Added AVX2 implementation of self-guided filter
The self-guided filter has now been implemented using
the intrinsics for AVX2. The corresponding speed and
correctness tests have also been added.
Note: All AVX2 functions are in synonyms_avx2.h, as
GCC produces 'ABI change' warnings if they are
included in synonyms.h.
Change-Id: I2a283a4acf8c01ee835d5edc526abc242d87ad9b
diff --git a/aom_dsp/aom_dsp.mk b/aom_dsp/aom_dsp.mk
index 1c50690..99be287 100644
--- a/aom_dsp/aom_dsp.mk
+++ b/aom_dsp/aom_dsp.mk
@@ -16,6 +16,7 @@
DSP_SRCS-$(HAVE_MSA) += mips/macros_msa.h
DSP_SRCS-$(ARCH_X86)$(ARCH_X86_64) += x86/synonyms.h
+DSP_SRCS-$(ARCH_X86)$(ARCH_X86_64) += x86/synonyms_avx2.h
# bit reader
DSP_SRCS-yes += prob.h
diff --git a/aom_dsp/x86/synonyms_avx2.h b/aom_dsp/x86/synonyms_avx2.h
new file mode 100644
index 0000000..a56a80f
--- /dev/null
+++ b/aom_dsp/x86/synonyms_avx2.h
@@ -0,0 +1,45 @@
+/*
+ * Copyright (c) 2018, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#ifndef AOM_DSP_X86_SYNONYMS_AVX2_H_
+#define AOM_DSP_X86_SYNONYMS_AVX2_H_
+
+#include <immintrin.h>
+
+#include "./aom_config.h"
+#include "aom/aom_integer.h"
+
+/**
+ * Various reusable shorthands for x86 SIMD intrinsics.
+ *
+ * Intrinsics prefixed with xx_ operate on or return 128bit XMM registers.
+ * Intrinsics prefixed with yy_ operate on or return 256bit YMM registers.
+ */
+
+// Loads and stores to do away with the tedium of casting the address
+// to the right type.
+static INLINE __m256i yy_load_256(const void *a) {
+ return _mm256_load_si256((const __m256i *)a);
+}
+
+static INLINE __m256i yy_loadu_256(const void *a) {
+ return _mm256_loadu_si256((const __m256i *)a);
+}
+
+static INLINE void yy_store_256(void *const a, const __m256i v) {
+ _mm256_store_si256((__m256i *)a, v);
+}
+
+static INLINE void yy_storeu_256(void *const a, const __m256i v) {
+ _mm256_storeu_si256((__m256i *)a, v);
+}
+
+#endif // AOM_DSP_X86_SYNONYMS_AVX2_H_
diff --git a/av1/av1.cmake b/av1/av1.cmake
index 92736b2..42c05dd 100644
--- a/av1/av1.cmake
+++ b/av1/av1.cmake
@@ -420,6 +420,10 @@
${AOM_AV1_COMMON_INTRIN_SSE4_1}
"${AOM_ROOT}/av1/common/x86/selfguided_sse4.c")
+ set(AOM_AV1_COMMON_INTRIN_AVX2
+ ${AOM_AV1_COMMON_INTRIN_AVX2}
+ "${AOM_ROOT}/av1/common/x86/selfguided_avx2.c")
+
set(AOM_AV1_ENCODER_SOURCES
${AOM_AV1_ENCODER_SOURCES}
"${AOM_ROOT}/av1/encoder/pickrst.c"
diff --git a/av1/av1_common.mk b/av1/av1_common.mk
index f947153..317f746 100644
--- a/av1/av1_common.mk
+++ b/av1/av1_common.mk
@@ -88,6 +88,7 @@
AV1_COMMON_SRCS-yes += common/restoration.h
AV1_COMMON_SRCS-yes += common/restoration.c
AV1_COMMON_SRCS-$(HAVE_SSE4_1) += common/x86/selfguided_sse4.c
+AV1_COMMON_SRCS-$(HAVE_AVX2) += common/x86/selfguided_avx2.c
endif
ifeq ($(CONFIG_INTRA_EDGE),yes)
AV1_COMMON_SRCS-$(HAVE_SSE4_1) += common/x86/intra_edge_sse4.c
diff --git a/av1/common/av1_rtcd_defs.pl b/av1/common/av1_rtcd_defs.pl
index 32947bb..9d79d26 100755
--- a/av1/common/av1_rtcd_defs.pl
+++ b/av1/common/av1_rtcd_defs.pl
@@ -509,10 +509,10 @@
if (aom_config("CONFIG_LOOP_RESTORATION") eq "yes") {
add_proto qw/void apply_selfguided_restoration/, "const uint8_t *dat, int width, int height, int stride, int eps, const int *xqd, uint8_t *dst, int dst_stride, int32_t *tmpbuf, int bit_depth, int highbd";
- specialize qw/apply_selfguided_restoration sse4_1/;
+ specialize qw/apply_selfguided_restoration sse4_1 avx2/;
add_proto qw/void av1_selfguided_restoration/, "const uint8_t *dgd, int width, int height, int stride, int32_t *flt1, int32_t *flt2, int flt_stride, const sgr_params_type *params, int bit_depth, int highbd";
- specialize qw/av1_selfguided_restoration sse4_1/;
+ specialize qw/av1_selfguided_restoration sse4_1 avx2/;
}
# CONVOLVE_ROUND/COMPOUND_ROUND functions
diff --git a/av1/common/x86/selfguided_avx2.c b/av1/common/x86/selfguided_avx2.c
new file mode 100644
index 0000000..f046180
--- /dev/null
+++ b/av1/common/x86/selfguided_avx2.c
@@ -0,0 +1,492 @@
+/*
+ * Copyright (c) 2018, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#include <immintrin.h>
+
+#include "./aom_config.h"
+#include "./av1_rtcd.h"
+#include "av1/common/restoration.h"
+#include "aom_dsp/x86/synonyms.h"
+#include "aom_dsp/x86/synonyms_avx2.h"
+
+// Load 8 bytes from the possibly-misaligned pointer p, extend each byte to
+// 32-bit precision and return them in an AVX2 register.
+static __m256i yy256_load_extend_8_32(const void *p) {
+ return _mm256_cvtepu8_epi32(xx_loadl_64(p));
+}
+
+// Load 8 halfwords from the possibly-misaligned pointer p, extend each
+// halfword to 32-bit precision and return them in an AVX2 register.
+static __m256i yy256_load_extend_16_32(const void *p) {
+ return _mm256_cvtepu16_epi32(xx_loadu_128(p));
+}
+
+// Compute the scan of an AVX2 register holding 8 32-bit integers. If the
+// register holds x0..x7 then the scan will hold x0, x0+x1, x0+x1+x2, ...,
+// x0+x1+...+x7
+//
+// Let [...] represent a 128-bit block, and let a, ..., h be 32-bit integers
+// (assumed small enough to be able to add them without overflow).
+//
+// Use -> as shorthand for summing, i.e. h->a = h + g + f + e + d + c + b + a.
+//
+// x = [h g f e][d c b a]
+// x01 = [g f e 0][c b a 0]
+// x02 = [g+h f+g e+f e][c+d b+c a+b a]
+// x03 = [e+f e 0 0][a+b a 0 0]
+// x04 = [e->h e->g e->f e][a->d a->c a->b a]
+// s = a->d
+// s01 = [a->d a->d a->d a->d]
+// s02 = [a->d a->d a->d a->d][0 0 0 0]
+// ret = [a->h a->g a->f a->e][a->d a->c a->b a]
+static __m256i scan_32(__m256i x) {
+ const __m256i x01 = _mm256_slli_si256(x, 4);
+ const __m256i x02 = _mm256_add_epi32(x, x01);
+ const __m256i x03 = _mm256_slli_si256(x02, 8);
+ const __m256i x04 = _mm256_add_epi32(x02, x03);
+ const int32_t s = _mm256_extract_epi32(x04, 3);
+ const __m128i s01 = _mm_set1_epi32(s);
+ const __m256i s02 = _mm256_insertf128_si256(_mm256_setzero_si256(), s01, 1);
+ return _mm256_add_epi32(x04, s02);
+}
+
+// Compute two integral images from src. B sums elements; A sums their
+// squares. The images are offset by one pixel, so will have width and height
+// equal to width + 1, height + 1 and the first row and column will be zero.
+//
+// A+1 and B+1 should be aligned to 32 bytes. buf_stride should be a multiple
+// of 8.
+static void integral_images(const uint8_t *src, int src_stride, int width,
+ int height, int32_t *A, int32_t *B,
+ int buf_stride) {
+ // Write out the zero top row
+ memset(A, 0, sizeof(*A) * (width + 1));
+ memset(B, 0, sizeof(*B) * (width + 1));
+
+ const __m256i zero = _mm256_setzero_si256();
+ for (int i = 0; i < height; ++i) {
+ // Zero the left column.
+ A[(i + 1) * buf_stride] = B[(i + 1) * buf_stride] = 0;
+
+ // ldiff is the difference H - D where H is the output sample immediately
+ // to the left and D is the output sample above it. These are scalars,
+ // replicated across the eight lanes.
+ __m256i ldiff1 = zero, ldiff2 = zero;
+ for (int j = 0; j < width; j += 8) {
+ const int ABj = 1 + j;
+
+ const __m256i above1 = yy_load_256(B + ABj + i * buf_stride);
+ const __m256i above2 = yy_load_256(A + ABj + i * buf_stride);
+
+ const __m256i x1 = yy256_load_extend_8_32(src + j + i * src_stride);
+ const __m256i x2 = _mm256_madd_epi16(x1, x1);
+
+ const __m256i sc1 = scan_32(x1);
+ const __m256i sc2 = scan_32(x2);
+
+ const __m256i row1 =
+ _mm256_add_epi32(_mm256_add_epi32(sc1, above1), ldiff1);
+ const __m256i row2 =
+ _mm256_add_epi32(_mm256_add_epi32(sc2, above2), ldiff2);
+
+ yy_store_256(B + ABj + (i + 1) * buf_stride, row1);
+ yy_store_256(A + ABj + (i + 1) * buf_stride, row2);
+
+ // Calculate the new H - D.
+ ldiff1 = _mm256_set1_epi32(
+ _mm256_extract_epi32(_mm256_sub_epi32(row1, above1), 7));
+ ldiff2 = _mm256_set1_epi32(
+ _mm256_extract_epi32(_mm256_sub_epi32(row2, above2), 7));
+ }
+ }
+}
+
+// Compute two integral images from src. B sums elements; A sums their squares
+//
+// A and B should be aligned to 32 bytes. buf_stride should be a multiple of 8.
+static void integral_images_highbd(const uint16_t *src, int src_stride,
+ int width, int height, int32_t *A,
+ int32_t *B, int buf_stride) {
+ // Write out the zero top row
+ memset(A, 0, sizeof(*A) * (width + 1));
+ memset(B, 0, sizeof(*B) * (width + 1));
+
+ const __m256i zero = _mm256_setzero_si256();
+ for (int i = 0; i < height; ++i) {
+ // Zero the left column.
+ A[(i + 1) * buf_stride] = B[(i + 1) * buf_stride] = 0;
+
+ // ldiff is the difference H - D where H is the output sample immediately
+ // to the left and D is the output sample above it. These are scalars,
+ // replicated across the eight lanes.
+ __m256i ldiff1 = zero, ldiff2 = zero;
+ for (int j = 0; j < width; j += 8) {
+ const int ABj = 1 + j;
+
+ const __m256i above1 = yy_load_256(B + ABj + i * buf_stride);
+ const __m256i above2 = yy_load_256(A + ABj + i * buf_stride);
+
+ const __m256i x1 = yy256_load_extend_16_32(src + j + i * src_stride);
+ const __m256i x2 = _mm256_madd_epi16(x1, x1);
+
+ const __m256i sc1 = scan_32(x1);
+ const __m256i sc2 = scan_32(x2);
+
+ const __m256i row1 =
+ _mm256_add_epi32(_mm256_add_epi32(sc1, above1), ldiff1);
+ const __m256i row2 =
+ _mm256_add_epi32(_mm256_add_epi32(sc2, above2), ldiff2);
+
+ yy_store_256(B + ABj + (i + 1) * buf_stride, row1);
+ yy_store_256(A + ABj + (i + 1) * buf_stride, row2);
+
+ // Calculate the new H - D.
+ ldiff1 = _mm256_set1_epi32(
+ _mm256_extract_epi32(_mm256_sub_epi32(row1, above1), 7));
+ ldiff2 = _mm256_set1_epi32(
+ _mm256_extract_epi32(_mm256_sub_epi32(row2, above2), 7));
+ }
+ }
+}
+
+// Compute four values of boxsum from the given integral image. ii should point
+// at the middle of the box (for the first value). r is the box radius
+static __m256i boxsum_from_ii(const int32_t *ii, int stride, int r) {
+ const __m256i tl = yy_loadu_256(ii - (r + 1) - (r + 1) * stride);
+ const __m256i tr = yy_loadu_256(ii + (r + 0) - (r + 1) * stride);
+ const __m256i bl = yy_loadu_256(ii - (r + 1) + r * stride);
+ const __m256i br = yy_loadu_256(ii + (r + 0) + r * stride);
+ const __m256i u = _mm256_sub_epi32(tr, tl);
+ const __m256i v = _mm256_sub_epi32(br, bl);
+ return _mm256_sub_epi32(v, u);
+}
+
+static __m256i round_for_shift(unsigned shift) {
+ return _mm256_set1_epi32((1 << shift) >> 1);
+}
+
+static __m256i compute_p(__m256i sum1, __m256i sum2, int bit_depth, int n) {
+ __m256i an, bb;
+ if (bit_depth > 8) {
+ const __m256i rounding_a = round_for_shift(2 * (bit_depth - 8));
+ const __m256i rounding_b = round_for_shift(bit_depth - 8);
+ const __m128i shift_a = _mm_cvtsi32_si128(2 * (bit_depth - 8));
+ const __m128i shift_b = _mm_cvtsi32_si128(bit_depth - 8);
+ const __m256i a =
+ _mm256_srl_epi32(_mm256_add_epi32(sum2, rounding_a), shift_a);
+ const __m256i b =
+ _mm256_srl_epi32(_mm256_add_epi32(sum1, rounding_b), shift_b);
+ // b < 2^14, so we can use a 16-bit madd rather than a 32-bit
+ // mullo to square it
+ bb = _mm256_madd_epi16(b, b);
+ an = _mm256_max_epi32(_mm256_mullo_epi32(a, _mm256_set1_epi32(n)), bb);
+ } else {
+ bb = _mm256_madd_epi16(sum1, sum1);
+ an = _mm256_mullo_epi32(sum2, _mm256_set1_epi32(n));
+ }
+ return _mm256_sub_epi32(an, bb);
+}
+
+// Assumes that C, D are integral images for the original buffer which has been
+// extended to have a padding of SGRPROJ_BORDER_VERT/SGRPROJ_BORDER_HORZ pixels
+// on the sides. A, B, C, D point at logical position (0, 0).
+static void calc_ab(int32_t *A, int32_t *B, const int32_t *C, const int32_t *D,
+ int width, int height, int buf_stride, int eps,
+ int bit_depth, int r) {
+ const int n = (2 * r + 1) * (2 * r + 1);
+ const __m256i s = _mm256_set1_epi32(sgrproj_mtable[eps - 1][n - 1]);
+ // one_over_n[n-1] is 2^12/n, so easily fits in an int16
+ const __m256i one_over_n = _mm256_set1_epi32(one_by_x[n - 1]);
+
+ const __m256i rnd_z = round_for_shift(SGRPROJ_MTABLE_BITS);
+ const __m256i rnd_res = round_for_shift(SGRPROJ_RECIP_BITS);
+
+ for (int i = -1; i < height + 1; ++i) {
+ for (int j = -1; j < width + 1; j += 8) {
+ const int32_t *Cij = C + i * buf_stride + j;
+ const int32_t *Dij = D + i * buf_stride + j;
+
+ const __m256i pre_sum1 = boxsum_from_ii(Dij, buf_stride, r);
+ const __m256i pre_sum2 = boxsum_from_ii(Cij, buf_stride, r);
+
+#if CONFIG_DEBUG
+ // When width + 2 isn't a multiple of eight, z will contain some
+ // uninitialised data in its upper words. This isn't really a problem
+ // (they will be clamped to safe indices by the min() below, and will be
+ // written to memory locations that we don't read again), but Valgrind
+ // complains because we're using an uninitialised value as the address
+ // for a load operation
+ //
+ // This mask is reasonably cheap to compute and quiets the warnings. Note
+ // that we can't mask p instead of sum1 and sum2 (which would be cheaper)
+ // because Valgrind gets the taint propagation in compute_p wrong.
+
+ const __m128i ones32 = _mm_set_epi64x(0, 0xffffffffffffffffULL);
+ const __m128i shift =
+ _mm_set_epi64x(0, AOMMAX(0, 8 * (8 - (width + 1 - j))));
+ const __m256i mask = _mm256_cvtepi8_epi32(_mm_srl_epi64(ones32, shift));
+ const __m256i sum1 = _mm256_and_si256(mask, pre_sum1);
+ const __m256i sum2 = _mm256_and_si256(mask, pre_sum2);
+#else
+ const __m256i sum1 = pre_sum1;
+ const __m256i sum2 = pre_sum2;
+#endif // CONFIG_DEBUG
+
+ const __m256i p = compute_p(sum1, sum2, bit_depth, n);
+
+ const __m256i z = _mm256_min_epi32(
+ _mm256_srli_epi32(_mm256_add_epi32(_mm256_mullo_epi32(p, s), rnd_z),
+ SGRPROJ_MTABLE_BITS),
+ _mm256_set1_epi32(255));
+
+ const __m256i a_res = _mm256_i32gather_epi32(x_by_xplus1, z, 4);
+
+ yy_storeu_256(A + i * buf_stride + j, a_res);
+
+ const __m256i a_complement =
+ _mm256_sub_epi32(_mm256_set1_epi32(SGRPROJ_SGR), a_res);
+
+ // sum1 might have lanes greater than 2^15, so we can't use madd to do
+ // multiplication involving sum1. However, a_complement and one_over_n
+ // are both less than 256, so we can multiply them first.
+ const __m256i a_comp_over_n = _mm256_madd_epi16(a_complement, one_over_n);
+ const __m256i b_int = _mm256_mullo_epi32(a_comp_over_n, sum1);
+ const __m256i b_res = _mm256_srli_epi32(_mm256_add_epi32(b_int, rnd_res),
+ SGRPROJ_RECIP_BITS);
+
+ yy_storeu_256(B + i * buf_stride + j, b_res);
+ }
+ }
+}
+
+// Calculate 4 values of the "cross sum" starting at buf. This is a 3x3 filter
+// where the outer four corners have weight 3 and all other pixels have weight
+// 4.
+//
+// Pixels are indexed as follows:
+// xtl xt xtr
+// xl x xr
+// xbl xb xbr
+//
+// buf points to x
+//
+// fours = xl + xt + xr + xb + x
+// threes = xtl + xtr + xbr + xbl
+// cross_sum = 4 * fours + 3 * threes
+// = 4 * (fours + threes) - threes
+// = (fours + threes) << 2 - threes
+static __m256i cross_sum(const int32_t *buf, int stride) {
+ const __m256i xtl = yy_loadu_256(buf - 1 - stride);
+ const __m256i xt = yy_loadu_256(buf - stride);
+ const __m256i xtr = yy_loadu_256(buf + 1 - stride);
+ const __m256i xl = yy_loadu_256(buf - 1);
+ const __m256i x = yy_loadu_256(buf);
+ const __m256i xr = yy_loadu_256(buf + 1);
+ const __m256i xbl = yy_loadu_256(buf - 1 + stride);
+ const __m256i xb = yy_loadu_256(buf + stride);
+ const __m256i xbr = yy_loadu_256(buf + 1 + stride);
+
+ const __m256i fours = _mm256_add_epi32(
+ xl, _mm256_add_epi32(xt, _mm256_add_epi32(xr, _mm256_add_epi32(xb, x))));
+ const __m256i threes =
+ _mm256_add_epi32(xtl, _mm256_add_epi32(xtr, _mm256_add_epi32(xbr, xbl)));
+
+ return _mm256_sub_epi32(_mm256_slli_epi32(_mm256_add_epi32(fours, threes), 2),
+ threes);
+}
+
+// The final filter for self-guided restoration. Computes a weighted average
+// across A, B with "cross sums" (see cross_sum implementation above)
+static void final_filter(int32_t *dst, int dst_stride, const int32_t *A,
+ const int32_t *B, int buf_stride, const void *dgd8,
+ int dgd_stride, int width, int height, int highbd) {
+ const int nb = 5;
+ const __m256i rounding =
+ round_for_shift(SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
+ const uint8_t *dgd_real =
+ highbd ? (const uint8_t *)CONVERT_TO_SHORTPTR(dgd8) : dgd8;
+
+ for (int i = 0; i < height; ++i) {
+ for (int j = 0; j < width; j += 4) {
+ const __m256i a = cross_sum(A + i * buf_stride + j, buf_stride);
+ const __m256i b = cross_sum(B + i * buf_stride + j, buf_stride);
+
+ const __m128i raw =
+ xx_loadu_128(dgd_real + ((i * dgd_stride + j) << highbd));
+ const __m256i src =
+ highbd ? _mm256_cvtepu16_epi32(raw) : _mm256_cvtepu8_epi32(raw);
+
+ __m256i v = _mm256_add_epi32(_mm256_madd_epi16(a, src), b);
+ __m256i w = _mm256_srai_epi32(_mm256_add_epi32(v, rounding),
+ SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
+
+ yy_storeu_256(dst + i * dst_stride + j, w);
+ }
+ }
+}
+
+void av1_selfguided_restoration_avx2(const uint8_t *dgd8, int width, int height,
+ int dgd_stride, int32_t *flt1,
+ int32_t *flt2, int flt_stride,
+ const sgr_params_type *params,
+ int bit_depth, int highbd) {
+ // The ALIGN_POWER_OF_TWO macro here ensures that column 1 of Atl, Btl,
+ // Ctl and Dtl is 32-byte aligned.
+ const int buf_elts = ALIGN_POWER_OF_TWO(RESTORATION_PROC_UNIT_PELS, 3);
+
+ DECLARE_ALIGNED(32, int32_t,
+ buf[4 * ALIGN_POWER_OF_TWO(RESTORATION_PROC_UNIT_PELS, 3)]);
+ memset(buf, 0, sizeof(buf));
+
+ const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ;
+ const int height_ext = height + 2 * SGRPROJ_BORDER_VERT;
+
+ // Adjusting the stride of A and B here appears to avoid bad cache effects,
+ // leading to a significant speed improvement.
+ // We also align the stride to a multiple of 32 bytes for efficiency.
+ int buf_stride = ALIGN_POWER_OF_TWO(width_ext + 16, 3);
+
+ // The "tl" pointers point at the top-left of the initialised data for the
+ // array.
+ int32_t *Atl = buf + 0 * buf_elts + 7;
+ int32_t *Btl = buf + 1 * buf_elts + 7;
+ int32_t *Ctl = buf + 2 * buf_elts + 7;
+ int32_t *Dtl = buf + 3 * buf_elts + 7;
+
+ // The "0" pointers are (- SGRPROJ_BORDER_VERT, -SGRPROJ_BORDER_HORZ). Note
+ // there's a zero row and column in A, B (integral images), so we move down
+ // and right one for them.
+ const int buf_diag_border =
+ SGRPROJ_BORDER_HORZ + buf_stride * SGRPROJ_BORDER_VERT;
+
+ int32_t *A0 = Atl + 1 + buf_stride;
+ int32_t *B0 = Btl + 1 + buf_stride;
+ int32_t *C0 = Ctl + 1 + buf_stride;
+ int32_t *D0 = Dtl + 1 + buf_stride;
+
+ // Finally, A, B, C, D point at position (0, 0).
+ int32_t *A = A0 + buf_diag_border;
+ int32_t *B = B0 + buf_diag_border;
+ int32_t *C = C0 + buf_diag_border;
+ int32_t *D = D0 + buf_diag_border;
+
+ const int dgd_diag_border =
+ SGRPROJ_BORDER_HORZ + dgd_stride * SGRPROJ_BORDER_VERT;
+ const uint8_t *dgd0 = dgd8 - dgd_diag_border;
+
+ // Generate integral images from the input. C will contain sums of squares; D
+ // will contain just sums
+ if (highbd)
+ integral_images_highbd(CONVERT_TO_SHORTPTR(dgd0), dgd_stride, width_ext,
+ height_ext, Ctl, Dtl, buf_stride);
+ else
+ integral_images(dgd0, dgd_stride, width_ext, height_ext, Ctl, Dtl,
+ buf_stride);
+
+ // Write to flt1 and flt2
+ for (int i = 0; i < 2; ++i) {
+ int r = i ? params->r2 : params->r1;
+ int e = i ? params->e2 : params->e1;
+ int32_t *flt = i ? flt2 : flt1;
+
+ assert(r + 1 <= AOMMIN(SGRPROJ_BORDER_VERT, SGRPROJ_BORDER_HORZ));
+ calc_ab(A, B, C, D, width, height, buf_stride, e, bit_depth, r);
+ final_filter(flt, flt_stride, A, B, buf_stride, dgd8, dgd_stride, width,
+ height, highbd);
+ }
+}
+
+void apply_selfguided_restoration_avx2(const uint8_t *dat8, int width,
+ int height, int stride, int eps,
+ const int *xqd, uint8_t *dst8,
+ int dst_stride, int32_t *tmpbuf,
+ int bit_depth, int highbd) {
+ int32_t *flt1 = tmpbuf;
+ int32_t *flt2 = flt1 + RESTORATION_TILEPELS_MAX;
+ assert(width * height <= RESTORATION_TILEPELS_MAX);
+ av1_selfguided_restoration_avx2(dat8, width, height, stride, flt1, flt2,
+ width, &sgr_params[eps], bit_depth, highbd);
+
+ int xq[2];
+ decode_xq(xqd, xq);
+
+ __m256i xq0 = _mm256_set1_epi32(xq[0]);
+ __m256i xq1 = _mm256_set1_epi32(xq[1]);
+
+ for (int i = 0; i < height; ++i) {
+ // Calculate output in batches of 16 pixels
+ for (int j = 0; j < width; j += 16) {
+ const int k = i * width + j;
+ const int m = i * dst_stride + j;
+
+ const uint8_t *dat8ij = dat8 + i * stride + j;
+ __m256i ep_0, ep_1;
+ __m128i src_0, src_1;
+ if (highbd) {
+ src_0 = xx_loadu_128(CONVERT_TO_SHORTPTR(dat8ij));
+ src_1 = xx_loadu_128(CONVERT_TO_SHORTPTR(dat8ij + 8));
+ ep_0 = _mm256_cvtepu16_epi32(src_0);
+ ep_1 = _mm256_cvtepu16_epi32(src_1);
+ } else {
+ src_0 = xx_loadu_128(dat8ij);
+ ep_0 = _mm256_cvtepu8_epi32(src_0);
+ ep_1 = _mm256_cvtepu8_epi32(_mm_srli_si128(src_0, 8));
+ }
+
+ const __m256i u_0 = _mm256_slli_epi32(ep_0, SGRPROJ_RST_BITS);
+ const __m256i u_1 = _mm256_slli_epi32(ep_1, SGRPROJ_RST_BITS);
+
+ const __m256i f1_0 = _mm256_sub_epi32(yy_loadu_256(&flt1[k]), u_0);
+ const __m256i f1_1 = _mm256_sub_epi32(yy_loadu_256(&flt1[k + 8]), u_1);
+
+ const __m256i f2_0 = _mm256_sub_epi32(yy_loadu_256(&flt2[k]), u_0);
+ const __m256i f2_1 = _mm256_sub_epi32(yy_loadu_256(&flt2[k + 8]), u_1);
+
+ const __m256i v_0 =
+ _mm256_add_epi32(_mm256_add_epi32(_mm256_mullo_epi32(xq0, f1_0),
+ _mm256_mullo_epi32(xq1, f2_0)),
+ _mm256_slli_epi32(u_0, SGRPROJ_PRJ_BITS));
+ const __m256i v_1 =
+ _mm256_add_epi32(_mm256_add_epi32(_mm256_mullo_epi32(xq0, f1_1),
+ _mm256_mullo_epi32(xq1, f2_1)),
+ _mm256_slli_epi32(u_1, SGRPROJ_PRJ_BITS));
+
+ const __m256i rounding =
+ round_for_shift(SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS);
+ const __m256i w_0 = _mm256_srai_epi32(
+ _mm256_add_epi32(v_0, rounding), SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS);
+ const __m256i w_1 = _mm256_srai_epi32(
+ _mm256_add_epi32(v_1, rounding), SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS);
+
+ if (highbd) {
+ // Pack into 16 bits and clamp to [0, 2^bit_depth)
+ // Note that packing into 16 bits messes up the order of the bits,
+ // so we use a permute function to correct this
+ const __m256i tmp = _mm256_packus_epi32(w_0, w_1);
+ const __m256i tmp2 = _mm256_permute4x64_epi64(tmp, 0xd8);
+ const __m256i max = _mm256_set1_epi16((1 << bit_depth) - 1);
+ const __m256i res = _mm256_min_epi16(tmp2, max);
+ yy_store_256(CONVERT_TO_SHORTPTR(dst8 + m), res);
+ } else {
+ // Pack into 8 bits and clamp to [0, 256)
+ // Note that each pack messes up the order of the bits,
+ // so we use a permute function to correct this
+ const __m256i tmp = _mm256_packs_epi32(w_0, w_1);
+ const __m256i tmp2 = _mm256_permute4x64_epi64(tmp, 0xd8);
+ const __m256i res =
+ _mm256_packus_epi16(tmp2, tmp2 /* "don't care" value */);
+ const __m128i res2 =
+ _mm256_castsi256_si128(_mm256_permute4x64_epi64(res, 0xd8));
+ xx_store_128(dst8 + m, res2);
+ }
+ }
+ }
+}
diff --git a/test/selfguided_filter_test.cc b/test/selfguided_filter_test.cc
index 093f9dc..12aeb8e 100644
--- a/test/selfguided_filter_test.cc
+++ b/test/selfguided_filter_test.cc
@@ -29,7 +29,13 @@
using std::tr1::make_tuple;
using libaom_test::ACMRandom;
-typedef tuple<> FilterTestParam;
+typedef void (*SgrFunc)(const uint8_t *dat8, int width, int height, int stride,
+ int eps, const int *xqd, uint8_t *dst8, int dst_stride,
+ int32_t *tmpbuf, int bit_depth, int highbd);
+
+// Test parameter list:
+// <tst_fun_>
+typedef tuple<SgrFunc> FilterTestParam;
class AV1SelfguidedFilterTest
: public ::testing::TestWithParam<FilterTestParam> {
@@ -41,6 +47,7 @@
protected:
void RunSpeedTest() {
+ tst_fun_ = GET_PARAM(0);
const int pu_width = RESTORATION_PROC_UNIT_SIZE;
const int pu_height = RESTORATION_PROC_UNIT_SIZE;
const int width = 256, height = 256, stride = 288, out_stride = 288;
@@ -48,10 +55,10 @@
int i, j, k;
uint8_t *input_ =
- (uint8_t *)aom_memalign(16, stride * (height + 32) * sizeof(uint8_t));
+ (uint8_t *)aom_memalign(32, stride * (height + 32) * sizeof(uint8_t));
uint8_t *output_ = (uint8_t *)aom_memalign(
- 16, out_stride * (height + 32) * sizeof(uint8_t));
- int32_t *tmpbuf = (int32_t *)aom_memalign(16, RESTORATION_TMPBUF_SIZE);
+ 32, out_stride * (height + 32) * sizeof(uint8_t));
+ int32_t *tmpbuf = (int32_t *)aom_memalign(32, RESTORATION_TMPBUF_SIZE);
uint8_t *input = input_ + stride * 16 + 16;
uint8_t *output = output_ + out_stride * 16 + 16;
@@ -81,8 +88,8 @@
int h = AOMMIN(pu_height, height - k);
uint8_t *input_p = input + k * stride + j;
uint8_t *output_p = output + k * out_stride + j;
- apply_selfguided_restoration(input_p, w, h, stride, eps, xqd,
- output_p, out_stride, tmpbuf, 8, 0);
+ tst_fun_(input_p, w, h, stride, eps, xqd, output_p, out_stride,
+ tmpbuf, 8, 0);
}
}
std::clock_t end = std::clock();
@@ -97,6 +104,7 @@
}
void RunCorrectnessTest() {
+ tst_fun_ = GET_PARAM(0);
const int pu_width = RESTORATION_PROC_UNIT_SIZE;
const int pu_height = RESTORATION_PROC_UNIT_SIZE;
// Set the maximum width/height to test here. We actually test a small
@@ -107,12 +115,12 @@
int i, j, k;
uint8_t *input_ =
- (uint8_t *)aom_memalign(16, stride * (max_h + 32) * sizeof(uint8_t));
+ (uint8_t *)aom_memalign(32, stride * (max_h + 32) * sizeof(uint8_t));
uint8_t *output_ = (uint8_t *)aom_memalign(
- 16, out_stride * (max_h + 32) * sizeof(uint8_t));
+ 32, out_stride * (max_h + 32) * sizeof(uint8_t));
uint8_t *output2_ = (uint8_t *)aom_memalign(
- 16, out_stride * (max_h + 32) * sizeof(uint8_t));
- int32_t *tmpbuf = (int32_t *)aom_memalign(16, RESTORATION_TMPBUF_SIZE);
+ 32, out_stride * (max_h + 32) * sizeof(uint8_t));
+ int32_t *tmpbuf = (int32_t *)aom_memalign(32, RESTORATION_TMPBUF_SIZE);
uint8_t *input = input_ + stride * 16 + 16;
uint8_t *output = output_ + out_stride * 16 + 16;
@@ -146,17 +154,12 @@
uint8_t *input_p = input + k * stride + j;
uint8_t *output_p = output + k * out_stride + j;
uint8_t *output2_p = output2 + k * out_stride + j;
- apply_selfguided_restoration(input_p, w, h, stride, eps, xqd,
- output_p, out_stride, tmpbuf, 8, 0);
+ tst_fun_(input_p, w, h, stride, eps, xqd, output_p, out_stride,
+ tmpbuf, 8, 0);
apply_selfguided_restoration_c(input_p, w, h, stride, eps, xqd,
output2_p, out_stride, tmpbuf, 8, 0);
}
- /*
- apply_selfguided_restoration(input, test_w, test_h, stride, eps, xqd,
- output, out_stride, tmpbuf);
- apply_selfguided_restoration_c(input, test_w, test_h, stride, eps, xqd,
- output2, out_stride, tmpbuf);
- */
+
for (j = 0; j < test_h; ++j)
for (k = 0; k < test_w; ++k) {
ASSERT_EQ(output[j * out_stride + k], output2[j * out_stride + k]);
@@ -168,18 +171,27 @@
aom_free(output2_);
aom_free(tmpbuf);
}
+
+ private:
+ SgrFunc tst_fun_;
};
-TEST_P(AV1SelfguidedFilterTest, SpeedTest) { RunSpeedTest(); }
+TEST_P(AV1SelfguidedFilterTest, DISABLED_SpeedTest) { RunSpeedTest(); }
TEST_P(AV1SelfguidedFilterTest, CorrectnessTest) { RunCorrectnessTest(); }
#if HAVE_SSE4_1
-const FilterTestParam params[] = { make_tuple() };
INSTANTIATE_TEST_CASE_P(SSE4_1, AV1SelfguidedFilterTest,
- ::testing::ValuesIn(params));
+ ::testing::Values(apply_selfguided_restoration_sse4_1));
#endif
-typedef tuple<int> HighbdFilterTestParam;
+#if HAVE_AVX2
+INSTANTIATE_TEST_CASE_P(AVX2, AV1SelfguidedFilterTest,
+ ::testing::Values(apply_selfguided_restoration_avx2));
+#endif
+
+// Test parameter list:
+// <tst_fun_, bit_depth>
+typedef tuple<SgrFunc, int> HighbdFilterTestParam;
class AV1HighbdSelfguidedFilterTest
: public ::testing::TestWithParam<HighbdFilterTestParam> {
@@ -191,19 +203,20 @@
protected:
void RunSpeedTest() {
+ tst_fun_ = GET_PARAM(0);
const int pu_width = RESTORATION_PROC_UNIT_SIZE;
const int pu_height = RESTORATION_PROC_UNIT_SIZE;
const int width = 256, height = 256, stride = 288, out_stride = 288;
const int NUM_ITERS = 2000;
int i, j, k;
- int bit_depth = GET_PARAM(0);
+ int bit_depth = GET_PARAM(1);
int mask = (1 << bit_depth) - 1;
uint16_t *input_ =
- (uint16_t *)aom_memalign(16, stride * (height + 32) * sizeof(uint16_t));
+ (uint16_t *)aom_memalign(32, stride * (height + 32) * sizeof(uint16_t));
uint16_t *output_ = (uint16_t *)aom_memalign(
- 16, out_stride * (height + 32) * sizeof(uint16_t));
- int32_t *tmpbuf = (int32_t *)aom_memalign(16, RESTORATION_TMPBUF_SIZE);
+ 32, out_stride * (height + 32) * sizeof(uint16_t));
+ int32_t *tmpbuf = (int32_t *)aom_memalign(32, RESTORATION_TMPBUF_SIZE);
uint16_t *input = input_ + stride * 16 + 16;
uint16_t *output = output_ + out_stride * 16 + 16;
@@ -234,9 +247,9 @@
int h = AOMMIN(pu_height, height - k);
uint16_t *input_p = input + k * stride + j;
uint16_t *output_p = output + k * out_stride + j;
- apply_selfguided_restoration(
- CONVERT_TO_BYTEPTR(input_p), w, h, stride, eps, xqd,
- CONVERT_TO_BYTEPTR(output_p), out_stride, tmpbuf, bit_depth, 1);
+ tst_fun_(CONVERT_TO_BYTEPTR(input_p), w, h, stride, eps, xqd,
+ CONVERT_TO_BYTEPTR(output_p), out_stride, tmpbuf, bit_depth,
+ 1);
}
}
aom_usec_timer_mark(&timer);
@@ -251,6 +264,7 @@
}
void RunCorrectnessTest() {
+ tst_fun_ = GET_PARAM(0);
const int pu_width = RESTORATION_PROC_UNIT_SIZE;
const int pu_height = RESTORATION_PROC_UNIT_SIZE;
// Set the maximum width/height to test here. We actually test a small
@@ -259,16 +273,16 @@
const int max_w = 260, max_h = 260, stride = 672, out_stride = 672;
const int NUM_ITERS = 81;
int i, j, k;
- int bit_depth = GET_PARAM(0);
+ int bit_depth = GET_PARAM(1);
int mask = (1 << bit_depth) - 1;
uint16_t *input_ =
- (uint16_t *)aom_memalign(16, stride * (max_h + 32) * sizeof(uint16_t));
+ (uint16_t *)aom_memalign(32, stride * (max_h + 32) * sizeof(uint16_t));
uint16_t *output_ = (uint16_t *)aom_memalign(
- 16, out_stride * (max_h + 32) * sizeof(uint16_t));
+ 32, out_stride * (max_h + 32) * sizeof(uint16_t));
uint16_t *output2_ = (uint16_t *)aom_memalign(
- 16, out_stride * (max_h + 32) * sizeof(uint16_t));
- int32_t *tmpbuf = (int32_t *)aom_memalign(16, RESTORATION_TMPBUF_SIZE);
+ 32, out_stride * (max_h + 32) * sizeof(uint16_t));
+ int32_t *tmpbuf = (int32_t *)aom_memalign(32, RESTORATION_TMPBUF_SIZE);
uint16_t *input = input_ + stride * 16 + 16;
uint16_t *output = output_ + out_stride * 16 + 16;
@@ -302,22 +316,14 @@
uint16_t *input_p = input + k * stride + j;
uint16_t *output_p = output + k * out_stride + j;
uint16_t *output2_p = output2 + k * out_stride + j;
- apply_selfguided_restoration(
- CONVERT_TO_BYTEPTR(input_p), w, h, stride, eps, xqd,
- CONVERT_TO_BYTEPTR(output_p), out_stride, tmpbuf, bit_depth, 1);
+ tst_fun_(CONVERT_TO_BYTEPTR(input_p), w, h, stride, eps, xqd,
+ CONVERT_TO_BYTEPTR(output_p), out_stride, tmpbuf, bit_depth,
+ 1);
apply_selfguided_restoration_c(
CONVERT_TO_BYTEPTR(input_p), w, h, stride, eps, xqd,
CONVERT_TO_BYTEPTR(output2_p), out_stride, tmpbuf, bit_depth, 1);
}
- /*
- apply_selfguided_restoration_highbd(input, test_w, test_h, stride,
- bit_depth, eps, xqd, output,
- out_stride, tmpbuf);
- apply_selfguided_restoration_highbd_c(input, test_w, test_h, stride,
- bit_depth, eps, xqd, output2,
- out_stride, tmpbuf);
- */
for (j = 0; j < test_h; ++j)
for (k = 0; k < test_w; ++k)
ASSERT_EQ(output[j * out_stride + k], output2[j * out_stride + k]);
@@ -328,16 +334,28 @@
aom_free(output2_);
aom_free(tmpbuf);
}
+
+ private:
+ SgrFunc tst_fun_;
};
-TEST_P(AV1HighbdSelfguidedFilterTest, SpeedTest) { RunSpeedTest(); }
+TEST_P(AV1HighbdSelfguidedFilterTest, DISABLED_SpeedTest) { RunSpeedTest(); }
TEST_P(AV1HighbdSelfguidedFilterTest, CorrectnessTest) { RunCorrectnessTest(); }
#if HAVE_SSE4_1
-const HighbdFilterTestParam highbd_params[] = { make_tuple(8), make_tuple(10),
- make_tuple(12) };
-INSTANTIATE_TEST_CASE_P(SSE4_1, AV1HighbdSelfguidedFilterTest,
- ::testing::ValuesIn(highbd_params));
+const int highbd_params_sse4_1[] = { 8, 10, 12 };
+INSTANTIATE_TEST_CASE_P(
+ SSE4_1, AV1HighbdSelfguidedFilterTest,
+ ::testing::Combine(::testing::Values(apply_selfguided_restoration_sse4_1),
+ ::testing::ValuesIn(highbd_params_sse4_1)));
+#endif
+
+#if HAVE_AVX2
+const int highbd_params_avx2[] = { 8, 10, 12 };
+INSTANTIATE_TEST_CASE_P(
+ AVX2, AV1HighbdSelfguidedFilterTest,
+ ::testing::Combine(::testing::Values(apply_selfguided_restoration_avx2),
+ ::testing::ValuesIn(highbd_params_avx2)));
#endif
} // namespace