| /* |
| * Copyright (c) 2020, Alliance for Open Media. All rights reserved. |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <assert.h> |
| #include <immintrin.h> |
| #include <math.h> |
| |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "av1/common/av1_common_int.h" |
| #include "av1/encoder/cnn.h" |
| |
| // This mask rearranges source pixels in the order shown below. |
| // shuffle_src_layer0[0][8]: applied on source pixels 0 to 7. |
| // shuffle_src_layer0[1][8]: applied on source pixels 7 to 14. |
| // This shuffling is needed to process 3 5x5 blocks which need |
| // source pixels in the following order. |
| // 1st 5x5 block: source pixels needed are 0 to 4, |
| // 2nd 5x5 block: source pixels needed are 4 to 8, |
| // 3rd 5x5 block: source pixels needed are 8 to 12. |
| // Source pixels are loaded like mentioned below. |
| // load_src0 : 0, 1, 2, 3, 4, 5, 6, 7 |
| // load_src1 : 7, 8, 9, 10, 11, 12, 13, 14 |
| // After applying masks, source bytes will be in the order: |
| // load_src0 : 0, 1, 2, 3, 4, 4, 5, 6 |
| // consists 5 pixels needed for 1st 5x5 block and |
| // first 3 pixels needed for 2nd 5x5 block. |
| // load_src1 : 7, 8, 8, 9, 10, 11, 12, x |
| // consists last 2 pixels needed for 2nd 5x5 block and |
| // 5 pixels needed for 3rd 5x5 block. |
| DECLARE_ALIGNED(32, static const uint32_t, |
| shuffle_src_layer0[2][8]) = { { 0, 1, 2, 3, 4, 4, 5, 6 }, |
| { 0, 1, 1, 2, 3, 4, 5, 0 } }; |
| |
| // This mask rearrange the weights to match shuffled source pixels order. |
| DECLARE_ALIGNED(32, static const uint32_t, |
| shuffle_weight_layer0[2][8]) = { { 0, 1, 2, 3, 4, 0, 1, 2 }, |
| { 3, 4, 0, 1, 2, 3, 4, 0 } }; |
| |
| // Shuffle mask used to rearrange weights corresponding to layer 1 and layer 2. |
| // For layer 1 and layer 2, convolution happens at 2x2 as filter_width and |
| // filter_height are equal to 2. So rearranging the weights in the |
| // order shown below to match source pixels. Basically this mask replicates |
| // the weights across the width of 2. |
| DECLARE_ALIGNED(32, static const uint32_t, |
| shuffle_weight_layer_1_and_2[2][8]) = { |
| { 0, 1, 0, 1, 0, 1, 0, 1 }, { 2, 3, 2, 3, 2, 3, 2, 3 } |
| }; |
| |
| // After the stages of multiplication and accumulation, the output values |
| // in the register will be jumbled. In order to store register into |
| // output buffer in a proper way, the following mask is applied on output |
| // register. |
| DECLARE_ALIGNED(32, static const uint32_t, |
| shuffle_output_layer_1_and_2[8]) = { 0, 1, 4, 5, 2, 3, 6, 7 }; |
| |
| // Load weights needed for layer 0 (for 5x5 block processing), |
| // and fill the registers appropriately to match source pixel mapping. |
| static INLINE void prepare_weights_for_5x5_convolve( |
| const float *layer_config_weights, int off, float weight[5][8], |
| const int cstep, __m256 *shuffle_weight, const __m256i weight_mask_0, |
| const __m256i weight_mask_1) { |
| for (int row = 0; row < 5; ++row) { |
| for (int col = 0; col < 5; ++col) { |
| weight[row][col] = layer_config_weights[off]; |
| off += cstep; |
| } |
| } |
| shuffle_weight[0] = _mm256_loadu_ps(weight[0]); |
| shuffle_weight[1] = _mm256_loadu_ps(weight[1]); |
| shuffle_weight[2] = _mm256_loadu_ps(weight[2]); |
| shuffle_weight[3] = _mm256_loadu_ps(weight[3]); |
| shuffle_weight[4] = _mm256_loadu_ps(weight[4]); |
| |
| shuffle_weight[0] = |
| _mm256_permutevar8x32_ps(shuffle_weight[0], weight_mask_0); |
| shuffle_weight[1] = |
| _mm256_permutevar8x32_ps(shuffle_weight[1], weight_mask_0); |
| shuffle_weight[2] = |
| _mm256_permutevar8x32_ps(shuffle_weight[2], weight_mask_0); |
| shuffle_weight[3] = |
| _mm256_permutevar8x32_ps(shuffle_weight[3], weight_mask_0); |
| shuffle_weight[4] = |
| _mm256_permutevar8x32_ps(shuffle_weight[4], weight_mask_0); |
| shuffle_weight[5] = |
| _mm256_permutevar8x32_ps(shuffle_weight[0], weight_mask_1); |
| shuffle_weight[6] = |
| _mm256_permutevar8x32_ps(shuffle_weight[1], weight_mask_1); |
| shuffle_weight[7] = |
| _mm256_permutevar8x32_ps(shuffle_weight[2], weight_mask_1); |
| shuffle_weight[8] = |
| _mm256_permutevar8x32_ps(shuffle_weight[3], weight_mask_1); |
| shuffle_weight[9] = |
| _mm256_permutevar8x32_ps(shuffle_weight[4], weight_mask_1); |
| } |
| |
| // For each row, loads source pixels 0 to 7(load_src_0), 7 to 14(load_src_1) and |
| // arranges them appropriately to process 3 blocks. |
| #define PERFORM_CONVOLVE_FOR_3_5X5_BLOCKS() \ |
| do { \ |
| for (int row = 0; row < 5; row++) { \ |
| load_src_0 = _mm256_loadu_ps(input_ptr); \ |
| load_src_1 = _mm256_loadu_ps(input_ptr + 7); \ |
| load_src_0 = _mm256_permutevar8x32_ps(load_src_0, block0_1); \ |
| load_src_1 = _mm256_permutevar8x32_ps(load_src_1, block1_2); \ |
| load_src_0 = _mm256_mul_ps(load_src_0, shuffle_weight[0 + row]); \ |
| load_src_1 = _mm256_mul_ps(load_src_1, shuffle_weight[5 + row]); \ |
| accum_src_0 = _mm256_add_ps(load_src_0, accum_src_0); \ |
| accum_src_1 = _mm256_add_ps(load_src_1, accum_src_1); \ |
| input_ptr += in_stride; \ |
| } \ |
| } while (0) |
| |
| // Load masks needed for shuffling of output and weights. |
| static INLINE void load_shuffle_masks_for_2x2_convolve(__m256i *output_mask, |
| __m256i *weight_mask) { |
| // Load shuffle buffer needed to sort the output. |
| *output_mask = |
| _mm256_load_si256((const __m256i *)shuffle_output_layer_1_and_2); |
| |
| // Load shuffle buffers needed for weight. |
| weight_mask[0] = |
| _mm256_load_si256((const __m256i *)shuffle_weight_layer_1_and_2[0]); |
| weight_mask[1] = |
| _mm256_load_si256((const __m256i *)shuffle_weight_layer_1_and_2[1]); |
| } |
| |
| // Load weights needed for layer 1 and 2 (for 2x2 block processing), |
| // and fill the registers appropriately to match source pixel mapping. |
| static INLINE void prepare_weights_for_2x2_convolve( |
| const float *layer_config_weights, int off, const int cstep, |
| __m256 *shuffle_weight, __m256i *weight_mask) { |
| // Weights needed for 2x2 block. |
| float weight[4] = { 0 }; |
| for (int i = 0; i < 4; ++i) { |
| weight[i] = layer_config_weights[off]; |
| off += cstep; |
| } |
| |
| const __m256 weight_vec = _mm256_castps128_ps256(_mm_loadu_ps(weight)); |
| shuffle_weight[0] = _mm256_permutevar8x32_ps(weight_vec, weight_mask[0]); |
| shuffle_weight[1] = _mm256_permutevar8x32_ps(weight_vec, weight_mask[1]); |
| } |
| |
| // Do convolution of one 5x5 block. |
| #define PERFORM_CONVOLVE_FOR_1_5X5_BLOCK(w, accum0, in_stride) \ |
| do { \ |
| __m128 load_src[5]; \ |
| load_src[0] = _mm_loadu_ps(input_ptr); \ |
| last_column_sum += input_ptr[4] * weight[0][4]; \ |
| input_ptr += in_stride; \ |
| load_src[1] = _mm_loadu_ps(input_ptr); \ |
| last_column_sum += input_ptr[4] * weight[1][4]; \ |
| input_ptr += in_stride; \ |
| load_src[2] = _mm_loadu_ps(input_ptr); \ |
| last_column_sum += input_ptr[4] * weight[2][4]; \ |
| input_ptr += in_stride; \ |
| load_src[3] = _mm_loadu_ps(input_ptr); \ |
| last_column_sum += input_ptr[4] * weight[3][4]; \ |
| input_ptr += in_stride; \ |
| load_src[4] = _mm_loadu_ps(input_ptr); \ |
| last_column_sum += input_ptr[4] * weight[4][4]; \ |
| \ |
| load_src[0] = _mm_mul_ps(load_src[0], _mm256_castps256_ps128(w[0])); \ |
| load_src[1] = _mm_mul_ps(load_src[1], _mm256_castps256_ps128(w[1])); \ |
| load_src[2] = _mm_mul_ps(load_src[2], _mm256_castps256_ps128(w[2])); \ |
| load_src[3] = _mm_mul_ps(load_src[3], _mm256_castps256_ps128(w[3])); \ |
| load_src[4] = _mm_mul_ps(load_src[4], _mm256_castps256_ps128(w[4])); \ |
| \ |
| accum0 = _mm_add_ps(load_src[0], accum0); \ |
| load_src[1] = _mm_add_ps(load_src[1], load_src[2]); \ |
| load_src[3] = _mm_add_ps(load_src[3], load_src[4]); \ |
| load_src[1] = _mm_add_ps(load_src[1], load_src[3]); \ |
| accum0 = _mm_add_ps(accum0, load_src[1]); \ |
| } while (0) |
| |
| // Do convolution on 8 horizontal 2x2 blocks. |
| static INLINE void perform_convolve_for_8h_2x2_blocks( |
| const float *input_ptr, int in_stride, __m256 *weight, __m256 *out_accum, |
| __m256i shuffle_output_mask) { |
| __m256 load_src[4]; |
| // Load input into source registers. |
| load_src[0] = _mm256_loadu_ps(input_ptr); |
| load_src[1] = _mm256_loadu_ps(input_ptr + 8); |
| load_src[2] = _mm256_loadu_ps(input_ptr + in_stride); |
| load_src[3] = _mm256_loadu_ps(input_ptr + in_stride + 8); |
| |
| // Multiply the loaded input with corresponding weights. |
| load_src[0] = _mm256_mul_ps(load_src[0], weight[0]); |
| load_src[1] = _mm256_mul_ps(load_src[1], weight[0]); |
| load_src[2] = _mm256_mul_ps(load_src[2], weight[1]); |
| load_src[3] = _mm256_mul_ps(load_src[3], weight[1]); |
| |
| // Accumulate across 2x2 blocks. |
| load_src[0] = _mm256_add_ps(load_src[0], load_src[2]); |
| load_src[1] = _mm256_add_ps(load_src[1], load_src[3]); |
| load_src[0] = _mm256_hadd_ps(load_src[0], load_src[1]); |
| |
| // Sort the output in order to store into output buffer. |
| load_src[0] = _mm256_permutevar8x32_ps(load_src[0], shuffle_output_mask); |
| *out_accum = _mm256_add_ps(*out_accum, load_src[0]); |
| } |
| |
| // Do convolution on 8 (4 horizontal x 2 vertical) 2x2 blocks. |
| static INLINE void perform_convolve_for_4hx2v_2x2_blocks( |
| const float *input_ptr, int in_stride, __m256 *weight, __m256 *out_accum, |
| __m256i shuffle_output_mask) { |
| __m256 load_src[4]; |
| // Load input into source registers. |
| load_src[0] = _mm256_loadu_ps(input_ptr); |
| load_src[1] = _mm256_loadu_ps(input_ptr + in_stride); |
| load_src[2] = _mm256_loadu_ps(input_ptr + (in_stride * 2)); |
| load_src[3] = _mm256_loadu_ps(input_ptr + (in_stride * 3)); |
| |
| // Multiply the loaded input with corresponding weights. |
| load_src[0] = _mm256_mul_ps(load_src[0], weight[0]); |
| load_src[1] = _mm256_mul_ps(load_src[1], weight[1]); |
| load_src[2] = _mm256_mul_ps(load_src[2], weight[0]); |
| load_src[3] = _mm256_mul_ps(load_src[3], weight[1]); |
| |
| // Accumulate across 2x2 blocks. |
| load_src[0] = _mm256_add_ps(load_src[0], load_src[1]); |
| load_src[2] = _mm256_add_ps(load_src[2], load_src[3]); |
| load_src[0] = _mm256_hadd_ps(load_src[0], load_src[2]); |
| |
| // Sort the output in order to store into output buffer. |
| load_src[0] = _mm256_permutevar8x32_ps(load_src[0], shuffle_output_mask); |
| *out_accum = _mm256_add_ps(*out_accum, load_src[0]); |
| } |
| |
| // AVX2 variant of av1_cnn_convolve_no_maxpool_padding_valid_c(), when |
| // filter_width and filter_height are equal to 5. |
| // CNN convolve parsing is based on av1_intra_mode_cnn_partition_cnn_config. |
| // Based on the configuration set for each layer, the current encoder |
| // always chooses the case of no_maxpool_padding_valid. |
| // And also for layer 0 convolution happens at 5x5 level as the |
| // filter_width and filter_height are set as 5. |
| static void cnn_convolve_no_maxpool_padding_valid_5x5_avx2( |
| const float **input, int in_width, int in_height, int in_stride, |
| const CNN_LAYER_CONFIG *const layer_config, float **output, int out_stride, |
| int start_idx, const int cstep, const int channel_step) { |
| const int kFilterWidth = 5; |
| const int kFilterHeight = 5; |
| const int kSkipWidth = 4; |
| const int kSkipHeight = 4; |
| assert(layer_config->filter_width == kFilterWidth && |
| layer_config->filter_height == kFilterHeight); |
| assert(layer_config->skip_width == kSkipWidth && |
| layer_config->skip_height == kSkipHeight); |
| |
| // Load shuffle buffers needed for source. |
| const __m256i block0_1 = |
| _mm256_load_si256((const __m256i *)shuffle_src_layer0[0]); |
| const __m256i block1_2 = |
| _mm256_load_si256((const __m256i *)shuffle_src_layer0[1]); |
| |
| // Load shuffle buffers needed for weight. |
| const __m256i weight_mask_0 = |
| _mm256_load_si256((const __m256i *)shuffle_weight_layer0[0]); |
| const __m256i weight_mask_1 = |
| _mm256_load_si256((const __m256i *)shuffle_weight_layer0[1]); |
| |
| // Width needs to be moved to go to next iteration of processing 3 5x5 blocks. |
| const int kSkipWidthForNextIter = kSkipWidth * 3; |
| |
| // Minimum width required to process 3 5x5 blocks at a time. |
| // min width (for processing 3 5x5 block) = 2*skip_width + filter_width |
| // Here, skip_width specifies how much width we should move while processing |
| // next block convolution and filter_width specifies for how many pixels |
| // filter needs to be applied. |
| const int kMinWidthFor3_5x5Blocks = (kSkipWidth * 2) + kFilterWidth; |
| for (int i = start_idx; i < layer_config->out_channels; i += channel_step) { |
| const float out_ch_bias = layer_config->bias[i]; |
| for (int k = 0; k < layer_config->in_channels; ++k) { |
| __m256 shuffle_weight[10]; |
| |
| // Weights needed are 5x5, for SIMD purpose made this array as 5x8. |
| float weight[5][8] = { { 0 } }; |
| int off = k * layer_config->out_channels + i; |
| |
| // In layer 0, the convolution process happens at 5x5. |
| // The weights needed for 5x5 block are same across the in-channels, |
| // which is why the load of weights happens once for each in-channel. |
| prepare_weights_for_5x5_convolve(layer_config->weights, off, weight, |
| cstep, shuffle_weight, weight_mask_0, |
| weight_mask_1); |
| |
| for (int h = 0, u = 0; h < in_height - kFilterHeight + 1; |
| h += kSkipHeight, ++u) { |
| const int out_h = u * out_stride; |
| int v = 0; |
| int w = 0; |
| int rem_width = in_width; |
| // Processing 3 5x5 blocks at a time, if sufficient width is present. |
| while (rem_width >= kMinWidthFor3_5x5Blocks) { |
| __m256 load_src_0, load_src_1; |
| __m256 accum_src_0 = _mm256_setzero_ps(); |
| __m256 accum_src_1 = _mm256_setzero_ps(); |
| const float *input_ptr = &input[k][h * in_stride + w]; |
| PERFORM_CONVOLVE_FOR_3_5X5_BLOCKS(); |
| |
| // Accumulate across column. |
| __m256 accum = _mm256_hadd_ps(accum_src_0, accum_src_1); |
| __m128 tmp_reg_0 = _mm256_extractf128_ps(accum_src_0, 1); |
| __m128 tmp_reg_1 = _mm256_extractf128_ps(accum_src_1, 1); |
| |
| __m128 accum_l = _mm256_castps256_ps128(accum); |
| __m128 accum_h = _mm256_extractf128_ps(accum, 1); |
| |
| __m128 tmp_reg_2 = _mm_add_ps(accum_l, tmp_reg_0); |
| __m128 tmp_reg_3 = _mm_add_ps(tmp_reg_0, accum_h); |
| __m128 tmp_reg_4 = _mm_add_ps(tmp_reg_1, accum_h); |
| |
| // 1st 5x5 block output. |
| output[i][out_h + v] = |
| out_ch_bias + _mm_cvtss_f32(tmp_reg_2) + |
| _mm_cvtss_f32(_mm_shuffle_ps(accum_l, accum_l, 1)); |
| |
| // 2nd 5x5 block output. |
| output[i][out_h + v + 1] = |
| out_ch_bias + |
| _mm_cvtss_f32(_mm_shuffle_ps(tmp_reg_3, tmp_reg_3, 1)) + |
| _mm_cvtss_f32(_mm_shuffle_ps(accum_l, accum_l, 2)); |
| |
| // 3rd 5x5 block output. |
| output[i][out_h + v + 2] = |
| out_ch_bias + |
| _mm_cvtss_f32(_mm_shuffle_ps(tmp_reg_4, tmp_reg_4, 2)) + |
| _mm_cvtss_f32(_mm_shuffle_ps(accum_l, accum_l, 3)); |
| |
| v += 3; |
| w += kSkipWidthForNextIter; |
| rem_width -= kSkipWidthForNextIter; |
| } |
| |
| // Process remaining blocks as single 5x5 block at a time. |
| while (rem_width >= kFilterWidth) { |
| float last_column_sum = 0; |
| __m128 accum = _mm_setzero_ps(); |
| const float *input_ptr = &input[k][h * in_stride + w]; |
| PERFORM_CONVOLVE_FOR_1_5X5_BLOCK(shuffle_weight, accum, in_stride); |
| |
| // Accumulate across column. |
| accum = _mm_hadd_ps(accum, accum); |
| output[i][out_h + v] = out_ch_bias + last_column_sum + |
| _mm_cvtss_f32(accum) + |
| _mm_cvtss_f32(_mm_shuffle_ps(accum, accum, 1)); |
| |
| v += 1; |
| w += kSkipWidth; |
| rem_width -= kSkipWidth; |
| } |
| } |
| } |
| } |
| } |
| |
| // AVX2 implementation for layer 1. |
| static INLINE void cnn_convolve_no_maxpool_padding_valid_layer1_avx2( |
| const float **input, int in_stride, |
| const CNN_LAYER_CONFIG *const layer_config, float **output, int out_stride, |
| int start_idx, const int cstep, const int channel_step) { |
| __m256i weight_mask[2]; |
| __m256i shuffle_output_mask; |
| load_shuffle_masks_for_2x2_convolve(&shuffle_output_mask, weight_mask); |
| |
| const int kInHeight = 16; |
| const int kFilterHeight = 2; |
| const int kSkipHeight = 2; |
| for (int i = start_idx; i < layer_config->out_channels; i += channel_step) { |
| __m256 bias_reg = _mm256_set1_ps(layer_config->bias[i]); |
| // out_accum registers are used to store the 2x2 convolve outputs |
| // (calculated over input block size), which are accumulated across the |
| // in_channels. As per the design, each iteration of for loop processes 8 |
| // (horizontal) 2x2 blocks and stores in corresponding out_accum register |
| // (as input size is 16x16, a total of 64 2x2 blocks are present and 8 |
| // out_accum registers are enough to store the outputs). |
| // Hence for loops corresponding to 'j' and 'h', below, run over the number |
| // of out_accum registers. |
| __m256 out_accum[8]; |
| for (int j = 0; j < 8; ++j) out_accum[j] = bias_reg; |
| for (int k = 0; k < layer_config->in_channels; ++k) { |
| __m256 shuffle_weight[2]; |
| int off = k * layer_config->out_channels + i; |
| // In layer 1, the convolution process happens at 2x2. |
| // The weights needed for 2x2 block are same across the in-channels, |
| // which is why the load of weights happens once for each in-channel. |
| prepare_weights_for_2x2_convolve(layer_config->weights, off, cstep, |
| shuffle_weight, weight_mask); |
| |
| for (int h = 0, u = 0; h < kInHeight - kFilterHeight + 1; |
| h += kSkipHeight, ++u) { |
| const float *input_ptr = &input[k][h * in_stride]; |
| perform_convolve_for_8h_2x2_blocks(input_ptr, in_stride, shuffle_weight, |
| &out_accum[u], shuffle_output_mask); |
| } |
| } |
| // Store output of layer 1. |
| for (int j = 0; j < 8; ++j) { |
| _mm256_storeu_ps(&output[i][j * out_stride], out_accum[j]); |
| } |
| } |
| } |
| |
| // AVX2 implementation for layer 2. |
| static INLINE void cnn_convolve_no_maxpool_padding_valid_layer2_avx2( |
| const float **input, int in_stride, |
| const CNN_LAYER_CONFIG *const layer_config, float **output, int out_stride, |
| int start_idx, const int cstep, const int channel_step) { |
| __m256i weight_mask[2]; |
| __m256i shuffle_output_mask; |
| load_shuffle_masks_for_2x2_convolve(&shuffle_output_mask, weight_mask); |
| |
| const int kInHeight = 8; |
| const int kFilterHeight = 2; |
| const int kSkipHeight = 2; |
| for (int i = start_idx; i < layer_config->out_channels; i += channel_step) { |
| __m256 bias_reg = _mm256_set1_ps(layer_config->bias[i]); |
| // out_accum registers are used to store the 2x2 convolve outputs |
| // (calculated over input block size), which are accumulated across the |
| // in_channels. As per the design, each iteration of for loop processes 8 |
| // (4 horizontal x 2 vertical) 2x2 blocks and stores in corresponding |
| // out_accum register (as input size is 8x8, a total of 16 2x2 blocks are |
| // present and 2 out_accum registers are enough to store the outputs). |
| // Hence for loops corresponding to 'j' and 'h', below, run over the number |
| // of out_accum registers. |
| __m256 out_accum[2]; |
| |
| // Height needs to be moved to go to next iteration of processing |
| // while processing 2 2x2 blocks vertically. |
| const int kSkipHeightForNextIter = kSkipHeight * 2; |
| for (int j = 0; j < 2; ++j) out_accum[j] = bias_reg; |
| for (int k = 0; k < layer_config->in_channels; ++k) { |
| __m256 shuffle_weight[2]; |
| int off = k * layer_config->out_channels + i; |
| // In layer 2, the convolution process happens at 2x2. |
| // The weights needed for 2x2 block are same across the in-channels, |
| // which is why the load of weights happens once for each in-channel. |
| prepare_weights_for_2x2_convolve(layer_config->weights, off, cstep, |
| shuffle_weight, weight_mask); |
| |
| for (int h = 0, u = 0; h < kInHeight - kFilterHeight + 1; |
| h += kSkipHeightForNextIter, ++u) { |
| const float *input_ptr = &input[k][h * in_stride]; |
| perform_convolve_for_4hx2v_2x2_blocks(input_ptr, in_stride, |
| shuffle_weight, &out_accum[u], |
| shuffle_output_mask); |
| } |
| } |
| // Store output of layer 2. |
| for (int j = 0; j < 2; ++j) { |
| _mm256_storeu_ps(&output[i][j * out_stride * 2], out_accum[j]); |
| } |
| } |
| } |
| |
| // AVX2 variant of av1_cnn_convolve_no_maxpool_padding_valid_c(), when |
| // filter_width and filter_height are equal to 2. |
| // As per the layer config set by av1_intra_mode_cnn_partition_cnn_config, |
| // the filter_width and filter_height are equal to 2 for layer >= 1. So |
| // convolution happens at 2x2 for layer >= 1. |
| static void cnn_convolve_no_maxpool_padding_valid_2x2_avx2( |
| const float **input, int in_width, int in_height, int in_stride, |
| const CNN_LAYER_CONFIG *const layer_config, float **output, int out_stride, |
| int start_idx, const int cstep, const int channel_step) { |
| assert(layer_config->filter_width == 2 && layer_config->filter_height == 2); |
| assert(layer_config->skip_width == 2 && layer_config->skip_height == 2); |
| |
| if (in_width == 16 && in_height == 16) { |
| // This case of in_width and in_height equal to 16 corresponds to layer 1. |
| // The output size of this layer is 8x8. |
| cnn_convolve_no_maxpool_padding_valid_layer1_avx2( |
| input, in_stride, layer_config, output, out_stride, start_idx, cstep, |
| channel_step); |
| } else if (in_width == 8 && in_height == 8) { |
| // This case of in_width and in_height equal to 8 corresponds to layer 2. |
| // The output size of this layer is 4x4. |
| cnn_convolve_no_maxpool_padding_valid_layer2_avx2( |
| input, in_stride, layer_config, output, out_stride, start_idx, cstep, |
| channel_step); |
| } else { |
| // For layer equal to 3 and 4, the input is of size 4x4 and 2x2 |
| // respectively. Implementing SIMD for these cases might not be optimal, |
| // which is why we call C path for layer >= 3. |
| av1_cnn_convolve_no_maxpool_padding_valid_c( |
| input, in_width, in_height, in_stride, layer_config, output, out_stride, |
| start_idx, cstep, channel_step); |
| } |
| } |
| |
| // AVX2 variant of av1_cnn_convolve_no_maxpool_padding_valid_c(). |
| // As per the current encoder, av1_cnn_convolve function gets called for |
| // block size equal to 64x64. av1_cnn_convolve() uses layer config values |
| // set by av1_intra_mode_cnn_partition_cnn_config. The following are a few |
| // details related to each layer's config parameters. |
| // Layer_Number in_size out_size filter_wd filter_ht skip_wd skip_ht |
| // 0 64x64 16x16 5 5 4 4 |
| // 1 16x16 8x8 2 2 2 2 |
| // 2 8x8 4x4 2 2 2 2 |
| // 3 4x4 2x2 2 2 2 2 |
| // 4 2x2 1x1 2 2 2 2 |
| // Here, |
| // filter_wd = filter_width and filter_ht = filter_height, |
| // skip_wd = skip_width and skip_ht = skip_height. |
| void av1_cnn_convolve_no_maxpool_padding_valid_avx2( |
| const float **input, int in_width, int in_height, int in_stride, |
| const CNN_LAYER_CONFIG *layer_config, float **output, int out_stride, |
| int start_idx, int cstep, int channel_step) { |
| if (layer_config->filter_width == 5 && layer_config->filter_height == 5 && |
| layer_config->skip_width == 4 && layer_config->skip_height == 4) { |
| cnn_convolve_no_maxpool_padding_valid_5x5_avx2( |
| input, in_width, in_height, in_stride, layer_config, output, out_stride, |
| start_idx, cstep, channel_step); |
| } else if (layer_config->filter_width == 2 && |
| layer_config->filter_height == 2 && |
| layer_config->skip_width == 2 && layer_config->skip_height == 2) { |
| cnn_convolve_no_maxpool_padding_valid_2x2_avx2( |
| input, in_width, in_height, in_stride, layer_config, output, out_stride, |
| start_idx, cstep, channel_step); |
| } else { |
| av1_cnn_convolve_no_maxpool_padding_valid_c( |
| input, in_width, in_height, in_stride, layer_config, output, out_stride, |
| start_idx, cstep, channel_step); |
| } |
| } |