| /* |
| * Copyright (c) 2019, Alliance for Open Media. All rights reserved. |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <assert.h> |
| #include <immintrin.h> |
| |
| #include "config/av1_rtcd.h" |
| #include "av1/encoder/encoder.h" |
| #include "av1/encoder/temporal_filter.h" |
| |
| #define SSE_STRIDE (BW + 2) |
| |
| DECLARE_ALIGNED(32, static const uint32_t, sse_bytemask[4][8]) = { |
| { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0, 0, 0 }, |
| { 0, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0, 0 }, |
| { 0, 0, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0 }, |
| { 0, 0, 0, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF } |
| }; |
| |
| DECLARE_ALIGNED(32, static const uint8_t, shufflemask_16b[2][16]) = { |
| { 0, 1, 0, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }, |
| { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 10, 11, 10, 11 } |
| }; |
| |
| #define CALC_X_GRADIENT(AC, GI, DF, out) \ |
| out = _mm256_abs_epi16( \ |
| _mm256_add_epi16(_mm256_add_epi16(AC, GI), _mm256_slli_epi16(DF, 1))); |
| |
| #define CALC_Y_GRADIENT(AC, GI, BH, out) \ |
| out = _mm256_abs_epi16( \ |
| _mm256_add_epi16(_mm256_sub_epi16(AC, GI), _mm256_slli_epi16(BH, 1))); |
| |
| double av1_estimate_noise_from_single_plane_avx2(const uint8_t *src, int height, |
| int width, int stride, |
| int edge_thresh) { |
| int count = 0; |
| int64_t accum = 0; |
| // w32 stores width multiple of 32. |
| const int w32 = (width - 1) & ~0x1f; |
| const __m256i zero = _mm256_setzero_si256(); |
| const __m256i edge_threshold = _mm256_set1_epi16(edge_thresh); |
| __m256i num_accumulator = zero; |
| __m256i sum_accumulator = zero; |
| |
| // A | B | C |
| // D | E | F |
| // G | H | I |
| // g_x = (A - C) + (G - I) + 2*(D - F) |
| // g_y = (A + C) - (G + I) + 2*(B - H) |
| // v = 4*E - 2*(D+F+B+H) + (A+C+G+I) |
| |
| // Process the width multiple of 32 here. |
| for (int w = 1; w < w32; w += 32) { |
| int h = 1; |
| const int start_idx = h * stride + w; |
| const int stride_0 = start_idx - stride; |
| |
| __m256i num_accum_row_lvl = zero; |
| const __m256i A = _mm256_loadu_si256((__m256i *)(&src[stride_0 - 1])); |
| const __m256i C = _mm256_loadu_si256((__m256i *)(&src[stride_0 + 1])); |
| const __m256i D = _mm256_loadu_si256((__m256i *)(&src[start_idx - 1])); |
| const __m256i F = _mm256_loadu_si256((__m256i *)(&src[start_idx + 1])); |
| __m256i B = _mm256_loadu_si256((__m256i *)(&src[stride_0])); |
| __m256i E = _mm256_loadu_si256((__m256i *)(&src[start_idx])); |
| |
| const __m256i A_lo = _mm256_unpacklo_epi8(A, zero); |
| const __m256i A_hi = _mm256_unpackhi_epi8(A, zero); |
| const __m256i C_lo = _mm256_unpacklo_epi8(C, zero); |
| const __m256i C_hi = _mm256_unpackhi_epi8(C, zero); |
| const __m256i D_lo = _mm256_unpacklo_epi8(D, zero); |
| const __m256i D_hi = _mm256_unpackhi_epi8(D, zero); |
| const __m256i F_lo = _mm256_unpacklo_epi8(F, zero); |
| const __m256i F_hi = _mm256_unpackhi_epi8(F, zero); |
| |
| __m256i sub_AC_lo = _mm256_sub_epi16(A_lo, C_lo); |
| __m256i sub_AC_hi = _mm256_sub_epi16(A_hi, C_hi); |
| __m256i sum_AC_lo = _mm256_add_epi16(A_lo, C_lo); |
| __m256i sum_AC_hi = _mm256_add_epi16(A_hi, C_hi); |
| __m256i sub_DF_lo = _mm256_sub_epi16(D_lo, F_lo); |
| __m256i sub_DF_hi = _mm256_sub_epi16(D_hi, F_hi); |
| __m256i sum_DF_lo = _mm256_add_epi16(D_lo, F_lo); |
| __m256i sum_DF_hi = _mm256_add_epi16(D_hi, F_hi); |
| |
| for (; h < height - 1; h++) { |
| __m256i sum_GI_lo, sub_GI_lo, sum_GI_hi, sub_GI_hi, gx_lo, gy_lo, gx_hi, |
| gy_hi; |
| const int k = h * stride + w; |
| const __m256i G = _mm256_loadu_si256((__m256i *)(&src[k + stride - 1])); |
| const __m256i H = _mm256_loadu_si256((__m256i *)(&src[k + stride])); |
| const __m256i I = _mm256_loadu_si256((__m256i *)(&src[k + stride + 1])); |
| |
| const __m256i B_lo = _mm256_unpacklo_epi8(B, zero); |
| const __m256i B_hi = _mm256_unpackhi_epi8(B, zero); |
| const __m256i G_lo = _mm256_unpacklo_epi8(G, zero); |
| const __m256i G_hi = _mm256_unpackhi_epi8(G, zero); |
| const __m256i I_lo = _mm256_unpacklo_epi8(I, zero); |
| const __m256i I_hi = _mm256_unpackhi_epi8(I, zero); |
| const __m256i H_lo = _mm256_unpacklo_epi8(H, zero); |
| const __m256i H_hi = _mm256_unpackhi_epi8(H, zero); |
| |
| sub_GI_lo = _mm256_sub_epi16(G_lo, I_lo); |
| sub_GI_hi = _mm256_sub_epi16(G_hi, I_hi); |
| sum_GI_lo = _mm256_add_epi16(G_lo, I_lo); |
| sum_GI_hi = _mm256_add_epi16(G_hi, I_hi); |
| const __m256i sub_BH_lo = _mm256_sub_epi16(B_lo, H_lo); |
| const __m256i sub_BH_hi = _mm256_sub_epi16(B_hi, H_hi); |
| |
| CALC_X_GRADIENT(sub_AC_lo, sub_GI_lo, sub_DF_lo, gx_lo) |
| CALC_Y_GRADIENT(sum_AC_lo, sum_GI_lo, sub_BH_lo, gy_lo) |
| |
| const __m256i ga_lo = _mm256_add_epi16(gx_lo, gy_lo); |
| |
| CALC_X_GRADIENT(sub_AC_hi, sub_GI_hi, sub_DF_hi, gx_hi) |
| CALC_Y_GRADIENT(sum_AC_hi, sum_GI_hi, sub_BH_hi, gy_hi) |
| |
| const __m256i ga_hi = _mm256_add_epi16(gx_hi, gy_hi); |
| |
| __m256i cmp_lo = _mm256_cmpgt_epi16(edge_threshold, ga_lo); |
| __m256i cmp_hi = _mm256_cmpgt_epi16(edge_threshold, ga_hi); |
| const __m256i comp_reg = _mm256_add_epi16(cmp_lo, cmp_hi); |
| |
| // v = 4*E -2*(D+F+B+H) + (A+C+G+I) |
| if (_mm256_movemask_epi8(comp_reg) != 0) { |
| const __m256i sum_BH_lo = _mm256_add_epi16(B_lo, H_lo); |
| const __m256i sum_BH_hi = _mm256_add_epi16(B_hi, H_hi); |
| |
| // 2*(D+F+B+H) |
| const __m256i sum_DFBH_lo = |
| _mm256_slli_epi16(_mm256_add_epi16(sum_DF_lo, sum_BH_lo), 1); |
| // (A+C+G+I) |
| const __m256i sum_ACGI_lo = _mm256_add_epi16(sum_AC_lo, sum_GI_lo); |
| const __m256i sum_DFBH_hi = |
| _mm256_slli_epi16(_mm256_add_epi16(sum_DF_hi, sum_BH_hi), 1); |
| const __m256i sum_ACGI_hi = _mm256_add_epi16(sum_AC_hi, sum_GI_hi); |
| |
| // Convert E register values from 8bit to 16bit |
| const __m256i E_lo = _mm256_unpacklo_epi8(E, zero); |
| const __m256i E_hi = _mm256_unpackhi_epi8(E, zero); |
| |
| // 4*E - 2*(D+F+B+H)+ (A+C+G+I) |
| const __m256i var_lo_0 = _mm256_abs_epi16(_mm256_add_epi16( |
| _mm256_sub_epi16(_mm256_slli_epi16(E_lo, 2), sum_DFBH_lo), |
| sum_ACGI_lo)); |
| const __m256i var_hi_0 = _mm256_abs_epi16(_mm256_add_epi16( |
| _mm256_sub_epi16(_mm256_slli_epi16(E_hi, 2), sum_DFBH_hi), |
| sum_ACGI_hi)); |
| cmp_lo = _mm256_srli_epi16(cmp_lo, 15); |
| cmp_hi = _mm256_srli_epi16(cmp_hi, 15); |
| const __m256i var_lo = _mm256_mullo_epi16(var_lo_0, cmp_lo); |
| const __m256i var_hi = _mm256_mullo_epi16(var_hi_0, cmp_hi); |
| |
| num_accum_row_lvl = _mm256_add_epi16(num_accum_row_lvl, cmp_lo); |
| num_accum_row_lvl = _mm256_add_epi16(num_accum_row_lvl, cmp_hi); |
| |
| sum_accumulator = _mm256_add_epi32(sum_accumulator, |
| _mm256_unpacklo_epi16(var_lo, zero)); |
| sum_accumulator = _mm256_add_epi32(sum_accumulator, |
| _mm256_unpackhi_epi16(var_lo, zero)); |
| sum_accumulator = _mm256_add_epi32(sum_accumulator, |
| _mm256_unpacklo_epi16(var_hi, zero)); |
| sum_accumulator = _mm256_add_epi32(sum_accumulator, |
| _mm256_unpackhi_epi16(var_hi, zero)); |
| } |
| sub_AC_lo = sub_DF_lo; |
| sub_AC_hi = sub_DF_hi; |
| sub_DF_lo = sub_GI_lo; |
| sub_DF_hi = sub_GI_hi; |
| sum_AC_lo = sum_DF_lo; |
| sum_AC_hi = sum_DF_hi; |
| sum_DF_lo = sum_GI_lo; |
| sum_DF_hi = sum_GI_hi; |
| B = E; |
| E = H; |
| } |
| const __m256i num_0 = _mm256_unpacklo_epi16(num_accum_row_lvl, zero); |
| const __m256i num_1 = _mm256_unpackhi_epi16(num_accum_row_lvl, zero); |
| num_accumulator = |
| _mm256_add_epi32(num_accumulator, _mm256_add_epi32(num_0, num_1)); |
| } |
| |
| // Process the remaining width here. |
| for (int h = 1; h < height - 1; ++h) { |
| for (int w = w32 + 1; w < width - 1; ++w) { |
| const int k = h * stride + w; |
| |
| // Compute sobel gradients |
| const int g_x = (src[k - stride - 1] - src[k - stride + 1]) + |
| (src[k + stride - 1] - src[k + stride + 1]) + |
| 2 * (src[k - 1] - src[k + 1]); |
| const int g_y = (src[k - stride - 1] - src[k + stride - 1]) + |
| (src[k - stride + 1] - src[k + stride + 1]) + |
| 2 * (src[k - stride] - src[k + stride]); |
| const int ga = abs(g_x) + abs(g_y); |
| |
| if (ga < edge_thresh) { |
| // Find Laplacian |
| const int v = |
| 4 * src[k] - |
| 2 * (src[k - 1] + src[k + 1] + src[k - stride] + src[k + stride]) + |
| (src[k - stride - 1] + src[k - stride + 1] + src[k + stride - 1] + |
| src[k + stride + 1]); |
| accum += abs(v); |
| ++count; |
| } |
| } |
| } |
| |
| // s0 s1 n0 n1 s2 s3 n2 n3 |
| __m256i sum_avx = _mm256_hadd_epi32(sum_accumulator, num_accumulator); |
| __m128i sum_avx_lo = _mm256_castsi256_si128(sum_avx); |
| __m128i sum_avx_hi = _mm256_extractf128_si256(sum_avx, 1); |
| // s0+s2 s1+s3 n0+n2 n1+n3 |
| __m128i sum_avx_1 = _mm_add_epi32(sum_avx_lo, sum_avx_hi); |
| // s0+s2+s1+s3 n0+n2+n1+n3 |
| __m128i result = _mm_add_epi32(_mm_srli_si128(sum_avx_1, 4), sum_avx_1); |
| |
| accum += _mm_cvtsi128_si32(result); |
| count += _mm_extract_epi32(result, 2); |
| |
| // If very few smooth pels, return -1 since the estimate is unreliable. |
| return (count < 16) ? -1.0 : (double)accum / (6 * count) * SQRT_PI_BY_2; |
| } |
| |
| static AOM_FORCE_INLINE void get_squared_error_16x16_avx2( |
| const uint8_t *frame1, const unsigned int stride, const uint8_t *frame2, |
| const unsigned int stride2, const int block_width, const int block_height, |
| uint16_t *frame_sse, const unsigned int sse_stride) { |
| (void)block_width; |
| const uint8_t *src1 = frame1; |
| const uint8_t *src2 = frame2; |
| uint16_t *dst = frame_sse; |
| for (int i = 0; i < block_height; i++) { |
| __m128i vf1_128, vf2_128; |
| __m256i vf1, vf2, vdiff1, vsqdiff1; |
| |
| vf1_128 = _mm_loadu_si128((__m128i *)(src1)); |
| vf2_128 = _mm_loadu_si128((__m128i *)(src2)); |
| vf1 = _mm256_cvtepu8_epi16(vf1_128); |
| vf2 = _mm256_cvtepu8_epi16(vf2_128); |
| vdiff1 = _mm256_sub_epi16(vf1, vf2); |
| vsqdiff1 = _mm256_mullo_epi16(vdiff1, vdiff1); |
| |
| _mm256_storeu_si256((__m256i *)(dst), vsqdiff1); |
| // Set zero to uninitialized memory to avoid uninitialized loads later |
| *(int *)(dst + 16) = _mm_cvtsi128_si32(_mm_setzero_si128()); |
| |
| src1 += stride, src2 += stride2; |
| dst += sse_stride; |
| } |
| } |
| |
| static AOM_FORCE_INLINE void get_squared_error_32x32_avx2( |
| const uint8_t *frame1, const unsigned int stride, const uint8_t *frame2, |
| const unsigned int stride2, const int block_width, const int block_height, |
| uint16_t *frame_sse, const unsigned int sse_stride) { |
| (void)block_width; |
| const uint8_t *src1 = frame1; |
| const uint8_t *src2 = frame2; |
| uint16_t *dst = frame_sse; |
| for (int i = 0; i < block_height; i++) { |
| __m256i vsrc1, vsrc2, vmin, vmax, vdiff, vdiff1, vdiff2, vres1, vres2; |
| |
| vsrc1 = _mm256_loadu_si256((__m256i *)src1); |
| vsrc2 = _mm256_loadu_si256((__m256i *)src2); |
| vmax = _mm256_max_epu8(vsrc1, vsrc2); |
| vmin = _mm256_min_epu8(vsrc1, vsrc2); |
| vdiff = _mm256_subs_epu8(vmax, vmin); |
| |
| __m128i vtmp1 = _mm256_castsi256_si128(vdiff); |
| __m128i vtmp2 = _mm256_extracti128_si256(vdiff, 1); |
| vdiff1 = _mm256_cvtepu8_epi16(vtmp1); |
| vdiff2 = _mm256_cvtepu8_epi16(vtmp2); |
| |
| vres1 = _mm256_mullo_epi16(vdiff1, vdiff1); |
| vres2 = _mm256_mullo_epi16(vdiff2, vdiff2); |
| _mm256_storeu_si256((__m256i *)(dst), vres1); |
| _mm256_storeu_si256((__m256i *)(dst + 16), vres2); |
| // Set zero to uninitialized memory to avoid uninitialized loads later |
| *(int *)(dst + 32) = _mm_cvtsi128_si32(_mm_setzero_si128()); |
| |
| src1 += stride; |
| src2 += stride2; |
| dst += sse_stride; |
| } |
| } |
| |
| static AOM_FORCE_INLINE __m256i xx_load_and_pad(uint16_t *src, int col, |
| int block_width) { |
| __m128i v128tmp = _mm_loadu_si128((__m128i *)(src)); |
| if (col == 0) { |
| // For the first column, replicate the first element twice to the left |
| v128tmp = _mm_shuffle_epi8(v128tmp, *(__m128i *)shufflemask_16b[0]); |
| } |
| if (col == block_width - 4) { |
| // For the last column, replicate the last element twice to the right |
| v128tmp = _mm_shuffle_epi8(v128tmp, *(__m128i *)shufflemask_16b[1]); |
| } |
| return _mm256_cvtepu16_epi32(v128tmp); |
| } |
| |
| static AOM_FORCE_INLINE int32_t xx_mask_and_hadd(__m256i vsum, int i) { |
| // Mask the required 5 values inside the vector |
| __m256i vtmp = _mm256_and_si256(vsum, *(__m256i *)sse_bytemask[i]); |
| __m128i v128a, v128b; |
| // Extract 256b as two 128b registers A and B |
| v128a = _mm256_castsi256_si128(vtmp); |
| v128b = _mm256_extracti128_si256(vtmp, 1); |
| // A = [A0+B0, A1+B1, A2+B2, A3+B3] |
| v128a = _mm_add_epi32(v128a, v128b); |
| // B = [A2+B2, A3+B3, 0, 0] |
| v128b = _mm_srli_si128(v128a, 8); |
| // A = [A0+B0+A2+B2, A1+B1+A3+B3, X, X] |
| v128a = _mm_add_epi32(v128a, v128b); |
| // B = [A1+B1+A3+B3, 0, 0, 0] |
| v128b = _mm_srli_si128(v128a, 4); |
| // A = [A0+B0+A2+B2+A1+B1+A3+B3, X, X, X] |
| v128a = _mm_add_epi32(v128a, v128b); |
| return _mm_extract_epi32(v128a, 0); |
| } |
| |
| // AVX2 implementation of approx_exp() |
| static AOM_INLINE __m256 approx_exp_avx2(__m256 y) { |
| #define A ((1 << 23) / 0.69314718056f) // (1 << 23) / ln(2) |
| #define B \ |
| 127 // Offset for the exponent according to IEEE floating point standard. |
| #define C 60801 // Magic number controls the accuracy of approximation |
| const __m256 multiplier = _mm256_set1_ps(A); |
| const __m256i offset = _mm256_set1_epi32(B * (1 << 23) - C); |
| |
| y = _mm256_mul_ps(y, multiplier); |
| y = _mm256_castsi256_ps(_mm256_add_epi32(_mm256_cvttps_epi32(y), offset)); |
| return y; |
| #undef A |
| #undef B |
| #undef C |
| } |
| |
| static void apply_temporal_filter( |
| const uint8_t *frame1, const unsigned int stride, const uint8_t *frame2, |
| const unsigned int stride2, const int block_width, const int block_height, |
| const int *subblock_mses, unsigned int *accumulator, uint16_t *count, |
| uint16_t *frame_sse, uint32_t *luma_sse_sum, |
| const double inv_num_ref_pixels, const double decay_factor, |
| const double inv_factor, const double weight_factor, double *d_factor, |
| int tf_wgt_calc_lvl) { |
| assert(((block_width == 16) || (block_width == 32)) && |
| ((block_height == 16) || (block_height == 32))); |
| |
| uint32_t acc_5x5_sse[BH][BW]; |
| |
| if (block_width == 32) { |
| get_squared_error_32x32_avx2(frame1, stride, frame2, stride2, block_width, |
| block_height, frame_sse, SSE_STRIDE); |
| } else { |
| get_squared_error_16x16_avx2(frame1, stride, frame2, stride2, block_width, |
| block_height, frame_sse, SSE_STRIDE); |
| } |
| |
| __m256i vsrc[5]; |
| |
| // Traverse 4 columns at a time |
| // First and last columns will require padding |
| for (int col = 0; col < block_width; col += 4) { |
| uint16_t *src = (col) ? frame_sse + col - 2 : frame_sse; |
| |
| // Load and pad(for first and last col) 3 rows from the top |
| for (int i = 2; i < 5; i++) { |
| vsrc[i] = xx_load_and_pad(src, col, block_width); |
| src += SSE_STRIDE; |
| } |
| |
| // Copy first row to first 2 vectors |
| vsrc[0] = vsrc[2]; |
| vsrc[1] = vsrc[2]; |
| |
| for (int row = 0; row < block_height; row++) { |
| __m256i vsum = _mm256_setzero_si256(); |
| |
| // Add 5 consecutive rows |
| for (int i = 0; i < 5; i++) { |
| vsum = _mm256_add_epi32(vsum, vsrc[i]); |
| } |
| |
| // Push all elements by one element to the top |
| for (int i = 0; i < 4; i++) { |
| vsrc[i] = vsrc[i + 1]; |
| } |
| |
| // Load next row to the last element |
| if (row <= block_height - 4) { |
| vsrc[4] = xx_load_and_pad(src, col, block_width); |
| src += SSE_STRIDE; |
| } else { |
| vsrc[4] = vsrc[3]; |
| } |
| |
| // Accumulate the sum horizontally |
| for (int i = 0; i < 4; i++) { |
| acc_5x5_sse[row][col + i] = xx_mask_and_hadd(vsum, i); |
| } |
| } |
| } |
| |
| double subblock_mses_scaled[4]; |
| double d_factor_decayed[4]; |
| for (int idx = 0; idx < 4; idx++) { |
| subblock_mses_scaled[idx] = subblock_mses[idx] * inv_factor; |
| d_factor_decayed[idx] = d_factor[idx] * decay_factor; |
| } |
| if (tf_wgt_calc_lvl == 0) { |
| for (int i = 0, k = 0; i < block_height; i++) { |
| const int y_blk_raster_offset = (i >= block_height / 2) * 2; |
| for (int j = 0; j < block_width; j++, k++) { |
| const int pixel_value = frame2[i * stride2 + j]; |
| uint32_t diff_sse = acc_5x5_sse[i][j] + luma_sse_sum[i * BW + j]; |
| |
| const double window_error = diff_sse * inv_num_ref_pixels; |
| const int subblock_idx = y_blk_raster_offset + (j >= block_width / 2); |
| const double combined_error = |
| weight_factor * window_error + subblock_mses_scaled[subblock_idx]; |
| |
| double scaled_error = combined_error * d_factor_decayed[subblock_idx]; |
| scaled_error = AOMMIN(scaled_error, 7); |
| const int weight = (int)(exp(-scaled_error) * TF_WEIGHT_SCALE); |
| |
| count[k] += weight; |
| accumulator[k] += weight * pixel_value; |
| } |
| } |
| } else { |
| __m256d subblock_mses_reg[4]; |
| __m256d d_factor_mul_n_decay_qr_invs[4]; |
| const __m256 zero = _mm256_set1_ps(0.0f); |
| const __m256 point_five = _mm256_set1_ps(0.5f); |
| const __m256 seven = _mm256_set1_ps(7.0f); |
| const __m256d inv_num_ref_pixel_256bit = _mm256_set1_pd(inv_num_ref_pixels); |
| const __m256d weight_factor_256bit = _mm256_set1_pd(weight_factor); |
| const __m256 tf_weight_scale = _mm256_set1_ps((float)TF_WEIGHT_SCALE); |
| // Maintain registers to hold mse and d_factor at subblock level. |
| subblock_mses_reg[0] = _mm256_set1_pd(subblock_mses_scaled[0]); |
| subblock_mses_reg[1] = _mm256_set1_pd(subblock_mses_scaled[1]); |
| subblock_mses_reg[2] = _mm256_set1_pd(subblock_mses_scaled[2]); |
| subblock_mses_reg[3] = _mm256_set1_pd(subblock_mses_scaled[3]); |
| d_factor_mul_n_decay_qr_invs[0] = _mm256_set1_pd(d_factor_decayed[0]); |
| d_factor_mul_n_decay_qr_invs[1] = _mm256_set1_pd(d_factor_decayed[1]); |
| d_factor_mul_n_decay_qr_invs[2] = _mm256_set1_pd(d_factor_decayed[2]); |
| d_factor_mul_n_decay_qr_invs[3] = _mm256_set1_pd(d_factor_decayed[3]); |
| |
| for (int i = 0; i < block_height; i++) { |
| const int y_blk_raster_offset = (i >= block_height / 2) * 2; |
| uint32_t *luma_sse_sum_temp = luma_sse_sum + i * BW; |
| for (int j = 0; j < block_width; j += 8) { |
| const __m256i acc_sse = |
| _mm256_lddqu_si256((__m256i *)(acc_5x5_sse[i] + j)); |
| const __m256i luma_sse = |
| _mm256_lddqu_si256((__m256i *)((luma_sse_sum_temp + j))); |
| |
| // uint32_t diff_sse = acc_5x5_sse[i][j] + luma_sse_sum[i * BW + j]; |
| const __m256i diff_sse = _mm256_add_epi32(acc_sse, luma_sse); |
| |
| const __m256d diff_sse_pd_1 = |
| _mm256_cvtepi32_pd(_mm256_castsi256_si128(diff_sse)); |
| const __m256d diff_sse_pd_2 = |
| _mm256_cvtepi32_pd(_mm256_extracti128_si256(diff_sse, 1)); |
| |
| // const double window_error = diff_sse * inv_num_ref_pixels; |
| const __m256d window_error_1 = |
| _mm256_mul_pd(diff_sse_pd_1, inv_num_ref_pixel_256bit); |
| const __m256d window_error_2 = |
| _mm256_mul_pd(diff_sse_pd_2, inv_num_ref_pixel_256bit); |
| |
| // const int subblock_idx = y_blk_raster_offset + (j >= block_width / |
| // 2); |
| const int subblock_idx = y_blk_raster_offset + (j >= block_width / 2); |
| const __m256d blk_error = subblock_mses_reg[subblock_idx]; |
| |
| // const double combined_error = |
| // weight_factor *window_error + subblock_mses_scaled[subblock_idx]; |
| const __m256d combined_error_1 = _mm256_add_pd( |
| _mm256_mul_pd(window_error_1, weight_factor_256bit), blk_error); |
| |
| const __m256d combined_error_2 = _mm256_add_pd( |
| _mm256_mul_pd(window_error_2, weight_factor_256bit), blk_error); |
| |
| // d_factor_decayed[subblock_idx] |
| const __m256d d_fact_mul_n_decay = |
| d_factor_mul_n_decay_qr_invs[subblock_idx]; |
| |
| // double scaled_error = combined_error * |
| // d_factor_decayed[subblock_idx]; |
| const __m256d scaled_error_1 = |
| _mm256_mul_pd(combined_error_1, d_fact_mul_n_decay); |
| const __m256d scaled_error_2 = |
| _mm256_mul_pd(combined_error_2, d_fact_mul_n_decay); |
| |
| const __m128 scaled_error_ps_1 = _mm256_cvtpd_ps(scaled_error_1); |
| const __m128 scaled_error_ps_2 = _mm256_cvtpd_ps(scaled_error_2); |
| |
| const __m256 scaled_error_ps = _mm256_insertf128_ps( |
| _mm256_castps128_ps256(scaled_error_ps_1), scaled_error_ps_2, 0x1); |
| |
| // scaled_error = AOMMIN(scaled_error, 7); |
| const __m256 scaled_diff_ps = _mm256_min_ps(scaled_error_ps, seven); |
| const __m256 minus_scaled_diff_ps = _mm256_sub_ps(zero, scaled_diff_ps); |
| // const int weight = |
| //(int)(approx_exp((float)-scaled_error) * TF_WEIGHT_SCALE + 0.5f); |
| const __m256 exp_result = approx_exp_avx2(minus_scaled_diff_ps); |
| const __m256 scale_weight_exp_result = |
| _mm256_mul_ps(exp_result, tf_weight_scale); |
| const __m256 round_result = |
| _mm256_add_ps(scale_weight_exp_result, point_five); |
| __m256i weights_in_32bit = _mm256_cvttps_epi32(round_result); |
| |
| __m128i weights_in_16bit = |
| _mm_packus_epi32(_mm256_castsi256_si128(weights_in_32bit), |
| _mm256_extractf128_si256(weights_in_32bit, 0x1)); |
| |
| // count[k] += weight; |
| // accumulator[k] += weight * pixel_value; |
| const int stride_idx = i * stride2 + j; |
| const __m128i count_array = |
| _mm_loadu_si128((__m128i *)(count + stride_idx)); |
| _mm_storeu_si128((__m128i *)(count + stride_idx), |
| _mm_add_epi16(count_array, weights_in_16bit)); |
| |
| const __m256i accumulator_array = |
| _mm256_loadu_si256((__m256i *)(accumulator + stride_idx)); |
| const __m128i pred_values = |
| _mm_loadl_epi64((__m128i *)(frame2 + stride_idx)); |
| |
| const __m256i pred_values_u32 = _mm256_cvtepu8_epi32(pred_values); |
| const __m256i mull_frame2_weight_u32 = |
| _mm256_mullo_epi32(pred_values_u32, weights_in_32bit); |
| _mm256_storeu_si256( |
| (__m256i *)(accumulator + stride_idx), |
| _mm256_add_epi32(accumulator_array, mull_frame2_weight_u32)); |
| } |
| } |
| } |
| } |
| |
| void av1_apply_temporal_filter_avx2( |
| const YV12_BUFFER_CONFIG *frame_to_filter, const MACROBLOCKD *mbd, |
| const BLOCK_SIZE block_size, const int mb_row, const int mb_col, |
| const int num_planes, const double *noise_levels, const MV *subblock_mvs, |
| const int *subblock_mses, const int q_factor, const int filter_strength, |
| int tf_wgt_calc_lvl, const uint8_t *pred, uint32_t *accum, |
| uint16_t *count) { |
| const int is_high_bitdepth = frame_to_filter->flags & YV12_FLAG_HIGHBITDEPTH; |
| assert(block_size == BLOCK_32X32 && "Only support 32x32 block with avx2!"); |
| assert(TF_WINDOW_LENGTH == 5 && "Only support window length 5 with avx2!"); |
| assert(!is_high_bitdepth && "Only support low bit-depth with avx2!"); |
| assert(num_planes >= 1 && num_planes <= MAX_MB_PLANE); |
| (void)is_high_bitdepth; |
| |
| const int mb_height = block_size_high[block_size]; |
| const int mb_width = block_size_wide[block_size]; |
| const int frame_height = frame_to_filter->y_crop_height; |
| const int frame_width = frame_to_filter->y_crop_width; |
| const int min_frame_size = AOMMIN(frame_height, frame_width); |
| // Variables to simplify combined error calculation. |
| const double inv_factor = 1.0 / ((TF_WINDOW_BLOCK_BALANCE_WEIGHT + 1) * |
| TF_SEARCH_ERROR_NORM_WEIGHT); |
| const double weight_factor = |
| (double)TF_WINDOW_BLOCK_BALANCE_WEIGHT * inv_factor; |
| // Adjust filtering based on q. |
| // Larger q -> stronger filtering -> larger weight. |
| // Smaller q -> weaker filtering -> smaller weight. |
| double q_decay = pow((double)q_factor / TF_Q_DECAY_THRESHOLD, 2); |
| q_decay = CLIP(q_decay, 1e-5, 1); |
| if (q_factor >= TF_QINDEX_CUTOFF) { |
| // Max q_factor is 255, therefore the upper bound of q_decay is 8. |
| // We do not need a clip here. |
| q_decay = 0.5 * pow((double)q_factor / 64, 2); |
| } |
| // Smaller strength -> smaller filtering weight. |
| double s_decay = pow((double)filter_strength / TF_STRENGTH_THRESHOLD, 2); |
| s_decay = CLIP(s_decay, 1e-5, 1); |
| double d_factor[4] = { 0 }; |
| uint16_t frame_sse[SSE_STRIDE * BH] = { 0 }; |
| uint32_t luma_sse_sum[BW * BH] = { 0 }; |
| |
| for (int subblock_idx = 0; subblock_idx < 4; subblock_idx++) { |
| // Larger motion vector -> smaller filtering weight. |
| const MV mv = subblock_mvs[subblock_idx]; |
| const double distance = sqrt(pow(mv.row, 2) + pow(mv.col, 2)); |
| double distance_threshold = min_frame_size * TF_SEARCH_DISTANCE_THRESHOLD; |
| distance_threshold = AOMMAX(distance_threshold, 1); |
| d_factor[subblock_idx] = distance / distance_threshold; |
| d_factor[subblock_idx] = AOMMAX(d_factor[subblock_idx], 1); |
| } |
| |
| // Handle planes in sequence. |
| int plane_offset = 0; |
| for (int plane = 0; plane < num_planes; ++plane) { |
| const uint32_t plane_h = mb_height >> mbd->plane[plane].subsampling_y; |
| const uint32_t plane_w = mb_width >> mbd->plane[plane].subsampling_x; |
| const uint32_t frame_stride = frame_to_filter->strides[plane == 0 ? 0 : 1]; |
| const int frame_offset = mb_row * plane_h * frame_stride + mb_col * plane_w; |
| |
| const uint8_t *ref = frame_to_filter->buffers[plane] + frame_offset; |
| const int ss_x_shift = |
| mbd->plane[plane].subsampling_x - mbd->plane[AOM_PLANE_Y].subsampling_x; |
| const int ss_y_shift = |
| mbd->plane[plane].subsampling_y - mbd->plane[AOM_PLANE_Y].subsampling_y; |
| const int num_ref_pixels = TF_WINDOW_LENGTH * TF_WINDOW_LENGTH + |
| ((plane) ? (1 << (ss_x_shift + ss_y_shift)) : 0); |
| const double inv_num_ref_pixels = 1.0 / num_ref_pixels; |
| // Larger noise -> larger filtering weight. |
| const double n_decay = 0.5 + log(2 * noise_levels[plane] + 5.0); |
| // Decay factors for non-local mean approach. |
| const double decay_factor = 1 / (n_decay * q_decay * s_decay); |
| |
| // Filter U-plane and V-plane using Y-plane. This is because motion |
| // search is only done on Y-plane, so the information from Y-plane |
| // will be more accurate. The luma sse sum is reused in both chroma |
| // planes. |
| if (plane == AOM_PLANE_U) { |
| for (unsigned int i = 0, k = 0; i < plane_h; i++) { |
| for (unsigned int j = 0; j < plane_w; j++, k++) { |
| for (int ii = 0; ii < (1 << ss_y_shift); ++ii) { |
| for (int jj = 0; jj < (1 << ss_x_shift); ++jj) { |
| const int yy = (i << ss_y_shift) + ii; // Y-coord on Y-plane. |
| const int xx = (j << ss_x_shift) + jj; // X-coord on Y-plane. |
| luma_sse_sum[i * BW + j] += frame_sse[yy * SSE_STRIDE + xx]; |
| } |
| } |
| } |
| } |
| } |
| |
| apply_temporal_filter(ref, frame_stride, pred + plane_offset, plane_w, |
| plane_w, plane_h, subblock_mses, accum + plane_offset, |
| count + plane_offset, frame_sse, luma_sse_sum, |
| inv_num_ref_pixels, decay_factor, inv_factor, |
| weight_factor, d_factor, tf_wgt_calc_lvl); |
| plane_offset += plane_h * plane_w; |
| } |
| } |