blob: a3b8a6fc735f88840f9ac36853a0f8f3ee9aaa21 [file] [log] [blame]
/*
* Copyright (c) 2017, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "av1/encoder/encodetxb.h"
#include "aom_ports/mem.h"
#include "av1/common/blockd.h"
#include "av1/common/idct.h"
#include "av1/common/pred_common.h"
#include "av1/common/scan.h"
#include "av1/encoder/bitstream.h"
#include "av1/encoder/cost.h"
#include "av1/encoder/encodeframe.h"
#include "av1/encoder/hash.h"
#include "av1/encoder/rdopt.h"
#include "av1/encoder/tokenize.h"
static int hbt_needs_init = 1;
static CRC32C crc_calculator;
static const int HBT_EOB = 16; // also the length in opt_qcoeff
static const int HBT_TABLE_SIZE = 65536; // 16 bit: holds 65536 'arrays'
static const int HBT_ARRAY_LENGTH = 256; // 8 bit: 256 entries
// If removed in hbt_create_hashes or increased beyond int8_t, widen deltas type
static const int HBT_KICKOUT = 3;
typedef struct OptTxbQcoeff {
// Use larger type if larger/no kickout value is used in hbt_create_hashes
int8_t deltas[16];
uint32_t hbt_qc_hash;
uint32_t hbt_ctx_hash;
int init;
int rate_cost;
} OptTxbQcoeff;
OptTxbQcoeff *hbt_hash_table;
typedef struct LevelDownStats {
int update;
tran_low_t low_qc;
tran_low_t low_dqc;
int64_t dist0;
int rate;
int rate_low;
int64_t dist;
int64_t dist_low;
int64_t rd;
int64_t rd_low;
int64_t nz_rd;
int64_t rd_diff;
int cost_diff;
int64_t dist_diff;
int new_eob;
} LevelDownStats;
void av1_alloc_txb_buf(AV1_COMP *cpi) {
AV1_COMMON *cm = &cpi->common;
int size = ((cm->mi_rows >> cm->seq_params.mib_size_log2) + 1) *
((cm->mi_cols >> cm->seq_params.mib_size_log2) + 1);
av1_free_txb_buf(cpi);
// TODO(jingning): This should be further reduced.
CHECK_MEM_ERROR(cm, cpi->coeff_buffer_base,
aom_memalign(32, sizeof(*cpi->coeff_buffer_base) * size));
}
void av1_free_txb_buf(AV1_COMP *cpi) { aom_free(cpi->coeff_buffer_base); }
void av1_set_coeff_buffer(const AV1_COMP *const cpi, MACROBLOCK *const x,
int mi_row, int mi_col) {
const AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
int mib_size_log2 = cm->seq_params.mib_size_log2;
int stride = (cm->mi_cols >> mib_size_log2) + 1;
int offset = (mi_row >> mib_size_log2) * stride + (mi_col >> mib_size_log2);
CB_COEFF_BUFFER *coeff_buf = &cpi->coeff_buffer_base[offset];
const int txb_offset = x->cb_offset / (TX_SIZE_W_MIN * TX_SIZE_H_MIN);
assert(x->cb_offset < (1 << num_pels_log2_lookup[cm->seq_params.sb_size]));
for (int plane = 0; plane < num_planes; ++plane) {
x->mbmi_ext->tcoeff[plane] = coeff_buf->tcoeff[plane] + x->cb_offset;
x->mbmi_ext->eobs[plane] = coeff_buf->eobs[plane] + txb_offset;
x->mbmi_ext->txb_skip_ctx[plane] =
coeff_buf->txb_skip_ctx[plane] + txb_offset;
x->mbmi_ext->dc_sign_ctx[plane] =
coeff_buf->dc_sign_ctx[plane] + txb_offset;
}
}
static void write_golomb(aom_writer *w, int level) {
int x = level + 1;
int i = x;
int length = 0;
while (i) {
i >>= 1;
++length;
}
assert(length > 0);
for (i = 0; i < length - 1; ++i) aom_write_bit(w, 0);
for (i = length - 1; i >= 0; --i) aom_write_bit(w, (x >> i) & 0x01);
}
static INLINE tran_low_t get_lower_coeff(tran_low_t qc) {
if (qc == 0) {
return 0;
}
return qc > 0 ? qc - 1 : qc + 1;
}
static INLINE tran_low_t qcoeff_to_dqcoeff(tran_low_t qc, int coeff_idx,
int dqv, int shift,
const qm_val_t *iqmatrix) {
int sign = qc < 0 ? -1 : 1;
if (iqmatrix != NULL)
dqv =
((iqmatrix[coeff_idx] * dqv) + (1 << (AOM_QM_BITS - 1))) >> AOM_QM_BITS;
return sign * ((abs(qc) * dqv) >> shift);
}
static INLINE int64_t get_coeff_dist(tran_low_t tcoeff, tran_low_t dqcoeff,
int shift) {
const int64_t diff = (tcoeff - dqcoeff) * (1 << shift);
const int64_t error = diff * diff;
return error;
}
#if CONFIG_ENTROPY_STATS
void av1_update_eob_context(int cdf_idx, int eob, TX_SIZE tx_size,
TX_CLASS tx_class, PLANE_TYPE plane,
FRAME_CONTEXT *ec_ctx, FRAME_COUNTS *counts,
uint8_t allow_update_cdf) {
#else
void av1_update_eob_context(int eob, TX_SIZE tx_size, TX_CLASS tx_class,
PLANE_TYPE plane, FRAME_CONTEXT *ec_ctx,
uint8_t allow_update_cdf) {
#endif
int eob_extra;
const int eob_pt = get_eob_pos_token(eob, &eob_extra);
TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size);
const int eob_multi_size = txsize_log2_minus4[tx_size];
const int eob_multi_ctx = (tx_class == TX_CLASS_2D) ? 0 : 1;
switch (eob_multi_size) {
case 0:
#if CONFIG_ENTROPY_STATS
++counts->eob_multi16[cdf_idx][plane][eob_multi_ctx][eob_pt - 1];
#endif
if (allow_update_cdf)
update_cdf(ec_ctx->eob_flag_cdf16[plane][eob_multi_ctx], eob_pt - 1, 5);
break;
case 1:
#if CONFIG_ENTROPY_STATS
++counts->eob_multi32[cdf_idx][plane][eob_multi_ctx][eob_pt - 1];
#endif
if (allow_update_cdf)
update_cdf(ec_ctx->eob_flag_cdf32[plane][eob_multi_ctx], eob_pt - 1, 6);
break;
case 2:
#if CONFIG_ENTROPY_STATS
++counts->eob_multi64[cdf_idx][plane][eob_multi_ctx][eob_pt - 1];
#endif
if (allow_update_cdf)
update_cdf(ec_ctx->eob_flag_cdf64[plane][eob_multi_ctx], eob_pt - 1, 7);
break;
case 3:
#if CONFIG_ENTROPY_STATS
++counts->eob_multi128[cdf_idx][plane][eob_multi_ctx][eob_pt - 1];
#endif
if (allow_update_cdf) {
update_cdf(ec_ctx->eob_flag_cdf128[plane][eob_multi_ctx], eob_pt - 1,
8);
}
break;
case 4:
#if CONFIG_ENTROPY_STATS
++counts->eob_multi256[cdf_idx][plane][eob_multi_ctx][eob_pt - 1];
#endif
if (allow_update_cdf) {
update_cdf(ec_ctx->eob_flag_cdf256[plane][eob_multi_ctx], eob_pt - 1,
9);
}
break;
case 5:
#if CONFIG_ENTROPY_STATS
++counts->eob_multi512[cdf_idx][plane][eob_multi_ctx][eob_pt - 1];
#endif
if (allow_update_cdf) {
update_cdf(ec_ctx->eob_flag_cdf512[plane][eob_multi_ctx], eob_pt - 1,
10);
}
break;
case 6:
default:
#if CONFIG_ENTROPY_STATS
++counts->eob_multi1024[cdf_idx][plane][eob_multi_ctx][eob_pt - 1];
#endif
if (allow_update_cdf) {
update_cdf(ec_ctx->eob_flag_cdf1024[plane][eob_multi_ctx], eob_pt - 1,
11);
}
break;
}
if (k_eob_offset_bits[eob_pt] > 0) {
int eob_ctx = eob_pt - 3;
int eob_shift = k_eob_offset_bits[eob_pt] - 1;
int bit = (eob_extra & (1 << eob_shift)) ? 1 : 0;
#if CONFIG_ENTROPY_STATS
counts->eob_extra[cdf_idx][txs_ctx][plane][eob_pt][bit]++;
#endif // CONFIG_ENTROPY_STATS
if (allow_update_cdf)
update_cdf(ec_ctx->eob_extra_cdf[txs_ctx][plane][eob_ctx], bit, 2);
}
}
static int get_eob_cost(int eob, const LV_MAP_EOB_COST *txb_eob_costs,
const LV_MAP_COEFF_COST *txb_costs, TX_CLASS tx_class) {
int eob_extra;
const int eob_pt = get_eob_pos_token(eob, &eob_extra);
int eob_cost = 0;
const int eob_multi_ctx = (tx_class == TX_CLASS_2D) ? 0 : 1;
eob_cost = txb_eob_costs->eob_cost[eob_multi_ctx][eob_pt - 1];
if (k_eob_offset_bits[eob_pt] > 0) {
const int eob_ctx = eob_pt - 3;
const int eob_shift = k_eob_offset_bits[eob_pt] - 1;
const int bit = (eob_extra & (1 << eob_shift)) ? 1 : 0;
eob_cost += txb_costs->eob_extra_cost[eob_ctx][bit];
const int offset_bits = k_eob_offset_bits[eob_pt];
if (offset_bits > 1) eob_cost += av1_cost_literal(offset_bits - 1);
}
return eob_cost;
}
static INLINE int get_sign_bit_cost(tran_low_t qc, int coeff_idx,
const int (*dc_sign_cost)[2],
int dc_sign_ctx) {
if (coeff_idx == 0) {
const int sign = (qc < 0) ? 1 : 0;
return dc_sign_cost[dc_sign_ctx][sign];
}
return av1_cost_literal(1);
}
static INLINE int get_br_cost(tran_low_t abs_qc, int ctx,
const int *coeff_lps) {
const tran_low_t min_level = 1 + NUM_BASE_LEVELS;
const tran_low_t max_level = 1 + NUM_BASE_LEVELS + COEFF_BASE_RANGE;
(void)ctx;
if (abs_qc >= min_level) {
if (abs_qc >= max_level) {
return coeff_lps[COEFF_BASE_RANGE]; // COEFF_BASE_RANGE * cost0;
} else {
return coeff_lps[(abs_qc - min_level)]; // * cost0 + cost1;
}
}
return 0;
}
static INLINE int get_golomb_cost(int abs_qc) {
if (abs_qc >= 1 + NUM_BASE_LEVELS + COEFF_BASE_RANGE) {
const int r = abs_qc - COEFF_BASE_RANGE - NUM_BASE_LEVELS;
const int length = get_msb(r) + 1;
return av1_cost_literal(2 * length - 1);
}
return 0;
}
static int get_coeff_cost(const tran_low_t qc, const int scan_idx,
const int is_eob, const TxbInfo *const txb_info,
const LV_MAP_COEFF_COST *const txb_costs,
const int coeff_ctx, const TX_CLASS tx_class) {
const TXB_CTX *const txb_ctx = txb_info->txb_ctx;
const int is_nz = (qc != 0);
const tran_low_t abs_qc = abs(qc);
int cost = 0;
const int16_t *const scan = txb_info->scan_order->scan;
const int pos = scan[scan_idx];
if (is_eob) {
cost += txb_costs->base_eob_cost[coeff_ctx][AOMMIN(abs_qc, 3) - 1];
} else {
cost += txb_costs->base_cost[coeff_ctx][AOMMIN(abs_qc, 3)];
}
if (is_nz) {
cost += get_sign_bit_cost(qc, scan_idx, txb_costs->dc_sign_cost,
txb_ctx->dc_sign_ctx);
if (abs_qc > NUM_BASE_LEVELS) {
const int ctx =
get_br_ctx(txb_info->levels, pos, txb_info->bwl, tx_class);
cost += get_br_cost(abs_qc, ctx, txb_costs->lps_cost[ctx]);
cost += get_golomb_cost(abs_qc);
}
}
return cost;
}
static INLINE int get_nz_map_ctx(const uint8_t *const levels,
const int coeff_idx, const int bwl,
const int height, const int scan_idx,
const int is_eob, const TX_SIZE tx_size,
const TX_CLASS tx_class) {
if (is_eob) {
if (scan_idx == 0) return 0;
if (scan_idx <= (height << bwl) / 8) return 1;
if (scan_idx <= (height << bwl) / 4) return 2;
return 3;
}
const int stats =
get_nz_mag(levels + get_padded_idx(coeff_idx, bwl), bwl, tx_class);
return get_nz_map_ctx_from_stats(stats, coeff_idx, bwl, tx_size, tx_class);
}
static void get_dist_cost_stats(LevelDownStats *const stats, const int scan_idx,
const int is_eob,
const LV_MAP_COEFF_COST *const txb_costs,
const TxbInfo *const txb_info,
const TX_CLASS tx_class) {
const int16_t *const scan = txb_info->scan_order->scan;
const int coeff_idx = scan[scan_idx];
const tran_low_t qc = txb_info->qcoeff[coeff_idx];
const uint8_t *const levels = txb_info->levels;
stats->new_eob = -1;
stats->update = 0;
stats->rd_low = 0;
stats->rd = 0;
stats->nz_rd = 0;
stats->dist_low = 0;
stats->rate_low = 0;
stats->low_qc = 0;
const tran_low_t tqc = txb_info->tcoeff[coeff_idx];
const int dqv = txb_info->dequant[coeff_idx != 0];
const int coeff_ctx =
get_nz_map_ctx(levels, coeff_idx, txb_info->bwl, txb_info->height,
scan_idx, is_eob, txb_info->tx_size, tx_class);
const int qc_cost = get_coeff_cost(qc, scan_idx, is_eob, txb_info, txb_costs,
coeff_ctx, tx_class);
assert(qc != 0);
const tran_low_t dqc = qcoeff_to_dqcoeff(qc, coeff_idx, dqv, txb_info->shift,
txb_info->iqmatrix);
const int64_t dqc_dist = get_coeff_dist(tqc, dqc, txb_info->shift);
// distortion difference when coefficient is quantized to 0
const tran_low_t dqc0 =
qcoeff_to_dqcoeff(0, coeff_idx, dqv, txb_info->shift, txb_info->iqmatrix);
stats->dist0 = get_coeff_dist(tqc, dqc0, txb_info->shift);
stats->dist = dqc_dist - stats->dist0;
stats->rate = qc_cost;
stats->rd = RDCOST(txb_info->rdmult, stats->rate, stats->dist);
stats->low_qc = get_lower_coeff(qc);
if (is_eob && stats->low_qc == 0) {
stats->rd_low = stats->rd; // disable selection of low_qc in this case.
} else {
if (stats->low_qc == 0) {
stats->dist_low = 0;
} else {
stats->low_dqc = qcoeff_to_dqcoeff(stats->low_qc, coeff_idx, dqv,
txb_info->shift, txb_info->iqmatrix);
const int64_t low_dqc_dist =
get_coeff_dist(tqc, stats->low_dqc, txb_info->shift);
stats->dist_low = low_dqc_dist - stats->dist0;
}
const int low_qc_cost =
get_coeff_cost(stats->low_qc, scan_idx, is_eob, txb_info, txb_costs,
coeff_ctx, tx_class);
stats->rate_low = low_qc_cost;
stats->rd_low = RDCOST(txb_info->rdmult, stats->rate_low, stats->dist_low);
}
}
static void get_dist_cost_stats_with_eob(
LevelDownStats *const stats, const int scan_idx,
const LV_MAP_COEFF_COST *const txb_costs, const TxbInfo *const txb_info,
const TX_CLASS tx_class) {
const int is_eob = 0;
get_dist_cost_stats(stats, scan_idx, is_eob, txb_costs, txb_info, tx_class);
const int16_t *const scan = txb_info->scan_order->scan;
const int coeff_idx = scan[scan_idx];
const tran_low_t qc = txb_info->qcoeff[coeff_idx];
const int coeff_ctx_temp = get_nz_map_ctx(
txb_info->levels, coeff_idx, txb_info->bwl, txb_info->height, scan_idx, 1,
txb_info->tx_size, tx_class);
const int qc_eob_cost = get_coeff_cost(qc, scan_idx, 1, txb_info, txb_costs,
coeff_ctx_temp, tx_class);
int64_t rd_eob = RDCOST(txb_info->rdmult, qc_eob_cost, stats->dist);
if (stats->low_qc != 0) {
const int low_qc_eob_cost =
get_coeff_cost(stats->low_qc, scan_idx, 1, txb_info, txb_costs,
coeff_ctx_temp, tx_class);
int64_t rd_eob_low =
RDCOST(txb_info->rdmult, low_qc_eob_cost, stats->dist_low);
rd_eob = (rd_eob > rd_eob_low) ? rd_eob_low : rd_eob;
}
stats->nz_rd = AOMMIN(stats->rd_low, stats->rd) - rd_eob;
}
static INLINE void update_qcoeff(const int coeff_idx, const tran_low_t qc,
const TxbInfo *const txb_info) {
txb_info->qcoeff[coeff_idx] = qc;
txb_info->levels[get_padded_idx(coeff_idx, txb_info->bwl)] =
(uint8_t)clamp(abs(qc), 0, INT8_MAX);
}
static INLINE void update_coeff(const int coeff_idx, const tran_low_t qc,
const TxbInfo *const txb_info) {
update_qcoeff(coeff_idx, qc, txb_info);
const int dqv = txb_info->dequant[coeff_idx != 0];
txb_info->dqcoeff[coeff_idx] = qcoeff_to_dqcoeff(
qc, coeff_idx, dqv, txb_info->shift, txb_info->iqmatrix);
}
void av1_txb_init_levels_c(const tran_low_t *const coeff, const int width,
const int height, uint8_t *const levels) {
const int stride = width + TX_PAD_HOR;
uint8_t *ls = levels;
memset(levels - TX_PAD_TOP * stride, 0,
sizeof(*levels) * TX_PAD_TOP * stride);
memset(levels + stride * height, 0,
sizeof(*levels) * (TX_PAD_BOTTOM * stride + TX_PAD_END));
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
*ls++ = (uint8_t)clamp(abs(coeff[i * width + j]), 0, INT8_MAX);
}
for (int j = 0; j < TX_PAD_HOR; j++) {
*ls++ = 0;
}
}
}
void av1_get_nz_map_contexts_c(const uint8_t *const levels,
const int16_t *const scan, const uint16_t eob,
const TX_SIZE tx_size, const TX_CLASS tx_class,
int8_t *const coeff_contexts) {
const int bwl = get_txb_bwl(tx_size);
const int height = get_txb_high(tx_size);
for (int i = 0; i < eob; ++i) {
const int pos = scan[i];
coeff_contexts[pos] = get_nz_map_ctx(levels, pos, bwl, height, i,
i == eob - 1, tx_size, tx_class);
}
}
void av1_write_coeffs_txb(const AV1_COMMON *const cm, MACROBLOCKD *xd,
aom_writer *w, int blk_row, int blk_col, int plane,
TX_SIZE tx_size, const tran_low_t *tcoeff,
uint16_t eob, TXB_CTX *txb_ctx) {
const PLANE_TYPE plane_type = get_plane_type(plane);
const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size);
const TX_TYPE tx_type = av1_get_tx_type(plane_type, xd, blk_row, blk_col,
tx_size, cm->reduced_tx_set_used);
const TX_CLASS tx_class = tx_type_to_class[tx_type];
const SCAN_ORDER *const scan_order = get_scan(tx_size, tx_type);
const int16_t *const scan = scan_order->scan;
int c;
const int bwl = get_txb_bwl(tx_size);
const int width = get_txb_wide(tx_size);
const int height = get_txb_high(tx_size);
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
uint8_t levels_buf[TX_PAD_2D];
uint8_t *const levels = set_levels(levels_buf, width);
DECLARE_ALIGNED(16, int8_t, coeff_contexts[MAX_TX_SQUARE]);
aom_write_symbol(w, eob == 0,
ec_ctx->txb_skip_cdf[txs_ctx][txb_ctx->txb_skip_ctx], 2);
if (plane == 0 && eob == 0) {
assert(tx_type == DCT_DCT);
}
if (eob == 0) return;
av1_txb_init_levels(tcoeff, width, height, levels);
av1_write_tx_type(cm, xd, blk_row, blk_col, plane, tx_size, w);
int eob_extra;
const int eob_pt = get_eob_pos_token(eob, &eob_extra);
const int eob_multi_size = txsize_log2_minus4[tx_size];
const int eob_multi_ctx = (tx_class == TX_CLASS_2D) ? 0 : 1;
switch (eob_multi_size) {
case 0:
aom_write_symbol(w, eob_pt - 1,
ec_ctx->eob_flag_cdf16[plane_type][eob_multi_ctx], 5);
break;
case 1:
aom_write_symbol(w, eob_pt - 1,
ec_ctx->eob_flag_cdf32[plane_type][eob_multi_ctx], 6);
break;
case 2:
aom_write_symbol(w, eob_pt - 1,
ec_ctx->eob_flag_cdf64[plane_type][eob_multi_ctx], 7);
break;
case 3:
aom_write_symbol(w, eob_pt - 1,
ec_ctx->eob_flag_cdf128[plane_type][eob_multi_ctx], 8);
break;
case 4:
aom_write_symbol(w, eob_pt - 1,
ec_ctx->eob_flag_cdf256[plane_type][eob_multi_ctx], 9);
break;
case 5:
aom_write_symbol(w, eob_pt - 1,
ec_ctx->eob_flag_cdf512[plane_type][eob_multi_ctx], 10);
break;
default:
aom_write_symbol(w, eob_pt - 1,
ec_ctx->eob_flag_cdf1024[plane_type][eob_multi_ctx], 11);
break;
}
if (k_eob_offset_bits[eob_pt] > 0) {
const int eob_ctx = eob_pt - 3;
int eob_shift = k_eob_offset_bits[eob_pt] - 1;
int bit = (eob_extra & (1 << eob_shift)) ? 1 : 0;
aom_write_symbol(w, bit,
ec_ctx->eob_extra_cdf[txs_ctx][plane_type][eob_ctx], 2);
for (int i = 1; i < k_eob_offset_bits[eob_pt]; i++) {
eob_shift = k_eob_offset_bits[eob_pt] - 1 - i;
bit = (eob_extra & (1 << eob_shift)) ? 1 : 0;
aom_write_bit(w, bit);
}
}
av1_get_nz_map_contexts(levels, scan, eob, tx_size, tx_class, coeff_contexts);
for (c = eob - 1; c >= 0; --c) {
const int pos = scan[c];
const int coeff_ctx = coeff_contexts[pos];
const tran_low_t v = tcoeff[pos];
const tran_low_t level = abs(v);
if (c == eob - 1) {
aom_write_symbol(
w, AOMMIN(level, 3) - 1,
ec_ctx->coeff_base_eob_cdf[txs_ctx][plane_type][coeff_ctx], 3);
} else {
aom_write_symbol(w, AOMMIN(level, 3),
ec_ctx->coeff_base_cdf[txs_ctx][plane_type][coeff_ctx],
4);
}
if (level > NUM_BASE_LEVELS) {
// level is above 1.
const int base_range = level - 1 - NUM_BASE_LEVELS;
const int br_ctx = get_br_ctx(levels, pos, bwl, tx_class);
for (int idx = 0; idx < COEFF_BASE_RANGE; idx += BR_CDF_SIZE - 1) {
const int k = AOMMIN(base_range - idx, BR_CDF_SIZE - 1);
aom_write_symbol(
w, k,
ec_ctx->coeff_br_cdf[AOMMIN(txs_ctx, TX_32X32)][plane_type][br_ctx],
BR_CDF_SIZE);
if (k < BR_CDF_SIZE - 1) break;
}
}
}
// Loop to code all signs in the transform block,
// starting with the sign of DC (if applicable)
for (c = 0; c < eob; ++c) {
const tran_low_t v = tcoeff[scan[c]];
const tran_low_t level = abs(v);
const int sign = (v < 0) ? 1 : 0;
if (level) {
if (c == 0) {
aom_write_symbol(
w, sign, ec_ctx->dc_sign_cdf[plane_type][txb_ctx->dc_sign_ctx], 2);
} else {
aom_write_bit(w, sign);
}
if (level > COEFF_BASE_RANGE + NUM_BASE_LEVELS)
write_golomb(w, level - COEFF_BASE_RANGE - 1 - NUM_BASE_LEVELS);
}
}
}
typedef struct encode_txb_args {
const AV1_COMMON *cm;
MACROBLOCK *x;
aom_writer *w;
} ENCODE_TXB_ARGS;
static void write_coeffs_txb_wrap(const AV1_COMMON *cm, MACROBLOCK *x,
aom_writer *w, int plane, int block,
int blk_row, int blk_col, TX_SIZE tx_size) {
MACROBLOCKD *xd = &x->e_mbd;
tran_low_t *tcoeff = BLOCK_OFFSET(x->mbmi_ext->tcoeff[plane], block);
uint16_t eob = x->mbmi_ext->eobs[plane][block];
TXB_CTX txb_ctx = { x->mbmi_ext->txb_skip_ctx[plane][block],
x->mbmi_ext->dc_sign_ctx[plane][block] };
av1_write_coeffs_txb(cm, xd, w, blk_row, blk_col, plane, tx_size, tcoeff, eob,
&txb_ctx);
}
void av1_write_coeffs_mb(const AV1_COMMON *const cm, MACROBLOCK *x, int mi_row,
int mi_col, aom_writer *w, BLOCK_SIZE bsize) {
MACROBLOCKD *xd = &x->e_mbd;
const int num_planes = av1_num_planes(cm);
int block[MAX_MB_PLANE] = { 0 };
int row, col;
assert(bsize == get_plane_block_size(bsize, xd->plane[0].subsampling_x,
xd->plane[0].subsampling_y));
const int max_blocks_wide = max_block_wide(xd, bsize, 0);
const int max_blocks_high = max_block_high(xd, bsize, 0);
const BLOCK_SIZE max_unit_bsize = BLOCK_64X64;
int mu_blocks_wide = block_size_wide[max_unit_bsize] >> tx_size_wide_log2[0];
int mu_blocks_high = block_size_high[max_unit_bsize] >> tx_size_high_log2[0];
mu_blocks_wide = AOMMIN(max_blocks_wide, mu_blocks_wide);
mu_blocks_high = AOMMIN(max_blocks_high, mu_blocks_high);
for (row = 0; row < max_blocks_high; row += mu_blocks_high) {
for (col = 0; col < max_blocks_wide; col += mu_blocks_wide) {
for (int plane = 0; plane < num_planes; ++plane) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
if (!is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x,
pd->subsampling_y))
continue;
const TX_SIZE tx_size = av1_get_tx_size(plane, xd);
const int stepr = tx_size_high_unit[tx_size];
const int stepc = tx_size_wide_unit[tx_size];
const int step = stepr * stepc;
const int unit_height = ROUND_POWER_OF_TWO(
AOMMIN(mu_blocks_high + row, max_blocks_high), pd->subsampling_y);
const int unit_width = ROUND_POWER_OF_TWO(
AOMMIN(mu_blocks_wide + col, max_blocks_wide), pd->subsampling_x);
for (int blk_row = row >> pd->subsampling_y; blk_row < unit_height;
blk_row += stepr) {
for (int blk_col = col >> pd->subsampling_x; blk_col < unit_width;
blk_col += stepc) {
write_coeffs_txb_wrap(cm, x, w, plane, block[plane], blk_row,
blk_col, tx_size);
block[plane] += step;
}
}
}
}
}
}
// TODO(angiebird): use this function whenever it's possible
static int get_tx_type_cost(const AV1_COMMON *cm, const MACROBLOCK *x,
const MACROBLOCKD *xd, int plane, TX_SIZE tx_size,
TX_TYPE tx_type) {
if (plane > 0) return 0;
const TX_SIZE square_tx_size = txsize_sqr_map[tx_size];
const MB_MODE_INFO *mbmi = xd->mi[0];
const int is_inter = is_inter_block(mbmi);
if (get_ext_tx_types(tx_size, is_inter, cm->reduced_tx_set_used) > 1 &&
!xd->lossless[xd->mi[0]->segment_id]) {
const int ext_tx_set =
get_ext_tx_set(tx_size, is_inter, cm->reduced_tx_set_used);
if (is_inter) {
if (ext_tx_set > 0)
return x->inter_tx_type_costs[ext_tx_set][square_tx_size][tx_type];
} else {
if (ext_tx_set > 0) {
PREDICTION_MODE intra_dir;
if (mbmi->filter_intra_mode_info.use_filter_intra)
intra_dir = fimode_to_intradir[mbmi->filter_intra_mode_info
.filter_intra_mode];
else
intra_dir = mbmi->mode;
return x->intra_tx_type_costs[ext_tx_set][square_tx_size][intra_dir]
[tx_type];
}
}
}
return 0;
}
static AOM_FORCE_INLINE int warehouse_efficients_txb(
const AV1_COMMON *const cm, const MACROBLOCK *x, const int plane,
const int block, const TX_SIZE tx_size, const TXB_CTX *const txb_ctx,
const struct macroblock_plane *p, const int eob,
const PLANE_TYPE plane_type, const LV_MAP_COEFF_COST *const coeff_costs,
const MACROBLOCKD *const xd, const TX_TYPE tx_type,
const TX_CLASS tx_class) {
const tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
const int txb_skip_ctx = txb_ctx->txb_skip_ctx;
const int bwl = get_txb_bwl(tx_size);
const int width = get_txb_wide(tx_size);
const int height = get_txb_high(tx_size);
const SCAN_ORDER *const scan_order = get_scan(tx_size, tx_type);
const int16_t *const scan = scan_order->scan;
uint8_t levels_buf[TX_PAD_2D];
uint8_t *const levels = set_levels(levels_buf, width);
DECLARE_ALIGNED(16, int8_t, coeff_contexts[MAX_TX_SQUARE]);
const int eob_multi_size = txsize_log2_minus4[tx_size];
const LV_MAP_EOB_COST *const eob_costs =
&x->eob_costs[eob_multi_size][plane_type];
int cost = coeff_costs->txb_skip_cost[txb_skip_ctx][0];
av1_txb_init_levels(qcoeff, width, height, levels);
cost += get_tx_type_cost(cm, x, xd, plane, tx_size, tx_type);
cost += get_eob_cost(eob, eob_costs, coeff_costs, tx_class);
av1_get_nz_map_contexts(levels, scan, eob, tx_size, tx_class, coeff_contexts);
const int(*lps_cost)[COEFF_BASE_RANGE + 1] = coeff_costs->lps_cost;
int c = eob - 1;
{
const int pos = scan[c];
const tran_low_t v = qcoeff[pos];
const int sign = v >> 31;
const int level = (v ^ sign) - sign;
const int coeff_ctx = coeff_contexts[pos];
cost += coeff_costs->base_eob_cost[coeff_ctx][AOMMIN(level, 3) - 1];
if (v) {
// sign bit cost
if (level > NUM_BASE_LEVELS) {
const int ctx = get_br_ctx(levels, pos, bwl, tx_class);
const int base_range =
AOMMIN(level - 1 - NUM_BASE_LEVELS, COEFF_BASE_RANGE);
cost += lps_cost[ctx][base_range];
cost += get_golomb_cost(level);
}
if (c) {
cost += av1_cost_literal(1);
} else {
const int sign01 = (sign ^ sign) - sign;
const int dc_sign_ctx = txb_ctx->dc_sign_ctx;
cost += coeff_costs->dc_sign_cost[dc_sign_ctx][sign01];
return cost;
}
}
}
const int(*base_cost)[4] = coeff_costs->base_cost;
for (c = eob - 2; c >= 1; --c) {
const int pos = scan[c];
const int coeff_ctx = coeff_contexts[pos];
const tran_low_t v = qcoeff[pos];
const int level = abs(v);
const int cost0 = base_cost[coeff_ctx][AOMMIN(level, 3)];
if (v) {
// sign bit cost
cost += av1_cost_literal(1);
if (level > NUM_BASE_LEVELS) {
const int ctx = get_br_ctx(levels, pos, bwl, tx_class);
const int base_range =
AOMMIN(level - 1 - NUM_BASE_LEVELS, COEFF_BASE_RANGE);
cost += lps_cost[ctx][base_range];
cost += get_golomb_cost(level);
}
}
cost += cost0;
}
if (c == 0) {
const int pos = scan[c];
const tran_low_t v = qcoeff[pos];
const int coeff_ctx = coeff_contexts[pos];
const int sign = v >> 31;
const int level = (v ^ sign) - sign;
cost += base_cost[coeff_ctx][AOMMIN(level, 3)];
if (v) {
// sign bit cost
const int sign01 = (sign ^ sign) - sign;
const int dc_sign_ctx = txb_ctx->dc_sign_ctx;
cost += coeff_costs->dc_sign_cost[dc_sign_ctx][sign01];
if (level > NUM_BASE_LEVELS) {
const int ctx = get_br_ctx(levels, pos, bwl, tx_class);
const int base_range =
AOMMIN(level - 1 - NUM_BASE_LEVELS, COEFF_BASE_RANGE);
cost += lps_cost[ctx][base_range];
cost += get_golomb_cost(level);
}
}
}
return cost;
}
int av1_cost_coeffs_txb(const AV1_COMMON *const cm, const MACROBLOCK *x,
const int plane, const int block, const TX_SIZE tx_size,
const TX_TYPE tx_type, const TXB_CTX *const txb_ctx) {
const struct macroblock_plane *p = &x->plane[plane];
const int eob = p->eobs[block];
const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size);
const PLANE_TYPE plane_type = get_plane_type(plane);
const LV_MAP_COEFF_COST *const coeff_costs =
&x->coeff_costs[txs_ctx][plane_type];
if (eob == 0) {
return coeff_costs->txb_skip_cost[txb_ctx->txb_skip_ctx][1];
}
const MACROBLOCKD *const xd = &x->e_mbd;
const TX_CLASS tx_class = tx_type_to_class[tx_type];
#define WAREHOUSE_EFFICIENTS_TXB_CASE(tx_class_literal) \
case tx_class_literal: \
return warehouse_efficients_txb(cm, x, plane, block, tx_size, txb_ctx, p, \
eob, plane_type, coeff_costs, xd, tx_type, \
tx_class_literal);
switch (tx_class) {
WAREHOUSE_EFFICIENTS_TXB_CASE(TX_CLASS_2D);
WAREHOUSE_EFFICIENTS_TXB_CASE(TX_CLASS_HORIZ);
WAREHOUSE_EFFICIENTS_TXB_CASE(TX_CLASS_VERT);
#undef WAREHOUSE_EFFICIENTS_TXB_CASE
default: assert(false); return 0;
}
}
static int optimize_txb(TxbInfo *txb_info, const LV_MAP_COEFF_COST *txb_costs,
const LV_MAP_EOB_COST *txb_eob_costs, int *rate_cost) {
int update = 0;
if (txb_info->eob == 0) return update;
const int16_t *const scan = txb_info->scan_order->scan;
// forward optimize the nz_map`
const int init_eob = txb_info->eob;
const TX_CLASS tx_class = tx_type_to_class[txb_info->tx_type];
const int eob_cost =
get_eob_cost(init_eob, txb_eob_costs, txb_costs, tx_class);
// backward optimize the level-k map
int accu_rate = eob_cost;
int64_t accu_dist = 0;
int64_t prev_eob_rd_cost = INT64_MAX;
int64_t cur_eob_rd_cost = 0;
{
const int si = init_eob - 1;
const int coeff_idx = scan[si];
LevelDownStats stats;
get_dist_cost_stats(&stats, si, si == init_eob - 1, txb_costs, txb_info,
tx_class);
if ((stats.rd_low < stats.rd) && (stats.low_qc != 0)) {
update = 1;
update_coeff(coeff_idx, stats.low_qc, txb_info);
accu_rate += stats.rate_low;
accu_dist += stats.dist_low;
} else {
accu_rate += stats.rate;
accu_dist += stats.dist;
}
}
int si = init_eob - 2;
int8_t has_nz_tail = 0;
// eob is not fixed
for (; si >= 0 && has_nz_tail < 2; --si) {
assert(si != init_eob - 1);
const int coeff_idx = scan[si];
tran_low_t qc = txb_info->qcoeff[coeff_idx];
if (qc == 0) {
const int coeff_ctx =
get_lower_levels_ctx(txb_info->levels, coeff_idx, txb_info->bwl,
txb_info->tx_size, tx_class);
accu_rate += txb_costs->base_cost[coeff_ctx][0];
} else {
LevelDownStats stats;
get_dist_cost_stats_with_eob(&stats, si, txb_costs, txb_info, tx_class);
// check if it is better to make this the last significant coefficient
int cur_eob_rate =
get_eob_cost(si + 1, txb_eob_costs, txb_costs, tx_class);
cur_eob_rd_cost = RDCOST(txb_info->rdmult, cur_eob_rate, 0);
prev_eob_rd_cost =
RDCOST(txb_info->rdmult, accu_rate, accu_dist) + stats.nz_rd;
if (cur_eob_rd_cost <= prev_eob_rd_cost) {
update = 1;
for (int j = si + 1; j < txb_info->eob; j++) {
const int coeff_pos_j = scan[j];
update_coeff(coeff_pos_j, 0, txb_info);
}
txb_info->eob = si + 1;
// rerun cost calculation due to change of eob
accu_rate = cur_eob_rate;
accu_dist = 0;
get_dist_cost_stats(&stats, si, 1, txb_costs, txb_info, tx_class);
if ((stats.rd_low < stats.rd) && (stats.low_qc != 0)) {
update = 1;
update_coeff(coeff_idx, stats.low_qc, txb_info);
accu_rate += stats.rate_low;
accu_dist += stats.dist_low;
} else {
accu_rate += stats.rate;
accu_dist += stats.dist;
}
// reset non zero tail when new eob is found
has_nz_tail = 0;
} else {
int bUpdCoeff = 0;
if (stats.rd_low < stats.rd) {
if ((si < txb_info->eob - 1)) {
bUpdCoeff = 1;
update = 1;
}
} else {
++has_nz_tail;
}
if (bUpdCoeff) {
update_coeff(coeff_idx, stats.low_qc, txb_info);
accu_rate += stats.rate_low;
accu_dist += stats.dist_low;
} else {
accu_rate += stats.rate;
accu_dist += stats.dist;
}
}
}
} // for (si)
// eob is fixed
for (; si >= 0; --si) {
assert(si != init_eob - 1);
const int coeff_idx = scan[si];
tran_low_t qc = txb_info->qcoeff[coeff_idx];
if (qc == 0) {
const int coeff_ctx =
get_lower_levels_ctx(txb_info->levels, coeff_idx, txb_info->bwl,
txb_info->tx_size, tx_class);
accu_rate += txb_costs->base_cost[coeff_ctx][0];
} else {
LevelDownStats stats;
get_dist_cost_stats(&stats, si, 0, txb_costs, txb_info, tx_class);
int bUpdCoeff = 0;
if (stats.rd_low < stats.rd) {
if ((si < txb_info->eob - 1)) {
bUpdCoeff = 1;
update = 1;
}
}
if (bUpdCoeff) {
update_coeff(coeff_idx, stats.low_qc, txb_info);
accu_rate += stats.rate_low;
accu_dist += stats.dist_low;
} else {
accu_rate += stats.rate;
accu_dist += stats.dist;
}
}
} // for (si)
int non_zero_blk_rate =
txb_costs->txb_skip_cost[txb_info->txb_ctx->txb_skip_ctx][0];
prev_eob_rd_cost =
RDCOST(txb_info->rdmult, accu_rate + non_zero_blk_rate, accu_dist);
int zero_blk_rate =
txb_costs->txb_skip_cost[txb_info->txb_ctx->txb_skip_ctx][1];
int64_t zero_blk_rd_cost = RDCOST(txb_info->rdmult, zero_blk_rate, 0);
if (zero_blk_rd_cost <= prev_eob_rd_cost) {
update = 1;
for (int j = 0; j < txb_info->eob; j++) {
const int coeff_pos_j = scan[j];
update_coeff(coeff_pos_j, 0, txb_info);
}
txb_info->eob = 0;
}
// record total rate cost
*rate_cost = zero_blk_rd_cost <= prev_eob_rd_cost
? zero_blk_rate
: accu_rate + non_zero_blk_rate;
if (txb_info->eob > 0) {
*rate_cost += txb_info->tx_type_cost;
}
return update;
}
// These numbers are empirically obtained.
static const int plane_rd_mult[REF_TYPES][PLANE_TYPES] = {
{ 17, 13 },
{ 16, 10 },
};
void hbt_init() {
hbt_hash_table =
aom_malloc(sizeof(OptTxbQcoeff) * HBT_TABLE_SIZE * HBT_ARRAY_LENGTH);
memset(hbt_hash_table, 0,
sizeof(OptTxbQcoeff) * HBT_TABLE_SIZE * HBT_ARRAY_LENGTH);
av1_crc32c_calculator_init(&crc_calculator); // 31 bit: qc & ctx
hbt_needs_init = 0;
}
void hbt_destroy() { aom_free(hbt_hash_table); }
int hbt_hash_miss(uint32_t hbt_ctx_hash, uint32_t hbt_qc_hash,
TxbInfo *txb_info, const LV_MAP_COEFF_COST *txb_costs,
const LV_MAP_EOB_COST *txb_eob_costs,
const struct macroblock_plane *p, int block, int fast_mode,
int *rate_cost) {
(void)fast_mode;
const int16_t *scan = txb_info->scan_order->scan;
int prev_eob = txb_info->eob;
assert(HBT_EOB <= 16); // Lengthen array if allowing longer eob.
int32_t prev_coeff[16];
for (int i = 0; i < prev_eob; i++) {
prev_coeff[i] = txb_info->qcoeff[scan[i]];
}
for (int i = prev_eob; i < HBT_EOB; i++) {
prev_coeff[i] = 0; // For compiler piece of mind.
}
av1_txb_init_levels(txb_info->qcoeff, txb_info->width, txb_info->height,
txb_info->levels);
const int update =
optimize_txb(txb_info, txb_costs, txb_eob_costs, rate_cost);
// Overwrite old entry
uint16_t hbt_table_index = hbt_ctx_hash % HBT_TABLE_SIZE;
uint16_t hbt_array_index = hbt_qc_hash % HBT_ARRAY_LENGTH;
hbt_hash_table[hbt_table_index * HBT_ARRAY_LENGTH + hbt_array_index]
.rate_cost = *rate_cost;
hbt_hash_table[hbt_table_index * HBT_ARRAY_LENGTH + hbt_array_index].init = 1;
hbt_hash_table[hbt_table_index * HBT_ARRAY_LENGTH + hbt_array_index]
.hbt_qc_hash = hbt_qc_hash;
hbt_hash_table[hbt_table_index * HBT_ARRAY_LENGTH + hbt_array_index]
.hbt_ctx_hash = hbt_ctx_hash;
assert(prev_eob >= txb_info->eob); // eob can't get longer
for (int i = 0; i < txb_info->eob; i++) {
// Record how coeff changed. Convention: towards zero is negative.
if (txb_info->qcoeff[scan[i]] > 0)
hbt_hash_table[hbt_table_index * HBT_ARRAY_LENGTH + hbt_array_index]
.deltas[i] = txb_info->qcoeff[scan[i]] - prev_coeff[i];
else
hbt_hash_table[hbt_table_index * HBT_ARRAY_LENGTH + hbt_array_index]
.deltas[i] = prev_coeff[i] - txb_info->qcoeff[scan[i]];
}
for (int i = txb_info->eob; i < prev_eob; i++) {
// If eob got shorter, record that all after it changed to zero.
if (prev_coeff[i] > 0)
hbt_hash_table[hbt_table_index * HBT_ARRAY_LENGTH + hbt_array_index]
.deltas[i] = -prev_coeff[i];
else
hbt_hash_table[hbt_table_index * HBT_ARRAY_LENGTH + hbt_array_index]
.deltas[i] = prev_coeff[i];
}
for (int i = prev_eob; i < HBT_EOB; i++) {
// Record 'no change' after optimized coefficients run out.
hbt_hash_table[hbt_table_index * HBT_ARRAY_LENGTH + hbt_array_index]
.deltas[i] = 0;
}
if (update) {
p->eobs[block] = txb_info->eob;
p->txb_entropy_ctx[block] = av1_get_txb_entropy_context(
txb_info->qcoeff, txb_info->scan_order, txb_info->eob);
}
return txb_info->eob;
}
int hbt_hash_hit(uint32_t hbt_table_index, int hbt_array_index,
TxbInfo *txb_info, const struct macroblock_plane *p, int block,
int *rate_cost) {
const int16_t *scan = txb_info->scan_order->scan;
int new_eob = 0;
int update = 0;
for (int i = 0; i < txb_info->eob; i++) {
// Delta convention is negatives go towards zero, so only apply those ones.
if (hbt_hash_table[hbt_table_index * HBT_ARRAY_LENGTH + hbt_array_index]
.deltas[i] < 0) {
if (txb_info->qcoeff[scan[i]] > 0)
txb_info->qcoeff[scan[i]] +=
hbt_hash_table[hbt_table_index * HBT_ARRAY_LENGTH + hbt_array_index]
.deltas[i];
else
txb_info->qcoeff[scan[i]] -=
hbt_hash_table[hbt_table_index * HBT_ARRAY_LENGTH + hbt_array_index]
.deltas[i];
update = 1;
update_coeff(scan[i], txb_info->qcoeff[scan[i]], txb_info);
}
if (txb_info->qcoeff[scan[i]]) new_eob = i + 1;
}
// Rate_cost can be calculated here instead (av1_cost_coeffs_txb), but
// it is expensive and gives little benefit as long as qc_hash is high bit
*rate_cost =
hbt_hash_table[hbt_table_index * HBT_ARRAY_LENGTH + hbt_array_index]
.rate_cost;
if (update) {
txb_info->eob = new_eob;
p->eobs[block] = txb_info->eob;
p->txb_entropy_ctx[block] = av1_get_txb_entropy_context(
txb_info->qcoeff, txb_info->scan_order, txb_info->eob);
}
return txb_info->eob;
}
int hbt_search_match(uint32_t hbt_ctx_hash, uint32_t hbt_qc_hash,
TxbInfo *txb_info, const LV_MAP_COEFF_COST *txb_costs,
const LV_MAP_EOB_COST *txb_eob_costs,
const struct macroblock_plane *p, int block, int fast_mode,
int *rate_cost) {
// Check for qcoeff match
int hbt_array_index = hbt_qc_hash % HBT_ARRAY_LENGTH;
int hbt_table_index = hbt_ctx_hash % HBT_TABLE_SIZE;
if (hbt_hash_table[hbt_table_index * HBT_ARRAY_LENGTH + hbt_array_index]
.hbt_qc_hash == hbt_qc_hash &&
hbt_hash_table[hbt_table_index * HBT_ARRAY_LENGTH + hbt_array_index]
.hbt_ctx_hash == hbt_ctx_hash &&
hbt_hash_table[hbt_table_index * HBT_ARRAY_LENGTH + hbt_array_index]
.init) {
return hbt_hash_hit(hbt_table_index, hbt_array_index, txb_info, p, block,
rate_cost);
} else {
return hbt_hash_miss(hbt_ctx_hash, hbt_qc_hash, txb_info, txb_costs,
txb_eob_costs, p, block, fast_mode, rate_cost);
}
}
int hbt_create_hashes(TxbInfo *txb_info, const LV_MAP_COEFF_COST *txb_costs,
const LV_MAP_EOB_COST *txb_eob_costs,
const struct macroblock_plane *p, int block,
int fast_mode, int *rate_cost) {
// Initialize hash table if needed.
if (hbt_needs_init) {
hbt_init();
}
//// Hash creation
uint8_t txb_hash_data[256]; // Asserts below to ensure enough space.
const int16_t *scan = txb_info->scan_order->scan;
uint8_t chunk = 0;
int hash_data_index = 0;
// Make qc_hash.
int packing_index = 0; // needed for packing.
for (int i = 0; i < txb_info->eob; i++) {
tran_low_t prechunk = txb_info->qcoeff[scan[i]];
// Softening: Improves speed. Aligns with signed deltas.
if (prechunk < 0) prechunk *= -1;
// Early kick out: Don't apply feature if there are large coeffs:
// If this kickout value is removed or raised beyond int8_t,
// widen deltas type in OptTxbQcoeff struct.
assert((int8_t)HBT_KICKOUT == HBT_KICKOUT); // If not, widen types.
if (prechunk > HBT_KICKOUT) {
av1_txb_init_levels(txb_info->qcoeff, txb_info->width, txb_info->height,
txb_info->levels);
const int update =
optimize_txb(txb_info, txb_costs, txb_eob_costs, rate_cost);
if (update) {
p->eobs[block] = txb_info->eob;
p->txb_entropy_ctx[block] = av1_get_txb_entropy_context(
txb_info->qcoeff, txb_info->scan_order, txb_info->eob);
}
return txb_info->eob;
}
// Since coeffs are 0 to 3, only 2 bits are needed: pack into bytes
if (packing_index == 0) txb_hash_data[hash_data_index] = 0;
chunk = prechunk << packing_index;
packing_index += 2;
txb_hash_data[hash_data_index] |= chunk;
// Full byte:
if (packing_index == 8) {
packing_index = 0;
hash_data_index++;
}
}
// Needed when packing_index != 0, to include final byte.
hash_data_index++;
assert(hash_data_index <= 64);
// 31 bit qc_hash: index to array
uint32_t hbt_qc_hash =
av1_get_crc32c_value(&crc_calculator, txb_hash_data, hash_data_index);
// Make ctx_hash.
hash_data_index = 0;
tran_low_t prechunk;
for (int i = 0; i < txb_info->eob; i++) {
// Save as magnitudes towards or away from zero.
if (txb_info->tcoeff[scan[i]] >= 0)
prechunk = txb_info->tcoeff[scan[i]] - txb_info->dqcoeff[scan[i]];
else
prechunk = txb_info->dqcoeff[scan[i]] - txb_info->tcoeff[scan[i]];
chunk = prechunk & 0xff;
txb_hash_data[hash_data_index++] = chunk;
}
// Extra ctx data:
// Include dequants.
txb_hash_data[hash_data_index++] = txb_info->dequant[0] & 0xff;
txb_hash_data[hash_data_index++] = txb_info->dequant[1] & 0xff;
chunk = txb_info->txb_ctx->txb_skip_ctx & 0xff;
txb_hash_data[hash_data_index++] = chunk;
chunk = txb_info->txb_ctx->dc_sign_ctx & 0xff;
txb_hash_data[hash_data_index++] = chunk;
// eob
chunk = txb_info->eob & 0xff;
txb_hash_data[hash_data_index++] = chunk;
// rdmult (int64)
chunk = txb_info->rdmult & 0xff;
txb_hash_data[hash_data_index++] = chunk;
// tx_type
chunk = txb_info->tx_type & 0xff;
txb_hash_data[hash_data_index++] = chunk;
// base_eob_cost
for (int i = 1; i < 3; i++) { // i = 0 are softened away
for (int j = 0; j < SIG_COEF_CONTEXTS_EOB; j++) {
chunk = (txb_costs->base_eob_cost[j][i] & 0xff00) >> 8;
txb_hash_data[hash_data_index++] = chunk;
}
}
// eob_cost
for (int i = 0; i < 11; i++) {
for (int j = 0; j < 2; j++) {
chunk = (txb_eob_costs->eob_cost[j][i] & 0xff00) >> 8;
txb_hash_data[hash_data_index++] = chunk;
}
}
// dc_sign_cost
for (int i = 0; i < 2; i++) {
for (int j = 0; j < DC_SIGN_CONTEXTS; j++) {
chunk = (txb_costs->dc_sign_cost[j][i] & 0xff00) >> 8;
txb_hash_data[hash_data_index++] = chunk;
}
}
assert(hash_data_index <= 256);
// 31 bit ctx_hash: used to index table
uint32_t hbt_ctx_hash =
av1_get_crc32c_value(&crc_calculator, txb_hash_data, hash_data_index);
//// End hash creation
return hbt_search_match(hbt_ctx_hash, hbt_qc_hash, txb_info, txb_costs,
txb_eob_costs, p, block, fast_mode, rate_cost);
}
static AOM_FORCE_INLINE int get_coeff_cost_simple(
int ci, tran_low_t abs_qc, int coeff_ctx,
const LV_MAP_COEFF_COST *txb_costs, int bwl, TX_CLASS tx_class,
const uint8_t *levels) {
// this simple version assumes the coeff's scan_idx is not DC (scan_idx != 0)
// and not the last (scan_idx != eob - 1)
assert(ci > 0);
int cost = txb_costs->base_cost[coeff_ctx][AOMMIN(abs_qc, 3)];
if (abs_qc) {
cost += av1_cost_literal(1);
if (abs_qc > NUM_BASE_LEVELS) {
const int br_ctx = get_br_ctx(levels, ci, bwl, tx_class);
cost += get_br_cost(abs_qc, br_ctx, txb_costs->lps_cost[br_ctx]);
cost += get_golomb_cost(abs_qc);
}
}
return cost;
}
static INLINE int get_coeff_cost_general(int is_last, int ci, tran_low_t abs_qc,
int sign, int coeff_ctx,
int dc_sign_ctx,
const LV_MAP_COEFF_COST *txb_costs,
int bwl, TX_CLASS tx_class,
const uint8_t *levels) {
int cost = 0;
if (is_last) {
cost += txb_costs->base_eob_cost[coeff_ctx][AOMMIN(abs_qc, 3) - 1];
} else {
cost += txb_costs->base_cost[coeff_ctx][AOMMIN(abs_qc, 3)];
}
if (abs_qc != 0) {
if (ci == 0) {
cost += txb_costs->dc_sign_cost[dc_sign_ctx][sign];
} else {
cost += av1_cost_literal(1);
}
if (abs_qc > NUM_BASE_LEVELS) {
const int br_ctx = get_br_ctx(levels, ci, bwl, tx_class);
cost += get_br_cost(abs_qc, br_ctx, txb_costs->lps_cost[br_ctx]);
cost += get_golomb_cost(abs_qc);
}
}
return cost;
}
static INLINE void get_qc_dqc_low(tran_low_t abs_qc, int sign, int dqv,
int shift, tran_low_t *qc_low,
tran_low_t *dqc_low) {
tran_low_t abs_qc_low = abs_qc - 1;
*qc_low = (-sign ^ abs_qc_low) + sign;
assert((sign ? -abs_qc_low : abs_qc_low) == *qc_low);
tran_low_t abs_dqc_low = (abs_qc_low * dqv) >> shift;
*dqc_low = (-sign ^ abs_dqc_low) + sign;
assert((sign ? -abs_dqc_low : abs_dqc_low) == *dqc_low);
}
static INLINE void update_coeff_general(
int *accu_rate, int64_t *accu_dist, int si, int eob, TX_SIZE tx_size,
TX_CLASS tx_class, int bwl, int height, int64_t rdmult, int shift,
int dc_sign_ctx, const int16_t *dequant, const int16_t *scan,
const LV_MAP_COEFF_COST *txb_costs, const tran_low_t *tcoeff,
tran_low_t *qcoeff, tran_low_t *dqcoeff, uint8_t *levels) {
const int dqv = dequant[si != 0];
const int ci = scan[si];
const tran_low_t qc = qcoeff[ci];
const int is_last = si == (eob - 1);
const int coeff_ctx = get_lower_levels_ctx_general(
is_last, si, bwl, height, levels, ci, tx_size, tx_class);
if (qc == 0) {
*accu_rate += txb_costs->base_cost[coeff_ctx][0];
} else {
const int sign = (qc < 0) ? 1 : 0;
const tran_low_t abs_qc = abs(qc);
const tran_low_t tqc = tcoeff[ci];
const tran_low_t dqc = dqcoeff[ci];
const int64_t dist = get_coeff_dist(tqc, dqc, shift);
const int64_t dist0 = get_coeff_dist(tqc, 0, shift);
const int rate =
get_coeff_cost_general(is_last, ci, abs_qc, sign, coeff_ctx,
dc_sign_ctx, txb_costs, bwl, tx_class, levels);
const int64_t rd = RDCOST(rdmult, rate, dist);
tran_low_t qc_low, dqc_low;
get_qc_dqc_low(abs_qc, sign, dqv, shift, &qc_low, &dqc_low);
const tran_low_t abs_qc_low = abs_qc - 1;
const int64_t dist_low = get_coeff_dist(tqc, dqc_low, shift);
const int rate_low =
get_coeff_cost_general(is_last, ci, abs_qc_low, sign, coeff_ctx,
dc_sign_ctx, txb_costs, bwl, tx_class, levels);
const int64_t rd_low = RDCOST(rdmult, rate_low, dist_low);
if (rd_low < rd) {
qcoeff[ci] = qc_low;
dqcoeff[ci] = dqc_low;
levels[get_padded_idx(ci, bwl)] = AOMMIN(abs_qc_low, INT8_MAX);
*accu_rate += rate_low;
*accu_dist += dist_low - dist0;
} else {
*accu_rate += rate;
*accu_dist += dist - dist0;
}
}
}
static AOM_FORCE_INLINE void update_coeff_simple(
int *accu_rate, int si, int eob, TX_SIZE tx_size, TX_CLASS tx_class,
int bwl, int64_t rdmult, int shift, const int16_t *dequant,
const int16_t *scan, const LV_MAP_COEFF_COST *txb_costs,
const tran_low_t *tcoeff, tran_low_t *qcoeff, tran_low_t *dqcoeff,
uint8_t *levels) {
const int dqv = dequant[1];
(void)eob;
// this simple version assumes the coeff's scan_idx is not DC (scan_idx != 0)
// and not the last (scan_idx != eob - 1)
assert(si != eob - 1);
assert(si > 0);
const int ci = scan[si];
const tran_low_t qc = qcoeff[ci];
const int coeff_ctx =
get_lower_levels_ctx(levels, ci, bwl, tx_size, tx_class);
if (qc == 0) {
*accu_rate += txb_costs->base_cost[coeff_ctx][0];
} else {
const tran_low_t abs_qc = abs(qc);
const tran_low_t tqc = tcoeff[ci];
const tran_low_t dqc = dqcoeff[ci];
const int rate = get_coeff_cost_simple(ci, abs_qc, coeff_ctx, txb_costs,
bwl, tx_class, levels);
if (abs(dqc) < abs(tqc)) {
*accu_rate += rate;
return;
}
const int64_t dist = get_coeff_dist(tqc, dqc, shift);
const int64_t rd = RDCOST(rdmult, rate, dist);
const int sign = (qc < 0) ? 1 : 0;
tran_low_t qc_low, dqc_low;
get_qc_dqc_low(abs_qc, sign, dqv, shift, &qc_low, &dqc_low);
const tran_low_t abs_qc_low = abs_qc - 1;
const int64_t dist_low = get_coeff_dist(tqc, dqc_low, shift);
const int rate_low = get_coeff_cost_simple(
ci, abs_qc_low, coeff_ctx, txb_costs, bwl, tx_class, levels);
const int64_t rd_low = RDCOST(rdmult, rate_low, dist_low);
if (rd_low < rd) {
qcoeff[ci] = qc_low;
dqcoeff[ci] = dqc_low;
levels[get_padded_idx(ci, bwl)] = AOMMIN(abs_qc_low, INT8_MAX);
*accu_rate += rate_low;
} else {
*accu_rate += rate;
}
}
}
static AOM_FORCE_INLINE void update_coeff_eob(
int *accu_rate, int64_t *accu_dist, int *eob, int *nz_num, int *nz_ci,
int si, TX_SIZE tx_size, TX_CLASS tx_class, int bwl, int height,
int dc_sign_ctx, int64_t rdmult, int shift, const int16_t *dequant,
const int16_t *scan, const LV_MAP_EOB_COST *txb_eob_costs,
const LV_MAP_COEFF_COST *txb_costs, const tran_low_t *tcoeff,
tran_low_t *qcoeff, tran_low_t *dqcoeff, uint8_t *levels, int sharpness) {
const int dqv = dequant[si != 0];
assert(si != *eob - 1);
const int ci = scan[si];
const tran_low_t qc = qcoeff[ci];
const int coeff_ctx =
get_lower_levels_ctx(levels, ci, bwl, tx_size, tx_class);
if (qc == 0) {
*accu_rate += txb_costs->base_cost[coeff_ctx][0];
} else {
int lower_level = 0;
const tran_low_t abs_qc = abs(qc);
const tran_low_t tqc = tcoeff[ci];
const tran_low_t dqc = dqcoeff[ci];
const int sign = (qc < 0) ? 1 : 0;
const int64_t dist0 = get_coeff_dist(tqc, 0, shift);
int64_t dist = get_coeff_dist(tqc, dqc, shift) - dist0;
int rate =
get_coeff_cost_general(0, ci, abs_qc, sign, coeff_ctx, dc_sign_ctx,
txb_costs, bwl, tx_class, levels);
int64_t rd = RDCOST(rdmult, *accu_rate + rate, *accu_dist + dist);
tran_low_t qc_low, dqc_low;
get_qc_dqc_low(abs_qc, sign, dqv, shift, &qc_low, &dqc_low);
const tran_low_t abs_qc_low = abs_qc - 1;
const int64_t dist_low = get_coeff_dist(tqc, dqc_low, shift) - dist0;
const int rate_low =
get_coeff_cost_general(0, ci, abs_qc_low, sign, coeff_ctx, dc_sign_ctx,
txb_costs, bwl, tx_class, levels);
const int64_t rd_low =
RDCOST(rdmult, *accu_rate + rate_low, *accu_dist + dist_low);
int lower_level_new_eob = 0;
const int new_eob = si + 1;
uint8_t tmp_levels[3];
for (int ni = 0; ni < *nz_num; ++ni) {
const int last_ci = nz_ci[ni];
tmp_levels[ni] = levels[get_padded_idx(last_ci, bwl)];
levels[get_padded_idx(last_ci, bwl)] = 0;
}
const int coeff_ctx_new_eob = get_lower_levels_ctx_general(
1, si, bwl, height, levels, ci, tx_size, tx_class);
const int new_eob_cost =
get_eob_cost(new_eob, txb_eob_costs, txb_costs, tx_class);
int rate_coeff_eob =
new_eob_cost + get_coeff_cost_general(1, ci, abs_qc, sign,
coeff_ctx_new_eob, dc_sign_ctx,
txb_costs, bwl, tx_class, levels);
int64_t dist_new_eob = dist;
int64_t rd_new_eob = RDCOST(rdmult, rate_coeff_eob, dist_new_eob);
if (abs_qc_low > 0) {
const int rate_coeff_eob_low =
new_eob_cost +
get_coeff_cost_general(1, ci, abs_qc_low, sign, coeff_ctx_new_eob,
dc_sign_ctx, txb_costs, bwl, tx_class, levels);
const int64_t dist_new_eob_low = dist_low;
const int64_t rd_new_eob_low =
RDCOST(rdmult, rate_coeff_eob_low, dist_new_eob_low);
if (rd_new_eob_low < rd_new_eob) {
lower_level_new_eob = 1;
rd_new_eob = rd_new_eob_low;
rate_coeff_eob = rate_coeff_eob_low;
dist_new_eob = dist_new_eob_low;
}
}
if (rd_low < rd) {
lower_level = 1;
rd = rd_low;
rate = rate_low;
dist = dist_low;
}
if (sharpness == 0 && rd_new_eob < rd) {
for (int ni = 0; ni < *nz_num; ++ni) {
int last_ci = nz_ci[ni];
// levels[get_padded_idx(last_ci, bwl)] = 0;
qcoeff[last_ci] = 0;
dqcoeff[last_ci] = 0;
}
*eob = new_eob;
*nz_num = 0;
*accu_rate = rate_coeff_eob;
*accu_dist = dist_new_eob;
lower_level = lower_level_new_eob;
} else {
for (int ni = 0; ni < *nz_num; ++ni) {
const int last_ci = nz_ci[ni];
levels[get_padded_idx(last_ci, bwl)] = tmp_levels[ni];
}
*accu_rate += rate;
*accu_dist += dist;
}
if (lower_level) {
qcoeff[ci] = qc_low;
dqcoeff[ci] = dqc_low;
levels[get_padded_idx(ci, bwl)] = AOMMIN(abs_qc_low, INT8_MAX);
}
if (qcoeff[ci]) {
nz_ci[*nz_num] = ci;
++*nz_num;
}
}
}
static INLINE void update_skip(int *accu_rate, int64_t accu_dist, int *eob,
int nz_num, int *nz_ci, int64_t rdmult,
int skip_cost, int non_skip_cost,
tran_low_t *qcoeff, tran_low_t *dqcoeff,
int sharpness) {
const int64_t rd = RDCOST(rdmult, *accu_rate + non_skip_cost, accu_dist);
const int64_t rd_new_eob = RDCOST(rdmult, skip_cost, 0);
if (sharpness == 0 && rd_new_eob < rd) {
for (int i = 0; i < nz_num; ++i) {
const int ci = nz_ci[i];
qcoeff[ci] = 0;
dqcoeff[ci] = 0;
// no need to set up levels because this is the last step
// levels[get_padded_idx(ci, bwl)] = 0;
}
*accu_rate = 0;
*eob = 0;
}
}
int av1_optimize_txb_new(const struct AV1_COMP *cpi, MACROBLOCK *x, int plane,
int block, TX_SIZE tx_size, TX_TYPE tx_type,
const TXB_CTX *const txb_ctx, int *rate_cost,
int sharpness) {
const AV1_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &x->e_mbd;
const PLANE_TYPE plane_type = get_plane_type(plane);
const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size);
const TX_CLASS tx_class = tx_type_to_class[tx_type];
const MB_MODE_INFO *mbmi = xd->mi[0];
const struct macroblock_plane *p = &x->plane[plane];
struct macroblockd_plane *pd = &xd->plane[plane];
tran_low_t *qcoeff = BLOCK_OFFSET(p->qcoeff, block);
tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
const tran_low_t *tcoeff = BLOCK_OFFSET(p->coeff, block);
const int16_t *dequant = p->dequant_QTX;
const int bwl = get_txb_bwl(tx_size);
const int width = get_txb_wide(tx_size);
const int height = get_txb_high(tx_size);
assert(width == (1 << bwl));
const int is_inter = is_inter_block(mbmi);
const SCAN_ORDER *scan_order = get_scan(tx_size, tx_type);
const int16_t *scan = scan_order->scan;
const LV_MAP_COEFF_COST *txb_costs = &x->coeff_costs[txs_ctx][plane_type];
const int eob_multi_size = txsize_log2_minus4[tx_size];
const LV_MAP_EOB_COST *txb_eob_costs =
&x->eob_costs[eob_multi_size][plane_type];
const int shift = av1_get_tx_scale(tx_size);
const int64_t rdmult =
((x->rdmult * plane_rd_mult[is_inter][plane_type] << (2 * (xd->bd - 8))) +
2) >>
(sharpness + (cpi->oxcf.aq_mode == VARIANCE_AQ && mbmi->segment_id < 4
? 7 - mbmi->segment_id
: 2));
uint8_t levels_buf[TX_PAD_2D];
uint8_t *const levels = set_levels(levels_buf, width);
av1_txb_init_levels(qcoeff, width, height, levels);
// TODO(angirbird): check iqmatrix
const int non_skip_cost = txb_costs->txb_skip_cost[txb_ctx->txb_skip_ctx][0];
const int skip_cost = txb_costs->txb_skip_cost[txb_ctx->txb_skip_ctx][1];
int eob = p->eobs[block];
const int eob_cost = get_eob_cost(eob, txb_eob_costs, txb_costs, tx_class);
int accu_rate = eob_cost;
int64_t accu_dist = 0;
int si = eob - 1;
const int ci = scan[si];
const tran_low_t qc = qcoeff[ci];
const tran_low_t abs_qc = abs(qc);
const int sign = qc < 0;
const int max_nz_num = 2;
int nz_num = 1;
int nz_ci[3] = { ci, 0, 0 };
if (abs_qc >= 2) {
update_coeff_general(&accu_rate, &accu_dist, si, eob, tx_size, tx_class,
bwl, height, rdmult, shift, txb_ctx->dc_sign_ctx,
dequant, scan, txb_costs, tcoeff, qcoeff, dqcoeff,
levels);
--si;
} else {
assert(abs_qc == 1);
const int coeff_ctx = get_lower_levels_ctx_general(
1, si, bwl, height, levels, ci, tx_size, tx_class);
accu_rate += get_coeff_cost_general(1, ci, abs_qc, sign, coeff_ctx,
txb_ctx->dc_sign_ctx, txb_costs, bwl,
tx_class, levels);
const tran_low_t tqc = tcoeff[ci];
const tran_low_t dqc = dqcoeff[ci];
const int64_t dist = get_coeff_dist(tqc, dqc, shift);
const int64_t dist0 = get_coeff_dist(tqc, 0, shift);
accu_dist += dist - dist0;
--si;
}
#define UPDATE_COEFF_EOB_CASE(tx_class_literal) \
case tx_class_literal: \
for (; si >= 0 && nz_num <= max_nz_num; --si) { \
update_coeff_eob(&accu_rate, &accu_dist, &eob, &nz_num, nz_ci, si, \
tx_size, tx_class_literal, bwl, height, \
txb_ctx->dc_sign_ctx, rdmult, shift, dequant, scan, \
txb_eob_costs, txb_costs, tcoeff, qcoeff, dqcoeff, \
levels, sharpness); \
} \
break;
switch (tx_class) {
UPDATE_COEFF_EOB_CASE(TX_CLASS_2D);
UPDATE_COEFF_EOB_CASE(TX_CLASS_HORIZ);
UPDATE_COEFF_EOB_CASE(TX_CLASS_VERT);
#undef UPDATE_COEFF_EOB_CASE
default: assert(false);
}
if (si == -1 && nz_num <= max_nz_num) {
update_skip(&accu_rate, accu_dist, &eob, nz_num, nz_ci, rdmult, skip_cost,
non_skip_cost, qcoeff, dqcoeff, sharpness);
}
#define UPDATE_COEFF_SIMPLE_CASE(tx_class_literal) \
case tx_class_literal: \
for (; si >= 1; --si) { \
update_coeff_simple(&accu_rate, si, eob, tx_size, tx_class_literal, bwl, \
rdmult, shift, dequant, scan, txb_costs, tcoeff, \
qcoeff, dqcoeff, levels); \
} \
break;
switch (tx_class) {
UPDATE_COEFF_SIMPLE_CASE(TX_CLASS_2D);
UPDATE_COEFF_SIMPLE_CASE(TX_CLASS_HORIZ);
UPDATE_COEFF_SIMPLE_CASE(TX_CLASS_VERT);
#undef UPDATE_COEFF_SIMPLE_CASE
default: assert(false);
}
// DC position
if (si == 0) {
// no need to update accu_dist because it's not used after this point
int64_t dummy_dist = 0;
update_coeff_general(&accu_rate, &dummy_dist, si, eob, tx_size, tx_class,
bwl, height, rdmult, shift, txb_ctx->dc_sign_ctx,
dequant, scan, txb_costs, tcoeff, qcoeff, dqcoeff,
levels);
}
const int tx_type_cost = get_tx_type_cost(cm, x, xd, plane, tx_size, tx_type);
if (eob == 0)
accu_rate += skip_cost;
else
accu_rate += non_skip_cost + tx_type_cost;
p->eobs[block] = eob;
p->txb_entropy_ctx[block] =
av1_get_txb_entropy_context(qcoeff, scan_order, p->eobs[block]);
*rate_cost = accu_rate;
return eob;
}
// This function is deprecated, but we keep it here because hash trellis
// is not integrated with av1_optimize_txb_new yet
int av1_optimize_txb(const struct AV1_COMP *cpi, MACROBLOCK *x, int plane,
int blk_row, int blk_col, int block, TX_SIZE tx_size,
TXB_CTX *txb_ctx, int fast_mode, int *rate_cost) {
const AV1_COMMON *cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
const PLANE_TYPE plane_type = get_plane_type(plane);
const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size);
const TX_TYPE tx_type = av1_get_tx_type(plane_type, xd, blk_row, blk_col,
tx_size, cm->reduced_tx_set_used);
const MB_MODE_INFO *mbmi = xd->mi[0];
const struct macroblock_plane *p = &x->plane[plane];
struct macroblockd_plane *pd = &xd->plane[plane];
const int eob = p->eobs[block];
tran_low_t *qcoeff = BLOCK_OFFSET(p->qcoeff, block);
tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
const tran_low_t *tcoeff = BLOCK_OFFSET(p->coeff, block);
const int16_t *dequant = p->dequant_QTX;
const int seg_eob = av1_get_max_eob(tx_size);
const int bwl = get_txb_bwl(tx_size);
const int width = get_txb_wide(tx_size);
const int height = get_txb_high(tx_size);
const int is_inter = is_inter_block(mbmi);
const SCAN_ORDER *const scan_order = get_scan(tx_size, tx_type);
const LV_MAP_COEFF_COST *txb_costs = &x->coeff_costs[txs_ctx][plane_type];
const int eob_multi_size = txsize_log2_minus4[tx_size];
const LV_MAP_EOB_COST txb_eob_costs =
x->eob_costs[eob_multi_size][plane_type];
const int shift = av1_get_tx_scale(tx_size);
const int64_t rdmult =
((x->rdmult * plane_rd_mult[is_inter][plane_type] << (2 * (xd->bd - 8))) +
2) >>
2;
uint8_t levels_buf[TX_PAD_2D];
uint8_t *const levels = set_levels(levels_buf, width);
const TX_SIZE qm_tx_size = av1_get_adjusted_tx_size(tx_size);
const qm_val_t *iqmatrix =
IS_2D_TRANSFORM(tx_type)
? pd->seg_iqmatrix[mbmi->segment_id][qm_tx_size]
: cm->giqmatrix[NUM_QM_LEVELS - 1][0][qm_tx_size];
assert(width == (1 << bwl));
const int tx_type_cost = get_tx_type_cost(cm, x, xd, plane, tx_size, tx_type);
TxbInfo txb_info = {
qcoeff, levels, dqcoeff, tcoeff, dequant, shift,
tx_size, txs_ctx, tx_type, bwl, width, height,
eob, seg_eob, scan_order, txb_ctx, rdmult, &cm->coeff_ctx_table,
iqmatrix, tx_type_cost,
};
// Hash based trellis (hbt) speed feature: avoid expensive optimize_txb calls
// by storing the coefficient deltas in a hash table.
// Currently disabled in speedfeatures.c
if (eob <= HBT_EOB && eob > 0 && cpi->sf.use_hash_based_trellis) {
return hbt_create_hashes(&txb_info, txb_costs, &txb_eob_costs, p, block,
fast_mode, rate_cost);
}
av1_txb_init_levels(qcoeff, width, height, levels);
const int update =
optimize_txb(&txb_info, txb_costs, &txb_eob_costs, rate_cost);
if (update) {
p->eobs[block] = txb_info.eob;
p->txb_entropy_ctx[block] =
av1_get_txb_entropy_context(qcoeff, scan_order, txb_info.eob);
}
return txb_info.eob;
}
int av1_get_txb_entropy_context(const tran_low_t *qcoeff,
const SCAN_ORDER *scan_order, int eob) {
const int16_t *const scan = scan_order->scan;
int cul_level = 0;
int c;
if (eob == 0) return 0;
for (c = 0; c < eob; ++c) {
cul_level += abs(qcoeff[scan[c]]);
if (cul_level > COEFF_CONTEXT_MASK) break;
}
cul_level = AOMMIN(COEFF_CONTEXT_MASK, cul_level);
set_dc_sign(&cul_level, qcoeff[0]);
return cul_level;
}
void av1_update_txb_context_b(int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
void *arg) {
struct tokenize_b_args *const args = arg;
const AV1_COMP *cpi = args->cpi;
const AV1_COMMON *cm = &cpi->common;
ThreadData *const td = args->td;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *p = &x->plane[plane];
struct macroblockd_plane *pd = &xd->plane[plane];
const uint16_t eob = p->eobs[block];
const tran_low_t *qcoeff = BLOCK_OFFSET(p->qcoeff, block);
const PLANE_TYPE plane_type = pd->plane_type;
const TX_TYPE tx_type = av1_get_tx_type(plane_type, xd, blk_row, blk_col,
tx_size, cm->reduced_tx_set_used);
const SCAN_ORDER *const scan_order = get_scan(tx_size, tx_type);
const int cul_level = av1_get_txb_entropy_context(qcoeff, scan_order, eob);
av1_set_contexts(xd, pd, plane, plane_bsize, tx_size, cul_level, blk_col,
blk_row);
}
static void update_tx_type_count(const AV1_COMMON *cm, MACROBLOCKD *xd,
int blk_row, int blk_col, int plane,
TX_SIZE tx_size, FRAME_COUNTS *counts,
uint8_t allow_update_cdf) {
MB_MODE_INFO *mbmi = xd->mi[0];
int is_inter = is_inter_block(mbmi);
FRAME_CONTEXT *fc = xd->tile_ctx;
#if !CONFIG_ENTROPY_STATS
(void)counts;
#endif // !CONFIG_ENTROPY_STATS
// Only y plane's tx_type is updated
if (plane > 0) return;
TX_TYPE tx_type = av1_get_tx_type(PLANE_TYPE_Y, xd, blk_row, blk_col, tx_size,
cm->reduced_tx_set_used);
if (get_ext_tx_types(tx_size, is_inter, cm->reduced_tx_set_used) > 1 &&
cm->base_qindex > 0 && !mbmi->skip &&
!segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
const int eset = get_ext_tx_set(tx_size, is_inter, cm->reduced_tx_set_used);
if (eset > 0) {
const TxSetType tx_set_type =
av1_get_ext_tx_set_type(tx_size, is_inter, cm->reduced_tx_set_used);
if (is_inter) {
if (allow_update_cdf) {
update_cdf(fc->inter_ext_tx_cdf[eset][txsize_sqr_map[tx_size]],
av1_ext_tx_ind[tx_set_type][tx_type],
av1_num_ext_tx_set[tx_set_type]);
}
#if CONFIG_ENTROPY_STATS
++counts->inter_ext_tx[eset][txsize_sqr_map[tx_size]]
[av1_ext_tx_ind[tx_set_type][tx_type]];
#endif // CONFIG_ENTROPY_STATS
} else {
PREDICTION_MODE intra_dir;
if (mbmi->filter_intra_mode_info.use_filter_intra)
intra_dir = fimode_to_intradir[mbmi->filter_intra_mode_info
.filter_intra_mode];
else
intra_dir = mbmi->mode;
#if CONFIG_ENTROPY_STATS
++counts->intra_ext_tx[eset][txsize_sqr_map[tx_size]][intra_dir]
[av1_ext_tx_ind[tx_set_type][tx_type]];
#endif // CONFIG_ENTROPY_STATS
if (allow_update_cdf) {
update_cdf(
fc->intra_ext_tx_cdf[eset][txsize_sqr_map[tx_size]][intra_dir],
av1_ext_tx_ind[tx_set_type][tx_type],
av1_num_ext_tx_set[tx_set_type]);
}
}
}
}
}
void av1_update_and_record_txb_context(int plane, int block, int blk_row,
int blk_col, BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, void *arg) {
struct tokenize_b_args *const args = arg;
const AV1_COMP *cpi = args->cpi;
const AV1_COMMON *cm = &cpi->common;
ThreadData *const td = args->td;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *p = &x->plane[plane];
struct macroblockd_plane *pd = &xd->plane[plane];
MB_MODE_INFO *mbmi = xd->mi[0];
const int eob = p->eobs[block];
TXB_CTX txb_ctx;
get_txb_ctx(plane_bsize, tx_size, plane, pd->above_context + blk_col,
pd->left_context + blk_row, &txb_ctx);
const int bwl = get_txb_bwl(tx_size);
const int width = get_txb_wide(tx_size);
const int height = get_txb_high(tx_size);
const uint8_t allow_update_cdf = args->allow_update_cdf;
const TX_SIZE txsize_ctx = get_txsize_entropy_ctx(tx_size);
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
#if CONFIG_ENTROPY_STATS
int cdf_idx = cm->coef_cdf_category;
#endif // CONFIG_ENTROPY_STATS
#if CONFIG_ENTROPY_STATS
++td->counts->txb_skip[cdf_idx][txsize_ctx][txb_ctx.txb_skip_ctx][eob == 0];
#endif // CONFIG_ENTROPY_STATS
if (allow_update_cdf) {
update_cdf(ec_ctx->txb_skip_cdf[txsize_ctx][txb_ctx.txb_skip_ctx], eob == 0,
2);
}
x->mbmi_ext->txb_skip_ctx[plane][block] = txb_ctx.txb_skip_ctx;
x->mbmi_ext->eobs[plane][block] = eob;
if (eob == 0) {
av1_set_contexts(xd, pd, plane, plane_bsize, tx_size, 0, blk_col, blk_row);
return;
}
tran_low_t *tcoeff = BLOCK_OFFSET(x->mbmi_ext->tcoeff[plane], block);
const int segment_id = mbmi->segment_id;
const int seg_eob = av1_get_tx_eob(&cpi->common.seg, segment_id, tx_size);
const tran_low_t *qcoeff = BLOCK_OFFSET(p->qcoeff, block);
memcpy(tcoeff, qcoeff, sizeof(*tcoeff) * seg_eob);
uint8_t levels_buf[TX_PAD_2D];
uint8_t *const levels = set_levels(levels_buf, width);
av1_txb_init_levels(tcoeff, width, height, levels);
update_tx_type_count(cm, xd, blk_row, blk_col, plane, tx_size, td->counts,
allow_update_cdf);
const PLANE_TYPE plane_type = pd->plane_type;
const TX_TYPE tx_type = av1_get_tx_type(plane_type, xd, blk_row, blk_col,
tx_size, cm->reduced_tx_set_used);
const TX_CLASS tx_class = tx_type_to_class[tx_type];
const SCAN_ORDER *const scan_order = get_scan(tx_size, tx_type);
const int16_t *const scan = scan_order->scan;
#if CONFIG_ENTROPY_STATS
av1_update_eob_context(cdf_idx, eob, tx_size, tx_class, plane_type, ec_ctx,
td->counts, allow_update_cdf);
#else
av1_update_eob_context(eob, tx_size, tx_class, plane_type, ec_ctx,
allow_update_cdf);
#endif
DECLARE_ALIGNED(16, int8_t, coeff_contexts[MAX_TX_SQUARE]);
av1_get_nz_map_contexts(levels, scan, eob, tx_size, tx_class, coeff_contexts);
for (int c = eob - 1; c >= 0; --c) {
const int pos = scan[c];
const int coeff_ctx = coeff_contexts[pos];
const tran_low_t v = qcoeff[pos];
const tran_low_t level = abs(v);
if (allow_update_cdf) {
if (c == eob - 1) {
assert(coeff_ctx < 4);
update_cdf(
ec_ctx->coeff_base_eob_cdf[txsize_ctx][plane_type][coeff_ctx],
AOMMIN(level, 3) - 1, 3);
} else {
update_cdf(ec_ctx->coeff_base_cdf[txsize_ctx][plane_type][coeff_ctx],
AOMMIN(level, 3), 4);
}
}
{
if (c == eob - 1) {
assert(coeff_ctx < 4);
#if CONFIG_ENTROPY_STATS
++td->counts->coeff_base_eob_multi[cdf_idx][txsize_ctx][plane_type]
[coeff_ctx][AOMMIN(level, 3) - 1];
} else {
++td->counts->coeff_base_multi[cdf_idx][txsize_ctx][plane_type]
[coeff_ctx][AOMMIN(level, 3)];
#endif
}
}
if (level > NUM_BASE_LEVELS) {
const int base_range = level - 1 - NUM_BASE_LEVELS;
const int br_ctx = get_br_ctx(levels, pos, bwl, tx_class);
for (int idx = 0; idx < COEFF_BASE_RANGE; idx += BR_CDF_SIZE - 1) {
const int k = AOMMIN(base_range - idx, BR_CDF_SIZE - 1);
if (allow_update_cdf) {
update_cdf(ec_ctx->coeff_br_cdf[AOMMIN(txsize_ctx, TX_32X32)]
[plane_type][br_ctx],
k, BR_CDF_SIZE);
}
for (int lps = 0; lps < BR_CDF_SIZE - 1; lps++) {
#if CONFIG_ENTROPY_STATS
++td->counts->coeff_lps[AOMMIN(txsize_ctx, TX_32X32)][plane_type][lps]
[br_ctx][lps == k];
#endif // CONFIG_ENTROPY_STATS
if (lps == k) break;
}
#if CONFIG_ENTROPY_STATS
++td->counts->coeff_lps_multi[cdf_idx][AOMMIN(txsize_ctx, TX_32X32)]
[plane_type][br_ctx][k];
#endif
if (k < BR_CDF_SIZE - 1) break;
}
}
}
// Update the context needed to code the DC sign (if applicable)
if (tcoeff[0] != 0) {
const int dc_sign = (tcoeff[0] < 0) ? 1 : 0;
const int dc_sign_ctx = txb_ctx.dc_sign_ctx;
#if CONFIG_ENTROPY_STATS
++td->counts->dc_sign[plane_type][dc_sign_ctx][dc_sign];
#endif // CONFIG_ENTROPY_STATS
if (allow_update_cdf)
update_cdf(ec_ctx->dc_sign_cdf[plane_type][dc_sign_ctx], dc_sign, 2);
x->mbmi_ext->dc_sign_ctx[plane][block] = dc_sign_ctx;
}
const int cul_level = av1_get_txb_entropy_context(tcoeff, scan_order, eob);
av1_set_contexts(xd, pd, plane, plane_bsize, tx_size, cul_level, blk_col,
blk_row);
}
void av1_update_txb_context(const AV1_COMP *cpi, ThreadData *td,
RUN_TYPE dry_run, BLOCK_SIZE bsize, int *rate,
int mi_row, int mi_col, uint8_t allow_update_cdf) {
const AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
struct tokenize_b_args arg = { cpi, td, NULL, 0, allow_update_cdf };
(void)rate;
(void)mi_row;
(void)mi_col;
if (mbmi->skip) {
av1_reset_skip_context(xd, mi_row, mi_col, bsize, num_planes);
return;
}
if (!dry_run) {
av1_foreach_transformed_block(xd, bsize, mi_row, mi_col,
av1_update_and_record_txb_context, &arg,
num_planes);
} else if (dry_run == DRY_RUN_NORMAL) {
av1_foreach_transformed_block(xd, bsize, mi_row, mi_col,
av1_update_txb_context_b, &arg, num_planes);
} else {
printf("DRY_RUN_COSTCOEFFS is not supported yet\n");
assert(0);
}
}