| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved. |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <immintrin.h> // AVX2 |
| |
| #include "config/av1_rtcd.h" |
| |
| #include "aom/aom_integer.h" |
| |
| static INLINE void read_coeff(const tran_low_t *coeff, intptr_t offset, |
| __m256i *c) { |
| const tran_low_t *addr = coeff + offset; |
| |
| if (sizeof(tran_low_t) == 4) { |
| const __m256i x0 = _mm256_loadu_si256((const __m256i *)addr); |
| const __m256i x1 = _mm256_loadu_si256((const __m256i *)addr + 1); |
| const __m256i y = _mm256_packs_epi32(x0, x1); |
| *c = _mm256_permute4x64_epi64(y, 0xD8); |
| } else { |
| *c = _mm256_loadu_si256((const __m256i *)addr); |
| } |
| } |
| |
| static INLINE void av1_block_error_block_size16_avx2(const int16_t *coeff, |
| const int16_t *dqcoeff, |
| __m256i *sse_256) { |
| const __m256i _coeff = _mm256_loadu_si256((const __m256i *)coeff); |
| const __m256i _dqcoeff = _mm256_loadu_si256((const __m256i *)dqcoeff); |
| // d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 |
| const __m256i diff = _mm256_sub_epi16(_dqcoeff, _coeff); |
| // r0 r1 r2 r3 r4 r5 r6 r7 |
| const __m256i error = _mm256_madd_epi16(diff, diff); |
| // r0+r1 r2+r3 | r0+r1 r2+r3 | r4+r5 r6+r7 | r4+r5 r6+r7 |
| const __m256i error_hi = _mm256_hadd_epi32(error, error); |
| // r0+r1 | r2+r3 | r4+r5 | r6+r7 |
| *sse_256 = _mm256_unpacklo_epi32(error_hi, _mm256_setzero_si256()); |
| } |
| |
| static INLINE void av1_block_error_block_size32_avx2(const int16_t *coeff, |
| const int16_t *dqcoeff, |
| __m256i *sse_256) { |
| const __m256i zero = _mm256_setzero_si256(); |
| const __m256i _coeff_0 = _mm256_loadu_si256((const __m256i *)coeff); |
| const __m256i _dqcoeff_0 = _mm256_loadu_si256((const __m256i *)dqcoeff); |
| const __m256i _coeff_1 = _mm256_loadu_si256((const __m256i *)(coeff + 16)); |
| const __m256i _dqcoeff_1 = |
| _mm256_loadu_si256((const __m256i *)(dqcoeff + 16)); |
| |
| // d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 |
| const __m256i diff_0 = _mm256_sub_epi16(_dqcoeff_0, _coeff_0); |
| const __m256i diff_1 = _mm256_sub_epi16(_dqcoeff_1, _coeff_1); |
| |
| // r0 r1 r2 r3 r4 r5 r6 r7 |
| const __m256i error_0 = _mm256_madd_epi16(diff_0, diff_0); |
| const __m256i error_1 = _mm256_madd_epi16(diff_1, diff_1); |
| const __m256i err_final_0 = _mm256_add_epi32(error_0, error_1); |
| |
| // For extreme input values, the accumulation needs to happen in 64 bit |
| // precision to avoid any overflow. |
| const __m256i exp0_error_lo = _mm256_unpacklo_epi32(err_final_0, zero); |
| const __m256i exp0_error_hi = _mm256_unpackhi_epi32(err_final_0, zero); |
| const __m256i sum_temp_0 = _mm256_add_epi64(exp0_error_hi, exp0_error_lo); |
| *sse_256 = _mm256_add_epi64(*sse_256, sum_temp_0); |
| } |
| |
| static INLINE void av1_block_error_block_size64_avx2(const int16_t *coeff, |
| const int16_t *dqcoeff, |
| __m256i *sse_256, |
| intptr_t block_size) { |
| const __m256i zero = _mm256_setzero_si256(); |
| for (int i = 0; i < block_size; i += 64) { |
| // Load 64 elements for coeff and dqcoeff. |
| const __m256i _coeff_0 = _mm256_loadu_si256((const __m256i *)coeff); |
| const __m256i _dqcoeff_0 = _mm256_loadu_si256((const __m256i *)dqcoeff); |
| const __m256i _coeff_1 = _mm256_loadu_si256((const __m256i *)(coeff + 16)); |
| const __m256i _dqcoeff_1 = |
| _mm256_loadu_si256((const __m256i *)(dqcoeff + 16)); |
| const __m256i _coeff_2 = _mm256_loadu_si256((const __m256i *)(coeff + 32)); |
| const __m256i _dqcoeff_2 = |
| _mm256_loadu_si256((const __m256i *)(dqcoeff + 32)); |
| const __m256i _coeff_3 = _mm256_loadu_si256((const __m256i *)(coeff + 48)); |
| const __m256i _dqcoeff_3 = |
| _mm256_loadu_si256((const __m256i *)(dqcoeff + 48)); |
| |
| // d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 |
| const __m256i diff_0 = _mm256_sub_epi16(_dqcoeff_0, _coeff_0); |
| const __m256i diff_1 = _mm256_sub_epi16(_dqcoeff_1, _coeff_1); |
| const __m256i diff_2 = _mm256_sub_epi16(_dqcoeff_2, _coeff_2); |
| const __m256i diff_3 = _mm256_sub_epi16(_dqcoeff_3, _coeff_3); |
| |
| // r0 r1 r2 r3 r4 r5 r6 r7 |
| const __m256i error_0 = _mm256_madd_epi16(diff_0, diff_0); |
| const __m256i error_1 = _mm256_madd_epi16(diff_1, diff_1); |
| const __m256i error_2 = _mm256_madd_epi16(diff_2, diff_2); |
| const __m256i error_3 = _mm256_madd_epi16(diff_3, diff_3); |
| // r00 r01 r02 r03 r04 r05 r06 r07 |
| const __m256i err_final_0 = _mm256_add_epi32(error_0, error_1); |
| // r10 r11 r12 r13 r14 r15 r16 r17 |
| const __m256i err_final_1 = _mm256_add_epi32(error_2, error_3); |
| |
| // For extreme input values, the accumulation needs to happen in 64 bit |
| // precision to avoid any overflow. r00 r01 r04 r05 |
| const __m256i exp0_error_lo = _mm256_unpacklo_epi32(err_final_0, zero); |
| // r02 r03 r06 r07 |
| const __m256i exp0_error_hi = _mm256_unpackhi_epi32(err_final_0, zero); |
| // r10 r11 r14 r15 |
| const __m256i exp1_error_lo = _mm256_unpacklo_epi32(err_final_1, zero); |
| // r12 r13 r16 r17 |
| const __m256i exp1_error_hi = _mm256_unpackhi_epi32(err_final_1, zero); |
| |
| const __m256i sum_temp_0 = _mm256_add_epi64(exp0_error_hi, exp0_error_lo); |
| const __m256i sum_temp_1 = _mm256_add_epi64(exp1_error_hi, exp1_error_lo); |
| const __m256i sse_256_temp = _mm256_add_epi64(sum_temp_1, sum_temp_0); |
| *sse_256 = _mm256_add_epi64(*sse_256, sse_256_temp); |
| coeff += 64; |
| dqcoeff += 64; |
| } |
| } |
| |
| int64_t av1_block_error_lp_avx2(const int16_t *coeff, const int16_t *dqcoeff, |
| intptr_t block_size) { |
| assert(block_size % 16 == 0); |
| __m256i sse_256 = _mm256_setzero_si256(); |
| int64_t sse; |
| |
| if (block_size == 16) |
| av1_block_error_block_size16_avx2(coeff, dqcoeff, &sse_256); |
| else if (block_size == 32) |
| av1_block_error_block_size32_avx2(coeff, dqcoeff, &sse_256); |
| else |
| av1_block_error_block_size64_avx2(coeff, dqcoeff, &sse_256, block_size); |
| |
| // Save the higher 64 bit of each 128 bit lane. |
| const __m256i sse_hi = _mm256_srli_si256(sse_256, 8); |
| // Add the higher 64 bit to the low 64 bit. |
| sse_256 = _mm256_add_epi64(sse_256, sse_hi); |
| // Accumulate the sse_256 register to get final sse |
| const __m128i sse_128 = _mm_add_epi64(_mm256_castsi256_si128(sse_256), |
| _mm256_extractf128_si256(sse_256, 1)); |
| |
| // Store the results. |
| _mm_storel_epi64((__m128i *)&sse, sse_128); |
| return sse; |
| } |
| |
| int64_t av1_block_error_avx2(const tran_low_t *coeff, const tran_low_t *dqcoeff, |
| intptr_t block_size, int64_t *ssz) { |
| __m256i sse_reg, ssz_reg, coeff_reg, dqcoeff_reg; |
| __m256i exp_dqcoeff_lo, exp_dqcoeff_hi, exp_coeff_lo, exp_coeff_hi; |
| __m256i sse_reg_64hi, ssz_reg_64hi; |
| __m128i sse_reg128, ssz_reg128; |
| int64_t sse; |
| int i; |
| const __m256i zero_reg = _mm256_setzero_si256(); |
| |
| // init sse and ssz registerd to zero |
| sse_reg = _mm256_setzero_si256(); |
| ssz_reg = _mm256_setzero_si256(); |
| |
| for (i = 0; i < block_size; i += 16) { |
| // load 32 bytes from coeff and dqcoeff |
| read_coeff(coeff, i, &coeff_reg); |
| read_coeff(dqcoeff, i, &dqcoeff_reg); |
| // dqcoeff - coeff |
| dqcoeff_reg = _mm256_sub_epi16(dqcoeff_reg, coeff_reg); |
| // madd (dqcoeff - coeff) |
| dqcoeff_reg = _mm256_madd_epi16(dqcoeff_reg, dqcoeff_reg); |
| // madd coeff |
| coeff_reg = _mm256_madd_epi16(coeff_reg, coeff_reg); |
| // expand each double word of madd (dqcoeff - coeff) to quad word |
| exp_dqcoeff_lo = _mm256_unpacklo_epi32(dqcoeff_reg, zero_reg); |
| exp_dqcoeff_hi = _mm256_unpackhi_epi32(dqcoeff_reg, zero_reg); |
| // expand each double word of madd (coeff) to quad word |
| exp_coeff_lo = _mm256_unpacklo_epi32(coeff_reg, zero_reg); |
| exp_coeff_hi = _mm256_unpackhi_epi32(coeff_reg, zero_reg); |
| // add each quad word of madd (dqcoeff - coeff) and madd (coeff) |
| sse_reg = _mm256_add_epi64(sse_reg, exp_dqcoeff_lo); |
| ssz_reg = _mm256_add_epi64(ssz_reg, exp_coeff_lo); |
| sse_reg = _mm256_add_epi64(sse_reg, exp_dqcoeff_hi); |
| ssz_reg = _mm256_add_epi64(ssz_reg, exp_coeff_hi); |
| } |
| // save the higher 64 bit of each 128 bit lane |
| sse_reg_64hi = _mm256_srli_si256(sse_reg, 8); |
| ssz_reg_64hi = _mm256_srli_si256(ssz_reg, 8); |
| // add the higher 64 bit to the low 64 bit |
| sse_reg = _mm256_add_epi64(sse_reg, sse_reg_64hi); |
| ssz_reg = _mm256_add_epi64(ssz_reg, ssz_reg_64hi); |
| |
| // add each 64 bit from each of the 128 bit lane of the 256 bit |
| sse_reg128 = _mm_add_epi64(_mm256_castsi256_si128(sse_reg), |
| _mm256_extractf128_si256(sse_reg, 1)); |
| |
| ssz_reg128 = _mm_add_epi64(_mm256_castsi256_si128(ssz_reg), |
| _mm256_extractf128_si256(ssz_reg, 1)); |
| |
| // store the results |
| _mm_storel_epi64((__m128i *)(&sse), sse_reg128); |
| |
| _mm_storel_epi64((__m128i *)(ssz), ssz_reg128); |
| _mm256_zeroupper(); |
| return sse; |
| } |