blob: 250feab81f17141f549d9599aba3bd673ff1bc07 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <math.h>
#include <limits.h>
#include "config/aom_config.h"
#include "av1/common/alloccommon.h"
#include "av1/common/onyxc_int.h"
#include "av1/common/quant_common.h"
#include "av1/common/reconinter.h"
#include "av1/common/odintrin.h"
#include "av1/encoder/av1_quantize.h"
#include "av1/encoder/extend.h"
#include "av1/encoder/firstpass.h"
#include "av1/encoder/mcomp.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/ratectrl.h"
#include "av1/encoder/segmentation.h"
#include "av1/encoder/temporal_filter.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem.h"
#include "aom_ports/aom_timer.h"
#include "aom_scale/aom_scale.h"
static void temporal_filter_predictors_mb_c(
MACROBLOCKD *xd, uint8_t *y_mb_ptr, uint8_t *u_mb_ptr, uint8_t *v_mb_ptr,
int stride, int uv_block_width, int uv_block_height, int mv_row, int mv_col,
uint8_t *pred, struct scale_factors *scale, int x, int y,
int can_use_previous) {
const int which_mv = 0;
const MV mv = { mv_row, mv_col };
enum mv_precision mv_precision_uv;
int uv_stride;
// TODO(angiebird): change plane setting accordingly
ConvolveParams conv_params = get_conv_params(which_mv, 0, 0, xd->bd);
const InterpFilters interp_filters = xd->mi[0]->interp_filters;
WarpTypesAllowed warp_types;
memset(&warp_types, 0, sizeof(WarpTypesAllowed));
if (uv_block_width == 8) {
uv_stride = (stride + 1) >> 1;
mv_precision_uv = MV_PRECISION_Q4;
} else {
uv_stride = stride;
mv_precision_uv = MV_PRECISION_Q3;
}
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
av1_highbd_build_inter_predictor(y_mb_ptr, stride, &pred[0], 16, &mv, scale,
16, 16, which_mv, interp_filters,
&warp_types, x, y, 0, MV_PRECISION_Q3, x,
y, xd, can_use_previous);
av1_highbd_build_inter_predictor(
u_mb_ptr, uv_stride, &pred[256], uv_block_width, &mv, scale,
uv_block_width, uv_block_height, which_mv, interp_filters, &warp_types,
x, y, 1, mv_precision_uv, x, y, xd, can_use_previous);
av1_highbd_build_inter_predictor(
v_mb_ptr, uv_stride, &pred[512], uv_block_width, &mv, scale,
uv_block_width, uv_block_height, which_mv, interp_filters, &warp_types,
x, y, 2, mv_precision_uv, x, y, xd, can_use_previous);
return;
}
av1_build_inter_predictor(y_mb_ptr, stride, &pred[0], 16, &mv, scale, 16, 16,
&conv_params, interp_filters, &warp_types, x, y, 0,
0, MV_PRECISION_Q3, x, y, xd, can_use_previous);
av1_build_inter_predictor(u_mb_ptr, uv_stride, &pred[256], uv_block_width,
&mv, scale, uv_block_width, uv_block_height,
&conv_params, interp_filters, &warp_types, x, y, 1,
0, mv_precision_uv, x, y, xd, can_use_previous);
av1_build_inter_predictor(v_mb_ptr, uv_stride, &pred[512], uv_block_width,
&mv, scale, uv_block_width, uv_block_height,
&conv_params, interp_filters, &warp_types, x, y, 2,
0, mv_precision_uv, x, y, xd, can_use_previous);
}
void av1_temporal_filter_apply_c(uint8_t *frame1, unsigned int stride,
uint8_t *frame2, unsigned int block_width,
unsigned int block_height, int strength,
int filter_weight, unsigned int *accumulator,
uint16_t *count) {
unsigned int i, j, k;
int modifier;
int byte = 0;
const int rounding = strength > 0 ? 1 << (strength - 1) : 0;
for (i = 0, k = 0; i < block_height; i++) {
for (j = 0; j < block_width; j++, k++) {
int pixel_value = *frame2;
// non-local mean approach
int diff_sse[9] = { 0 };
int idx, idy, index = 0;
for (idy = -1; idy <= 1; ++idy) {
for (idx = -1; idx <= 1; ++idx) {
int row = (int)i + idy;
int col = (int)j + idx;
if (row >= 0 && row < (int)block_height && col >= 0 &&
col < (int)block_width) {
int diff = frame1[byte + idy * (int)stride + idx] -
frame2[idy * (int)block_width + idx];
diff_sse[index] = diff * diff;
++index;
}
}
}
assert(index > 0);
modifier = 0;
for (idx = 0; idx < 9; ++idx) modifier += diff_sse[idx];
modifier *= 3;
modifier /= index;
++frame2;
modifier += rounding;
modifier >>= strength;
if (modifier > 16) modifier = 16;
modifier = 16 - modifier;
modifier *= filter_weight;
count[k] += modifier;
accumulator[k] += modifier * pixel_value;
byte++;
}
byte += stride - block_width;
}
}
void av1_highbd_temporal_filter_apply_c(
uint8_t *frame1_8, unsigned int stride, uint8_t *frame2_8,
unsigned int block_width, unsigned int block_height, int strength,
int filter_weight, unsigned int *accumulator, uint16_t *count) {
uint16_t *frame1 = CONVERT_TO_SHORTPTR(frame1_8);
uint16_t *frame2 = CONVERT_TO_SHORTPTR(frame2_8);
unsigned int i, j, k;
int modifier;
int byte = 0;
const int rounding = strength > 0 ? 1 << (strength - 1) : 0;
for (i = 0, k = 0; i < block_height; i++) {
for (j = 0; j < block_width; j++, k++) {
int pixel_value = *frame2;
// non-local mean approach
int diff_sse[9] = { 0 };
int idx, idy, index = 0;
for (idy = -1; idy <= 1; ++idy) {
for (idx = -1; idx <= 1; ++idx) {
int row = (int)i + idy;
int col = (int)j + idx;
if (row >= 0 && row < (int)block_height && col >= 0 &&
col < (int)block_width) {
int diff = frame1[byte + idy * (int)stride + idx] -
frame2[idy * (int)block_width + idx];
diff_sse[index] = diff * diff;
++index;
}
}
}
assert(index > 0);
modifier = 0;
for (idx = 0; idx < 9; ++idx) modifier += diff_sse[idx];
modifier *= 3;
modifier /= index;
++frame2;
modifier += rounding;
modifier >>= strength;
if (modifier > 16) modifier = 16;
modifier = 16 - modifier;
modifier *= filter_weight;
count[k] += modifier;
accumulator[k] += modifier * pixel_value;
byte++;
}
byte += stride - block_width;
}
}
static int temporal_filter_find_matching_mb_c(AV1_COMP *cpi,
uint8_t *arf_frame_buf,
uint8_t *frame_ptr_buf,
int stride) {
MACROBLOCK *const x = &cpi->td.mb;
MACROBLOCKD *const xd = &x->e_mbd;
const MV_SPEED_FEATURES *const mv_sf = &cpi->sf.mv;
int step_param;
int sadpb = x->sadperbit16;
int bestsme = INT_MAX;
int distortion;
unsigned int sse;
int cost_list[5];
MvLimits tmp_mv_limits = x->mv_limits;
MV best_ref_mv1 = kZeroMv;
MV best_ref_mv1_full; /* full-pixel value of best_ref_mv1 */
// Save input state
struct buf_2d src = x->plane[0].src;
struct buf_2d pre = xd->plane[0].pre[0];
best_ref_mv1_full.col = best_ref_mv1.col >> 3;
best_ref_mv1_full.row = best_ref_mv1.row >> 3;
// Setup frame pointers
x->plane[0].src.buf = arf_frame_buf;
x->plane[0].src.stride = stride;
xd->plane[0].pre[0].buf = frame_ptr_buf;
xd->plane[0].pre[0].stride = stride;
step_param = mv_sf->reduce_first_step_size;
step_param = AOMMIN(step_param, MAX_MVSEARCH_STEPS - 2);
av1_set_mv_search_range(&x->mv_limits, &best_ref_mv1);
x->mvcost = x->mv_cost_stack;
x->nmvjointcost = x->nmv_vec_cost;
// Use mv costing from x->mvcost directly
av1_hex_search(x, &best_ref_mv1_full, step_param, sadpb, 1,
cond_cost_list(cpi, cost_list), &cpi->fn_ptr[BLOCK_16X16], 0,
&best_ref_mv1);
x->mv_limits = tmp_mv_limits;
// Ignore mv costing by sending NULL pointer instead of cost array
if (cpi->common.cur_frame_force_integer_mv == 1) {
const uint8_t *const src_address = x->plane[0].src.buf;
const int src_stride = x->plane[0].src.stride;
const uint8_t *const y = xd->plane[0].pre[0].buf;
const int y_stride = xd->plane[0].pre[0].stride;
const int offset = x->best_mv.as_mv.row * y_stride + x->best_mv.as_mv.col;
x->best_mv.as_mv.row *= 8;
x->best_mv.as_mv.col *= 8;
bestsme = cpi->fn_ptr[BLOCK_16X16].vf(y + offset, y_stride, src_address,
src_stride, &sse);
} else {
bestsme = cpi->find_fractional_mv_step(
x, &cpi->common, 0, 0, &best_ref_mv1,
cpi->common.allow_high_precision_mv, x->errorperbit,
&cpi->fn_ptr[BLOCK_16X16], 0, mv_sf->subpel_iters_per_step,
cond_cost_list(cpi, cost_list), NULL, NULL, &distortion, &sse, NULL,
NULL, 0, 0, 0, 0, 0);
}
x->e_mbd.mi[0]->mv[0] = x->best_mv;
// Restore input state
x->plane[0].src = src;
xd->plane[0].pre[0] = pre;
return bestsme;
}
static void temporal_filter_iterate_c(AV1_COMP *cpi,
YV12_BUFFER_CONFIG **frames,
int frame_count, int alt_ref_index,
int strength,
struct scale_factors *scale) {
const AV1_COMMON *cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
int byte;
int frame;
int mb_col, mb_row;
unsigned int filter_weight;
int mb_cols = (frames[alt_ref_index]->y_crop_width + 15) >> 4;
int mb_rows = (frames[alt_ref_index]->y_crop_height + 15) >> 4;
int mb_y_offset = 0;
int mb_uv_offset = 0;
DECLARE_ALIGNED(16, unsigned int, accumulator[16 * 16 * 3]);
DECLARE_ALIGNED(16, uint16_t, count[16 * 16 * 3]);
MACROBLOCKD *mbd = &cpi->td.mb.e_mbd;
YV12_BUFFER_CONFIG *f = frames[alt_ref_index];
uint8_t *dst1, *dst2;
DECLARE_ALIGNED(32, uint16_t, predictor16[16 * 16 * 3]);
DECLARE_ALIGNED(32, uint8_t, predictor8[16 * 16 * 3]);
uint8_t *predictor;
const int mb_uv_height = 16 >> mbd->plane[1].subsampling_y;
const int mb_uv_width = 16 >> mbd->plane[1].subsampling_x;
// Save input state
uint8_t *input_buffer[MAX_MB_PLANE];
int i;
if (mbd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
predictor = CONVERT_TO_BYTEPTR(predictor16);
} else {
predictor = predictor8;
}
for (i = 0; i < num_planes; i++) input_buffer[i] = mbd->plane[i].pre[0].buf;
for (mb_row = 0; mb_row < mb_rows; mb_row++) {
// Source frames are extended to 16 pixels. This is different than
// L/A/G reference frames that have a border of 32 (AV1ENCBORDERINPIXELS)
// A 6/8 tap filter is used for motion search. This requires 2 pixels
// before and 3 pixels after. So the largest Y mv on a border would
// then be 16 - AOM_INTERP_EXTEND. The UV blocks are half the size of the
// Y and therefore only extended by 8. The largest mv that a UV block
// can support is 8 - AOM_INTERP_EXTEND. A UV mv is half of a Y mv.
// (16 - AOM_INTERP_EXTEND) >> 1 which is greater than
// 8 - AOM_INTERP_EXTEND.
// To keep the mv in play for both Y and UV planes the max that it
// can be on a border is therefore 16 - (2*AOM_INTERP_EXTEND+1).
cpi->td.mb.mv_limits.row_min =
-((mb_row * 16) + (17 - 2 * AOM_INTERP_EXTEND));
cpi->td.mb.mv_limits.row_max =
((mb_rows - 1 - mb_row) * 16) + (17 - 2 * AOM_INTERP_EXTEND);
for (mb_col = 0; mb_col < mb_cols; mb_col++) {
int j, k;
int stride;
memset(accumulator, 0, 16 * 16 * 3 * sizeof(accumulator[0]));
memset(count, 0, 16 * 16 * 3 * sizeof(count[0]));
cpi->td.mb.mv_limits.col_min =
-((mb_col * 16) + (17 - 2 * AOM_INTERP_EXTEND));
cpi->td.mb.mv_limits.col_max =
((mb_cols - 1 - mb_col) * 16) + (17 - 2 * AOM_INTERP_EXTEND);
for (frame = 0; frame < frame_count; frame++) {
const int thresh_low = 10000;
const int thresh_high = 20000;
if (frames[frame] == NULL) continue;
mbd->mi[0]->mv[0].as_mv.row = 0;
mbd->mi[0]->mv[0].as_mv.col = 0;
mbd->mi[0]->motion_mode = SIMPLE_TRANSLATION;
if (frame == alt_ref_index) {
filter_weight = 2;
} else {
// Find best match in this frame by MC
int err = temporal_filter_find_matching_mb_c(
cpi, frames[alt_ref_index]->y_buffer + mb_y_offset,
frames[frame]->y_buffer + mb_y_offset, frames[frame]->y_stride);
// Assign higher weight to matching MB if it's error
// score is lower. If not applying MC default behavior
// is to weight all MBs equal.
filter_weight = err < thresh_low ? 2 : err < thresh_high ? 1 : 0;
}
if (filter_weight != 0) {
// Construct the predictors
temporal_filter_predictors_mb_c(
mbd, frames[frame]->y_buffer + mb_y_offset,
frames[frame]->u_buffer + mb_uv_offset,
frames[frame]->v_buffer + mb_uv_offset, frames[frame]->y_stride,
mb_uv_width, mb_uv_height, mbd->mi[0]->mv[0].as_mv.row,
mbd->mi[0]->mv[0].as_mv.col, predictor, scale, mb_col * 16,
mb_row * 16, cm->allow_warped_motion);
// Apply the filter (YUV)
if (mbd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
int adj_strength = strength + 2 * (mbd->bd - 8);
av1_highbd_temporal_filter_apply(
f->y_buffer + mb_y_offset, f->y_stride, predictor, 16, 16,
adj_strength, filter_weight, accumulator, count);
if (num_planes > 1) {
av1_highbd_temporal_filter_apply(
f->u_buffer + mb_uv_offset, f->uv_stride, predictor + 256,
mb_uv_width, mb_uv_height, adj_strength, filter_weight,
accumulator + 256, count + 256);
av1_highbd_temporal_filter_apply(
f->v_buffer + mb_uv_offset, f->uv_stride, predictor + 512,
mb_uv_width, mb_uv_height, adj_strength, filter_weight,
accumulator + 512, count + 512);
}
} else {
av1_temporal_filter_apply_c(f->y_buffer + mb_y_offset, f->y_stride,
predictor, 16, 16, strength,
filter_weight, accumulator, count);
if (num_planes > 1) {
av1_temporal_filter_apply_c(
f->u_buffer + mb_uv_offset, f->uv_stride, predictor + 256,
mb_uv_width, mb_uv_height, strength, filter_weight,
accumulator + 256, count + 256);
av1_temporal_filter_apply_c(
f->v_buffer + mb_uv_offset, f->uv_stride, predictor + 512,
mb_uv_width, mb_uv_height, strength, filter_weight,
accumulator + 512, count + 512);
}
}
}
}
// Normalize filter output to produce AltRef frame
if (mbd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
uint16_t *dst1_16;
uint16_t *dst2_16;
dst1 = cpi->alt_ref_buffer.y_buffer;
dst1_16 = CONVERT_TO_SHORTPTR(dst1);
stride = cpi->alt_ref_buffer.y_stride;
byte = mb_y_offset;
for (i = 0, k = 0; i < 16; i++) {
for (j = 0; j < 16; j++, k++) {
dst1_16[byte] =
(uint16_t)OD_DIVU(accumulator[k] + (count[k] >> 1), count[k]);
// move to next pixel
byte++;
}
byte += stride - 16;
}
if (num_planes > 1) {
dst1 = cpi->alt_ref_buffer.u_buffer;
dst2 = cpi->alt_ref_buffer.v_buffer;
dst1_16 = CONVERT_TO_SHORTPTR(dst1);
dst2_16 = CONVERT_TO_SHORTPTR(dst2);
stride = cpi->alt_ref_buffer.uv_stride;
byte = mb_uv_offset;
for (i = 0, k = 256; i < mb_uv_height; i++) {
for (j = 0; j < mb_uv_width; j++, k++) {
int m = k + 256;
// U
dst1_16[byte] =
(uint16_t)OD_DIVU(accumulator[k] + (count[k] >> 1), count[k]);
// V
dst2_16[byte] =
(uint16_t)OD_DIVU(accumulator[m] + (count[m] >> 1), count[m]);
// move to next pixel
byte++;
}
byte += stride - mb_uv_width;
}
}
} else {
dst1 = cpi->alt_ref_buffer.y_buffer;
stride = cpi->alt_ref_buffer.y_stride;
byte = mb_y_offset;
for (i = 0, k = 0; i < 16; i++) {
for (j = 0; j < 16; j++, k++) {
dst1[byte] =
(uint8_t)OD_DIVU(accumulator[k] + (count[k] >> 1), count[k]);
// move to next pixel
byte++;
}
byte += stride - 16;
}
if (num_planes > 1) {
dst1 = cpi->alt_ref_buffer.u_buffer;
dst2 = cpi->alt_ref_buffer.v_buffer;
stride = cpi->alt_ref_buffer.uv_stride;
byte = mb_uv_offset;
for (i = 0, k = 256; i < mb_uv_height; i++) {
for (j = 0; j < mb_uv_width; j++, k++) {
int m = k + 256;
// U
dst1[byte] =
(uint8_t)OD_DIVU(accumulator[k] + (count[k] >> 1), count[k]);
// V
dst2[byte] =
(uint8_t)OD_DIVU(accumulator[m] + (count[m] >> 1), count[m]);
// move to next pixel
byte++;
}
byte += stride - mb_uv_width;
}
}
}
mb_y_offset += 16;
mb_uv_offset += mb_uv_width;
}
mb_y_offset += 16 * (f->y_stride - mb_cols);
mb_uv_offset += mb_uv_height * f->uv_stride - mb_uv_width * mb_cols;
}
// Restore input state
for (i = 0; i < num_planes; i++) mbd->plane[i].pre[0].buf = input_buffer[i];
}
// Apply buffer limits and context specific adjustments to arnr filter.
static void adjust_arnr_filter(AV1_COMP *cpi, int distance, int group_boost,
int *arnr_frames, int *arnr_strength) {
const AV1EncoderConfig *const oxcf = &cpi->oxcf;
const int frames_after_arf =
av1_lookahead_depth(cpi->lookahead) - distance - 1;
int frames_fwd = (cpi->oxcf.arnr_max_frames - 1) >> 1;
int frames_bwd;
int q, frames, strength;
// Define the forward and backwards filter limits for this arnr group.
if (frames_fwd > frames_after_arf) frames_fwd = frames_after_arf;
if (frames_fwd > distance) frames_fwd = distance;
frames_bwd = frames_fwd;
// For even length filter there is one more frame backward
// than forward: e.g. len=6 ==> bbbAff, len=7 ==> bbbAfff.
if (frames_bwd < distance) frames_bwd += (oxcf->arnr_max_frames + 1) & 0x1;
// Set the baseline active filter size.
frames = frames_bwd + 1 + frames_fwd;
// Adjust the strength based on active max q.
if (cpi->common.current_video_frame > 1)
q = ((int)av1_convert_qindex_to_q(cpi->rc.avg_frame_qindex[INTER_FRAME],
cpi->common.bit_depth));
else
q = ((int)av1_convert_qindex_to_q(cpi->rc.avg_frame_qindex[KEY_FRAME],
cpi->common.bit_depth));
if (q > 16) {
strength = oxcf->arnr_strength;
} else {
strength = oxcf->arnr_strength - ((16 - q) / 2);
if (strength < 0) strength = 0;
}
// Adjust number of frames in filter and strength based on gf boost level.
if (frames > group_boost / 150) {
frames = group_boost / 150;
frames += !(frames & 1);
}
if (strength > group_boost / 300) {
strength = group_boost / 300;
}
// Adjustments for second level arf in multi arf case.
if (cpi->oxcf.pass == 2 && cpi->multi_arf_allowed) {
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
if (gf_group->rf_level[gf_group->index] != GF_ARF_STD) {
strength >>= 1;
}
}
*arnr_frames = frames;
*arnr_strength = strength;
}
void av1_temporal_filter(AV1_COMP *cpi, int distance) {
RATE_CONTROL *const rc = &cpi->rc;
int frame;
int frames_to_blur;
int start_frame;
int strength;
int frames_to_blur_backward;
int frames_to_blur_forward;
struct scale_factors sf;
YV12_BUFFER_CONFIG *frames[MAX_LAG_BUFFERS] = { NULL };
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
// Apply context specific adjustments to the arnr filter parameters.
adjust_arnr_filter(cpi, distance, rc->gfu_boost, &frames_to_blur, &strength);
// TODO(weitinglin): Currently, we enforce the filtering strength on
// extra ARFs' to be zeros. We should investigate in which
// case it is more beneficial to use non-zero strength
// filtering.
if (gf_group->update_type[gf_group->index] == INTNL_ARF_UPDATE) {
strength = 0;
frames_to_blur = 1;
}
int which_arf = gf_group->arf_update_idx[gf_group->index];
#if USE_GF16_MULTI_LAYER
if (cpi->rc.baseline_gf_interval == 16) {
// Identify the index to the current ARF.
const int num_arfs_in_gf = cpi->num_extra_arfs + 1;
int arf_idx;
for (arf_idx = 0; arf_idx < num_arfs_in_gf; arf_idx++) {
if (gf_group->index == cpi->arf_pos_in_gf[arf_idx]) {
which_arf = arf_idx;
break;
}
}
assert(arf_idx < num_arfs_in_gf);
}
#endif // USE_GF16_MULTI_LAYER
// Set the temporal filtering status for the corresponding OVERLAY frame
if (strength == 0 && frames_to_blur == 1)
cpi->is_arf_filter_off[which_arf] = 1;
else
cpi->is_arf_filter_off[which_arf] = 0;
cpi->common.showable_frame = cpi->is_arf_filter_off[which_arf];
frames_to_blur_backward = (frames_to_blur / 2);
frames_to_blur_forward = ((frames_to_blur - 1) / 2);
start_frame = distance + frames_to_blur_forward;
// Setup frame pointers, NULL indicates frame not included in filter.
for (frame = 0; frame < frames_to_blur; ++frame) {
const int which_buffer = start_frame - frame;
struct lookahead_entry *buf =
av1_lookahead_peek(cpi->lookahead, which_buffer);
frames[frames_to_blur - 1 - frame] = &buf->img;
}
if (frames_to_blur > 0) {
// Setup scaling factors. Scaling on each of the arnr frames is not
// supported.
// ARF is produced at the native frame size and resized when coded.
av1_setup_scale_factors_for_frame(
&sf, frames[0]->y_crop_width, frames[0]->y_crop_height,
frames[0]->y_crop_width, frames[0]->y_crop_height);
}
temporal_filter_iterate_c(cpi, frames, frames_to_blur,
frames_to_blur_backward, strength, &sf);
}