blob: eb4c98e9f0d29fcbd618c3fa90f11201bfdc4370 [file] [log] [blame]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <emmintrin.h> // SSE2
#include "config/av1_rtcd.h"
#include "aom_dsp/x86/synonyms.h"
static int64_t k_means_horizontal_sum_sse2(__m128i a) {
const __m128i sum1 = _mm_unpackhi_epi64(a, a);
const __m128i sum2 = _mm_add_epi64(a, sum1);
int64_t res;
_mm_storel_epi64((__m128i *)&res, sum2);
return res;
}
void av1_calc_indices_dim1_sse2(const int16_t *data, const int16_t *centroids,
uint8_t *indices, int64_t *total_dist, int n,
int k) {
const __m128i v_zero = _mm_setzero_si128();
__m128i sum = _mm_setzero_si128();
__m128i cents[PALETTE_MAX_SIZE];
for (int j = 0; j < k; ++j) {
cents[j] = _mm_set1_epi16(centroids[j]);
}
for (int i = 0; i < n; i += 8) {
const __m128i in = _mm_loadu_si128((__m128i *)data);
__m128i ind = _mm_setzero_si128();
// Compute the distance to the first centroid.
__m128i d1 = _mm_sub_epi16(in, cents[0]);
__m128i d2 = _mm_sub_epi16(cents[0], in);
__m128i dist_min = _mm_max_epi16(d1, d2);
for (int j = 1; j < k; ++j) {
// Compute the distance to the centroid.
d1 = _mm_sub_epi16(in, cents[j]);
d2 = _mm_sub_epi16(cents[j], in);
const __m128i dist = _mm_max_epi16(d1, d2);
// Compare to the minimal one.
const __m128i cmp = _mm_cmpgt_epi16(dist_min, dist);
dist_min = _mm_min_epi16(dist_min, dist);
const __m128i ind1 = _mm_set1_epi16(j);
ind = _mm_or_si128(_mm_andnot_si128(cmp, ind), _mm_and_si128(cmp, ind1));
}
if (total_dist) {
// Square, convert to 32 bit and add together.
dist_min = _mm_madd_epi16(dist_min, dist_min);
// Convert to 64 bit and add to sum.
const __m128i dist1 = _mm_unpacklo_epi32(dist_min, v_zero);
const __m128i dist2 = _mm_unpackhi_epi32(dist_min, v_zero);
sum = _mm_add_epi64(sum, dist1);
sum = _mm_add_epi64(sum, dist2);
}
__m128i p2 = _mm_packus_epi16(ind, v_zero);
_mm_storel_epi64((__m128i *)indices, p2);
indices += 8;
data += 8;
}
if (total_dist) {
*total_dist = k_means_horizontal_sum_sse2(sum);
}
}
void av1_calc_indices_dim2_sse2(const int16_t *data, const int16_t *centroids,
uint8_t *indices, int64_t *total_dist, int n,
int k) {
const __m128i v_zero = _mm_setzero_si128();
__m128i sum = _mm_setzero_si128();
__m128i ind[2];
__m128i cents[PALETTE_MAX_SIZE];
for (int j = 0; j < k; ++j) {
const int16_t cx = centroids[2 * j], cy = centroids[2 * j + 1];
cents[j] = _mm_set_epi16(cy, cx, cy, cx, cy, cx, cy, cx);
}
for (int i = 0; i < n; i += 8) {
for (int l = 0; l < 2; ++l) {
const __m128i in = _mm_loadu_si128((__m128i *)data);
ind[l] = _mm_setzero_si128();
// Compute the distance to the first centroid.
__m128i d1 = _mm_sub_epi16(in, cents[0]);
__m128i dist_min = _mm_madd_epi16(d1, d1);
for (int j = 1; j < k; ++j) {
// Compute the distance to the centroid.
d1 = _mm_sub_epi16(in, cents[j]);
const __m128i dist = _mm_madd_epi16(d1, d1);
// Compare to the minimal one.
const __m128i cmp = _mm_cmpgt_epi32(dist_min, dist);
const __m128i dist1 = _mm_andnot_si128(cmp, dist_min);
const __m128i dist2 = _mm_and_si128(cmp, dist);
dist_min = _mm_or_si128(dist1, dist2);
const __m128i ind1 = _mm_set1_epi32(j);
ind[l] = _mm_or_si128(_mm_andnot_si128(cmp, ind[l]),
_mm_and_si128(cmp, ind1));
}
if (total_dist) {
// Convert to 64 bit and add to sum.
const __m128i dist1 = _mm_unpacklo_epi32(dist_min, v_zero);
const __m128i dist2 = _mm_unpackhi_epi32(dist_min, v_zero);
sum = _mm_add_epi64(sum, dist1);
sum = _mm_add_epi64(sum, dist2);
}
data += 8;
}
// Cast to 8 bit and store.
const __m128i d2 = _mm_packus_epi16(ind[0], ind[1]);
const __m128i d3 = _mm_packus_epi16(d2, v_zero);
_mm_storel_epi64((__m128i *)indices, d3);
indices += 8;
}
if (total_dist) {
*total_dist = k_means_horizontal_sum_sse2(sum);
}
}