| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <math.h> |
| #include <limits.h> |
| |
| #include "config/aom_config.h" |
| |
| #include "av1/common/alloccommon.h" |
| #include "av1/common/onyxc_int.h" |
| #include "av1/common/quant_common.h" |
| #include "av1/common/reconinter.h" |
| #include "av1/common/odintrin.h" |
| #include "av1/encoder/av1_quantize.h" |
| #include "av1/encoder/extend.h" |
| #include "av1/encoder/firstpass.h" |
| #include "av1/encoder/mcomp.h" |
| #include "av1/encoder/encoder.h" |
| #include "av1/encoder/ratectrl.h" |
| #include "av1/encoder/segmentation.h" |
| #include "av1/encoder/temporal_filter.h" |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_mem/aom_mem.h" |
| #include "aom_ports/mem.h" |
| #include "aom_ports/aom_timer.h" |
| #include "aom_scale/aom_scale.h" |
| |
| static void temporal_filter_predictors_mb_c( |
| MACROBLOCKD *xd, uint8_t *y_mb_ptr, uint8_t *u_mb_ptr, uint8_t *v_mb_ptr, |
| int stride, int uv_block_width, int uv_block_height, int mv_row, int mv_col, |
| uint8_t *pred, struct scale_factors *scale, int x, int y, |
| int can_use_previous) { |
| const int which_mv = 0; |
| const MV mv = { mv_row, mv_col }; |
| enum mv_precision mv_precision_uv; |
| int uv_stride; |
| // TODO(angiebird): change plane setting accordingly |
| ConvolveParams conv_params = get_conv_params(which_mv, 0, 0, xd->bd); |
| const InterpFilters interp_filters = xd->mi[0]->interp_filters; |
| WarpTypesAllowed warp_types; |
| memset(&warp_types, 0, sizeof(WarpTypesAllowed)); |
| |
| if (uv_block_width == 8) { |
| uv_stride = (stride + 1) >> 1; |
| mv_precision_uv = MV_PRECISION_Q4; |
| } else { |
| uv_stride = stride; |
| mv_precision_uv = MV_PRECISION_Q3; |
| } |
| |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| av1_highbd_build_inter_predictor(y_mb_ptr, stride, &pred[0], 16, &mv, scale, |
| 16, 16, which_mv, interp_filters, |
| &warp_types, x, y, 0, MV_PRECISION_Q3, x, |
| y, xd, can_use_previous); |
| |
| av1_highbd_build_inter_predictor( |
| u_mb_ptr, uv_stride, &pred[256], uv_block_width, &mv, scale, |
| uv_block_width, uv_block_height, which_mv, interp_filters, &warp_types, |
| x, y, 1, mv_precision_uv, x, y, xd, can_use_previous); |
| |
| av1_highbd_build_inter_predictor( |
| v_mb_ptr, uv_stride, &pred[512], uv_block_width, &mv, scale, |
| uv_block_width, uv_block_height, which_mv, interp_filters, &warp_types, |
| x, y, 2, mv_precision_uv, x, y, xd, can_use_previous); |
| return; |
| } |
| av1_build_inter_predictor(y_mb_ptr, stride, &pred[0], 16, &mv, scale, 16, 16, |
| &conv_params, interp_filters, &warp_types, x, y, 0, |
| 0, MV_PRECISION_Q3, x, y, xd, can_use_previous); |
| |
| av1_build_inter_predictor(u_mb_ptr, uv_stride, &pred[256], uv_block_width, |
| &mv, scale, uv_block_width, uv_block_height, |
| &conv_params, interp_filters, &warp_types, x, y, 1, |
| 0, mv_precision_uv, x, y, xd, can_use_previous); |
| |
| av1_build_inter_predictor(v_mb_ptr, uv_stride, &pred[512], uv_block_width, |
| &mv, scale, uv_block_width, uv_block_height, |
| &conv_params, interp_filters, &warp_types, x, y, 2, |
| 0, mv_precision_uv, x, y, xd, can_use_previous); |
| } |
| |
| void av1_temporal_filter_apply_c(uint8_t *frame1, unsigned int stride, |
| uint8_t *frame2, unsigned int block_width, |
| unsigned int block_height, int strength, |
| int filter_weight, unsigned int *accumulator, |
| uint16_t *count) { |
| unsigned int i, j, k; |
| int modifier; |
| int byte = 0; |
| const int rounding = strength > 0 ? 1 << (strength - 1) : 0; |
| |
| for (i = 0, k = 0; i < block_height; i++) { |
| for (j = 0; j < block_width; j++, k++) { |
| int pixel_value = *frame2; |
| |
| // non-local mean approach |
| int diff_sse[9] = { 0 }; |
| int idx, idy, index = 0; |
| |
| for (idy = -1; idy <= 1; ++idy) { |
| for (idx = -1; idx <= 1; ++idx) { |
| int row = (int)i + idy; |
| int col = (int)j + idx; |
| |
| if (row >= 0 && row < (int)block_height && col >= 0 && |
| col < (int)block_width) { |
| int diff = frame1[byte + idy * (int)stride + idx] - |
| frame2[idy * (int)block_width + idx]; |
| diff_sse[index] = diff * diff; |
| ++index; |
| } |
| } |
| } |
| |
| assert(index > 0); |
| |
| modifier = 0; |
| for (idx = 0; idx < 9; ++idx) modifier += diff_sse[idx]; |
| |
| modifier *= 3; |
| modifier /= index; |
| |
| ++frame2; |
| |
| modifier += rounding; |
| modifier >>= strength; |
| |
| if (modifier > 16) modifier = 16; |
| |
| modifier = 16 - modifier; |
| modifier *= filter_weight; |
| |
| count[k] += modifier; |
| accumulator[k] += modifier * pixel_value; |
| |
| byte++; |
| } |
| |
| byte += stride - block_width; |
| } |
| } |
| |
| void av1_highbd_temporal_filter_apply_c( |
| uint8_t *frame1_8, unsigned int stride, uint8_t *frame2_8, |
| unsigned int block_width, unsigned int block_height, int strength, |
| int filter_weight, unsigned int *accumulator, uint16_t *count) { |
| uint16_t *frame1 = CONVERT_TO_SHORTPTR(frame1_8); |
| uint16_t *frame2 = CONVERT_TO_SHORTPTR(frame2_8); |
| unsigned int i, j, k; |
| int modifier; |
| int byte = 0; |
| const int rounding = strength > 0 ? 1 << (strength - 1) : 0; |
| |
| for (i = 0, k = 0; i < block_height; i++) { |
| for (j = 0; j < block_width; j++, k++) { |
| int pixel_value = *frame2; |
| |
| // non-local mean approach |
| int diff_sse[9] = { 0 }; |
| int idx, idy, index = 0; |
| |
| for (idy = -1; idy <= 1; ++idy) { |
| for (idx = -1; idx <= 1; ++idx) { |
| int row = (int)i + idy; |
| int col = (int)j + idx; |
| |
| if (row >= 0 && row < (int)block_height && col >= 0 && |
| col < (int)block_width) { |
| int diff = frame1[byte + idy * (int)stride + idx] - |
| frame2[idy * (int)block_width + idx]; |
| diff_sse[index] = diff * diff; |
| ++index; |
| } |
| } |
| } |
| |
| assert(index > 0); |
| |
| modifier = 0; |
| for (idx = 0; idx < 9; ++idx) modifier += diff_sse[idx]; |
| |
| modifier *= 3; |
| modifier /= index; |
| |
| ++frame2; |
| |
| modifier += rounding; |
| modifier >>= strength; |
| |
| if (modifier > 16) modifier = 16; |
| |
| modifier = 16 - modifier; |
| modifier *= filter_weight; |
| |
| count[k] += modifier; |
| accumulator[k] += modifier * pixel_value; |
| |
| byte++; |
| } |
| |
| byte += stride - block_width; |
| } |
| } |
| |
| static int temporal_filter_find_matching_mb_c(AV1_COMP *cpi, |
| uint8_t *arf_frame_buf, |
| uint8_t *frame_ptr_buf, |
| int stride) { |
| MACROBLOCK *const x = &cpi->td.mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const MV_SPEED_FEATURES *const mv_sf = &cpi->sf.mv; |
| int step_param; |
| int sadpb = x->sadperbit16; |
| int bestsme = INT_MAX; |
| int distortion; |
| unsigned int sse; |
| int cost_list[5]; |
| MvLimits tmp_mv_limits = x->mv_limits; |
| |
| MV best_ref_mv1 = kZeroMv; |
| MV best_ref_mv1_full; /* full-pixel value of best_ref_mv1 */ |
| |
| // Save input state |
| struct buf_2d src = x->plane[0].src; |
| struct buf_2d pre = xd->plane[0].pre[0]; |
| |
| best_ref_mv1_full.col = best_ref_mv1.col >> 3; |
| best_ref_mv1_full.row = best_ref_mv1.row >> 3; |
| |
| // Setup frame pointers |
| x->plane[0].src.buf = arf_frame_buf; |
| x->plane[0].src.stride = stride; |
| xd->plane[0].pre[0].buf = frame_ptr_buf; |
| xd->plane[0].pre[0].stride = stride; |
| |
| step_param = mv_sf->reduce_first_step_size; |
| step_param = AOMMIN(step_param, MAX_MVSEARCH_STEPS - 2); |
| |
| av1_set_mv_search_range(&x->mv_limits, &best_ref_mv1); |
| |
| x->mvcost = x->mv_cost_stack; |
| x->nmvjointcost = x->nmv_vec_cost; |
| |
| // Use mv costing from x->mvcost directly |
| av1_hex_search(x, &best_ref_mv1_full, step_param, sadpb, 1, |
| cond_cost_list(cpi, cost_list), &cpi->fn_ptr[BLOCK_16X16], 0, |
| &best_ref_mv1); |
| |
| x->mv_limits = tmp_mv_limits; |
| |
| // Ignore mv costing by sending NULL pointer instead of cost array |
| if (cpi->common.cur_frame_force_integer_mv == 1) { |
| const uint8_t *const src_address = x->plane[0].src.buf; |
| const int src_stride = x->plane[0].src.stride; |
| const uint8_t *const y = xd->plane[0].pre[0].buf; |
| const int y_stride = xd->plane[0].pre[0].stride; |
| const int offset = x->best_mv.as_mv.row * y_stride + x->best_mv.as_mv.col; |
| |
| x->best_mv.as_mv.row *= 8; |
| x->best_mv.as_mv.col *= 8; |
| |
| bestsme = cpi->fn_ptr[BLOCK_16X16].vf(y + offset, y_stride, src_address, |
| src_stride, &sse); |
| } else { |
| bestsme = cpi->find_fractional_mv_step( |
| x, &cpi->common, 0, 0, &best_ref_mv1, |
| cpi->common.allow_high_precision_mv, x->errorperbit, |
| &cpi->fn_ptr[BLOCK_16X16], 0, mv_sf->subpel_iters_per_step, |
| cond_cost_list(cpi, cost_list), NULL, NULL, &distortion, &sse, NULL, |
| NULL, 0, 0, 0, 0, 0); |
| } |
| |
| x->e_mbd.mi[0]->mv[0] = x->best_mv; |
| |
| // Restore input state |
| x->plane[0].src = src; |
| xd->plane[0].pre[0] = pre; |
| |
| return bestsme; |
| } |
| |
| static void temporal_filter_iterate_c(AV1_COMP *cpi, |
| YV12_BUFFER_CONFIG **frames, |
| int frame_count, int alt_ref_index, |
| int strength, |
| struct scale_factors *scale) { |
| const AV1_COMMON *cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| int byte; |
| int frame; |
| int mb_col, mb_row; |
| unsigned int filter_weight; |
| int mb_cols = (frames[alt_ref_index]->y_crop_width + 15) >> 4; |
| int mb_rows = (frames[alt_ref_index]->y_crop_height + 15) >> 4; |
| int mb_y_offset = 0; |
| int mb_uv_offset = 0; |
| DECLARE_ALIGNED(16, unsigned int, accumulator[16 * 16 * 3]); |
| DECLARE_ALIGNED(16, uint16_t, count[16 * 16 * 3]); |
| MACROBLOCKD *mbd = &cpi->td.mb.e_mbd; |
| YV12_BUFFER_CONFIG *f = frames[alt_ref_index]; |
| uint8_t *dst1, *dst2; |
| DECLARE_ALIGNED(32, uint16_t, predictor16[16 * 16 * 3]); |
| DECLARE_ALIGNED(32, uint8_t, predictor8[16 * 16 * 3]); |
| uint8_t *predictor; |
| const int mb_uv_height = 16 >> mbd->plane[1].subsampling_y; |
| const int mb_uv_width = 16 >> mbd->plane[1].subsampling_x; |
| |
| // Save input state |
| uint8_t *input_buffer[MAX_MB_PLANE]; |
| int i; |
| if (mbd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| predictor = CONVERT_TO_BYTEPTR(predictor16); |
| } else { |
| predictor = predictor8; |
| } |
| |
| for (i = 0; i < num_planes; i++) input_buffer[i] = mbd->plane[i].pre[0].buf; |
| |
| for (mb_row = 0; mb_row < mb_rows; mb_row++) { |
| // Source frames are extended to 16 pixels. This is different than |
| // L/A/G reference frames that have a border of 32 (AV1ENCBORDERINPIXELS) |
| // A 6/8 tap filter is used for motion search. This requires 2 pixels |
| // before and 3 pixels after. So the largest Y mv on a border would |
| // then be 16 - AOM_INTERP_EXTEND. The UV blocks are half the size of the |
| // Y and therefore only extended by 8. The largest mv that a UV block |
| // can support is 8 - AOM_INTERP_EXTEND. A UV mv is half of a Y mv. |
| // (16 - AOM_INTERP_EXTEND) >> 1 which is greater than |
| // 8 - AOM_INTERP_EXTEND. |
| // To keep the mv in play for both Y and UV planes the max that it |
| // can be on a border is therefore 16 - (2*AOM_INTERP_EXTEND+1). |
| cpi->td.mb.mv_limits.row_min = |
| -((mb_row * 16) + (17 - 2 * AOM_INTERP_EXTEND)); |
| cpi->td.mb.mv_limits.row_max = |
| ((mb_rows - 1 - mb_row) * 16) + (17 - 2 * AOM_INTERP_EXTEND); |
| |
| for (mb_col = 0; mb_col < mb_cols; mb_col++) { |
| int j, k; |
| int stride; |
| |
| memset(accumulator, 0, 16 * 16 * 3 * sizeof(accumulator[0])); |
| memset(count, 0, 16 * 16 * 3 * sizeof(count[0])); |
| |
| cpi->td.mb.mv_limits.col_min = |
| -((mb_col * 16) + (17 - 2 * AOM_INTERP_EXTEND)); |
| cpi->td.mb.mv_limits.col_max = |
| ((mb_cols - 1 - mb_col) * 16) + (17 - 2 * AOM_INTERP_EXTEND); |
| |
| for (frame = 0; frame < frame_count; frame++) { |
| const int thresh_low = 10000; |
| const int thresh_high = 20000; |
| |
| if (frames[frame] == NULL) continue; |
| |
| mbd->mi[0]->mv[0].as_mv.row = 0; |
| mbd->mi[0]->mv[0].as_mv.col = 0; |
| mbd->mi[0]->motion_mode = SIMPLE_TRANSLATION; |
| |
| if (frame == alt_ref_index) { |
| filter_weight = 2; |
| } else { |
| // Find best match in this frame by MC |
| int err = temporal_filter_find_matching_mb_c( |
| cpi, frames[alt_ref_index]->y_buffer + mb_y_offset, |
| frames[frame]->y_buffer + mb_y_offset, frames[frame]->y_stride); |
| |
| // Assign higher weight to matching MB if it's error |
| // score is lower. If not applying MC default behavior |
| // is to weight all MBs equal. |
| filter_weight = err < thresh_low ? 2 : err < thresh_high ? 1 : 0; |
| } |
| |
| if (filter_weight != 0) { |
| // Construct the predictors |
| temporal_filter_predictors_mb_c( |
| mbd, frames[frame]->y_buffer + mb_y_offset, |
| frames[frame]->u_buffer + mb_uv_offset, |
| frames[frame]->v_buffer + mb_uv_offset, frames[frame]->y_stride, |
| mb_uv_width, mb_uv_height, mbd->mi[0]->mv[0].as_mv.row, |
| mbd->mi[0]->mv[0].as_mv.col, predictor, scale, mb_col * 16, |
| mb_row * 16, cm->allow_warped_motion); |
| |
| // Apply the filter (YUV) |
| if (mbd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| int adj_strength = strength + 2 * (mbd->bd - 8); |
| av1_highbd_temporal_filter_apply( |
| f->y_buffer + mb_y_offset, f->y_stride, predictor, 16, 16, |
| adj_strength, filter_weight, accumulator, count); |
| if (num_planes > 1) { |
| av1_highbd_temporal_filter_apply( |
| f->u_buffer + mb_uv_offset, f->uv_stride, predictor + 256, |
| mb_uv_width, mb_uv_height, adj_strength, filter_weight, |
| accumulator + 256, count + 256); |
| av1_highbd_temporal_filter_apply( |
| f->v_buffer + mb_uv_offset, f->uv_stride, predictor + 512, |
| mb_uv_width, mb_uv_height, adj_strength, filter_weight, |
| accumulator + 512, count + 512); |
| } |
| } else { |
| av1_temporal_filter_apply_c(f->y_buffer + mb_y_offset, f->y_stride, |
| predictor, 16, 16, strength, |
| filter_weight, accumulator, count); |
| if (num_planes > 1) { |
| av1_temporal_filter_apply_c( |
| f->u_buffer + mb_uv_offset, f->uv_stride, predictor + 256, |
| mb_uv_width, mb_uv_height, strength, filter_weight, |
| accumulator + 256, count + 256); |
| av1_temporal_filter_apply_c( |
| f->v_buffer + mb_uv_offset, f->uv_stride, predictor + 512, |
| mb_uv_width, mb_uv_height, strength, filter_weight, |
| accumulator + 512, count + 512); |
| } |
| } |
| } |
| } |
| |
| // Normalize filter output to produce AltRef frame |
| if (mbd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| uint16_t *dst1_16; |
| uint16_t *dst2_16; |
| dst1 = cpi->alt_ref_buffer.y_buffer; |
| dst1_16 = CONVERT_TO_SHORTPTR(dst1); |
| stride = cpi->alt_ref_buffer.y_stride; |
| byte = mb_y_offset; |
| for (i = 0, k = 0; i < 16; i++) { |
| for (j = 0; j < 16; j++, k++) { |
| dst1_16[byte] = |
| (uint16_t)OD_DIVU(accumulator[k] + (count[k] >> 1), count[k]); |
| |
| // move to next pixel |
| byte++; |
| } |
| |
| byte += stride - 16; |
| } |
| if (num_planes > 1) { |
| dst1 = cpi->alt_ref_buffer.u_buffer; |
| dst2 = cpi->alt_ref_buffer.v_buffer; |
| dst1_16 = CONVERT_TO_SHORTPTR(dst1); |
| dst2_16 = CONVERT_TO_SHORTPTR(dst2); |
| stride = cpi->alt_ref_buffer.uv_stride; |
| byte = mb_uv_offset; |
| for (i = 0, k = 256; i < mb_uv_height; i++) { |
| for (j = 0; j < mb_uv_width; j++, k++) { |
| int m = k + 256; |
| // U |
| dst1_16[byte] = |
| (uint16_t)OD_DIVU(accumulator[k] + (count[k] >> 1), count[k]); |
| // V |
| dst2_16[byte] = |
| (uint16_t)OD_DIVU(accumulator[m] + (count[m] >> 1), count[m]); |
| // move to next pixel |
| byte++; |
| } |
| byte += stride - mb_uv_width; |
| } |
| } |
| } else { |
| dst1 = cpi->alt_ref_buffer.y_buffer; |
| stride = cpi->alt_ref_buffer.y_stride; |
| byte = mb_y_offset; |
| for (i = 0, k = 0; i < 16; i++) { |
| for (j = 0; j < 16; j++, k++) { |
| dst1[byte] = |
| (uint8_t)OD_DIVU(accumulator[k] + (count[k] >> 1), count[k]); |
| |
| // move to next pixel |
| byte++; |
| } |
| byte += stride - 16; |
| } |
| if (num_planes > 1) { |
| dst1 = cpi->alt_ref_buffer.u_buffer; |
| dst2 = cpi->alt_ref_buffer.v_buffer; |
| stride = cpi->alt_ref_buffer.uv_stride; |
| byte = mb_uv_offset; |
| for (i = 0, k = 256; i < mb_uv_height; i++) { |
| for (j = 0; j < mb_uv_width; j++, k++) { |
| int m = k + 256; |
| // U |
| dst1[byte] = |
| (uint8_t)OD_DIVU(accumulator[k] + (count[k] >> 1), count[k]); |
| // V |
| dst2[byte] = |
| (uint8_t)OD_DIVU(accumulator[m] + (count[m] >> 1), count[m]); |
| // move to next pixel |
| byte++; |
| } |
| byte += stride - mb_uv_width; |
| } |
| } |
| } |
| mb_y_offset += 16; |
| mb_uv_offset += mb_uv_width; |
| } |
| mb_y_offset += 16 * (f->y_stride - mb_cols); |
| mb_uv_offset += mb_uv_height * f->uv_stride - mb_uv_width * mb_cols; |
| } |
| |
| // Restore input state |
| for (i = 0; i < num_planes; i++) mbd->plane[i].pre[0].buf = input_buffer[i]; |
| } |
| |
| // Apply buffer limits and context specific adjustments to arnr filter. |
| static void adjust_arnr_filter(AV1_COMP *cpi, int distance, int group_boost, |
| int *arnr_frames, int *arnr_strength) { |
| const AV1EncoderConfig *const oxcf = &cpi->oxcf; |
| const int frames_after_arf = |
| av1_lookahead_depth(cpi->lookahead) - distance - 1; |
| int frames_fwd = (cpi->oxcf.arnr_max_frames - 1) >> 1; |
| int frames_bwd; |
| int q, frames, strength; |
| |
| // Define the forward and backwards filter limits for this arnr group. |
| if (frames_fwd > frames_after_arf) frames_fwd = frames_after_arf; |
| if (frames_fwd > distance) frames_fwd = distance; |
| |
| frames_bwd = frames_fwd; |
| |
| // For even length filter there is one more frame backward |
| // than forward: e.g. len=6 ==> bbbAff, len=7 ==> bbbAfff. |
| if (frames_bwd < distance) frames_bwd += (oxcf->arnr_max_frames + 1) & 0x1; |
| |
| // Set the baseline active filter size. |
| frames = frames_bwd + 1 + frames_fwd; |
| |
| // Adjust the strength based on active max q. |
| if (cpi->common.current_video_frame > 1) |
| q = ((int)av1_convert_qindex_to_q(cpi->rc.avg_frame_qindex[INTER_FRAME], |
| cpi->common.bit_depth)); |
| else |
| q = ((int)av1_convert_qindex_to_q(cpi->rc.avg_frame_qindex[KEY_FRAME], |
| cpi->common.bit_depth)); |
| if (q > 16) { |
| strength = oxcf->arnr_strength; |
| } else { |
| strength = oxcf->arnr_strength - ((16 - q) / 2); |
| if (strength < 0) strength = 0; |
| } |
| |
| // Adjust number of frames in filter and strength based on gf boost level. |
| if (frames > group_boost / 150) { |
| frames = group_boost / 150; |
| frames += !(frames & 1); |
| } |
| |
| if (strength > group_boost / 300) { |
| strength = group_boost / 300; |
| } |
| |
| // Adjustments for second level arf in multi arf case. |
| if (cpi->oxcf.pass == 2 && cpi->multi_arf_allowed) { |
| const GF_GROUP *const gf_group = &cpi->twopass.gf_group; |
| if (gf_group->rf_level[gf_group->index] != GF_ARF_STD) { |
| strength >>= 1; |
| } |
| } |
| |
| *arnr_frames = frames; |
| *arnr_strength = strength; |
| } |
| |
| void av1_temporal_filter(AV1_COMP *cpi, int distance) { |
| RATE_CONTROL *const rc = &cpi->rc; |
| int frame; |
| int frames_to_blur; |
| int start_frame; |
| int strength; |
| int frames_to_blur_backward; |
| int frames_to_blur_forward; |
| struct scale_factors sf; |
| YV12_BUFFER_CONFIG *frames[MAX_LAG_BUFFERS] = { NULL }; |
| const GF_GROUP *const gf_group = &cpi->twopass.gf_group; |
| |
| // Apply context specific adjustments to the arnr filter parameters. |
| adjust_arnr_filter(cpi, distance, rc->gfu_boost, &frames_to_blur, &strength); |
| // TODO(weitinglin): Currently, we enforce the filtering strength on |
| // extra ARFs' to be zeros. We should investigate in which |
| // case it is more beneficial to use non-zero strength |
| // filtering. |
| if (gf_group->update_type[gf_group->index] == INTNL_ARF_UPDATE) { |
| strength = 0; |
| frames_to_blur = 1; |
| } |
| |
| int which_arf = gf_group->arf_update_idx[gf_group->index]; |
| |
| #if USE_GF16_MULTI_LAYER |
| if (cpi->rc.baseline_gf_interval == 16) { |
| // Identify the index to the current ARF. |
| const int num_arfs_in_gf = cpi->num_extra_arfs + 1; |
| int arf_idx; |
| for (arf_idx = 0; arf_idx < num_arfs_in_gf; arf_idx++) { |
| if (gf_group->index == cpi->arf_pos_in_gf[arf_idx]) { |
| which_arf = arf_idx; |
| break; |
| } |
| } |
| assert(arf_idx < num_arfs_in_gf); |
| } |
| #endif // USE_GF16_MULTI_LAYER |
| |
| // Set the temporal filtering status for the corresponding OVERLAY frame |
| if (strength == 0 && frames_to_blur == 1) |
| cpi->is_arf_filter_off[which_arf] = 1; |
| else |
| cpi->is_arf_filter_off[which_arf] = 0; |
| cpi->common.showable_frame = cpi->is_arf_filter_off[which_arf]; |
| |
| frames_to_blur_backward = (frames_to_blur / 2); |
| frames_to_blur_forward = ((frames_to_blur - 1) / 2); |
| start_frame = distance + frames_to_blur_forward; |
| |
| // Setup frame pointers, NULL indicates frame not included in filter. |
| for (frame = 0; frame < frames_to_blur; ++frame) { |
| const int which_buffer = start_frame - frame; |
| struct lookahead_entry *buf = |
| av1_lookahead_peek(cpi->lookahead, which_buffer); |
| frames[frames_to_blur - 1 - frame] = &buf->img; |
| } |
| |
| if (frames_to_blur > 0) { |
| // Setup scaling factors. Scaling on each of the arnr frames is not |
| // supported. |
| // ARF is produced at the native frame size and resized when coded. |
| av1_setup_scale_factors_for_frame( |
| &sf, frames[0]->y_crop_width, frames[0]->y_crop_height, |
| frames[0]->y_crop_width, frames[0]->y_crop_height); |
| } |
| |
| temporal_filter_iterate_c(cpi, frames, frames_to_blur, |
| frames_to_blur_backward, strength, &sf); |
| } |