blob: 90d8e08ecffbb50c25f872782902f54ba555dc7f [file] [log] [blame]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "av1/common/av1_common_int.h"
#include "av1/encoder/sparse_linear_solver.h"
#include "config/aom_config.h"
#include "aom_mem/aom_mem.h"
#include "av1/common/alloccommon.h"
#if CONFIG_OPTICAL_FLOW_API
/*
* Input:
* rows: array of row positions
* cols: array of column positions
* values: array of element values
* num_elem: total number of elements in the matrix
* num_rows: number of rows in the matrix
* num_cols: number of columns in the matrix
*
* Output:
* sm: pointer to the sparse matrix to be initialized
*
* Return: 0 - success
* -1 - failed
*/
int av1_init_sparse_mtx(const int *rows, const int *cols, const double *values,
int num_elem, int num_rows, int num_cols,
SPARSE_MTX *sm) {
sm->n_elem = num_elem;
sm->n_rows = num_rows;
sm->n_cols = num_cols;
if (num_elem == 0) {
sm->row_pos = NULL;
sm->col_pos = NULL;
sm->value = NULL;
return 0;
}
sm->row_pos = aom_calloc(num_elem, sizeof(*sm->row_pos));
sm->col_pos = aom_calloc(num_elem, sizeof(*sm->col_pos));
sm->value = aom_calloc(num_elem, sizeof(*sm->value));
if (!sm->row_pos || !sm->col_pos || !sm->value) {
av1_free_sparse_mtx_elems(sm);
return -1;
}
memcpy(sm->row_pos, rows, num_elem * sizeof(*sm->row_pos));
memcpy(sm->col_pos, cols, num_elem * sizeof(*sm->col_pos));
memcpy(sm->value, values, num_elem * sizeof(*sm->value));
return 0;
}
/*
* Combines two sparse matrices (allocating new space).
*
* Input:
* sm1, sm2: matrices to be combined
* row_offset1, row_offset2: row offset of each matrix in the new matrix
* col_offset1, col_offset2: column offset of each matrix in the new matrix
* new_n_rows, new_n_cols: number of rows and columns in the new matrix
*
* Output:
* sm: the combined matrix
*
* Return: 0 - success
* -1 - failed
*/
int av1_init_combine_sparse_mtx(const SPARSE_MTX *sm1, const SPARSE_MTX *sm2,
SPARSE_MTX *sm, int row_offset1,
int col_offset1, int row_offset2,
int col_offset2, int new_n_rows,
int new_n_cols) {
sm->n_elem = sm1->n_elem + sm2->n_elem;
sm->n_cols = new_n_cols;
sm->n_rows = new_n_rows;
if (sm->n_elem == 0) {
sm->row_pos = NULL;
sm->col_pos = NULL;
sm->value = NULL;
return 0;
}
sm->row_pos = aom_calloc(sm->n_elem, sizeof(*sm->row_pos));
sm->col_pos = aom_calloc(sm->n_elem, sizeof(*sm->col_pos));
sm->value = aom_calloc(sm->n_elem, sizeof(*sm->value));
if (!sm->row_pos || !sm->col_pos || !sm->value) {
av1_free_sparse_mtx_elems(sm);
return -1;
}
for (int i = 0; i < sm1->n_elem; i++) {
sm->row_pos[i] = sm1->row_pos[i] + row_offset1;
sm->col_pos[i] = sm1->col_pos[i] + col_offset1;
}
memcpy(sm->value, sm1->value, sm1->n_elem * sizeof(*sm1->value));
int n_elem1 = sm1->n_elem;
for (int i = 0; i < sm2->n_elem; i++) {
sm->row_pos[n_elem1 + i] = sm2->row_pos[i] + row_offset2;
sm->col_pos[n_elem1 + i] = sm2->col_pos[i] + col_offset2;
}
memcpy(sm->value + n_elem1, sm2->value, sm2->n_elem * sizeof(*sm2->value));
return 0;
}
void av1_free_sparse_mtx_elems(SPARSE_MTX *sm) {
sm->n_cols = 0;
sm->n_rows = 0;
if (sm->n_elem != 0) {
aom_free(sm->row_pos);
aom_free(sm->col_pos);
aom_free(sm->value);
}
sm->n_elem = 0;
}
/*
* Calculate matrix and vector multiplication: A*b
*
* Input:
* sm: matrix A
* srcv: the vector b to be multiplied to
* dstl: the length of vectors
*
* Output:
* dstv: pointer to the resulting vector
*/
void av1_mtx_vect_multi_right(const SPARSE_MTX *sm, const double *srcv,
double *dstv, int dstl) {
memset(dstv, 0, sizeof(*dstv) * dstl);
for (int i = 0; i < sm->n_elem; i++) {
dstv[sm->row_pos[i]] += srcv[sm->col_pos[i]] * sm->value[i];
}
}
/*
* Calculate matrix and vector multiplication: b*A
*
* Input:
* sm: matrix A
* srcv: the vector b to be multiplied to
* dstl: the length of vectors
*
* Output:
* dstv: pointer to the resulting vector
*/
void av1_mtx_vect_multi_left(const SPARSE_MTX *sm, const double *srcv,
double *dstv, int dstl) {
memset(dstv, 0, sizeof(*dstv) * dstl);
for (int i = 0; i < sm->n_elem; i++) {
dstv[sm->col_pos[i]] += srcv[sm->row_pos[i]] * sm->value[i];
}
}
/*
* Calculate inner product of two vectors
*
* Input:
* src1, scr2: the vectors to be multiplied
* src1l: length of the vectors
*
* Output:
* the inner product
*/
double av1_vect_vect_multi(const double *src1, int src1l, const double *src2) {
double result = 0;
for (int i = 0; i < src1l; i++) {
result += src1[i] * src2[i];
}
return result;
}
/*
* Multiply each element in the matrix sm with a constant c
*/
void av1_constant_multiply_sparse_matrix(SPARSE_MTX *sm, double c) {
for (int i = 0; i < sm->n_elem; i++) {
sm->value[i] *= c;
}
}
static INLINE void free_solver_local_buf(double *buf1, double *buf2,
double *buf3, double *buf4,
double *buf5, double *buf6,
double *buf7) {
aom_free(buf1);
aom_free(buf2);
aom_free(buf3);
aom_free(buf4);
aom_free(buf5);
aom_free(buf6);
aom_free(buf7);
}
/*
* Solve for Ax = b
* no requirement on A
*
* Input:
* A: the sparse matrix
* b: the vector b
* bl: length of b
* x: the vector x
*
* Output:
* x: pointer to the solution vector
*
* Return: 0 - success
* -1 - failed
*/
int av1_bi_conjugate_gradient_sparse(const SPARSE_MTX *A, const double *b,
int bl, double *x) {
double *r = NULL, *r_hat = NULL, *p = NULL, *p_hat = NULL, *Ap = NULL,
*p_hatA = NULL, *x_hat = NULL;
double alpha, beta, rtr, r_norm_2;
double denormtemp;
// initialize
r = aom_calloc(bl, sizeof(*r));
r_hat = aom_calloc(bl, sizeof(*r_hat));
p = aom_calloc(bl, sizeof(*p));
p_hat = aom_calloc(bl, sizeof(*p_hat));
Ap = aom_calloc(bl, sizeof(*Ap));
p_hatA = aom_calloc(bl, sizeof(*p_hatA));
x_hat = aom_calloc(bl, sizeof(*x_hat));
if (!r || !r_hat || !p || !p_hat || !Ap || !p_hatA || !x_hat) {
free_solver_local_buf(r, r_hat, p, p_hat, Ap, p_hatA, x_hat);
return -1;
}
int i;
for (i = 0; i < bl; i++) {
r[i] = b[i];
r_hat[i] = b[i];
p[i] = r[i];
p_hat[i] = r_hat[i];
x[i] = 0;
x_hat[i] = 0;
}
r_norm_2 = av1_vect_vect_multi(r_hat, bl, r);
for (int k = 0; k < MAX_CG_SP_ITER; k++) {
rtr = r_norm_2;
av1_mtx_vect_multi_right(A, p, Ap, bl);
av1_mtx_vect_multi_left(A, p_hat, p_hatA, bl);
denormtemp = av1_vect_vect_multi(p_hat, bl, Ap);
if (denormtemp < 1e-10) break;
alpha = rtr / denormtemp;
r_norm_2 = 0;
for (i = 0; i < bl; i++) {
x[i] += alpha * p[i];
x_hat[i] += alpha * p_hat[i];
r[i] -= alpha * Ap[i];
r_hat[i] -= alpha * p_hatA[i];
r_norm_2 += r_hat[i] * r[i];
}
if (sqrt(r_norm_2) < 1e-2) {
break;
}
if (rtr < 1e-10) break;
beta = r_norm_2 / rtr;
for (i = 0; i < bl; i++) {
p[i] = r[i] + beta * p[i];
p_hat[i] = r_hat[i] + beta * p_hat[i];
}
}
// free
free_solver_local_buf(r, r_hat, p, p_hat, Ap, p_hatA, x_hat);
return 0;
}
/*
* Solve for Ax = b when A is symmetric and positive definite
*
* Input:
* A: the sparse matrix
* b: the vector b
* bl: length of b
* x: the vector x
*
* Output:
* x: pointer to the solution vector
*
* Return: 0 - success
* -1 - failed
*/
int av1_conjugate_gradient_sparse(const SPARSE_MTX *A, const double *b, int bl,
double *x) {
double *r = NULL, *p = NULL, *Ap = NULL;
double alpha, beta, rtr, r_norm_2;
double denormtemp;
// initialize
r = aom_calloc(bl, sizeof(*r));
p = aom_calloc(bl, sizeof(*p));
Ap = aom_calloc(bl, sizeof(*Ap));
if (!r || !p || !Ap) {
free_solver_local_buf(r, p, Ap, NULL, NULL, NULL, NULL);
return -1;
}
int i;
for (i = 0; i < bl; i++) {
r[i] = b[i];
p[i] = r[i];
x[i] = 0;
}
r_norm_2 = av1_vect_vect_multi(r, bl, r);
int k;
for (k = 0; k < MAX_CG_SP_ITER; k++) {
rtr = r_norm_2;
av1_mtx_vect_multi_right(A, p, Ap, bl);
denormtemp = av1_vect_vect_multi(p, bl, Ap);
if (denormtemp < 1e-10) break;
alpha = rtr / denormtemp;
r_norm_2 = 0;
for (i = 0; i < bl; i++) {
x[i] += alpha * p[i];
r[i] -= alpha * Ap[i];
r_norm_2 += r[i] * r[i];
}
if (r_norm_2 < 1e-8 * bl) break;
if (rtr < 1e-10) break;
beta = r_norm_2 / rtr;
for (i = 0; i < bl; i++) {
p[i] = r[i] + beta * p[i];
}
}
// free
free_solver_local_buf(r, p, Ap, NULL, NULL, NULL, NULL);
return 0;
}
/*
* Solve for Ax = b using Jacobi method
*
* Input:
* A: the sparse matrix
* b: the vector b
* bl: length of b
* x: the vector x
*
* Output:
* x: pointer to the solution vector
*
* Return: 0 - success
* -1 - failed
*/
int av1_jacobi_sparse(const SPARSE_MTX *A, const double *b, int bl, double *x) {
double *diags = NULL, *Rx = NULL, *x_last = NULL, *x_cur = NULL,
*tempx = NULL;
double resi2;
diags = aom_calloc(bl, sizeof(*diags));
Rx = aom_calloc(bl, sizeof(*Rx));
x_last = aom_calloc(bl, sizeof(*x_last));
x_cur = aom_calloc(bl, sizeof(*x_cur));
if (!diags || !Rx || !x_last || !x_cur) {
free_solver_local_buf(diags, Rx, x_last, x_cur, NULL, NULL, NULL);
return -1;
}
int i;
memset(x_last, 0, sizeof(*x_last) * bl);
// get the diagonals of A
memset(diags, 0, sizeof(*diags) * bl);
for (int c = 0; c < A->n_elem; c++) {
if (A->row_pos[c] != A->col_pos[c]) continue;
diags[A->row_pos[c]] = A->value[c];
}
int k;
for (k = 0; k < MAX_CG_SP_ITER; k++) {
// R = A - diag(diags)
// get R*x_last
memset(Rx, 0, sizeof(*Rx) * bl);
for (int c = 0; c < A->n_elem; c++) {
if (A->row_pos[c] == A->col_pos[c]) continue;
Rx[A->row_pos[c]] += x_last[A->col_pos[c]] * A->value[c];
}
resi2 = 0;
for (i = 0; i < bl; i++) {
x_cur[i] = (b[i] - Rx[i]) / diags[i];
resi2 += (x_last[i] - x_cur[i]) * (x_last[i] - x_cur[i]);
}
if (resi2 <= 1e-10 * bl) break;
// swap last & cur buffer ptrs
tempx = x_last;
x_last = x_cur;
x_cur = tempx;
}
printf("\n numiter: %d\n", k);
for (i = 0; i < bl; i++) {
x[i] = x_cur[i];
}
free_solver_local_buf(diags, Rx, x_last, x_cur, NULL, NULL, NULL);
return 0;
}
/*
* Solve for Ax = b using Steepest descent method
*
* Input:
* A: the sparse matrix
* b: the vector b
* bl: length of b
* x: the vector x
*
* Output:
* x: pointer to the solution vector
*
* Return: 0 - success
* -1 - failed
*/
int av1_steepest_descent_sparse(const SPARSE_MTX *A, const double *b, int bl,
double *x) {
double *d = NULL, *Ad = NULL, *Ax = NULL;
double resi2, resi2_last, dAd, temp;
d = aom_calloc(bl, sizeof(*d));
Ax = aom_calloc(bl, sizeof(*Ax));
Ad = aom_calloc(bl, sizeof(*Ad));
if (!d || !Ax || !Ad) {
free_solver_local_buf(d, Ax, Ad, NULL, NULL, NULL, NULL);
return -1;
}
int i;
// initialize with 0s
resi2 = 0;
for (i = 0; i < bl; i++) {
x[i] = 0;
d[i] = b[i];
resi2 += d[i] * d[i] / bl;
}
int k;
for (k = 0; k < MAX_CG_SP_ITER; k++) {
// get A*x_last
av1_mtx_vect_multi_right(A, d, Ad, bl);
dAd = resi2 * bl / av1_vect_vect_multi(d, bl, Ad);
for (i = 0; i < bl; i++) {
temp = dAd * d[i];
x[i] = x[i] + temp;
}
av1_mtx_vect_multi_right(A, x, Ax, bl);
resi2_last = resi2;
resi2 = 0;
for (i = 0; i < bl; i++) {
d[i] = b[i] - Ax[i];
resi2 += d[i] * d[i] / bl;
}
if (resi2 <= 1e-8) break;
if (resi2_last - resi2 < 1e-8) {
break;
}
}
free_solver_local_buf(d, Ax, Ad, NULL, NULL, NULL, NULL);
return 0;
}
#endif // CONFIG_OPTICAL_FLOW_API