } |
| } |
| |
| // Sum up the sse of ZEROMV and best NEWMV |
| unsigned int this_sse_sum = 0; |
| unsigned int best_sse_sum = 0; |
| for (int idx = 0; idx < 1 + is_comp_pred; idx++) { |
| const struct macroblock_plane *const p = &x->plane[AOM_PLANE_Y]; |
| const struct macroblockd_plane *pd = xd->plane; |
| const struct buf_2d *src_buf = &p->src; |
| const struct buf_2d *ref_buf = &pd->pre[idx]; |
| const uint8_t *src = src_buf->buf; |
| const uint8_t *ref = ref_buf->buf; |
| const int src_stride = src_buf->stride; |
| const int ref_stride = ref_buf->stride; |
| |
| unsigned int this_sse; |
| fn_ptr[bsize].vf(ref, ref_stride, src, src_stride, &this_sse); |
| this_sse_sum += this_sse; |
| |
| const unsigned int best_sse = args->best_single_sse_in_refs[refs[idx]]; |
| best_sse_sum += best_sse; |
| } |
| |
| const double mul = prune_zero_mv_with_sse > 1 ? 1.00 : 1.25; |
| if ((double)this_sse_sum > (mul * (double)best_sse_sum)) { |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /*!\brief Searches for interpolation filter in realtime mode during winner eval |
| * |
| * \ingroup inter_mode_search |
| * |
| * Does a simple interpolation filter search during winner mode evaluation. This |
| * is currently only used by realtime mode as \ref |
| * av1_interpolation_filter_search is not called during realtime encoding. |
| * |
| * This function only searches over two possible filters. EIGHTTAP_REGULAR is |
| * always search. For lowres clips (<= 240p), MULTITAP_SHARP is also search. For |
| * higher res slips (>240p), EIGHTTAP_SMOOTH is also searched. |
| * * |
| * \param[in] cpi Pointer to the compressor. Used for feature |
| * flags. |
| * \param[in,out] x Pointer to macroblock. This is primarily |
| * used to access the buffers. |
| * \param[in] mi_row The current row in mi unit (4X4 pixels). |
| * \param[in] mi_col The current col in mi unit (4X4 pixels). |
| * \param[in] bsize The current block_size. |
| * \return Returns true if a predictor is built in xd->dst, false otherwise. |
| */ |
| static AOM_INLINE bool fast_interp_search(const AV1_COMP *cpi, MACROBLOCK *x, |
| int mi_row, int mi_col, |
| BLOCK_SIZE bsize) { |
| static const InterpFilters filters_ref_set[3] = { |
| { EIGHTTAP_REGULAR, EIGHTTAP_REGULAR }, |
| { EIGHTTAP_SMOOTH, EIGHTTAP_SMOOTH }, |
| { MULTITAP_SHARP, MULTITAP_SHARP } |
| }; |
| |
| const AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mi = xd->mi[0]; |
| int64_t best_cost = INT64_MAX; |
| int best_filter_index = -1; |
| // dst_bufs[0] sores the new predictor, and dist_bifs[1] stores the best |
| const int num_planes = av1_num_planes(cm); |
| const int is_240p_or_lesser = AOMMIN(cm->width, cm->height) <= 240; |
| assert(is_inter_mode(mi->mode)); |
| assert(mi->motion_mode == SIMPLE_TRANSLATION); |
| assert(!is_inter_compound_mode(mi->mode)); |
| |
| if (!av1_is_interp_needed(xd)) { |
| return false; |
| } |
| |
| struct macroblockd_plane *pd = xd->plane; |
| const BUFFER_SET orig_dst = { |
| { pd[0].dst.buf, pd[1].dst.buf, pd[2].dst.buf }, |
| { pd[0].dst.stride, pd[1].dst.stride, pd[2].dst.stride }, |
| }; |
| uint8_t *const tmp_buf = get_buf_by_bd(xd, x->tmp_pred_bufs[0]); |
| const BUFFER_SET tmp_dst = { { tmp_buf, tmp_buf + 1 * MAX_SB_SQUARE, |
| tmp_buf + 2 * MAX_SB_SQUARE }, |
| { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE } }; |
| const BUFFER_SET *dst_bufs[2] = { &orig_dst, &tmp_dst }; |
| |
| for (int i = 0; i < 3; ++i) { |
| if (is_240p_or_lesser) { |
| if (filters_ref_set[i].x_filter == EIGHTTAP_SMOOTH) { |
| continue; |
| } |
| } else { |
| if (filters_ref_set[i].x_filter == MULTITAP_SHARP) { |
| continue; |
| } |
|