blob: 6d765c2b039eff3a2f31f322af8f2fe3797a953d [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <limits.h>
#include <stdio.h>
#include "config/av1_rtcd.h"
#include "config/aom_dsp_rtcd.h"
#include "config/aom_scale_rtcd.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/system_state.h"
#include "aom_ports/aom_once.h"
#include "aom_ports/aom_timer.h"
#include "aom_scale/aom_scale.h"
#include "aom_util/aom_thread.h"
#include "av1/common/alloccommon.h"
#include "av1/common/av1_loopfilter.h"
#include "av1/common/onyxc_int.h"
#include "av1/common/quant_common.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/decoder/decodeframe.h"
#include "av1/decoder/decoder.h"
#include "av1/decoder/detokenize.h"
#include "av1/decoder/obu.h"
static void initialize_dec(void) {
av1_rtcd();
aom_dsp_rtcd();
aom_scale_rtcd();
av1_init_intra_predictors();
av1_init_wedge_masks();
}
static void dec_set_mb_mi(AV1_COMMON *cm, int width, int height) {
// Ensure that the decoded width and height are both multiples of
// 8 luma pixels (note: this may only be a multiple of 4 chroma pixels if
// subsampling is used).
// This simplifies the implementation of various experiments,
// eg. cdef, which operates on units of 8x8 luma pixels.
const int aligned_width = ALIGN_POWER_OF_TWO(width, 3);
const int aligned_height = ALIGN_POWER_OF_TWO(height, 3);
cm->mi_cols = aligned_width >> MI_SIZE_LOG2;
cm->mi_rows = aligned_height >> MI_SIZE_LOG2;
cm->mi_stride = calc_mi_size(cm->mi_cols);
cm->mb_cols = (cm->mi_cols + 2) >> 2;
cm->mb_rows = (cm->mi_rows + 2) >> 2;
cm->MBs = cm->mb_rows * cm->mb_cols;
cm->mi_alloc_bsize = BLOCK_4X4;
cm->mi_alloc_rows = cm->mi_rows;
cm->mi_alloc_cols = cm->mi_cols;
cm->mi_alloc_stride = cm->mi_stride;
assert(mi_size_wide[cm->mi_alloc_bsize] == mi_size_high[cm->mi_alloc_bsize]);
#if CONFIG_LPF_MASK
av1_alloc_loop_filter_mask(cm);
#endif
}
static void dec_setup_mi(AV1_COMMON *cm) {
const int mi_grid_size = cm->mi_stride * calc_mi_size(cm->mi_rows);
memset(cm->mi_grid_base, 0, mi_grid_size * sizeof(*cm->mi_grid_base));
}
static int dec_alloc_mi(AV1_COMMON *cm) {
const int mi_grid_size = cm->mi_stride * calc_mi_size(cm->mi_rows);
if (cm->mi_alloc_size < mi_grid_size || cm->mi_grid_size < mi_grid_size) {
cm->free_mi(cm);
cm->mi = aom_calloc(mi_grid_size, sizeof(*cm->mi));
if (!cm->mi) return 1;
cm->mi_alloc_size = mi_grid_size;
cm->mi_grid_base =
(MB_MODE_INFO **)aom_calloc(mi_grid_size, sizeof(MB_MODE_INFO *));
if (!cm->mi_grid_base) return 1;
cm->mi_grid_size = mi_grid_size;
cm->tx_type_map = aom_calloc(calc_mi_size(cm->mi_rows) * cm->mi_stride,
sizeof(*cm->tx_type_map));
if (!cm->tx_type_map) return 1;
}
return 0;
}
static void dec_free_mi(AV1_COMMON *cm) {
aom_free(cm->mi);
cm->mi = NULL;
aom_free(cm->mi_grid_base);
cm->mi_grid_base = NULL;
cm->mi_alloc_size = 0;
aom_free(cm->tx_type_map);
cm->tx_type_map = NULL;
}
AV1Decoder *av1_decoder_create(BufferPool *const pool) {
AV1Decoder *volatile const pbi = aom_memalign(32, sizeof(*pbi));
if (!pbi) return NULL;
av1_zero(*pbi);
AV1_COMMON *volatile const cm = &pbi->common;
// The jmp_buf is valid only for the duration of the function that calls
// setjmp(). Therefore, this function must reset the 'setjmp' field to 0
// before it returns.
if (setjmp(cm->error.jmp)) {
cm->error.setjmp = 0;
av1_decoder_remove(pbi);
return NULL;
}
cm->error.setjmp = 1;
CHECK_MEM_ERROR(cm, cm->fc,
(FRAME_CONTEXT *)aom_memalign(32, sizeof(*cm->fc)));
CHECK_MEM_ERROR(
cm, cm->default_frame_context,
(FRAME_CONTEXT *)aom_memalign(32, sizeof(*cm->default_frame_context)));
memset(cm->fc, 0, sizeof(*cm->fc));
memset(cm->default_frame_context, 0, sizeof(*cm->default_frame_context));
pbi->need_resync = 1;
aom_once(initialize_dec);
// Initialize the references to not point to any frame buffers.
for (int i = 0; i < REF_FRAMES; i++) {
cm->ref_frame_map[i] = NULL;
}
cm->current_frame.frame_number = 0;
pbi->decoding_first_frame = 1;
pbi->common.buffer_pool = pool;
cm->seq_params.bit_depth = AOM_BITS_8;
cm->alloc_mi = dec_alloc_mi;
cm->free_mi = dec_free_mi;
cm->setup_mi = dec_setup_mi;
cm->set_mb_mi = dec_set_mb_mi;
av1_loop_filter_init(cm);
av1_qm_init(cm);
av1_loop_restoration_precal();
#if CONFIG_ACCOUNTING
pbi->acct_enabled = 1;
aom_accounting_init(&pbi->accounting);
#endif
cm->error.setjmp = 0;
aom_get_worker_interface()->init(&pbi->lf_worker);
pbi->lf_worker.thread_name = "aom lf worker";
return pbi;
}
void av1_dealloc_dec_jobs(struct AV1DecTileMTData *tile_mt_info) {
if (tile_mt_info != NULL) {
#if CONFIG_MULTITHREAD
if (tile_mt_info->job_mutex != NULL) {
pthread_mutex_destroy(tile_mt_info->job_mutex);
aom_free(tile_mt_info->job_mutex);
}
#endif
aom_free(tile_mt_info->job_queue);
// clear the structure as the source of this call may be a resize in which
// case this call will be followed by an _alloc() which may fail.
av1_zero(*tile_mt_info);
}
}
void av1_dec_free_cb_buf(AV1Decoder *pbi) {
aom_free(pbi->cb_buffer_base);
pbi->cb_buffer_base = NULL;
pbi->cb_buffer_alloc_size = 0;
}
void av1_decoder_remove(AV1Decoder *pbi) {
int i;
if (!pbi) return;
// Free the tile list output buffer.
aom_free_frame_buffer(&pbi->tile_list_outbuf);
aom_get_worker_interface()->end(&pbi->lf_worker);
aom_free(pbi->lf_worker.data1);
if (pbi->thread_data) {
for (int worker_idx = 0; worker_idx < pbi->max_threads - 1; worker_idx++) {
DecWorkerData *const thread_data = pbi->thread_data + worker_idx;
av1_free_mc_tmp_buf(thread_data->td);
aom_free(thread_data->td);
}
aom_free(pbi->thread_data);
}
for (i = 0; i < pbi->num_workers; ++i) {
AVxWorker *const worker = &pbi->tile_workers[i];
aom_get_worker_interface()->end(worker);
}
#if CONFIG_MULTITHREAD
if (pbi->row_mt_mutex_ != NULL) {
pthread_mutex_destroy(pbi->row_mt_mutex_);
aom_free(pbi->row_mt_mutex_);
}
if (pbi->row_mt_cond_ != NULL) {
pthread_cond_destroy(pbi->row_mt_cond_);
aom_free(pbi->row_mt_cond_);
}
#endif
for (i = 0; i < pbi->allocated_tiles; i++) {
TileDataDec *const tile_data = pbi->tile_data + i;
av1_dec_row_mt_dealloc(&tile_data->dec_row_mt_sync);
}
aom_free(pbi->tile_data);
aom_free(pbi->tile_workers);
if (pbi->num_workers > 0) {
av1_loop_filter_dealloc(&pbi->lf_row_sync);
av1_loop_restoration_dealloc(&pbi->lr_row_sync, pbi->num_workers);
av1_dealloc_dec_jobs(&pbi->tile_mt_info);
}
av1_dec_free_cb_buf(pbi);
#if CONFIG_ACCOUNTING
aom_accounting_clear(&pbi->accounting);
#endif
av1_free_mc_tmp_buf(&pbi->td);
aom_free(pbi);
}
void av1_visit_palette(AV1Decoder *const pbi, MACROBLOCKD *const xd, int mi_row,
int mi_col, aom_reader *r, BLOCK_SIZE bsize,
palette_visitor_fn_t visit) {
if (!is_inter_block(xd->mi[0])) {
for (int plane = 0; plane < AOMMIN(2, av1_num_planes(&pbi->common));
++plane) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
if (is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x,
pd->subsampling_y)) {
if (xd->mi[0]->palette_mode_info.palette_size[plane])
visit(xd, plane, r);
} else {
assert(xd->mi[0]->palette_mode_info.palette_size[plane] == 0);
}
}
}
}
static int equal_dimensions(const YV12_BUFFER_CONFIG *a,
const YV12_BUFFER_CONFIG *b) {
return a->y_height == b->y_height && a->y_width == b->y_width &&
a->uv_height == b->uv_height && a->uv_width == b->uv_width;
}
aom_codec_err_t av1_copy_reference_dec(AV1Decoder *pbi, int idx,
YV12_BUFFER_CONFIG *sd) {
AV1_COMMON *cm = &pbi->common;
const int num_planes = av1_num_planes(cm);
const YV12_BUFFER_CONFIG *const cfg = get_ref_frame(cm, idx);
if (cfg == NULL) {
aom_internal_error(&cm->error, AOM_CODEC_ERROR, "No reference frame");
return AOM_CODEC_ERROR;
}
if (!equal_dimensions(cfg, sd))
aom_internal_error(&cm->error, AOM_CODEC_ERROR,
"Incorrect buffer dimensions");
else
aom_yv12_copy_frame(cfg, sd, num_planes);
return cm->error.error_code;
}
static int equal_dimensions_and_border(const YV12_BUFFER_CONFIG *a,
const YV12_BUFFER_CONFIG *b) {
return a->y_height == b->y_height && a->y_width == b->y_width &&
a->uv_height == b->uv_height && a->uv_width == b->uv_width &&
a->y_stride == b->y_stride && a->uv_stride == b->uv_stride &&
a->border == b->border &&
(a->flags & YV12_FLAG_HIGHBITDEPTH) ==
(b->flags & YV12_FLAG_HIGHBITDEPTH);
}
aom_codec_err_t av1_set_reference_dec(AV1_COMMON *cm, int idx,
int use_external_ref,
YV12_BUFFER_CONFIG *sd) {
const int num_planes = av1_num_planes(cm);
YV12_BUFFER_CONFIG *ref_buf = NULL;
// Get the destination reference buffer.
ref_buf = get_ref_frame(cm, idx);
if (ref_buf == NULL) {
aom_internal_error(&cm->error, AOM_CODEC_ERROR, "No reference frame");
return AOM_CODEC_ERROR;
}
if (!use_external_ref) {
if (!equal_dimensions(ref_buf, sd)) {
aom_internal_error(&cm->error, AOM_CODEC_ERROR,
"Incorrect buffer dimensions");
} else {
// Overwrite the reference frame buffer.
aom_yv12_copy_frame(sd, ref_buf, num_planes);
}
} else {
if (!equal_dimensions_and_border(ref_buf, sd)) {
aom_internal_error(&cm->error, AOM_CODEC_ERROR,
"Incorrect buffer dimensions");
} else {
// Overwrite the reference frame buffer pointers.
// Once we no longer need the external reference buffer, these pointers
// are restored.
ref_buf->store_buf_adr[0] = ref_buf->y_buffer;
ref_buf->store_buf_adr[1] = ref_buf->u_buffer;
ref_buf->store_buf_adr[2] = ref_buf->v_buffer;
ref_buf->y_buffer = sd->y_buffer;
ref_buf->u_buffer = sd->u_buffer;
ref_buf->v_buffer = sd->v_buffer;
ref_buf->use_external_reference_buffers = 1;
}
}
return cm->error.error_code;
}
aom_codec_err_t av1_copy_new_frame_dec(AV1_COMMON *cm,
YV12_BUFFER_CONFIG *new_frame,
YV12_BUFFER_CONFIG *sd) {
const int num_planes = av1_num_planes(cm);
if (!equal_dimensions_and_border(new_frame, sd))
aom_internal_error(&cm->error, AOM_CODEC_ERROR,
"Incorrect buffer dimensions");
else
aom_yv12_copy_frame(new_frame, sd, num_planes);
return cm->error.error_code;
}
static void release_current_frame(AV1Decoder *pbi) {
AV1_COMMON *const cm = &pbi->common;
BufferPool *const pool = cm->buffer_pool;
cm->cur_frame->buf.corrupted = 1;
lock_buffer_pool(pool);
decrease_ref_count(cm->cur_frame, pool);
unlock_buffer_pool(pool);
cm->cur_frame = NULL;
}
// If any buffer updating is signaled it should be done here.
// Consumes a reference to cm->cur_frame.
//
// This functions returns void. It reports failure by setting
// cm->error.error_code.
static void update_frame_buffers(AV1Decoder *pbi, int frame_decoded) {
int ref_index = 0, mask;
AV1_COMMON *const cm = &pbi->common;
BufferPool *const pool = cm->buffer_pool;
if (frame_decoded) {
lock_buffer_pool(pool);
// In ext-tile decoding, the camera frame header is only decoded once. So,
// we don't update the references here.
if (!pbi->camera_frame_header_ready) {
// The following for loop needs to release the reference stored in
// cm->ref_frame_map[ref_index] before storing a reference to
// cm->cur_frame in cm->ref_frame_map[ref_index].
for (mask = cm->current_frame.refresh_frame_flags; mask; mask >>= 1) {
if (mask & 1) {
decrease_ref_count(cm->ref_frame_map[ref_index], pool);
cm->ref_frame_map[ref_index] = cm->cur_frame;
++cm->cur_frame->ref_count;
}
++ref_index;
}
}
if (cm->show_existing_frame || cm->show_frame) {
if (pbi->output_all_layers) {
// Append this frame to the output queue
if (pbi->num_output_frames >= MAX_NUM_SPATIAL_LAYERS) {
// We can't store the new frame anywhere, so drop it and return an
// error
cm->cur_frame->buf.corrupted = 1;
decrease_ref_count(cm->cur_frame, pool);
cm->error.error_code = AOM_CODEC_UNSUP_BITSTREAM;
} else {
pbi->output_frames[pbi->num_output_frames] = cm->cur_frame;
pbi->num_output_frames++;
}
} else {
// Replace any existing output frame
assert(pbi->num_output_frames == 0 || pbi->num_output_frames == 1);
if (pbi->num_output_frames > 0) {
decrease_ref_count(pbi->output_frames[0], pool);
}
pbi->output_frames[0] = cm->cur_frame;
pbi->num_output_frames = 1;
}
} else {
decrease_ref_count(cm->cur_frame, pool);
}
unlock_buffer_pool(pool);
} else {
// Nothing was decoded, so just drop this frame buffer
lock_buffer_pool(pool);
decrease_ref_count(cm->cur_frame, pool);
unlock_buffer_pool(pool);
}
cm->cur_frame = NULL;
if (!pbi->camera_frame_header_ready) {
// Invalidate these references until the next frame starts.
for (ref_index = 0; ref_index < INTER_REFS_PER_FRAME; ref_index++) {
cm->remapped_ref_idx[ref_index] = INVALID_IDX;
}
}
}
int av1_receive_compressed_data(AV1Decoder *pbi, size_t size,
const uint8_t **psource) {
AV1_COMMON *volatile const cm = &pbi->common;
const uint8_t *source = *psource;
cm->error.error_code = AOM_CODEC_OK;
cm->error.has_detail = 0;
if (size == 0) {
// This is used to signal that we are missing frames.
// We do not know if the missing frame(s) was supposed to update
// any of the reference buffers, but we act conservative and
// mark only the last buffer as corrupted.
//
// TODO(jkoleszar): Error concealment is undefined and non-normative
// at this point, but if it becomes so, [0] may not always be the correct
// thing to do here.
RefCntBuffer *ref_buf = get_ref_frame_buf(cm, LAST_FRAME);
if (ref_buf != NULL) ref_buf->buf.corrupted = 1;
}
if (assign_cur_frame_new_fb(cm) == NULL) {
cm->error.error_code = AOM_CODEC_MEM_ERROR;
return 1;
}
// The jmp_buf is valid only for the duration of the function that calls
// setjmp(). Therefore, this function must reset the 'setjmp' field to 0
// before it returns.
if (setjmp(cm->error.jmp)) {
const AVxWorkerInterface *const winterface = aom_get_worker_interface();
int i;
cm->error.setjmp = 0;
// Synchronize all threads immediately as a subsequent decode call may
// cause a resize invalidating some allocations.
winterface->sync(&pbi->lf_worker);
for (i = 0; i < pbi->num_workers; ++i) {
winterface->sync(&pbi->tile_workers[i]);
}
release_current_frame(pbi);
aom_clear_system_state();
return -1;
}
cm->error.setjmp = 1;
int frame_decoded =
aom_decode_frame_from_obus(pbi, source, source + size, psource);
if (frame_decoded < 0) {
assert(cm->error.error_code != AOM_CODEC_OK);
release_current_frame(pbi);
cm->error.setjmp = 0;
return 1;
}
#if TXCOEFF_TIMER
cm->cum_txcoeff_timer += cm->txcoeff_timer;
fprintf(stderr,
"txb coeff block number: %d, frame time: %ld, cum time %ld in us\n",
cm->txb_count, cm->txcoeff_timer, cm->cum_txcoeff_timer);
cm->txcoeff_timer = 0;
cm->txb_count = 0;
#endif
// Note: At this point, this function holds a reference to cm->cur_frame
// in the buffer pool. This reference is consumed by update_frame_buffers().
update_frame_buffers(pbi, frame_decoded);
if (frame_decoded) {
pbi->decoding_first_frame = 0;
}
if (cm->error.error_code != AOM_CODEC_OK) {
cm->error.setjmp = 0;
return 1;
}
aom_clear_system_state();
if (!cm->show_existing_frame) {
if (cm->seg.enabled) {
if (cm->prev_frame && (cm->mi_rows == cm->prev_frame->mi_rows) &&
(cm->mi_cols == cm->prev_frame->mi_cols)) {
cm->last_frame_seg_map = cm->prev_frame->seg_map;
} else {
cm->last_frame_seg_map = NULL;
}
}
}
// Update progress in frame parallel decode.
cm->error.setjmp = 0;
return 0;
}
// Get the frame at a particular index in the output queue
int av1_get_raw_frame(AV1Decoder *pbi, size_t index, YV12_BUFFER_CONFIG **sd,
aom_film_grain_t **grain_params) {
if (index >= pbi->num_output_frames) return -1;
*sd = &pbi->output_frames[index]->buf;
*grain_params = &pbi->output_frames[index]->film_grain_params;
aom_clear_system_state();
return 0;
}
// Get the highest-spatial-layer output
// TODO(david.barker): What should this do?
int av1_get_frame_to_show(AV1Decoder *pbi, YV12_BUFFER_CONFIG *frame) {
if (pbi->num_output_frames == 0) return -1;
*frame = pbi->output_frames[pbi->num_output_frames - 1]->buf;
return 0;
}