blob: 283c1743081f539bbef5d992b75d51bf9143332a [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <cstdlib>
#include <new>
#include <ostream>
#include <tuple>
#include "third_party/googletest/src/googletest/include/gtest/gtest.h"
#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "test/acm_random.h"
#include "test/register_state_check.h"
#include "aom/aom_codec.h"
#include "aom/aom_integer.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/aom_timer.h"
#include "aom_ports/mem.h"
#include "av1/common/cdef_block.h"
namespace {
typedef uint64_t (*MseWxH16bitFunc)(uint8_t *dst, int dstride, uint16_t *src,
int sstride, int w, int h);
typedef uint64_t (*Mse16xH16bitFunc)(uint8_t *dst, int dstride, uint16_t *src,
int w, int h);
typedef unsigned int (*VarianceMxNFunc)(const uint8_t *a, int a_stride,
const uint8_t *b, int b_stride,
unsigned int *sse);
typedef void (*GetSseSum8x8QuadFunc)(const uint8_t *a, int a_stride,
const uint8_t *b, int b_stride,
uint32_t *sse8x8, int *sum8x8,
unsigned int *tot_sse, int *tot_sum,
uint32_t *var8x8);
typedef void (*GetSseSum16x16DualFunc)(const uint8_t *a, int a_stride,
const uint8_t *b, int b_stride,
uint32_t *sse16x16,
unsigned int *tot_sse, int *tot_sum,
uint32_t *var16x16);
typedef unsigned int (*SubpixVarMxNFunc)(const uint8_t *a, int a_stride,
int xoffset, int yoffset,
const uint8_t *b, int b_stride,
unsigned int *sse);
typedef unsigned int (*SubpixAvgVarMxNFunc)(const uint8_t *a, int a_stride,
int xoffset, int yoffset,
const uint8_t *b, int b_stride,
uint32_t *sse,
const uint8_t *second_pred);
typedef unsigned int (*SumOfSquaresFunction)(const int16_t *src);
typedef unsigned int (*DistWtdSubpixAvgVarMxNFunc)(
const uint8_t *a, int a_stride, int xoffset, int yoffset, const uint8_t *b,
int b_stride, uint32_t *sse, const uint8_t *second_pred,
const DIST_WTD_COMP_PARAMS *jcp_param);
#if !CONFIG_REALTIME_ONLY
typedef uint32_t (*ObmcSubpelVarFunc)(const uint8_t *pre, int pre_stride,
int xoffset, int yoffset,
const int32_t *wsrc, const int32_t *mask,
unsigned int *sse);
#endif
using libaom_test::ACMRandom;
// Truncate high bit depth results by downshifting (with rounding) by:
// 2 * (bit_depth - 8) for sse
// (bit_depth - 8) for se
static void RoundHighBitDepth(int bit_depth, int64_t *se, uint64_t *sse) {
switch (bit_depth) {
case AOM_BITS_12:
*sse = (*sse + 128) >> 8;
*se = (*se + 8) >> 4;
break;
case AOM_BITS_10:
*sse = (*sse + 8) >> 4;
*se = (*se + 2) >> 2;
break;
case AOM_BITS_8:
default: break;
}
}
static unsigned int mb_ss_ref(const int16_t *src) {
unsigned int res = 0;
for (int i = 0; i < 256; ++i) {
res += src[i] * src[i];
}
return res;
}
/* Note:
* Our codebase calculates the "diff" value in the variance algorithm by
* (src - ref).
*/
static uint32_t variance_ref(const uint8_t *src, const uint8_t *ref, int l2w,
int l2h, int src_stride, int ref_stride,
uint32_t *sse_ptr, bool use_high_bit_depth_,
aom_bit_depth_t bit_depth) {
int64_t se = 0;
uint64_t sse = 0;
const int w = 1 << l2w;
const int h = 1 << l2h;
for (int y = 0; y < h; y++) {
for (int x = 0; x < w; x++) {
int diff;
if (!use_high_bit_depth_) {
diff = src[y * src_stride + x] - ref[y * ref_stride + x];
se += diff;
sse += diff * diff;
} else {
diff = CONVERT_TO_SHORTPTR(src)[y * src_stride + x] -
CONVERT_TO_SHORTPTR(ref)[y * ref_stride + x];
se += diff;
sse += diff * diff;
}
}
}
RoundHighBitDepth(bit_depth, &se, &sse);
*sse_ptr = static_cast<uint32_t>(sse);
return static_cast<uint32_t>(sse - ((se * se) >> (l2w + l2h)));
}
/* The subpel reference functions differ from the codec version in one aspect:
* they calculate the bilinear factors directly instead of using a lookup table
* and therefore upshift xoff and yoff by 1. Only every other calculated value
* is used so the codec version shrinks the table to save space.
*/
static uint32_t subpel_variance_ref(const uint8_t *ref, const uint8_t *src,
int l2w, int l2h, int xoff, int yoff,
uint32_t *sse_ptr, bool use_high_bit_depth_,
aom_bit_depth_t bit_depth) {
int64_t se = 0;
uint64_t sse = 0;
const int w = 1 << l2w;
const int h = 1 << l2h;
xoff <<= 1;
yoff <<= 1;
for (int y = 0; y < h; y++) {
for (int x = 0; x < w; x++) {
// Bilinear interpolation at a 16th pel step.
if (!use_high_bit_depth_) {
const int a1 = ref[(w + 1) * (y + 0) + x + 0];
const int a2 = ref[(w + 1) * (y + 0) + x + 1];
const int b1 = ref[(w + 1) * (y + 1) + x + 0];
const int b2 = ref[(w + 1) * (y + 1) + x + 1];
const int a = a1 + (((a2 - a1) * xoff + 8) >> 4);
const int b = b1 + (((b2 - b1) * xoff + 8) >> 4);
const int r = a + (((b - a) * yoff + 8) >> 4);
const int diff = r - src[w * y + x];
se += diff;
sse += diff * diff;
} else {
uint16_t *ref16 = CONVERT_TO_SHORTPTR(ref);
uint16_t *src16 = CONVERT_TO_SHORTPTR(src);
const int a1 = ref16[(w + 1) * (y + 0) + x + 0];
const int a2 = ref16[(w + 1) * (y + 0) + x + 1];
const int b1 = ref16[(w + 1) * (y + 1) + x + 0];
const int b2 = ref16[(w + 1) * (y + 1) + x + 1];
const int a = a1 + (((a2 - a1) * xoff + 8) >> 4);
const int b = b1 + (((b2 - b1) * xoff + 8) >> 4);
const int r = a + (((b - a) * yoff + 8) >> 4);
const int diff = r - src16[w * y + x];
se += diff;
sse += diff * diff;
}
}
}
RoundHighBitDepth(bit_depth, &se, &sse);
*sse_ptr = static_cast<uint32_t>(sse);
return static_cast<uint32_t>(sse - ((se * se) >> (l2w + l2h)));
}
static uint32_t subpel_avg_variance_ref(const uint8_t *ref, const uint8_t *src,
const uint8_t *second_pred, int l2w,
int l2h, int xoff, int yoff,
uint32_t *sse_ptr,
bool use_high_bit_depth,
aom_bit_depth_t bit_depth) {
int64_t se = 0;
uint64_t sse = 0;
const int w = 1 << l2w;
const int h = 1 << l2h;
xoff <<= 1;
yoff <<= 1;
for (int y = 0; y < h; y++) {
for (int x = 0; x < w; x++) {
// bilinear interpolation at a 16th pel step
if (!use_high_bit_depth) {
const int a1 = ref[(w + 1) * (y + 0) + x + 0];
const int a2 = ref[(w + 1) * (y + 0) + x + 1];
const int b1 = ref[(w + 1) * (y + 1) + x + 0];
const int b2 = ref[(w + 1) * (y + 1) + x + 1];
const int a = a1 + (((a2 - a1) * xoff + 8) >> 4);
const int b = b1 + (((b2 - b1) * xoff + 8) >> 4);
const int r = a + (((b - a) * yoff + 8) >> 4);
const int diff =
((r + second_pred[w * y + x] + 1) >> 1) - src[w * y + x];
se += diff;
sse += diff * diff;
} else {
const uint16_t *ref16 = CONVERT_TO_SHORTPTR(ref);
const uint16_t *src16 = CONVERT_TO_SHORTPTR(src);
const uint16_t *sec16 = CONVERT_TO_SHORTPTR(second_pred);
const int a1 = ref16[(w + 1) * (y + 0) + x + 0];
const int a2 = ref16[(w + 1) * (y + 0) + x + 1];
const int b1 = ref16[(w + 1) * (y + 1) + x + 0];
const int b2 = ref16[(w + 1) * (y + 1) + x + 1];
const int a = a1 + (((a2 - a1) * xoff + 8) >> 4);
const int b = b1 + (((b2 - b1) * xoff + 8) >> 4);
const int r = a + (((b - a) * yoff + 8) >> 4);
const int diff = ((r + sec16[w * y + x] + 1) >> 1) - src16[w * y + x];
se += diff;
sse += diff * diff;
}
}
}
RoundHighBitDepth(bit_depth, &se, &sse);
*sse_ptr = static_cast<uint32_t>(sse);
return static_cast<uint32_t>(sse - ((se * se) >> (l2w + l2h)));
}
static uint32_t dist_wtd_subpel_avg_variance_ref(
const uint8_t *ref, const uint8_t *src, const uint8_t *second_pred, int l2w,
int l2h, int xoff, int yoff, uint32_t *sse_ptr, bool use_high_bit_depth,
aom_bit_depth_t bit_depth, DIST_WTD_COMP_PARAMS *jcp_param) {
int64_t se = 0;
uint64_t sse = 0;
const int w = 1 << l2w;
const int h = 1 << l2h;
xoff <<= 1;
yoff <<= 1;
for (int y = 0; y < h; y++) {
for (int x = 0; x < w; x++) {
// bilinear interpolation at a 16th pel step
if (!use_high_bit_depth) {
const int a1 = ref[(w + 0) * (y + 0) + x + 0];
const int a2 = ref[(w + 0) * (y + 0) + x + 1];
const int b1 = ref[(w + 0) * (y + 1) + x + 0];
const int b2 = ref[(w + 0) * (y + 1) + x + 1];
const int a = a1 + (((a2 - a1) * xoff + 8) >> 4);
const int b = b1 + (((b2 - b1) * xoff + 8) >> 4);
const int r = a + (((b - a) * yoff + 8) >> 4);
const int avg = ROUND_POWER_OF_TWO(
r * jcp_param->fwd_offset +
second_pred[w * y + x] * jcp_param->bck_offset,
DIST_PRECISION_BITS);
const int diff = avg - src[w * y + x];
se += diff;
sse += diff * diff;
} else {
const uint16_t *ref16 = CONVERT_TO_SHORTPTR(ref);
const uint16_t *src16 = CONVERT_TO_SHORTPTR(src);
const uint16_t *sec16 = CONVERT_TO_SHORTPTR(second_pred);
const int a1 = ref16[(w + 0) * (y + 0) + x + 0];
const int a2 = ref16[(w + 0) * (y + 0) + x + 1];
const int b1 = ref16[(w + 0) * (y + 1) + x + 0];
const int b2 = ref16[(w + 0) * (y + 1) + x + 1];
const int a = a1 + (((a2 - a1) * xoff + 8) >> 4);
const int b = b1 + (((b2 - b1) * xoff + 8) >> 4);
const int r = a + (((b - a) * yoff + 8) >> 4);
const int avg =
ROUND_POWER_OF_TWO(r * jcp_param->fwd_offset +
sec16[w * y + x] * jcp_param->bck_offset,
DIST_PRECISION_BITS);
const int diff = avg - src16[w * y + x];
se += diff;
sse += diff * diff;
}
}
}
RoundHighBitDepth(bit_depth, &se, &sse);
*sse_ptr = static_cast<uint32_t>(sse);
return static_cast<uint32_t>(sse - ((se * se) >> (l2w + l2h)));
}
#if !CONFIG_REALTIME_ONLY
static uint32_t obmc_subpel_variance_ref(const uint8_t *pre, int l2w, int l2h,
int xoff, int yoff,
const int32_t *wsrc,
const int32_t *mask, uint32_t *sse_ptr,
bool use_high_bit_depth_,
aom_bit_depth_t bit_depth) {
int64_t se = 0;
uint64_t sse = 0;
const int w = 1 << l2w;
const int h = 1 << l2h;
xoff <<= 1;
yoff <<= 1;
for (int y = 0; y < h; y++) {
for (int x = 0; x < w; x++) {
// Bilinear interpolation at a 16th pel step.
if (!use_high_bit_depth_) {
const int a1 = pre[(w + 1) * (y + 0) + x + 0];
const int a2 = pre[(w + 1) * (y + 0) + x + 1];
const int b1 = pre[(w + 1) * (y + 1) + x + 0];
const int b2 = pre[(w + 1) * (y + 1) + x + 1];
const int a = a1 + (((a2 - a1) * xoff + 8) >> 4);
const int b = b1 + (((b2 - b1) * xoff + 8) >> 4);
const int r = a + (((b - a) * yoff + 8) >> 4);
const int diff = ROUND_POWER_OF_TWO_SIGNED(
wsrc[w * y + x] - r * mask[w * y + x], 12);
se += diff;
sse += diff * diff;
} else {
uint16_t *pre16 = CONVERT_TO_SHORTPTR(pre);
const int a1 = pre16[(w + 1) * (y + 0) + x + 0];
const int a2 = pre16[(w + 1) * (y + 0) + x + 1];
const int b1 = pre16[(w + 1) * (y + 1) + x + 0];
const int b2 = pre16[(w + 1) * (y + 1) + x + 1];
const int a = a1 + (((a2 - a1) * xoff + 8) >> 4);
const int b = b1 + (((b2 - b1) * xoff + 8) >> 4);
const int r = a + (((b - a) * yoff + 8) >> 4);
const int diff = ROUND_POWER_OF_TWO_SIGNED(
wsrc[w * y + x] - r * mask[w * y + x], 12);
se += diff;
sse += diff * diff;
}
}
}
RoundHighBitDepth(bit_depth, &se, &sse);
*sse_ptr = static_cast<uint32_t>(sse);
return static_cast<uint32_t>(sse - ((se * se) >> (l2w + l2h)));
}
#endif
////////////////////////////////////////////////////////////////////////////////
class SumOfSquaresTest : public ::testing::TestWithParam<SumOfSquaresFunction> {
public:
SumOfSquaresTest() : func_(GetParam()) {}
~SumOfSquaresTest() override = default;
protected:
void ConstTest();
void RefTest();
SumOfSquaresFunction func_;
ACMRandom rnd_;
};
void SumOfSquaresTest::ConstTest() {
int16_t mem[256];
unsigned int res;
for (int v = 0; v < 256; ++v) {
for (int i = 0; i < 256; ++i) {
mem[i] = v;
}
API_REGISTER_STATE_CHECK(res = func_(mem));
EXPECT_EQ(256u * (v * v), res);
}
}
void SumOfSquaresTest::RefTest() {
int16_t mem[256];
for (int i = 0; i < 100; ++i) {
for (int j = 0; j < 256; ++j) {
mem[j] = rnd_.Rand8() - rnd_.Rand8();
}
const unsigned int expected = mb_ss_ref(mem);
unsigned int res;
API_REGISTER_STATE_CHECK(res = func_(mem));
EXPECT_EQ(expected, res);
}
}
////////////////////////////////////////////////////////////////////////////////
// Encapsulating struct to store the function to test along with
// some testing context.
// Can be used for MSE, SSE, Variance, etc.
template <typename Func>
struct TestParams {
TestParams(int log2w = 0, int log2h = 0, Func function = nullptr,
int bit_depth_value = 0)
: log2width(log2w), log2height(log2h), func(function) {
use_high_bit_depth = (bit_depth_value > 0);
if (use_high_bit_depth) {
bit_depth = static_cast<aom_bit_depth_t>(bit_depth_value);
} else {
bit_depth = AOM_BITS_8;
}
width = 1 << log2width;
height = 1 << log2height;
block_size = width * height;
mask = (1u << bit_depth) - 1;
}
int log2width, log2height;
int width, height;
int block_size;
Func func;
aom_bit_depth_t bit_depth;
bool use_high_bit_depth;
uint32_t mask;
};
template <typename Func>
std::ostream &operator<<(std::ostream &os, const TestParams<Func> &p) {
return os << "width/height:" << p.width << "/" << p.height
<< " function:" << reinterpret_cast<const void *>(p.func)
<< " bit-depth:" << p.bit_depth;
}
// Main class for testing a function type
template <typename FunctionType>
class MseWxHTestClass
: public ::testing::TestWithParam<TestParams<FunctionType> > {
public:
void SetUp() override {
params_ = this->GetParam();
rnd_.Reset(ACMRandom::DeterministicSeed());
src_ = reinterpret_cast<uint16_t *>(
aom_memalign(16, block_size() * sizeof(src_)));
dst_ = reinterpret_cast<uint8_t *>(
aom_memalign(16, block_size() * sizeof(dst_)));
ASSERT_NE(src_, nullptr);
ASSERT_NE(dst_, nullptr);
}
void TearDown() override {
aom_free(src_);
aom_free(dst_);
src_ = nullptr;
dst_ = nullptr;
}
protected:
void RefMatchTestMse();
void SpeedTest();
protected:
ACMRandom rnd_;
uint8_t *dst_;
uint16_t *src_;
TestParams<FunctionType> params_;
// some relay helpers
int block_size() const { return params_.block_size; }
int width() const { return params_.width; }
int height() const { return params_.height; }
int d_stride() const { return params_.width; } // stride is same as width
int s_stride() const { return params_.width; } // stride is same as width
};
template <typename MseWxHFunctionType>
void MseWxHTestClass<MseWxHFunctionType>::SpeedTest() {
aom_usec_timer ref_timer, test_timer;
double elapsed_time_c = 0;
double elapsed_time_simd = 0;
int run_time = 10000000;
int w = width();
int h = height();
int dstride = d_stride();
int sstride = s_stride();
for (int k = 0; k < block_size(); ++k) {
dst_[k] = rnd_.Rand8();
src_[k] = rnd_.Rand8();
}
aom_usec_timer_start(&ref_timer);
for (int i = 0; i < run_time; i++) {
aom_mse_wxh_16bit_c(dst_, dstride, src_, sstride, w, h);
}
aom_usec_timer_mark(&ref_timer);
elapsed_time_c = static_cast<double>(aom_usec_timer_elapsed(&ref_timer));
aom_usec_timer_start(&test_timer);
for (int i = 0; i < run_time; i++) {
params_.func(dst_, dstride, src_, sstride, w, h);
}
aom_usec_timer_mark(&test_timer);
elapsed_time_simd = static_cast<double>(aom_usec_timer_elapsed(&test_timer));
printf("%dx%d\tc_time=%lf \t simd_time=%lf \t gain=%lf\n", width(), height(),
elapsed_time_c, elapsed_time_simd,
(elapsed_time_c / elapsed_time_simd));
}
template <typename MseWxHFunctionType>
void MseWxHTestClass<MseWxHFunctionType>::RefMatchTestMse() {
uint64_t mse_ref = 0;
uint64_t mse_mod = 0;
int w = width();
int h = height();
int dstride = d_stride();
int sstride = s_stride();
for (int i = 0; i < 10; i++) {
for (int k = 0; k < block_size(); ++k) {
dst_[k] = rnd_.Rand8();
src_[k] = rnd_.Rand8();
}
API_REGISTER_STATE_CHECK(
mse_ref = aom_mse_wxh_16bit_c(dst_, dstride, src_, sstride, w, h));
API_REGISTER_STATE_CHECK(
mse_mod = params_.func(dst_, dstride, src_, sstride, w, h));
EXPECT_EQ(mse_ref, mse_mod)
<< "ref mse: " << mse_ref << " mod mse: " << mse_mod;
}
}
template <typename FunctionType>
class Mse16xHTestClass
: public ::testing::TestWithParam<TestParams<FunctionType> > {
public:
// Memory required to compute mse of two 8x8 and four 4x4 blocks assigned for
// maximum width 16 and maximum height 8.
int mem_size = 16 * 8;
void SetUp() override {
params_ = this->GetParam();
rnd_.Reset(ACMRandom::DeterministicSeed());
src_ = reinterpret_cast<uint16_t *>(
aom_memalign(16, mem_size * sizeof(*src_)));
dst_ =
reinterpret_cast<uint8_t *>(aom_memalign(16, mem_size * sizeof(*dst_)));
ASSERT_NE(src_, nullptr);
ASSERT_NE(dst_, nullptr);
}
void TearDown() override {
aom_free(src_);
aom_free(dst_);
src_ = nullptr;
dst_ = nullptr;
}
uint8_t RandBool() {
const uint32_t value = rnd_.Rand8();
return (value & 0x1);
}
protected:
void RefMatchExtremeTestMse();
void RefMatchTestMse();
void SpeedTest();
protected:
ACMRandom rnd_;
uint8_t *dst_;
uint16_t *src_;
TestParams<FunctionType> params_;
// some relay helpers
int width() const { return params_.width; }
int height() const { return params_.height; }
int d_stride() const { return params_.width; }
};
template <typename Mse16xHFunctionType>
void Mse16xHTestClass<Mse16xHFunctionType>::SpeedTest() {
aom_usec_timer ref_timer, test_timer;
double elapsed_time_c = 0.0;
double elapsed_time_simd = 0.0;
const int loop_count = 10000000;
const int w = width();
const int h = height();
const int dstride = d_stride();
for (int k = 0; k < mem_size; ++k) {
dst_[k] = rnd_.Rand8();
// Right shift by 6 is done to generate more input in range of [0,255] than
// CDEF_VERY_LARGE
int rnd_i10 = rnd_.Rand16() >> 6;
src_[k] = (rnd_i10 < 256) ? rnd_i10 : CDEF_VERY_LARGE;
}
aom_usec_timer_start(&ref_timer);
for (int i = 0; i < loop_count; i++) {
aom_mse_16xh_16bit_c(dst_, dstride, src_, w, h);
}
aom_usec_timer_mark(&ref_timer);
elapsed_time_c = static_cast<double>(aom_usec_timer_elapsed(&ref_timer));
aom_usec_timer_start(&test_timer);
for (int i = 0; i < loop_count; i++) {
params_.func(dst_, dstride, src_, w, h);
}
aom_usec_timer_mark(&test_timer);
elapsed_time_simd = static_cast<double>(aom_usec_timer_elapsed(&test_timer));
printf("%dx%d\tc_time=%lf \t simd_time=%lf \t gain=%.31f\n", width(),
height(), elapsed_time_c, elapsed_time_simd,
(elapsed_time_c / elapsed_time_simd));
}
template <typename Mse16xHFunctionType>
void Mse16xHTestClass<Mse16xHFunctionType>::RefMatchTestMse() {
uint64_t mse_ref = 0;
uint64_t mse_mod = 0;
const int w = width();
const int h = height();
const int dstride = d_stride();
for (int i = 0; i < 10; i++) {
for (int k = 0; k < mem_size; ++k) {
dst_[k] = rnd_.Rand8();
// Right shift by 6 is done to generate more input in range of [0,255]
// than CDEF_VERY_LARGE
int rnd_i10 = rnd_.Rand16() >> 6;
src_[k] = (rnd_i10 < 256) ? rnd_i10 : CDEF_VERY_LARGE;
}
API_REGISTER_STATE_CHECK(
mse_ref = aom_mse_16xh_16bit_c(dst_, dstride, src_, w, h));
API_REGISTER_STATE_CHECK(mse_mod = params_.func(dst_, dstride, src_, w, h));
EXPECT_EQ(mse_ref, mse_mod)
<< "ref mse: " << mse_ref << " mod mse: " << mse_mod;
}
}
template <typename Mse16xHFunctionType>
void Mse16xHTestClass<Mse16xHFunctionType>::RefMatchExtremeTestMse() {
uint64_t mse_ref = 0;
uint64_t mse_mod = 0;
const int w = width();
const int h = height();
const int dstride = d_stride();
const int iter = 10;
// Fill the buffers with extreme values
for (int i = 0; i < iter; i++) {
for (int k = 0; k < mem_size; ++k) {
dst_[k] = static_cast<uint8_t>(RandBool() ? 0 : 255);
src_[k] = static_cast<uint16_t>(RandBool() ? 0 : CDEF_VERY_LARGE);
}
API_REGISTER_STATE_CHECK(
mse_ref = aom_mse_16xh_16bit_c(dst_, dstride, src_, w, h));
API_REGISTER_STATE_CHECK(mse_mod = params_.func(dst_, dstride, src_, w, h));
EXPECT_EQ(mse_ref, mse_mod)
<< "ref mse: " << mse_ref << " mod mse: " << mse_mod;
}
}
// Main class for testing a function type
template <typename FunctionType>
class MainTestClass
: public ::testing::TestWithParam<TestParams<FunctionType> > {
public:
void SetUp() override {
params_ = this->GetParam();
rnd_.Reset(ACMRandom::DeterministicSeed());
const size_t unit =
use_high_bit_depth() ? sizeof(uint16_t) : sizeof(uint8_t);
src_ = reinterpret_cast<uint8_t *>(aom_memalign(16, block_size() * unit));
ref_ = new uint8_t[block_size() * unit];
ASSERT_NE(src_, nullptr);
ASSERT_NE(ref_, nullptr);
memset(src_, 0, block_size() * sizeof(src_[0]));
memset(ref_, 0, block_size() * sizeof(ref_[0]));
if (use_high_bit_depth()) {
// TODO(skal): remove!
src_ = CONVERT_TO_BYTEPTR(src_);
ref_ = CONVERT_TO_BYTEPTR(ref_);
}
}
void TearDown() override {
if (use_high_bit_depth()) {
// TODO(skal): remove!
src_ = reinterpret_cast<uint8_t *>(CONVERT_TO_SHORTPTR(src_));
ref_ = reinterpret_cast<uint8_t *>(CONVERT_TO_SHORTPTR(ref_));
}
aom_free(src_);
delete[] ref_;
src_ = nullptr;
ref_ = nullptr;
}
protected:
// We could sub-class MainTestClass into dedicated class for Variance
// and MSE/SSE, but it involves a lot of 'this->xxx' dereferencing
// to access top class fields xxx. That's cumbersome, so for now we'll just
// implement the testing methods here:
// Variance tests
void ZeroTest();
void RefTest();
void RefStrideTest();
void OneQuarterTest();
void SpeedTest();
// SSE&SUM tests
void RefTestSseSum();
void MinTestSseSum();
void MaxTestSseSum();
void SseSum_SpeedTest();
// SSE&SUM dual tests
void RefTestSseSumDual();
void MinTestSseSumDual();
void MaxTestSseSumDual();
void SseSum_SpeedTestDual();
// MSE/SSE tests
void RefTestMse();
void RefTestSse();
void MaxTestMse();
void MaxTestSse();
protected:
ACMRandom rnd_;
uint8_t *src_;
uint8_t *ref_;
TestParams<FunctionType> params_;
// some relay helpers
bool use_high_bit_depth() const { return params_.use_high_bit_depth; }
int byte_shift() const { return params_.bit_depth - 8; }
int block_size() const { return params_.block_size; }
int width() const { return params_.width; }
int height() const { return params_.height; }
uint32_t mask() const { return params_.mask; }
};
////////////////////////////////////////////////////////////////////////////////
// Tests related to variance.
template <typename VarianceFunctionType>
void MainTestClass<VarianceFunctionType>::ZeroTest() {
for (int i = 0; i <= 255; ++i) {
if (!use_high_bit_depth()) {
memset(src_, i, block_size());
} else {
uint16_t *const src16 = CONVERT_TO_SHORTPTR(src_);
for (int k = 0; k < block_size(); ++k) src16[k] = i << byte_shift();
}
for (int j = 0; j <= 255; ++j) {
if (!use_high_bit_depth()) {
memset(ref_, j, block_size());
} else {
uint16_t *const ref16 = CONVERT_TO_SHORTPTR(ref_);
for (int k = 0; k < block_size(); ++k) ref16[k] = j << byte_shift();
}
unsigned int sse, var;
API_REGISTER_STATE_CHECK(
var = params_.func(src_, width(), ref_, width(), &sse));
EXPECT_EQ(0u, var) << "src values: " << i << " ref values: " << j;
}
}
}
template <typename VarianceFunctionType>
void MainTestClass<VarianceFunctionType>::RefTest() {
for (int i = 0; i < 10; ++i) {
for (int j = 0; j < block_size(); j++) {
if (!use_high_bit_depth()) {
src_[j] = rnd_.Rand8();
ref_[j] = rnd_.Rand8();
} else {
CONVERT_TO_SHORTPTR(src_)[j] = rnd_.Rand16() & mask();
CONVERT_TO_SHORTPTR(ref_)[j] = rnd_.Rand16() & mask();
}
}
unsigned int sse1, sse2, var1, var2;
const int stride = width();
API_REGISTER_STATE_CHECK(
var1 = params_.func(src_, stride, ref_, stride, &sse1));
var2 =
variance_ref(src_, ref_, params_.log2width, params_.log2height, stride,
stride, &sse2, use_high_bit_depth(), params_.bit_depth);
EXPECT_EQ(sse1, sse2) << "Error at test index: " << i;
EXPECT_EQ(var1, var2) << "Error at test index: " << i;
}
}
template <typename VarianceFunctionType>
void MainTestClass<VarianceFunctionType>::RefStrideTest() {
for (int i = 0; i < 10; ++i) {
const int ref_stride = (i & 1) * width();
const int src_stride = ((i >> 1) & 1) * width();
for (int j = 0; j < block_size(); j++) {
const int ref_ind = (j / width()) * ref_stride + j % width();
const int src_ind = (j / width()) * src_stride + j % width();
if (!use_high_bit_depth()) {
src_[src_ind] = rnd_.Rand8();
ref_[ref_ind] = rnd_.Rand8();
} else {
CONVERT_TO_SHORTPTR(src_)[src_ind] = rnd_.Rand16() & mask();
CONVERT_TO_SHORTPTR(ref_)[ref_ind] = rnd_.Rand16() & mask();
}
}
unsigned int sse1, sse2;
unsigned int var1, var2;
API_REGISTER_STATE_CHECK(
var1 = params_.func(src_, src_stride, ref_, ref_stride, &sse1));
var2 = variance_ref(src_, ref_, params_.log2width, params_.log2height,
src_stride, ref_stride, &sse2, use_high_bit_depth(),
params_.bit_depth);
EXPECT_EQ(sse1, sse2) << "Error at test index: " << i;
EXPECT_EQ(var1, var2) << "Error at test index: " << i;
}
}
template <typename VarianceFunctionType>
void MainTestClass<VarianceFunctionType>::OneQuarterTest() {
const int half = block_size() / 2;
if (!use_high_bit_depth()) {
memset(src_, 255, block_size());
memset(ref_, 255, half);
memset(ref_ + half, 0, half);
} else {
aom_memset16(CONVERT_TO_SHORTPTR(src_), 255 << byte_shift(), block_size());
aom_memset16(CONVERT_TO_SHORTPTR(ref_), 255 << byte_shift(), half);
aom_memset16(CONVERT_TO_SHORTPTR(ref_) + half, 0, half);
}
unsigned int sse, var, expected;
API_REGISTER_STATE_CHECK(
var = params_.func(src_, width(), ref_, width(), &sse));
expected = block_size() * 255 * 255 / 4;
EXPECT_EQ(expected, var);
}
template <typename VarianceFunctionType>
void MainTestClass<VarianceFunctionType>::SpeedTest() {
for (int j = 0; j < block_size(); j++) {
if (!use_high_bit_depth()) {
src_[j] = rnd_.Rand8();
ref_[j] = rnd_.Rand8();
#if CONFIG_AV1_HIGHBITDEPTH
} else {
CONVERT_TO_SHORTPTR(src_)[j] = rnd_.Rand16() & mask();
CONVERT_TO_SHORTPTR(ref_)[j] = rnd_.Rand16() & mask();
#endif // CONFIG_AV1_HIGHBITDEPTH
}
}
unsigned int sse;
const int stride = width();
int run_time = 1000000000 / block_size();
aom_usec_timer timer;
aom_usec_timer_start(&timer);
for (int i = 0; i < run_time; ++i) {
params_.func(src_, stride, ref_, stride, &sse);
}
aom_usec_timer_mark(&timer);
const int elapsed_time = static_cast<int>(aom_usec_timer_elapsed(&timer));
printf("Variance %dx%d : %d us\n", width(), height(), elapsed_time);
}
template <typename GetSseSum8x8QuadFuncType>
void MainTestClass<GetSseSum8x8QuadFuncType>::RefTestSseSum() {
for (int i = 0; i < 10; ++i) {
for (int j = 0; j < block_size(); ++j) {
src_[j] = rnd_.Rand8();
ref_[j] = rnd_.Rand8();
}
unsigned int sse1[256] = { 0 };
unsigned int sse2[256] = { 0 };
unsigned int var1[256] = { 0 };
unsigned int var2[256] = { 0 };
int sum1[256] = { 0 };
int sum2[256] = { 0 };
unsigned int sse_tot_c = 0;
unsigned int sse_tot_simd = 0;
int sum_tot_c = 0;
int sum_tot_simd = 0;
const int stride = width();
int k = 0;
for (int row = 0; row < height(); row += 8) {
for (int col = 0; col < width(); col += 32) {
API_REGISTER_STATE_CHECK(params_.func(src_ + stride * row + col, stride,
ref_ + stride * row + col, stride,
&sse1[k], &sum1[k], &sse_tot_simd,
&sum_tot_simd, &var1[k]));
aom_get_var_sse_sum_8x8_quad_c(
src_ + stride * row + col, stride, ref_ + stride * row + col,
stride, &sse2[k], &sum2[k], &sse_tot_c, &sum_tot_c, &var2[k]);
k += 4;
}
}
EXPECT_EQ(sse_tot_c, sse_tot_simd);
EXPECT_EQ(sum_tot_c, sum_tot_simd);
for (int p = 0; p < 256; p++) {
EXPECT_EQ(sse1[p], sse2[p]);
EXPECT_EQ(sum1[p], sum2[p]);
EXPECT_EQ(var1[p], var2[p]);
}
}
}
template <typename GetSseSum8x8QuadFuncType>
void MainTestClass<GetSseSum8x8QuadFuncType>::MinTestSseSum() {
memset(src_, 0, block_size());
memset(ref_, 255, block_size());
unsigned int sse1[256] = { 0 };
unsigned int sse2[256] = { 0 };
unsigned int var1[256] = { 0 };
unsigned int var2[256] = { 0 };
int sum1[256] = { 0 };
int sum2[256] = { 0 };
unsigned int sse_tot_c = 0;
unsigned int sse_tot_simd = 0;
int sum_tot_c = 0;
int sum_tot_simd = 0;
const int stride = width();
int k = 0;
for (int i = 0; i < height(); i += 8) {
for (int j = 0; j < width(); j += 32) {
API_REGISTER_STATE_CHECK(params_.func(
src_ + stride * i + j, stride, ref_ + stride * i + j, stride,
&sse1[k], &sum1[k], &sse_tot_simd, &sum_tot_simd, &var1[k]));
aom_get_var_sse_sum_8x8_quad_c(
src_ + stride * i + j, stride, ref_ + stride * i + j, stride,
&sse2[k], &sum2[k], &sse_tot_c, &sum_tot_c, &var2[k]);
k += 4;
}
}
EXPECT_EQ(sse_tot_simd, sse_tot_c);
EXPECT_EQ(sum_tot_simd, sum_tot_c);
for (int p = 0; p < 256; p++) {
EXPECT_EQ(sse1[p], sse2[p]);
EXPECT_EQ(sum1[p], sum2[p]);
EXPECT_EQ(var1[p], var2[p]);
}
}
template <typename GetSseSum8x8QuadFuncType>
void MainTestClass<GetSseSum8x8QuadFuncType>::MaxTestSseSum() {
memset(src_, 255, block_size());
memset(ref_, 0, block_size());
unsigned int sse1[256] = { 0 };
unsigned int sse2[256] = { 0 };
unsigned int var1[256] = { 0 };
unsigned int var2[256] = { 0 };
int sum1[256] = { 0 };
int sum2[256] = { 0 };
unsigned int sse_tot_c = 0;
unsigned int sse_tot_simd = 0;
int sum_tot_c = 0;
int sum_tot_simd = 0;
const int stride = width();
int k = 0;
for (int i = 0; i < height(); i += 8) {
for (int j = 0; j < width(); j += 32) {
API_REGISTER_STATE_CHECK(params_.func(
src_ + stride * i + j, stride, ref_ + stride * i + j, stride,
&sse1[k], &sum1[k], &sse_tot_simd, &sum_tot_simd, &var1[k]));
aom_get_var_sse_sum_8x8_quad_c(
src_ + stride * i + j, stride, ref_ + stride * i + j, stride,
&sse2[k], &sum2[k], &sse_tot_c, &sum_tot_c, &var2[k]);
k += 4;
}
}
EXPECT_EQ(sse_tot_c, sse_tot_simd);
EXPECT_EQ(sum_tot_c, sum_tot_simd);
for (int p = 0; p < 256; p++) {
EXPECT_EQ(sse1[p], sse2[p]);
EXPECT_EQ(sum1[p], sum2[p]);
EXPECT_EQ(var1[p], var2[p]);
}
}
template <typename GetSseSum8x8QuadFuncType>
void MainTestClass<GetSseSum8x8QuadFuncType>::SseSum_SpeedTest() {
const int loop_count = 1000000000 / block_size();
for (int j = 0; j < block_size(); ++j) {
src_[j] = rnd_.Rand8();
ref_[j] = rnd_.Rand8();
}
unsigned int sse1[4] = { 0 };
unsigned int sse2[4] = { 0 };
unsigned int var1[4] = { 0 };
unsigned int var2[4] = { 0 };
int sum1[4] = { 0 };
int sum2[4] = { 0 };
unsigned int sse_tot_c = 0;
unsigned int sse_tot_simd = 0;
int sum_tot_c = 0;
int sum_tot_simd = 0;
const int stride = width();
aom_usec_timer timer;
aom_usec_timer_start(&timer);
for (int r = 0; r < loop_count; ++r) {
for (int i = 0; i < height(); i += 8) {
for (int j = 0; j < width(); j += 32) {
aom_get_var_sse_sum_8x8_quad_c(src_ + stride * i + j, stride,
ref_ + stride * i + j, stride, sse2,
sum2, &sse_tot_c, &sum_tot_c, var2);
}
}
}
aom_usec_timer_mark(&timer);
const double elapsed_time_ref =
static_cast<double>(aom_usec_timer_elapsed(&timer));
aom_usec_timer_start(&timer);
for (int r = 0; r < loop_count; ++r) {
for (int i = 0; i < height(); i += 8) {
for (int j = 0; j < width(); j += 32) {
params_.func(src_ + stride * i + j, stride, ref_ + stride * i + j,
stride, sse1, sum1, &sse_tot_simd, &sum_tot_simd, var1);
}
}
}
aom_usec_timer_mark(&timer);
const double elapsed_time_simd =
static_cast<double>(aom_usec_timer_elapsed(&timer));
printf(
"aom_getvar_8x8_quad for block=%dx%d : ref_time=%lf \t simd_time=%lf \t "
"gain=%lf \n",
width(), height(), elapsed_time_ref, elapsed_time_simd,
elapsed_time_ref / elapsed_time_simd);
}
template <typename GetSseSum16x16DualFuncType>
void MainTestClass<GetSseSum16x16DualFuncType>::RefTestSseSumDual() {
for (int iter = 0; iter < 10; ++iter) {
for (int idx = 0; idx < block_size(); ++idx) {
src_[idx] = rnd_.Rand8();
ref_[idx] = rnd_.Rand8();
}
unsigned int sse1[64] = { 0 };
unsigned int sse2[64] = { 0 };
unsigned int var1[64] = { 0 };
unsigned int var2[64] = { 0 };
unsigned int sse_tot_c = 0;
unsigned int sse_tot_simd = 0;
int sum_tot_c = 0;
int sum_tot_simd = 0;
const int stride = width();
int k = 0;
for (int row = 0; row < height(); row += 16) {
for (int col = 0; col < width(); col += 32) {
API_REGISTER_STATE_CHECK(params_.func(
src_ + stride * row + col, stride, ref_ + stride * row + col,
stride, &sse1[k], &sse_tot_simd, &sum_tot_simd, &var1[k]));
aom_get_var_sse_sum_16x16_dual_c(
src_ + stride * row + col, stride, ref_ + stride * row + col,
stride, &sse2[k], &sse_tot_c, &sum_tot_c, &var2[k]);
k += 2;
}
}
EXPECT_EQ(sse_tot_c, sse_tot_simd);
EXPECT_EQ(sum_tot_c, sum_tot_simd);
for (int p = 0; p < 64; p++) {
EXPECT_EQ(sse1[p], sse2[p]);
EXPECT_EQ(sse_tot_simd, sse_tot_c);
EXPECT_EQ(sum_tot_simd, sum_tot_c);
EXPECT_EQ(var1[p], var2[p]);
}
}
}
template <typename GetSseSum16x16DualFuncType>
void MainTestClass<GetSseSum16x16DualFuncType>::MinTestSseSumDual() {
memset(src_, 0, block_size());
memset(ref_, 255, block_size());
unsigned int sse1[64] = { 0 };
unsigned int sse2[64] = { 0 };
unsigned int var1[64] = { 0 };
unsigned int var2[64] = { 0 };
unsigned int sse_tot_c = 0;
unsigned int sse_tot_simd = 0;
int sum_tot_c = 0;
int sum_tot_simd = 0;
const int stride = width();
int k = 0;
for (int row = 0; row < height(); row += 16) {
for (int col = 0; col < width(); col += 32) {
API_REGISTER_STATE_CHECK(params_.func(
src_ + stride * row + col, stride, ref_ + stride * row + col, stride,
&sse1[k], &sse_tot_simd, &sum_tot_simd, &var1[k]));
aom_get_var_sse_sum_16x16_dual_c(
src_ + stride * row + col, stride, ref_ + stride * row + col, stride,
&sse2[k], &sse_tot_c, &sum_tot_c, &var2[k]);
k += 2;
}
}
EXPECT_EQ(sse_tot_simd, sse_tot_c);
EXPECT_EQ(sum_tot_simd, sum_tot_c);
for (int p = 0; p < 64; p++) {
EXPECT_EQ(sse1[p], sse2[p]);
EXPECT_EQ(var1[p], var2[p]);
}
}
template <typename GetSseSum16x16DualFuncType>
void MainTestClass<GetSseSum16x16DualFuncType>::MaxTestSseSumDual() {
memset(src_, 255, block_size());
memset(ref_, 0, block_size());
unsigned int sse1[64] = { 0 };
unsigned int sse2[64] = { 0 };
unsigned int var1[64] = { 0 };
unsigned int var2[64] = { 0 };
unsigned int sse_tot_c = 0;
unsigned int sse_tot_simd = 0;
int sum_tot_c = 0;
int sum_tot_simd = 0;
const int stride = width();
int k = 0;
for (int row = 0; row < height(); row += 16) {
for (int col = 0; col < width(); col += 32) {
API_REGISTER_STATE_CHECK(params_.func(
src_ + stride * row + col, stride, ref_ + stride * row + col, stride,
&sse1[k], &sse_tot_simd, &sum_tot_simd, &var1[k]));
aom_get_var_sse_sum_16x16_dual_c(
src_ + stride * row + col, stride, ref_ + stride * row + col, stride,
&sse2[k], &sse_tot_c, &sum_tot_c, &var2[k]);
k += 2;
}
}
EXPECT_EQ(sse_tot_c, sse_tot_simd);
EXPECT_EQ(sum_tot_c, sum_tot_simd);
for (int p = 0; p < 64; p++) {
EXPECT_EQ(sse1[p], sse2[p]);
EXPECT_EQ(var1[p], var2[p]);
}
}
template <typename GetSseSum16x16DualFuncType>
void MainTestClass<GetSseSum16x16DualFuncType>::SseSum_SpeedTestDual() {
const int loop_count = 1000000000 / block_size();
for (int idx = 0; idx < block_size(); ++idx) {
src_[idx] = rnd_.Rand8();
ref_[idx] = rnd_.Rand8();
}
unsigned int sse1[2] = { 0 };
unsigned int sse2[2] = { 0 };
unsigned int var1[2] = { 0 };
unsigned int var2[2] = { 0 };
unsigned int sse_tot_c = 0;
unsigned int sse_tot_simd = 0;
int sum_tot_c = 0;
int sum_tot_simd = 0;
const int stride = width();
aom_usec_timer timer;
aom_usec_timer_start(&timer);
for (int r = 0; r < loop_count; ++r) {
for (int row = 0; row < height(); row += 16) {
for (int col = 0; col < width(); col += 32) {
aom_get_var_sse_sum_16x16_dual_c(src_ + stride * row + col, stride,
ref_ + stride * row + col, stride,
sse2, &sse_tot_c, &sum_tot_c, var2);
}
}
}
aom_usec_timer_mark(&timer);
const double elapsed_time_ref =
static_cast<double>(aom_usec_timer_elapsed(&timer));
aom_usec_timer_start(&timer);
for (int r = 0; r < loop_count; ++r) {
for (int row = 0; row < height(); row += 16) {
for (int col = 0; col < width(); col += 32) {
params_.func(src_ + stride * row + col, stride,
ref_ + stride * row + col, stride, sse1, &sse_tot_simd,
&sum_tot_simd, var1);
}
}
}
aom_usec_timer_mark(&timer);
const double elapsed_time_simd =
static_cast<double>(aom_usec_timer_elapsed(&timer));
printf(
"aom_getvar_16x16_dual for block=%dx%d : ref_time=%lf \t simd_time=%lf "
"\t "
"gain=%lf \n",
width(), height(), elapsed_time_ref, elapsed_time_simd,
elapsed_time_ref / elapsed_time_simd);
}
////////////////////////////////////////////////////////////////////////////////
// Tests related to MSE / SSE.
template <typename FunctionType>
void MainTestClass<FunctionType>::RefTestMse() {
for (int i = 0; i < 10; ++i) {
for (int j = 0; j < block_size(); ++j) {
if (!use_high_bit_depth()) {
src_[j] = rnd_.Rand8();
ref_[j] = rnd_.Rand8();
#if CONFIG_AV1_HIGHBITDEPTH
} else {
CONVERT_TO_SHORTPTR(src_)[j] = rnd_.Rand16() & mask();
CONVERT_TO_SHORTPTR(ref_)[j] = rnd_.Rand16() & mask();
#endif // CONFIG_AV1_HIGHBITDEPTH
}
}
unsigned int sse1, sse2;
const int stride = width();
API_REGISTER_STATE_CHECK(params_.func(src_, stride, ref_, stride, &sse1));
variance_ref(src_, ref_, params_.log2width, params_.log2height, stride,
stride, &sse2, use_high_bit_depth(), params_.bit_depth);
EXPECT_EQ(sse1, sse2);
}
}
template <typename FunctionType>
void MainTestClass<FunctionType>::RefTestSse() {
for (int i = 0; i < 10; ++i) {
for (int j = 0; j < block_size(); ++j) {
src_[j] = rnd_.Rand8();
ref_[j] = rnd_.Rand8();
}
unsigned int sse2;
unsigned int var1;
const int stride = width();
API_REGISTER_STATE_CHECK(var1 = params_.func(src_, stride, ref_, stride));
variance_ref(src_, ref_, params_.log2width, params_.log2height, stride,
stride, &sse2, false, AOM_BITS_8);
EXPECT_EQ(var1, sse2);
}
}
template <typename FunctionType>
void MainTestClass<FunctionType>::MaxTestMse() {
int max_value = (1 << params_.bit_depth) - 1;
if (!use_high_bit_depth()) {
memset(src_, max_value, block_size());
memset(ref_, 0, block_size());
#if CONFIG_AV1_HIGHBITDEPTH
} else {
aom_memset16(CONVERT_TO_SHORTPTR(src_), max_value, block_size());
aom_memset16(CONVERT_TO_SHORTPTR(ref_), 0, block_size());
#endif // CONFIG_AV1_HIGHBITDEPTH
}
unsigned int sse;
API_REGISTER_STATE_CHECK(params_.func(src_, width(), ref_, width(), &sse));
unsigned int expected = (unsigned int)block_size() * max_value * max_value;
switch (params_.bit_depth) {
case AOM_BITS_12: expected = ROUND_POWER_OF_TWO(expected, 8); break;
case AOM_BITS_10: expected = ROUND_POWER_OF_TWO(expected, 4); break;
case AOM_BITS_8:
default: break;
}
EXPECT_EQ(expected, sse);
}
template <typename FunctionType>
void MainTestClass<FunctionType>::MaxTestSse() {
memset(src_, 255, block_size());
memset(ref_, 0, block_size());
unsigned int var;
API_REGISTER_STATE_CHECK(var = params_.func(src_, width(), ref_, width()));
const unsigned int expected = block_size() * 255 * 255;
EXPECT_EQ(expected, var);
}
////////////////////////////////////////////////////////////////////////////////
using std::get;
using std::make_tuple;
using std::tuple;
template <typename FunctionType>
class SubpelVarianceTest
: public ::testing::TestWithParam<TestParams<FunctionType> > {
public:
void SetUp() override {
params_ = this->GetParam();
rnd_.Reset(ACMRandom::DeterministicSeed());
if (!use_high_bit_depth()) {
src_ = reinterpret_cast<uint8_t *>(aom_memalign(32, block_size()));
sec_ = reinterpret_cast<uint8_t *>(aom_memalign(32, block_size()));
ref_ = reinterpret_cast<uint8_t *>(
aom_memalign(32, block_size() + width() + height() + 1));
} else {
src_ = CONVERT_TO_BYTEPTR(reinterpret_cast<uint16_t *>(
aom_memalign(32, block_size() * sizeof(uint16_t))));
sec_ = CONVERT_TO_BYTEPTR(reinterpret_cast<uint16_t *>(
aom_memalign(32, block_size() * sizeof(uint16_t))));
ref_ = CONVERT_TO_BYTEPTR(aom_memalign(
32, (block_size() + width() + height() + 1) * sizeof(uint16_t)));
}
ASSERT_NE(src_, nullptr);
ASSERT_NE(sec_, nullptr);
ASSERT_NE(ref_, nullptr);
}
void TearDown() override {
if (!use_high_bit_depth()) {
aom_free(src_);
aom_free(ref_);
aom_free(sec_);
} else {
aom_free(CONVERT_TO_SHORTPTR(src_));
aom_free(CONVERT_TO_SHORTPTR(ref_));
aom_free(CONVERT_TO_SHORTPTR(sec_));
}
}
protected:
void RefTest();
void ExtremeRefTest();
void SpeedTest();
ACMRandom rnd_;
uint8_t *src_;
uint8_t *ref_;
uint8_t *sec_;
TestParams<FunctionType> params_;
DIST_WTD_COMP_PARAMS jcp_param_;
// some relay helpers
bool use_high_bit_depth() const { return params_.use_high_bit_depth; }
int byte_shift() const { return params_.bit_depth - 8; }
int block_size() const { return params_.block_size; }
int width() const { return params_.width; }
int height() const { return params_.height; }
uint32_t mask() const { return params_.mask; }
};
template <typename SubpelVarianceFunctionType>
void SubpelVarianceTest<SubpelVarianceFunctionType>::RefTest() {
for (int x = 0; x < 8; ++x) {
for (int y = 0; y < 8; ++y) {
if (!use_high_bit_depth()) {
for (int j = 0; j < block_size(); j++) {
src_[j] = rnd_.Rand8();
}
for (int j = 0; j < block_size() + width() + height() + 1; j++) {
ref_[j] = rnd_.Rand8();
}
} else {
for (int j = 0; j < block_size(); j++) {
CONVERT_TO_SHORTPTR(src_)[j] = rnd_.Rand16() & mask();
}
for (int j = 0; j < block_size() + width() + height() + 1; j++) {
CONVERT_TO_SHORTPTR(ref_)[j] = rnd_.Rand16() & mask();
}
}
unsigned int sse1, sse2;
unsigned int var1;
API_REGISTER_STATE_CHECK(
var1 = params_.func(ref_, width() + 1, x, y, src_, width(), &sse1));
const unsigned int var2 = subpel_variance_ref(
ref_, src_, params_.log2width, params_.log2height, x, y, &sse2,
use_high_bit_depth(), params_.bit_depth);
EXPECT_EQ(sse1, sse2) << "at position " << x << ", " << y;
EXPECT_EQ(var1, var2) << "at position " << x << ", " << y;
}
}
}
template <typename SubpelVarianceFunctionType>
void SubpelVarianceTest<SubpelVarianceFunctionType>::ExtremeRefTest() {
// Compare against reference.
// Src: Set the first half of values to 0, the second half to the maximum.
// Ref: Set the first half of values to the maximum, the second half to 0.
for (int x = 0; x < 8; ++x) {
for (int y = 0; y < 8; ++y) {
const int half = block_size() / 2;
if (!use_high_bit_depth()) {
memset(src_, 0, half);
memset(src_ + half, 255, half);
memset(ref_, 255, half);
memset(ref_ + half, 0, half + width() + height() + 1);
} else {
aom_memset16(CONVERT_TO_SHORTPTR(src_), mask(), half);
aom_memset16(CONVERT_TO_SHORTPTR(src_) + half, 0, half);
aom_memset16(CONVERT_TO_SHORTPTR(ref_), 0, half);
aom_memset16(CONVERT_TO_SHORTPTR(ref_) + half, mask(),
half + width() + height() + 1);
}
unsigned int sse1, sse2;
unsigned int var1;
API_REGISTER_STATE_CHECK(
var1 = params_.func(ref_, width() + 1, x, y, src_, width(), &sse1));
const unsigned int var2 = subpel_variance_ref(
ref_, src_, params_.log2width, params_.log2height, x, y, &sse2,
use_high_bit_depth(), params_.bit_depth);
EXPECT_EQ(sse1, sse2) << "for xoffset " << x << " and yoffset " << y;
EXPECT_EQ(var1, var2) << "for xoffset " << x << " and yoffset " << y;
}
}
}
template <typename SubpelVarianceFunctionType>
void SubpelVarianceTest<SubpelVarianceFunctionType>::SpeedTest() {
if (!use_high_bit_depth()) {
for (int j = 0; j < block_size(); j++) {
src_[j] = rnd_.Rand8();
}
for (int j = 0; j < block_size() + width() + height() + 1; j++) {
ref_[j] = rnd_.Rand8();
}
} else {
for (int j = 0; j < block_size(); j++) {
CONVERT_TO_SHORTPTR(src_)[j] = rnd_.Rand16() & mask();
}
for (int j = 0; j < block_size() + width() + height() + 1; j++) {
CONVERT_TO_SHORTPTR(ref_)[j] = rnd_.Rand16() & mask();
}
}
unsigned int sse1, sse2;
int run_time = 1000000000 / block_size();
aom_usec_timer timer;
aom_usec_timer_start(&timer);
for (int i = 0; i < run_time; ++i) {
int x = rnd_(8);
int y = rnd_(8);
params_.func(ref_, width() + 1, x, y, src_, width(), &sse1);
}
aom_usec_timer_mark(&timer);
const int elapsed_time = static_cast<int>(aom_usec_timer_elapsed(&timer));
aom_usec_timer timer_c;
aom_usec_timer_start(&timer_c);
for (int i = 0; i < run_time; ++i) {
int x = rnd_(8);
int y = rnd_(8);
subpel_variance_ref(ref_, src_, params_.log2width, params_.log2height, x, y,
&sse2, use_high_bit_depth(), params_.bit_depth);
}
aom_usec_timer_mark(&timer_c);
const int elapsed_time_c = static_cast<int>(aom_usec_timer_elapsed(&timer_c));
printf(
"sub_pixel_variance_%dx%d_%d: ref_time=%d us opt_time=%d us gain=%d \n",
width(), height(), params_.bit_depth, elapsed_time_c, elapsed_time,
elapsed_time_c / elapsed_time);
}
template <>
void SubpelVarianceTest<SubpixAvgVarMxNFunc>::RefTest() {
for (int x = 0; x < 8; ++x) {
for (int y = 0; y < 8; ++y) {
if (!use_high_bit_depth()) {
for (int j = 0; j < block_size(); j++) {
src_[j] = rnd_.Rand8();
sec_[j] = rnd_.Rand8();
}
for (int j = 0; j < block_size() + width() + height() + 1; j++) {
ref_[j] = rnd_.Rand8();
}
} else {
for (int j = 0; j < block_size(); j++) {
CONVERT_TO_SHORTPTR(src_)[j] = rnd_.Rand16() & mask();
CONVERT_TO_SHORTPTR(sec_)[j] = rnd_.Rand16() & mask();
}
for (int j = 0; j < block_size() + width() + height() + 1; j++) {
CONVERT_TO_SHORTPTR(ref_)[j] = rnd_.Rand16() & mask();
}
}
uint32_t sse1, sse2;
uint32_t var1, var2;
API_REGISTER_STATE_CHECK(var1 = params_.func(ref_, width() + 1, x, y,
src_, width(), &sse1, sec_));
var2 = subpel_avg_variance_ref(ref_, src_, sec_, params_.log2width,
params_.log2height, x, y, &sse2,
use_high_bit_depth(), params_.bit_depth);
EXPECT_EQ(sse1, sse2) << "at position " << x << ", " << y;
EXPECT_EQ(var1, var2) << "at position " << x << ", " << y;
}
}
}
template <>
void SubpelVarianceTest<DistWtdSubpixAvgVarMxNFunc>::RefTest() {
for (int x = 0; x < 8; ++x) {
for (int y = 0; y < 8; ++y) {
if (!use_high_bit_depth()) {
for (int j = 0; j < block_size(); j++) {
src_[j] = rnd_.Rand8();
sec_[j] = rnd_.Rand8();
}
for (int j = 0; j < block_size() + width() + height() + 1; j++) {
ref_[j] = rnd_.Rand8();
}
} else {
for (int j = 0; j < block_size(); j++) {
CONVERT_TO_SHORTPTR(src_)[j] = rnd_.Rand16() & mask();
CONVERT_TO_SHORTPTR(sec_)[j] = rnd_.Rand16() & mask();
}
for (int j = 0; j < block_size() + width() + height() + 1; j++) {
CONVERT_TO_SHORTPTR(ref_)[j] = rnd_.Rand16() & mask();
}
}
for (int x0 = 0; x0 < 2; ++x0) {
for (int y0 = 0; y0 < 4; ++y0) {
uint32_t sse1, sse2;
uint32_t var1, var2;
jcp_param_.fwd_offset = quant_dist_lookup_table[y0][x0];
jcp_param_.bck_offset = quant_dist_lookup_table[y0][1 - x0];
API_REGISTER_STATE_CHECK(var1 = params_.func(ref_, width() + 0, x, y,
src_, width(), &sse1,
sec_, &jcp_param_));
var2 = dist_wtd_subpel_avg_variance_ref(
ref_, src_, sec_, params_.log2width, params_.log2height, x, y,
&sse2, use_high_bit_depth(), params_.bit_depth, &jcp_param_);
EXPECT_EQ(sse1, sse2) << "at position " << x << ", " << y;
EXPECT_EQ(var1, var2) << "at position " << x << ", " << y;
}
}
}
}
}
////////////////////////////////////////////////////////////////////////////////
#if !CONFIG_REALTIME_ONLY
static const int kMaskMax = 64;
typedef TestParams<ObmcSubpelVarFunc> ObmcSubpelVarianceParams;
template <typename FunctionType>
class ObmcVarianceTest
: public ::testing::TestWithParam<TestParams<FunctionType> > {
public:
void SetUp() override {
params_ = this->GetParam();
rnd_.Reset(ACMRandom::DeterministicSeed());
if (!use_high_bit_depth()) {
pre_ = reinterpret_cast<uint8_t *>(
aom_memalign(32, block_size() + width() + height() + 1));
} else {
pre_ = CONVERT_TO_BYTEPTR(reinterpret_cast<uint16_t *>(aom_memalign(
32, (block_size() + width() + height() + 1) * sizeof(uint16_t))));
}
wsrc_ = reinterpret_cast<int32_t *>(
aom_memalign(32, block_size() * sizeof(uint32_t)));
mask_ = reinterpret_cast<int32_t *>(
aom_memalign(32, block_size() * sizeof(uint32_t)));
ASSERT_NE(pre_, nullptr);
ASSERT_NE(wsrc_, nullptr);
ASSERT_NE(mask_, nullptr);
}
void TearDown() override {
if (!use_high_bit_depth()) {
aom_free(pre_);
} else {
aom_free(CONVERT_TO_SHORTPTR(pre_));
}
aom_free(wsrc_);
aom_free(mask_);
}
protected:
void RefTest();
void ExtremeRefTest();
void SpeedTest();
ACMRandom rnd_;
uint8_t *pre_;
int32_t *wsrc_;
int32_t *mask_;
TestParams<FunctionType> params_;
// some relay helpers
bool use_high_bit_depth() const { return params_.use_high_bit_depth; }
int byte_shift() const { return params_.bit_depth - 8; }
int block_size() const { return params_.block_size; }
int width() const { return params_.width; }
int height() const { return params_.height; }
uint32_t bd_mask() const { return params_.mask; }
};
template <>
void ObmcVarianceTest<ObmcSubpelVarFunc>::RefTest() {
for (int x = 0; x < 8; ++x) {
for (int y = 0; y < 8; ++y) {
if (!use_high_bit_depth())
for (int j = 0; j < block_size() + width() + height() + 1; j++)
pre_[j] = rnd_.Rand8();
else
for (int j = 0; j < block_size() + width() + height() + 1; j++)
CONVERT_TO_SHORTPTR(pre_)[j] = rnd_.Rand16() & bd_mask();
for (int j = 0; j < block_size(); j++) {
wsrc_[j] = (rnd_.Rand16() & bd_mask()) * rnd_(kMaskMax * kMaskMax + 1);
mask_[j] = rnd_(kMaskMax * kMaskMax + 1);
}
uint32_t sse1, sse2;
uint32_t var1, var2;
API_REGISTER_STATE_CHECK(
var1 = params_.func(pre_, width() + 1, x, y, wsrc_, mask_, &sse1));
var2 = obmc_subpel_variance_ref(
pre_, params_.log2width, params_.log2height, x, y, wsrc_, mask_,
&sse2, use_high_bit_depth(), params_.bit_depth);
EXPECT_EQ(sse1, sse2) << "for xoffset " << x << " and yoffset " << y;
EXPECT_EQ(var1, var2) << "for xoffset " << x << " and yoffset " << y;
}
}
}
template <>
void ObmcVarianceTest<ObmcSubpelVarFunc>::ExtremeRefTest() {
// Pre: Set the first half of values to the maximum, the second half to 0.
// Mask: same as above
// WSrc: Set the first half of values to 0, the second half to the maximum.
for (int x = 0; x < 8; ++x) {
for (int y = 0; y < 8; ++y) {
const int half = block_size() / 2;
if (!use_high_bit_depth()) {
memset(pre_, 255, half);
memset(pre_ + half, 0, half + width() + height() + 1);
} else {
aom_memset16(CONVERT_TO_SHORTPTR(pre_), bd_mask(), half);
aom_memset16(CONVERT_TO_SHORTPTR(pre_) + half, 0,
half + width() + height() + 1);
}
for (int j = 0; j < half; j++) {
wsrc_[j] = bd_mask() * kMaskMax * kMaskMax;
mask_[j] = 0;
}
for (int j = half; j < block_size(); j++) {
wsrc_[j] = 0;
mask_[j] = kMaskMax * kMaskMax;
}
uint32_t sse1, sse2;
uint32_t var1, var2;
API_REGISTER_STATE_CHECK(
var1 = params_.func(pre_, width() + 1, x, y, wsrc_, mask_, &sse1));
var2 = obmc_subpel_variance_ref(
pre_, params_.log2width, params_.log2height, x, y, wsrc_, mask_,
&sse2, use_high_bit_depth(), params_.bit_depth);
EXPECT_EQ(sse1, sse2) << "for xoffset " << x << " and yoffset " << y;
EXPECT_EQ(var1, var2) << "for xoffset " << x << " and yoffset " << y;
}
}
}
template <>
void ObmcVarianceTest<ObmcSubpelVarFunc>::SpeedTest() {
if (!use_high_bit_depth())
for (int j = 0; j < block_size() + width() + height() + 1; j++)
pre_[j] = rnd_.Rand8();
else
for (int j = 0; j < block_size() + width() + height() + 1; j++)
CONVERT_TO_SHORTPTR(pre_)[j] = rnd_.Rand16() & bd_mask();
for (int j = 0; j < block_size(); j++) {
wsrc_[j] = (rnd_.Rand16() & bd_mask()) * rnd_(kMaskMax * kMaskMax + 1);
mask_[j] = rnd_(kMaskMax * kMaskMax + 1);
}
unsigned int sse1;
const int stride = width() + 1;
int run_time = 1000000000 / block_size();
aom_usec_timer timer;
aom_usec_timer_start(&timer);
for (int i = 0; i < run_time; ++i) {
int x = rnd_(8);
int y = rnd_(8);
API_REGISTER_STATE_CHECK(
params_.func(pre_, stride, x, y, wsrc_, mask_, &sse1));
}
aom_usec_timer_mark(&timer);
const int elapsed_time = static_cast<int>(aom_usec_timer_elapsed(&timer));
printf("obmc_sub_pixel_variance_%dx%d_%d: %d us\n", width(), height(),
params_.bit_depth, elapsed_time);
}
#endif // !CONFIG_REALTIME_ONLY
typedef MseWxHTestClass<MseWxH16bitFunc> MseWxHTest;
typedef Mse16xHTestClass<Mse16xH16bitFunc> Mse16xHTest;
typedef MainTestClass<VarianceMxNFunc> AvxMseTest;
typedef MainTestClass<VarianceMxNFunc> AvxVarianceTest;
typedef MainTestClass<GetSseSum8x8QuadFunc> GetSseSum8x8QuadTest;
typedef MainTestClass<GetSseSum16x16DualFunc> GetSseSum16x16DualTest;
typedef SubpelVarianceTest<SubpixVarMxNFunc> AvxSubpelVarianceTest;
typedef SubpelVarianceTest<SubpixAvgVarMxNFunc> AvxSubpelAvgVarianceTest;
typedef SubpelVarianceTest<DistWtdSubpixAvgVarMxNFunc>
AvxDistWtdSubpelAvgVarianceTest;
#if !CONFIG_REALTIME_ONLY
typedef ObmcVarianceTest<ObmcSubpelVarFunc> AvxObmcSubpelVarianceTest;
#endif
typedef TestParams<MseWxH16bitFunc> MseWxHParams;
typedef TestParams<Mse16xH16bitFunc> Mse16xHParams;
TEST_P(MseWxHTest, RefMse) { RefMatchTestMse(); }
TEST_P(MseWxHTest, DISABLED_SpeedMse) { SpeedTest(); }
TEST_P(Mse16xHTest, RefMse) { RefMatchTestMse(); }
TEST_P(Mse16xHTest, RefMseExtreme) { RefMatchExtremeTestMse(); }
TEST_P(Mse16xHTest, DISABLED_SpeedMse) { SpeedTest(); }
TEST_P(AvxMseTest, RefMse) { RefTestMse(); }
TEST_P(AvxMseTest, MaxMse) { MaxTestMse(); }
TEST_P(AvxVarianceTest, Zero) { ZeroTest(); }
TEST_P(AvxVarianceTest, Ref) { RefTest(); }
TEST_P(AvxVarianceTest, RefStride) { RefStrideTest(); }
TEST_P(AvxVarianceTest, OneQuarter) { OneQuarterTest(); }
TEST_P(AvxVarianceTest, DISABLED_Speed) { SpeedTest(); }
TEST_P(GetSseSum8x8QuadTest, RefMseSum) { RefTestSseSum(); }
TEST_P(GetSseSum8x8QuadTest, MinSseSum) { MinTestSseSum(); }
TEST_P(GetSseSum8x8QuadTest, MaxMseSum) { MaxTestSseSum(); }
TEST_P(GetSseSum8x8QuadTest, DISABLED_Speed) { SseSum_SpeedTest(); }
TEST_P(GetSseSum16x16DualTest, RefMseSum) { RefTestSseSumDual(); }
TEST_P(GetSseSum16x16DualTest, MinSseSum) { MinTestSseSumDual(); }
TEST_P(GetSseSum16x16DualTest, MaxMseSum) { MaxTestSseSumDual(); }
TEST_P(GetSseSum16x16DualTest, DISABLED_Speed) { SseSum_SpeedTestDual(); }
TEST_P(SumOfSquaresTest, Const) { ConstTest(); }
TEST_P(SumOfSquaresTest, Ref) { RefTest(); }
TEST_P(AvxSubpelVarianceTest, Ref) { RefTest(); }
TEST_P(AvxSubpelVarianceTest, ExtremeRef) { ExtremeRefTest(); }
TEST_P(AvxSubpelVarianceTest, DISABLED_Speed) { SpeedTest(); }
TEST_P(AvxSubpelAvgVarianceTest, Ref) { RefTest(); }
TEST_P(AvxDistWtdSubpelAvgVarianceTest, Ref) { RefTest(); }
#if !CONFIG_REALTIME_ONLY
TEST_P(AvxObmcSubpelVarianceTest, Ref) { RefTest(); }
TEST_P(AvxObmcSubpelVarianceTest, ExtremeRef) { ExtremeRefTest(); }
TEST_P(AvxObmcSubpelVarianceTest, DISABLED_Speed) { SpeedTest(); }
#endif
INSTANTIATE_TEST_SUITE_P(
C, MseWxHTest,
::testing::Values(MseWxHParams(3, 3, &aom_mse_wxh_16bit_c, 8),
MseWxHParams(3, 2, &aom_mse_wxh_16bit_c, 8),
MseWxHParams(2, 3, &aom_mse_wxh_16bit_c, 8),
MseWxHParams(2, 2, &aom_mse_wxh_16bit_c, 8)));
INSTANTIATE_TEST_SUITE_P(
C, Mse16xHTest,
::testing::Values(Mse16xHParams(3, 3, &aom_mse_16xh_16bit_c, 8),
Mse16xHParams(3, 2, &aom_mse_16xh_16bit_c, 8),
Mse16xHParams(2, 3, &aom_mse_16xh_16bit_c, 8),
Mse16xHParams(2, 2, &aom_mse_16xh_16bit_c, 8)));
INSTANTIATE_TEST_SUITE_P(C, SumOfSquaresTest,
::testing::Values(aom_get_mb_ss_c));
typedef TestParams<VarianceMxNFunc> MseParams;
INSTANTIATE_TEST_SUITE_P(C, AvxMseTest,
::testing::Values(MseParams(4, 4, &aom_mse16x16_c),
MseParams(4, 3, &aom_mse16x8_c),
MseParams(3, 4, &aom_mse8x16_c),
MseParams(3, 3, &aom_mse8x8_c)));
typedef TestParams<VarianceMxNFunc> VarianceParams;
const VarianceParams kArrayVariance_c[] = {
VarianceParams(7, 7, &aom_variance128x128_c),
VarianceParams(7, 6, &aom_variance128x64_c),
VarianceParams(6, 7, &aom_variance64x128_c),
VarianceParams(6, 6, &aom_variance64x64_c),
VarianceParams(6, 5, &aom_variance64x32_c),
VarianceParams(5, 6, &aom_variance32x64_c),
VarianceParams(5, 5, &aom_variance32x32_c),
VarianceParams(5, 4, &aom_variance32x16_c),
VarianceParams(4, 5, &aom_variance16x32_c),
VarianceParams(4, 4, &aom_variance16x16_c),
VarianceParams(4, 3, &aom_variance16x8_c),
VarianceParams(3, 4, &aom_variance8x16_c),
VarianceParams(3, 3, &aom_variance8x8_c),
VarianceParams(3, 2, &aom_variance8x4_c),
VarianceParams(2, 3, &aom_variance4x8_c),
VarianceParams(2, 2, &aom_variance4x4_c),
#if !CONFIG_REALTIME_ONLY
VarianceParams(6, 4, &aom_variance64x16_c),
VarianceParams(4, 6, &aom_variance16x64_c),
VarianceParams(5, 3, &aom_variance32x8_c),
VarianceParams(3, 5, &aom_variance8x32_c),
VarianceParams(4, 2, &aom_variance16x4_c),
VarianceParams(2, 4, &aom_variance4x16_c),
#endif
};
INSTANTIATE_TEST_SUITE_P(C, AvxVarianceTest,
::testing::ValuesIn(kArrayVariance_c));
typedef TestParams<GetSseSum8x8QuadFunc> GetSseSumParams;
const GetSseSumParams kArrayGetSseSum8x8Quad_c[] = {
GetSseSumParams(7, 7, &aom_get_var_sse_sum_8x8_quad_c, 0),
GetSseSumParams(6, 6, &aom_get_var_sse_sum_8x8_quad_c, 0),
GetSseSumParams(5, 5, &aom_get_var_sse_sum_8x8_quad_c, 0),
GetSseSumParams(5, 4, &aom_get_var_sse_sum_8x8_quad_c, 0)
};
INSTANTIATE_TEST_SUITE_P(C, GetSseSum8x8QuadTest,
::testing::ValuesIn(kArrayGetSseSum8x8Quad_c));
typedef TestParams<GetSseSum16x16DualFunc> GetSseSumParamsDual;
const GetSseSumParamsDual kArrayGetSseSum16x16Dual_c[] = {
GetSseSumParamsDual(7, 7, &aom_get_var_sse_sum_16x16_dual_c, 0),
GetSseSumParamsDual(6, 6, &aom_get_var_sse_sum_16x16_dual_c, 0),
GetSseSumParamsDual(5, 5, &aom_get_var_sse_sum_16x16_dual_c, 0),
GetSseSumParamsDual(5, 4, &aom_get_var_sse_sum_16x16_dual_c, 0)
};
INSTANTIATE_TEST_SUITE_P(C, GetSseSum16x16DualTest,
::testing::ValuesIn(kArrayGetSseSum16x16Dual_c));
typedef TestParams<SubpixVarMxNFunc> SubpelVarianceParams;
const SubpelVarianceParams kArraySubpelVariance_c[] = {
SubpelVarianceParams(7, 7, &aom_sub_pixel_variance128x128_c, 0),
SubpelVarianceParams(7, 6, &aom_sub_pixel_variance128x64_c, 0),
SubpelVarianceParams(6, 7, &aom_sub_pixel_variance64x128_c, 0),
SubpelVarianceParams(6, 6, &aom_sub_pixel_variance64x64_c, 0),
SubpelVarianceParams(6, 5, &aom_sub_pixel_variance64x32_c, 0),
SubpelVarianceParams(5, 6, &aom_sub_pixel_variance32x64_c, 0),
SubpelVarianceParams(5, 5, &aom_sub_pixel_variance32x32_c, 0),
SubpelVarianceParams(5, 4, &aom_sub_pixel_variance32x16_c, 0),
SubpelVarianceParams(4, 5, &aom_sub_pixel_variance16x32_c, 0),
SubpelVarianceParams(4, 4, &aom_sub_pixel_variance16x16_c, 0),
SubpelVarianceParams(4, 3, &aom_sub_pixel_variance16x8_c, 0),
SubpelVarianceParams(3, 4, &aom_sub_pixel_variance8x16_c, 0),
SubpelVarianceParams(3, 3, &aom_sub_pixel_variance8x8_c, 0),
SubpelVarianceParams(3, 2, &aom_sub_pixel_variance8x4_c, 0),
SubpelVarianceParams(2, 3, &aom_sub_pixel_variance4x8_c, 0),
SubpelVarianceParams(2, 2, &aom_sub_pixel_variance4x4_c, 0),
#if !CONFIG_REALTIME_ONLY
SubpelVarianceParams(6, 4, &aom_sub_pixel_variance64x16_c, 0),
SubpelVarianceParams(4, 6, &aom_sub_pixel_variance16x64_c, 0),
SubpelVarianceParams(5, 3, &aom_sub_pixel_variance32x8_c, 0),
SubpelVarianceParams(3, 5, &aom_sub_pixel_variance8x32_c, 0),
SubpelVarianceParams(4, 2, &aom_sub_pixel_variance16x4_c, 0),
SubpelVarianceParams(2, 4, &aom_sub_pixel_variance4x16_c, 0),
#endif
};
INSTANTIATE_TEST_SUITE_P(C, AvxSubpelVarianceTest,
::testing::ValuesIn(kArraySubpelVariance_c));
typedef TestParams<SubpixAvgVarMxNFunc> SubpelAvgVarianceParams;
const SubpelAvgVarianceParams kArraySubpelAvgVariance_c[] = {
SubpelAvgVarianceParams(7, 7, &aom_sub_pixel_avg_variance128x128_c, 0),
SubpelAvgVarianceParams(7, 6, &aom_sub_pixel_avg_variance128x64_c, 0),
SubpelAvgVarianceParams(6, 7, &aom_sub_pixel_avg_variance64x128_c, 0),
SubpelAvgVarianceParams(6, 6, &aom_sub_pixel_avg_variance64x64_c, 0),
SubpelAvgVarianceParams(6, 5, &aom_sub_pixel_avg_variance64x32_c, 0),
SubpelAvgVarianceParams(5, 6, &aom_sub_pixel_avg_variance32x64_c, 0),
SubpelAvgVarianceParams(5, 5, &aom_sub_pixel_avg_variance32x32_c, 0),
SubpelAvgVarianceParams(5, 4, &aom_sub_pixel_avg_variance32x16_c, 0),
SubpelAvgVarianceParams(4, 5, &aom_sub_pixel_avg_variance16x32_c, 0),
SubpelAvgVarianceParams(4, 4, &aom_sub_pixel_avg_variance16x16_c, 0),
SubpelAvgVarianceParams(4, 3, &aom_sub_pixel_avg_variance16x8_c, 0),
SubpelAvgVarianceParams(3, 4, &aom_sub_pixel_avg_variance8x16_c, 0),
SubpelAvgVarianceParams(3, 3, &aom_sub_pixel_avg_variance8x8_c, 0),
SubpelAvgVarianceParams(3, 2, &aom_sub_pixel_avg_variance8x4_c, 0),
SubpelAvgVarianceParams(2, 3, &aom_sub_pixel_avg_variance4x8_c, 0),
SubpelAvgVarianceParams(2, 2, &aom_sub_pixel_avg_variance4x4_c, 0),
#if !CONFIG_REALTIME_ONLY
SubpelAvgVarianceParams(6, 4, &aom_sub_pixel_avg_variance64x16_c, 0),
SubpelAvgVarianceParams(4, 6, &aom_sub_pixel_avg_variance16x64_c, 0),
SubpelAvgVarianceParams(5, 3, &aom_sub_pixel_avg_variance32x8_c, 0),
SubpelAvgVarianceParams(3, 5, &aom_sub_pixel_avg_variance8x32_c, 0),
SubpelAvgVarianceParams(4, 2, &aom_sub_pixel_avg_variance16x4_c, 0),
SubpelAvgVarianceParams(2, 4, &aom_sub_pixel_avg_variance4x16_c, 0),
#endif
};
INSTANTIATE_TEST_SUITE_P(C, AvxSubpelAvgVarianceTest,
::testing::ValuesIn(kArraySubpelAvgVariance_c));
typedef TestParams<DistWtdSubpixAvgVarMxNFunc> DistWtdSubpelAvgVarianceParams;
const DistWtdSubpelAvgVarianceParams kArrayDistWtdSubpelAvgVariance_c[] = {
DistWtdSubpelAvgVarianceParams(
6, 6, &aom_dist_wtd_sub_pixel_avg_variance64x64_c, 0),
DistWtdSubpelAvgVarianceParams(
6, 5, &aom_dist_wtd_sub_pixel_avg_variance64x32_c, 0),
DistWtdSubpelAvgVarianceParams(
5, 6, &aom_dist_wtd_sub_pixel_avg_variance32x64_c, 0),
DistWtdSubpelAvgVarianceParams(
5, 5, &aom_dist_wtd_sub_pixel_avg_variance32x32_c, 0),
DistWtdSubpelAvgVarianceParams(
5, 4, &aom_dist_wtd_sub_pixel_avg_variance32x16_c, 0),
DistWtdSubpelAvgVarianceParams(
4, 5, &aom_dist_wtd_sub_pixel_avg_variance16x32_c, 0),
DistWtdSubpelAvgVarianceParams(
4, 4, &aom_dist_wtd_sub_pixel_avg_variance16x16_c, 0),
DistWtdSubpelAvgVarianceParams(4, 3,
&aom_dist_wtd_sub_pixel_avg_variance16x8_c, 0),
DistWtdSubpelAvgVarianceParams(3, 4,
&aom_dist_wtd_sub_pixel_avg_variance8x16_c, 0),
DistWtdSubpelAvgVarianceParams(3, 3,
&aom_dist_wtd_sub_pixel_avg_variance8x8_c, 0),
DistWtdSubpelAvgVarianceParams(3, 2,
&aom_dist_wtd_sub_pixel_avg_variance8x4_c, 0),
DistWtdSubpelAvgVarianceParams(2, 3,
&aom_dist_wtd_sub_pixel_avg_variance4x8_c, 0),
DistWtdSubpelAvgVarianceParams(2, 2,
&aom_dist_wtd_sub_pixel_avg_variance4x4_c, 0),
#if !CONFIG_REALTIME_ONLY
DistWtdSubpelAvgVarianceParams(
6, 4, &aom_dist_wtd_sub_pixel_avg_variance64x16_c, 0),
DistWtdSubpelAvgVarianceParams(
4, 6, &aom_dist_wtd_sub_pixel_avg_variance16x64_c, 0),
DistWtdSubpelAvgVarianceParams(5, 3,
&aom_dist_wtd_sub_pixel_avg_variance32x8_c, 0),
DistWtdSubpelAvgVarianceParams(3, 5,
&aom_dist_wtd_sub_pixel_avg_variance8x32_c, 0),
DistWtdSubpelAvgVarianceParams(4, 2,
&aom_dist_wtd_sub_pixel_avg_variance16x4_c, 0),
DistWtdSubpelAvgVarianceParams(2, 4,
&aom_dist_wtd_sub_pixel_avg_variance4x16_c, 0),
#endif
};
INSTANTIATE_TEST_SUITE_P(C, AvxDistWtdSubpelAvgVarianceTest,
::testing::ValuesIn(kArrayDistWtdSubpelAvgVariance_c));
#if !CONFIG_REALTIME_ONLY
INSTANTIATE_TEST_SUITE_P(
C, AvxObmcSubpelVarianceTest,
::testing::Values(
ObmcSubpelVarianceParams(7, 7, &aom_obmc_sub_pixel_variance128x128_c,
0),
ObmcSubpelVarianceParams(7, 6, &aom_obmc_sub_pixel_variance128x64_c, 0),
ObmcSubpelVarianceParams(6, 7, &aom_obmc_sub_pixel_variance64x128_c, 0),
ObmcSubpelVarianceParams(6, 6, &aom_obmc_sub_pixel_variance64x64_c, 0),
ObmcSubpelVarianceParams(6, 5, &aom_obmc_sub_pixel_variance64x32_c, 0),
ObmcSubpelVarianceParams(5, 6, &aom_obmc_sub_pixel_variance32x64_c, 0),
ObmcSubpelVarianceParams(5, 5, &aom_obmc_sub_pixel_variance32x32_c, 0),
ObmcSubpelVarianceParams(5, 4, &aom_obmc_sub_pixel_variance32x16_c, 0),
ObmcSubpelVarianceParams(4, 5, &aom_obmc_sub_pixel_variance16x32_c, 0),
ObmcSubpelVarianceParams(4, 4, &aom_obmc_sub_pixel_variance16x16_c, 0),
ObmcSubpelVarianceParams(4, 3, &aom_obmc_sub_pixel_variance16x8_c, 0),
ObmcSubpelVarianceParams(3, 4, &aom_obmc_sub_pixel_variance8x16_c, 0),
ObmcSubpelVarianceParams(3, 3, &aom_obmc_sub_pixel_variance8x8_c, 0),
ObmcSubpelVarianceParams(3, 2, &aom_obmc_sub_pixel_variance8x4_c, 0),
ObmcSubpelVarianceParams(2, 3, &aom_obmc_sub_pixel_variance4x8_c, 0),
ObmcSubpelVarianceParams(2, 2, &aom_obmc_sub_pixel_variance4x4_c, 0),
ObmcSubpelVarianceParams(6, 4, &aom_obmc_sub_pixel_variance64x16_c, 0),
ObmcSubpelVarianceParams(4, 6, &aom_obmc_sub_pixel_variance16x64_c, 0),
ObmcSubpelVarianceParams(5, 3, &aom_obmc_sub_pixel_variance32x8_c, 0),
ObmcSubpelVarianceParams(3, 5, &aom_obmc_sub_pixel_variance8x32_c, 0),
ObmcSubpelVarianceParams(4, 2, &aom_obmc_sub_pixel_variance16x4_c, 0),
ObmcSubpelVarianceParams(2, 4, &aom_obmc_sub_pixel_variance4x16_c, 0)));
#endif
#if CONFIG_AV1_HIGHBITDEPTH
typedef uint64_t (*MseHBDWxH16bitFunc)(uint16_t *dst, int dstride,
uint16_t *src, int sstride, int w,
int h);
template <typename FunctionType>
class MseHBDWxHTestClass
: public ::testing::TestWithParam<TestParams<FunctionType> > {
public:
void SetUp() override {
params_ = this->GetParam();
rnd_.Reset(ACMRandom::DeterministicSeed());
src_ = reinterpret_cast<uint16_t *>(
aom_memalign(16, block_size() * sizeof(src_)));
dst_ = reinterpret_cast<uint16_t *>(
aom_memalign(16, block_size() * sizeof(dst_)));
ASSERT_NE(src_, nullptr);
ASSERT_NE(dst_, nullptr);
}
void TearDown() override {
aom_free(src_);
aom_free(dst_);
src_ = nullptr;
dst_ = nullptr;
}
protected:
void RefMatchTestMse();
void SpeedTest();
protected:
ACMRandom rnd_;
uint16_t *dst_;
uint16_t *src_;
TestParams<FunctionType> params_;
// some relay helpers
int block_size() const { return params_.block_size; }
int width() const { return params_.width; }
int d_stride() const { return params_.width; } // stride is same as width
int s_stride() const { return params_.width; } // stride is same as width
int height() const { return params_.height; }
int mask() const { return params_.mask; }
};
template <typename MseHBDWxHFunctionType>
void MseHBDWxHTestClass<MseHBDWxHFunctionType>::SpeedTest() {
aom_usec_timer ref_timer, test_timer;
double elapsed_time_c = 0;
double elapsed_time_simd = 0;
int run_time = 10000000;
int w = width();
int h = height();
int dstride = d_stride();
int sstride = s_stride();
for (int k = 0; k < block_size(); ++k) {
dst_[k] = rnd_.Rand16() & mask();
src_[k] = rnd_.Rand16() & mask();
}
aom_usec_timer_start(&ref_timer);
for (int i = 0; i < run_time; i++) {
aom_mse_wxh_16bit_highbd_c(dst_, dstride, src_, sstride, w, h);
}
aom_usec_timer_mark(&ref_timer);
elapsed_time_c = static_cast<double>(aom_usec_timer_elapsed(&ref_timer));
aom_usec_timer_start(&test_timer);
for (int i = 0; i < run_time; i++) {
params_.func(dst_, dstride, src_, sstride, w, h);
}
aom_usec_timer_mark(&test_timer);
elapsed_time_simd = static_cast<double>(aom_usec_timer_elapsed(&test_timer));
printf("%dx%d\tc_time=%lf \t simd_time=%lf \t gain=%lf\n", width(), height(),
elapsed_time_c, elapsed_time_simd,
(elapsed_time_c / elapsed_time_simd));
}
template <typename MseHBDWxHFunctionType>
void MseHBDWxHTestClass<MseHBDWxHFunctionType>::RefMatchTestMse() {
uint64_t mse_ref = 0;
uint64_t mse_mod = 0;
int w = width();
int h = height();
int dstride = d_stride();
int sstride = s_stride();
for (int i = 0; i < 10; i++) {
for (int k = 0; k < block_size(); ++k) {
dst_[k] = rnd_.Rand16() & mask();
src_[k] = rnd_.Rand16() & mask();
}
API_REGISTER_STATE_CHECK(mse_ref = aom_mse_wxh_16bit_highbd_c(
dst_, dstride, src_, sstride, w, h));
API_REGISTER_STATE_CHECK(
mse_mod = params_.func(dst_, dstride, src_, sstride, w, h));
EXPECT_EQ(mse_ref, mse_mod)
<< "ref mse: " << mse_ref << " mod mse: " << mse_mod;
}
}
typedef TestParams<MseHBDWxH16bitFunc> MseHBDWxHParams;
typedef MseHBDWxHTestClass<MseHBDWxH16bitFunc> MseHBDWxHTest;
typedef MainTestClass<VarianceMxNFunc> AvxHBDMseTest;
GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(AvxHBDMseTest);
typedef MainTestClass<VarianceMxNFunc> AvxHBDVarianceTest;
typedef SubpelVarianceTest<SubpixVarMxNFunc> AvxHBDSubpelVarianceTest;
typedef SubpelVarianceTest<SubpixAvgVarMxNFunc> AvxHBDSubpelAvgVarianceTest;
typedef SubpelVarianceTest<DistWtdSubpixAvgVarMxNFunc>
AvxHBDDistWtdSubpelAvgVarianceTest;
#if !CONFIG_REALTIME_ONLY
typedef ObmcVarianceTest<ObmcSubpelVarFunc> AvxHBDObmcSubpelVarianceTest;
#endif
GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(AvxHBDObmcSubpelVarianceTest);
TEST_P(MseHBDWxHTest, RefMse) { RefMatchTestMse(); }
TEST_P(MseHBDWxHTest, DISABLED_SpeedMse) { SpeedTest(); }
TEST_P(AvxHBDMseTest, RefMse) { RefTestMse(); }
TEST_P(AvxHBDMseTest, MaxMse) { MaxTestMse(); }
TEST_P(AvxHBDMseTest, DISABLED_SpeedMse) { SpeedTest(); }
TEST_P(AvxHBDVarianceTest, Zero) { ZeroTest(); }
TEST_P(AvxHBDVarianceTest, Ref) { RefTest(); }
TEST_P(AvxHBDVarianceTest, RefStride) { RefStrideTest(); }
TEST_P(AvxHBDVarianceTest, OneQuarter) { OneQuarterTest(); }
TEST_P(AvxHBDVarianceTest, DISABLED_Speed) { SpeedTest(); }
TEST_P(AvxHBDSubpelVarianceTest, Ref) { RefTest(); }
TEST_P(AvxHBDSubpelVarianceTest, ExtremeRef) { ExtremeRefTest(); }
TEST_P(AvxHBDSubpelVarianceTest, DISABLED_Speed) { SpeedTest(); }
TEST_P(AvxHBDSubpelAvgVarianceTest, Ref) { RefTest(); }
TEST_P(AvxHBDDistWtdSubpelAvgVarianceTest, Ref) { RefTest(); }
#if !CONFIG_REALTIME_ONLY
TEST_P(AvxHBDObmcSubpelVarianceTest, Ref) { RefTest(); }
TEST_P(AvxHBDObmcSubpelVarianceTest, ExtremeRef) { ExtremeRefTest(); }
TEST_P(AvxHBDObmcSubpelVarianceTest, DISABLED_Speed) { SpeedTest(); }
#endif
INSTANTIATE_TEST_SUITE_P(
C, MseHBDWxHTest,
::testing::Values(MseHBDWxHParams(3, 3, &aom_mse_wxh_16bit_highbd_c, 10),
MseHBDWxHParams(3, 2, &aom_mse_wxh_16bit_highbd_c, 10),
MseHBDWxHParams(2, 3, &aom_mse_wxh_16bit_highbd_c, 10),
MseHBDWxHParams(2, 2, &aom_mse_wxh_16bit_highbd_c, 10)));
INSTANTIATE_TEST_SUITE_P(
C, AvxHBDMseTest,
::testing::Values(MseParams(4, 4, &aom_highbd_12_mse16x16_c, 12),
MseParams(4, 3, &aom_highbd_12_mse16x8_c, 12),
MseParams(3, 4, &aom_highbd_12_mse8x16_c, 12),
MseParams(3, 3, &aom_highbd_12_mse8x8_c, 12),
MseParams(4, 4, &aom_highbd_10_mse16x16_c, 10),
MseParams(4, 3, &aom_highbd_10_mse16x8_c, 10),
MseParams(3, 4, &aom_highbd_10_mse8x16_c, 10),
MseParams(3, 3, &aom_highbd_10_mse8x8_c, 10),
MseParams(4, 4, &aom_highbd_8_mse16x16_c, 8),
MseParams(4, 3, &aom_highbd_8_mse16x8_c, 8),
MseParams(3, 4, &aom_highbd_8_mse8x16_c, 8),
MseParams(3, 3, &aom_highbd_8_mse8x8_c, 8)));
#if HAVE_NEON
INSTANTIATE_TEST_SUITE_P(
NEON, MseHBDWxHTest,
::testing::Values(MseHBDWxHParams(3, 3, &aom_mse_wxh_16bit_highbd_neon, 10),
MseHBDWxHParams(3, 2, &aom_mse_wxh_16bit_highbd_neon, 10),
MseHBDWxHParams(2, 3, &aom_mse_wxh_16bit_highbd_neon, 10),
MseHBDWxHParams(2, 2, &aom_mse_wxh_16bit_highbd_neon,
10)));
INSTANTIATE_TEST_SUITE_P(
NEON, AvxHBDMseTest,
::testing::Values(MseParams(4, 4, &aom_highbd_12_mse16x16_neon, 12),
MseParams(4, 3, &aom_highbd_12_mse16x8_neon, 12),
MseParams(3, 4, &aom_highbd_12_mse8x16_neon, 12),
MseParams(3, 3, &aom_highbd_12_mse8x8_neon, 12),
MseParams(4, 4, &aom_highbd_10_mse16x16_neon, 10),
MseParams(4, 3, &aom_highbd_10_mse16x8_neon, 10),
MseParams(3, 4, &aom_highbd_10_mse8x16_neon, 10),
MseParams(3, 3, &aom_highbd_10_mse8x8_neon, 10),
MseParams(4, 4, &aom_highbd_8_mse16x16_neon, 8),
MseParams(4, 3, &aom_highbd_8_mse16x8_neon, 8),
MseParams(3, 4, &aom_highbd_8_mse8x16_neon, 8),
MseParams(3, 3, &aom_highbd_8_mse8x8_neon, 8)));
#endif // HAVE_NEON
#if HAVE_NEON_DOTPROD
INSTANTIATE_TEST_SUITE_P(
NEON_DOTPROD, AvxHBDMseTest,
::testing::Values(MseParams(4, 4, &aom_highbd_8_mse16x16_neon_dotprod, 8),
MseParams(4, 3, &aom_highbd_8_mse16x8_neon_dotprod, 8),
MseParams(3, 4, &aom_highbd_8_mse8x16_neon_dotprod, 8),
MseParams(3, 3, &aom_highbd_8_mse8x8_neon_dotprod, 8)));
#endif // HAVE_NEON_DOTPROD
#if HAVE_SVE
INSTANTIATE_TEST_SUITE_P(
SVE, MseHBDWxHTest,
::testing::Values(MseHBDWxHParams(3, 3, &aom_mse_wxh_16bit_highbd_sve, 10),
MseHBDWxHParams(3, 2, &aom_mse_wxh_16bit_highbd_sve, 10),
MseHBDWxHParams(2, 3, &aom_mse_wxh_16bit_highbd_sve, 10),
MseHBDWxHParams(2, 2, &aom_mse_wxh_16bit_highbd_sve,
10)));
INSTANTIATE_TEST_SUITE_P(
SVE, AvxHBDMseTest,
::testing::Values(MseParams(4, 4, &aom_highbd_12_mse16x16_sve, 12),
MseParams(4, 3, &aom_highbd_12_mse16x8_sve, 12),
MseParams(3, 4, &aom_highbd_12_mse8x16_sve, 12),
MseParams(3, 3, &aom_highbd_12_mse8x8_sve, 12),
MseParams(4, 4, &aom_highbd_10_mse16x16_sve, 10),
MseParams(4, 3, &aom_highbd_10_mse16x8_sve, 10),
MseParams(3, 4, &aom_highbd_10_mse8x16_sve, 10),
MseParams(3, 3, &aom_highbd_10_mse8x8_sve, 10)));
#endif // HAVE_SVE
const VarianceParams kArrayHBDVariance_c[] = {
VarianceParams(7, 7, &aom_highbd_12_variance128x128_c, 12),
VarianceParams(7, 6, &aom_highbd_12_variance128x64_c, 12),
VarianceParams(6, 7, &aom_highbd_12_variance64x128_c, 12),
VarianceParams(6, 6, &aom_highbd_12_variance64x64_c, 12),
VarianceParams(6, 5, &aom_highbd_12_variance64x32_c, 12),
VarianceParams(5, 6, &aom_highbd_12_variance32x64_c, 12),
VarianceParams(5, 5, &aom_highbd_12_variance32x32_c, 12),
VarianceParams(5, 4, &aom_highbd_12_variance32x16_c, 12),
VarianceParams(4, 5, &aom_highbd_12_variance16x32_c, 12),
VarianceParams(4, 4, &aom_highbd_12_variance16x16_c, 12),
VarianceParams(4, 3, &aom_highbd_12_variance16x8_c, 12),
VarianceParams(3, 4, &aom_highbd_12_variance8x16_c, 12),
VarianceParams(3, 3, &aom_highbd_12_variance8x8_c, 12),
VarianceParams(3, 2, &aom_highbd_12_variance8x4_c, 12),
VarianceParams(2, 3, &aom_highbd_12_variance4x8_c, 12),
VarianceParams(2, 2, &aom_highbd_12_variance4x4_c, 12),
VarianceParams(7, 7, &aom_highbd_10_variance128x128_c, 10),
VarianceParams(7, 6, &aom_highbd_10_variance128x64_c, 10),
VarianceParams(6, 7, &aom_highbd_10_variance64x128_c, 10),
VarianceParams(6, 6, &aom_highbd_10_variance64x64_c, 10),
VarianceParams(6, 5, &aom_highbd_10_variance64x32_c, 10),
VarianceParams(5, 6, &aom_highbd_10_variance32x64_c, 10),
VarianceParams(5, 5, &aom_highbd_10_variance32x32_c, 10),
VarianceParams(5, 4, &aom_highbd_10_variance32x16_c, 10),
VarianceParams(4, 5, &aom_highbd_10_variance16x32_c, 10),
VarianceParams(4, 4, &aom_highbd_10_variance16x16_c, 10),
VarianceParams(4, 3, &aom_highbd_10_variance16x8_c, 10),
VarianceParams(3, 4, &aom_highbd_10_variance8x16_c, 10),
VarianceParams(3, 3, &aom_highbd_10_variance8x8_c, 10),
VarianceParams(3, 2, &aom_highbd_10_variance8x4_c, 10),
VarianceParams(2, 3, &aom_highbd_10_variance4x8_c, 10),
VarianceParams(2, 2, &aom_highbd_10_variance4x4_c, 10),
VarianceParams(7, 7, &aom_highbd_8_variance128x128_c, 8),
VarianceParams(7, 6, &aom_highbd_8_variance128x64_c, 8),
VarianceParams(6, 7, &aom_highbd_8_variance64x128_c, 8),
VarianceParams(6, 6, &aom_highbd_8_variance64x64_c, 8),
VarianceParams(6, 5, &aom_highbd_8_variance64x32_c, 8),
VarianceParams(5, 6, &aom_highbd_8_variance32x64_c, 8),
VarianceParams(5, 5, &aom_highbd_8_variance32x32_c, 8),
VarianceParams(5, 4, &aom_highbd_8_variance32x16_c, 8),
VarianceParams(4, 5, &aom_highbd_8_variance16x32_c, 8),
VarianceParams(4, 4, &aom_highbd_8_variance16x16_c, 8),
VarianceParams(4, 3, &aom_highbd_8_variance16x8_c, 8),
VarianceParams(3, 4, &aom_highbd_8_variance8x16_c, 8),
VarianceParams(3, 3, &aom_highbd_8_variance8x8_c, 8),
VarianceParams(3, 2, &aom_highbd_8_variance8x4_c, 8),
VarianceParams(2, 3, &aom_highbd_8_variance4x8_c, 8),
VarianceParams(2, 2, &aom_highbd_8_variance4x4_c, 8),
#if !CONFIG_REALTIME_ONLY
VarianceParams(6, 4, &aom_highbd_12_variance64x16_c, 12),
VarianceParams(4, 6, &aom_highbd_12_variance16x64_c, 12),
VarianceParams(5, 3, &aom_highbd_12_variance32x8_c, 12),
VarianceParams(3, 5, &aom_highbd_12_variance8x32_c, 12),
VarianceParams(4, 2, &aom_highbd_12_variance16x4_c, 12),
VarianceParams(2, 4, &aom_highbd_12_variance4x16_c, 12),
VarianceParams(6, 4, &aom_highbd_10_variance64x16_c, 10),
VarianceParams(4, 6, &aom_highbd_10_variance16x64_c, 10),
VarianceParams(5, 3, &aom_highbd_10_variance32x8_c, 10),
VarianceParams(3, 5, &aom_highbd_10_variance8x32_c, 10),
VarianceParams(4, 2, &aom_highbd_10_variance16x4_c, 10),
VarianceParams(2, 4, &aom_highbd_10_variance4x16_c, 10),
VarianceParams(6, 4, &aom_highbd_8_variance64x16_c, 8),
VarianceParams(4, 6, &aom_highbd_8_variance16x64_c, 8),
VarianceParams(5, 3, &aom_highbd_8_variance32x8_c, 8),
VarianceParams(3, 5, &aom_highbd_8_variance8x32_c, 8),
VarianceParams(4, 2, &aom_highbd_8_variance16x4_c, 8),
VarianceParams(2, 4, &aom_highbd_8_variance4x16_c, 8),
#endif
};
INSTANTIATE_TEST_SUITE_P(C, AvxHBDVarianceTest,
::testing::ValuesIn(kArrayHBDVariance_c));
#if HAVE_SSE4_1
INSTANTIATE_TEST_SUITE_P(
SSE4_1, AvxHBDVarianceTest,
::testing::Values(
VarianceParams(2, 2, &aom_highbd_8_variance4x4_sse4_1, 8),
VarianceParams(2, 2, &aom_highbd_10_variance4x4_sse4_1, 10),
VarianceParams(2, 2, &aom_highbd_12_variance4x4_sse4_1, 12)));
#endif // HAVE_SSE4_1
const SubpelVarianceParams kArrayHBDSubpelVariance_c[] = {
SubpelVarianceParams(7, 7, &aom_highbd_8_sub_pixel_variance128x128_c, 8),
SubpelVarianceParams(7, 6, &aom_highbd_8_sub_pixel_variance128x64_c, 8),
SubpelVarianceParams(6, 7, &aom_highbd_8_sub_pixel_variance64x128_c, 8),
SubpelVarianceParams(6, 6, &aom_highbd_8_sub_pixel_variance64x64_c, 8),
SubpelVarianceParams(6, 5, &aom_highbd_8_sub_pixel_variance64x32_c, 8),
SubpelVarianceParams(5, 6, &aom_highbd_8_sub_pixel_variance32x64_c, 8),
SubpelVarianceParams(5, 5, &aom_highbd_8_sub_pixel_variance32x32_c, 8),
SubpelVarianceParams(5, 4, &aom_highbd_8_sub_pixel_variance32x16_c, 8),
SubpelVarianceParams(4, 5, &aom_highbd_8_sub_pixel_variance16x32_c, 8),
SubpelVarianceParams(4, 4, &aom_highbd_8_sub_pixel_variance16x16_c, 8),
SubpelVarianceParams(4, 3, &aom_highbd_8_sub_pixel_variance16x8_c, 8),
SubpelVarianceParams(3, 4, &aom_highbd_8_sub_pixel_variance8x16_c, 8),
SubpelVarianceParams(3, 3, &aom_highbd_8_sub_pixel_variance8x8_c, 8),
SubpelVarianceParams(3, 2, &aom_highbd_8_sub_pixel_variance8x4_c, 8),
SubpelVarianceParams(2, 3, &aom_highbd_8_sub_pixel_variance4x8_c, 8),
SubpelVarianceParams(2, 2, &aom_highbd_8_sub_pixel_variance4x4_c, 8),
SubpelVarianceParams(7, 7, &aom_highbd_10_sub_pixel_variance128x128_c, 10),
SubpelVarianceParams(7, 6, &aom_highbd_10_sub_pixel_variance128x64_c, 10),
SubpelVarianceParams(6, 7, &aom_highbd_10_sub_pixel_variance64x128_c, 10),
SubpelVarianceParams(6, 6, &aom_highbd_10_sub_pixel_variance64x64_c, 10),
SubpelVarianceParams(6, 5, &aom_highbd_10_sub_pixel_variance64x32_c, 10),
SubpelVarianceParams(5, 6, &aom_highbd_10_sub_pixel_variance32x64_c, 10),
SubpelVarianceParams(5, 5,