blob: ddd3cc5b05ab1b363de9d4942bfe675ac9b786dc [file] [log] [blame]
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include "./aom_config.h"
#include "av1/common/alloccommon.h"
#if CONFIG_CLPF
#include "aom/aom_image.h"
#include "av1/common/clpf.h"
#include "av1/encoder/clpf_rdo.h"
#endif
#if CONFIG_DERING
#include "av1/common/dering.h"
#endif // CONFIG_DERING
#include "av1/common/filter.h"
#include "av1/common/idct.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/common/tile_common.h"
#include "av1/encoder/aq_complexity.h"
#include "av1/encoder/aq_cyclicrefresh.h"
#include "av1/encoder/aq_variance.h"
#include "av1/encoder/bitstream.h"
#if CONFIG_ANS
#include "aom_dsp/buf_ans.h"
#endif
#include "av1/encoder/context_tree.h"
#include "av1/encoder/encodeframe.h"
#include "av1/encoder/encodemv.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/ethread.h"
#include "av1/encoder/firstpass.h"
#include "av1/encoder/mbgraph.h"
#include "av1/encoder/picklpf.h"
#if CONFIG_LOOP_RESTORATION
#include "av1/encoder/pickrst.h"
#endif // CONFIG_LOOP_RESTORATION
#include "av1/encoder/ratectrl.h"
#include "av1/encoder/rd.h"
#include "av1/encoder/resize.h"
#include "av1/encoder/segmentation.h"
#include "av1/encoder/speed_features.h"
#include "av1/encoder/temporal_filter.h"
#include "./av1_rtcd.h"
#include "./aom_dsp_rtcd.h"
#include "./aom_scale_rtcd.h"
#include "aom_dsp/psnr.h"
#if CONFIG_INTERNAL_STATS
#include "aom_dsp/ssim.h"
#endif
#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/aom_filter.h"
#include "aom_ports/aom_timer.h"
#include "aom_ports/mem.h"
#include "aom_ports/system_state.h"
#include "aom_scale/aom_scale.h"
#if CONFIG_BITSTREAM_DEBUG
#include "aom_util/debug_util.h"
#endif // CONFIG_BITSTREAM_DEBUG
#define AM_SEGMENT_ID_INACTIVE 7
#define AM_SEGMENT_ID_ACTIVE 0
#define SHARP_FILTER_QTHRESH 0 /* Q threshold for 8-tap sharp filter */
#define ALTREF_HIGH_PRECISION_MV 1 // Whether to use high precision mv
// for altref computation.
#define HIGH_PRECISION_MV_QTHRESH 200 // Q threshold for high precision
// mv. Choose a very high value for
// now so that HIGH_PRECISION is always
// chosen.
// #define OUTPUT_YUV_REC
#ifdef OUTPUT_YUV_DENOISED
FILE *yuv_denoised_file = NULL;
#endif
#ifdef OUTPUT_YUV_SKINMAP
FILE *yuv_skinmap_file = NULL;
#endif
#ifdef OUTPUT_YUV_REC
FILE *yuv_rec_file;
#define FILE_NAME_LEN 100
#endif
#if 0
FILE *framepsnr;
FILE *kf_list;
FILE *keyfile;
#endif
static INLINE void Scale2Ratio(AOM_SCALING mode, int *hr, int *hs) {
switch (mode) {
case NORMAL:
*hr = 1;
*hs = 1;
break;
case FOURFIVE:
*hr = 4;
*hs = 5;
break;
case THREEFIVE:
*hr = 3;
*hs = 5;
break;
case ONETWO:
*hr = 1;
*hs = 2;
break;
default:
*hr = 1;
*hs = 1;
assert(0);
break;
}
}
// Mark all inactive blocks as active. Other segmentation features may be set
// so memset cannot be used, instead only inactive blocks should be reset.
static void suppress_active_map(AV1_COMP *cpi) {
unsigned char *const seg_map = cpi->segmentation_map;
int i;
if (cpi->active_map.enabled || cpi->active_map.update)
for (i = 0; i < cpi->common.mi_rows * cpi->common.mi_cols; ++i)
if (seg_map[i] == AM_SEGMENT_ID_INACTIVE)
seg_map[i] = AM_SEGMENT_ID_ACTIVE;
}
static void apply_active_map(AV1_COMP *cpi) {
struct segmentation *const seg = &cpi->common.seg;
unsigned char *const seg_map = cpi->segmentation_map;
const unsigned char *const active_map = cpi->active_map.map;
int i;
assert(AM_SEGMENT_ID_ACTIVE == CR_SEGMENT_ID_BASE);
if (frame_is_intra_only(&cpi->common)) {
cpi->active_map.enabled = 0;
cpi->active_map.update = 1;
}
if (cpi->active_map.update) {
if (cpi->active_map.enabled) {
for (i = 0; i < cpi->common.mi_rows * cpi->common.mi_cols; ++i)
if (seg_map[i] == AM_SEGMENT_ID_ACTIVE) seg_map[i] = active_map[i];
av1_enable_segmentation(seg);
av1_enable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_SKIP);
av1_enable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF);
// Setting the data to -MAX_LOOP_FILTER will result in the computed loop
// filter level being zero regardless of the value of seg->abs_delta.
av1_set_segdata(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF,
-MAX_LOOP_FILTER);
} else {
av1_disable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_SKIP);
av1_disable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF);
if (seg->enabled) {
seg->update_data = 1;
seg->update_map = 1;
}
}
cpi->active_map.update = 0;
}
}
int av1_set_active_map(AV1_COMP *cpi, unsigned char *new_map_16x16, int rows,
int cols) {
if (rows == cpi->common.mb_rows && cols == cpi->common.mb_cols) {
unsigned char *const active_map_8x8 = cpi->active_map.map;
const int mi_rows = cpi->common.mi_rows;
const int mi_cols = cpi->common.mi_cols;
cpi->active_map.update = 1;
if (new_map_16x16) {
int r, c;
for (r = 0; r < mi_rows; ++r) {
for (c = 0; c < mi_cols; ++c) {
active_map_8x8[r * mi_cols + c] =
new_map_16x16[(r >> 1) * cols + (c >> 1)]
? AM_SEGMENT_ID_ACTIVE
: AM_SEGMENT_ID_INACTIVE;
}
}
cpi->active_map.enabled = 1;
} else {
cpi->active_map.enabled = 0;
}
return 0;
} else {
return -1;
}
}
int av1_get_active_map(AV1_COMP *cpi, unsigned char *new_map_16x16, int rows,
int cols) {
if (rows == cpi->common.mb_rows && cols == cpi->common.mb_cols &&
new_map_16x16) {
unsigned char *const seg_map_8x8 = cpi->segmentation_map;
const int mi_rows = cpi->common.mi_rows;
const int mi_cols = cpi->common.mi_cols;
memset(new_map_16x16, !cpi->active_map.enabled, rows * cols);
if (cpi->active_map.enabled) {
int r, c;
for (r = 0; r < mi_rows; ++r) {
for (c = 0; c < mi_cols; ++c) {
// Cyclic refresh segments are considered active despite not having
// AM_SEGMENT_ID_ACTIVE
new_map_16x16[(r >> 1) * cols + (c >> 1)] |=
seg_map_8x8[r * mi_cols + c] != AM_SEGMENT_ID_INACTIVE;
}
}
}
return 0;
} else {
return -1;
}
}
void av1_set_high_precision_mv(AV1_COMP *cpi, int allow_high_precision_mv) {
MACROBLOCK *const mb = &cpi->td.mb;
cpi->common.allow_high_precision_mv = allow_high_precision_mv;
#if CONFIG_REF_MV
if (cpi->common.allow_high_precision_mv) {
int i;
for (i = 0; i < NMV_CONTEXTS; ++i) {
mb->mv_cost_stack[i] = mb->nmvcost_hp[i];
mb->mvsadcost = mb->nmvsadcost_hp;
}
} else {
int i;
for (i = 0; i < NMV_CONTEXTS; ++i) {
mb->mv_cost_stack[i] = mb->nmvcost[i];
mb->mvsadcost = mb->nmvsadcost;
}
}
#else
if (cpi->common.allow_high_precision_mv) {
mb->mvcost = mb->nmvcost_hp;
mb->mvsadcost = mb->nmvcost_hp;
} else {
mb->mvcost = mb->nmvcost;
mb->mvsadcost = mb->nmvcost;
}
#endif
}
static BLOCK_SIZE select_sb_size(const AV1_COMP *const cpi) {
#if CONFIG_EXT_PARTITION
if (cpi->oxcf.superblock_size == AOM_SUPERBLOCK_SIZE_64X64)
return BLOCK_64X64;
if (cpi->oxcf.superblock_size == AOM_SUPERBLOCK_SIZE_128X128)
return BLOCK_128X128;
assert(cpi->oxcf.superblock_size == AOM_SUPERBLOCK_SIZE_DYNAMIC);
assert(IMPLIES(cpi->common.tile_cols > 1,
cpi->common.tile_width % MAX_MIB_SIZE == 0));
assert(IMPLIES(cpi->common.tile_rows > 1,
cpi->common.tile_height % MAX_MIB_SIZE == 0));
// TODO(any): Possibly could improve this with a heuristic.
return BLOCK_128X128;
#else
(void)cpi;
return BLOCK_64X64;
#endif // CONFIG_EXT_PARTITION
}
static void setup_frame(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
// Set up entropy context depending on frame type. The decoder mandates
// the use of the default context, index 0, for keyframes and inter
// frames where the error_resilient_mode or intra_only flag is set. For
// other inter-frames the encoder currently uses only two contexts;
// context 1 for ALTREF frames and context 0 for the others.
if (frame_is_intra_only(cm) || cm->error_resilient_mode) {
av1_setup_past_independence(cm);
} else {
#if CONFIG_EXT_REFS
const GF_GROUP *gf_group = &cpi->twopass.gf_group;
if (gf_group->rf_level[gf_group->index] == GF_ARF_LOW)
cm->frame_context_idx = EXT_ARF_FRAME;
else if (cpi->refresh_alt_ref_frame)
cm->frame_context_idx = ARF_FRAME;
#else
if (cpi->refresh_alt_ref_frame) cm->frame_context_idx = ARF_FRAME;
#endif
else if (cpi->rc.is_src_frame_alt_ref)
cm->frame_context_idx = OVERLAY_FRAME;
else if (cpi->refresh_golden_frame)
cm->frame_context_idx = GLD_FRAME;
#if CONFIG_EXT_REFS
else if (cpi->refresh_bwd_ref_frame)
cm->frame_context_idx = BRF_FRAME;
#endif
else
cm->frame_context_idx = REGULAR_FRAME;
}
if (cm->frame_type == KEY_FRAME) {
cpi->refresh_golden_frame = 1;
cpi->refresh_alt_ref_frame = 1;
av1_zero(cpi->interp_filter_selected);
} else {
*cm->fc = cm->frame_contexts[cm->frame_context_idx];
av1_zero(cpi->interp_filter_selected[0]);
}
cpi->vaq_refresh = 0;
set_sb_size(cm, select_sb_size(cpi));
}
static void av1_enc_setup_mi(AV1_COMMON *cm) {
int i;
cm->mi = cm->mip + cm->mi_stride + 1;
memset(cm->mip, 0, cm->mi_stride * (cm->mi_rows + 1) * sizeof(*cm->mip));
cm->prev_mi = cm->prev_mip + cm->mi_stride + 1;
// Clear top border row
memset(cm->prev_mip, 0, sizeof(*cm->prev_mip) * cm->mi_stride);
// Clear left border column
for (i = 1; i < cm->mi_rows + 1; ++i)
memset(&cm->prev_mip[i * cm->mi_stride], 0, sizeof(*cm->prev_mip));
cm->mi_grid_visible = cm->mi_grid_base + cm->mi_stride + 1;
cm->prev_mi_grid_visible = cm->prev_mi_grid_base + cm->mi_stride + 1;
memset(cm->mi_grid_base, 0,
cm->mi_stride * (cm->mi_rows + 1) * sizeof(*cm->mi_grid_base));
}
static int av1_enc_alloc_mi(AV1_COMMON *cm, int mi_size) {
cm->mip = aom_calloc(mi_size, sizeof(*cm->mip));
if (!cm->mip) return 1;
cm->prev_mip = aom_calloc(mi_size, sizeof(*cm->prev_mip));
if (!cm->prev_mip) return 1;
cm->mi_alloc_size = mi_size;
cm->mi_grid_base = (MODE_INFO **)aom_calloc(mi_size, sizeof(MODE_INFO *));
if (!cm->mi_grid_base) return 1;
cm->prev_mi_grid_base =
(MODE_INFO **)aom_calloc(mi_size, sizeof(MODE_INFO *));
if (!cm->prev_mi_grid_base) return 1;
return 0;
}
static void av1_enc_free_mi(AV1_COMMON *cm) {
aom_free(cm->mip);
cm->mip = NULL;
aom_free(cm->prev_mip);
cm->prev_mip = NULL;
aom_free(cm->mi_grid_base);
cm->mi_grid_base = NULL;
aom_free(cm->prev_mi_grid_base);
cm->prev_mi_grid_base = NULL;
}
static void av1_swap_mi_and_prev_mi(AV1_COMMON *cm) {
// Current mip will be the prev_mip for the next frame.
MODE_INFO **temp_base = cm->prev_mi_grid_base;
MODE_INFO *temp = cm->prev_mip;
cm->prev_mip = cm->mip;
cm->mip = temp;
// Update the upper left visible macroblock ptrs.
cm->mi = cm->mip + cm->mi_stride + 1;
cm->prev_mi = cm->prev_mip + cm->mi_stride + 1;
cm->prev_mi_grid_base = cm->mi_grid_base;
cm->mi_grid_base = temp_base;
cm->mi_grid_visible = cm->mi_grid_base + cm->mi_stride + 1;
cm->prev_mi_grid_visible = cm->prev_mi_grid_base + cm->mi_stride + 1;
}
void av1_initialize_enc(void) {
static volatile int init_done = 0;
if (!init_done) {
av1_rtcd();
aom_dsp_rtcd();
aom_scale_rtcd();
av1_init_intra_predictors();
av1_init_me_luts();
av1_rc_init_minq_luts();
av1_entropy_mv_init();
av1_encode_token_init();
#if CONFIG_EXT_INTER
av1_init_wedge_masks();
#endif
init_done = 1;
}
}
static void dealloc_compressor_data(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
int i;
aom_free(cpi->mbmi_ext_base);
cpi->mbmi_ext_base = NULL;
aom_free(cpi->tile_data);
cpi->tile_data = NULL;
// Delete sementation map
aom_free(cpi->segmentation_map);
cpi->segmentation_map = NULL;
aom_free(cpi->coding_context.last_frame_seg_map_copy);
cpi->coding_context.last_frame_seg_map_copy = NULL;
#if CONFIG_REF_MV
for (i = 0; i < NMV_CONTEXTS; ++i) {
aom_free(cpi->nmv_costs[i][0]);
aom_free(cpi->nmv_costs[i][1]);
aom_free(cpi->nmv_costs_hp[i][0]);
aom_free(cpi->nmv_costs_hp[i][1]);
cpi->nmv_costs[i][0] = NULL;
cpi->nmv_costs[i][1] = NULL;
cpi->nmv_costs_hp[i][0] = NULL;
cpi->nmv_costs_hp[i][1] = NULL;
}
#endif
aom_free(cpi->nmvcosts[0]);
aom_free(cpi->nmvcosts[1]);
cpi->nmvcosts[0] = NULL;
cpi->nmvcosts[1] = NULL;
aom_free(cpi->nmvcosts_hp[0]);
aom_free(cpi->nmvcosts_hp[1]);
cpi->nmvcosts_hp[0] = NULL;
cpi->nmvcosts_hp[1] = NULL;
aom_free(cpi->nmvsadcosts[0]);
aom_free(cpi->nmvsadcosts[1]);
cpi->nmvsadcosts[0] = NULL;
cpi->nmvsadcosts[1] = NULL;
aom_free(cpi->nmvsadcosts_hp[0]);
aom_free(cpi->nmvsadcosts_hp[1]);
cpi->nmvsadcosts_hp[0] = NULL;
cpi->nmvsadcosts_hp[1] = NULL;
av1_cyclic_refresh_free(cpi->cyclic_refresh);
cpi->cyclic_refresh = NULL;
aom_free(cpi->active_map.map);
cpi->active_map.map = NULL;
// Free up-sampled reference buffers.
for (i = 0; i < (REF_FRAMES + 1); i++)
aom_free_frame_buffer(&cpi->upsampled_ref_bufs[i].buf);
av1_free_ref_frame_buffers(cm->buffer_pool);
av1_free_context_buffers(cm);
aom_free_frame_buffer(&cpi->last_frame_uf);
#if CONFIG_LOOP_RESTORATION
aom_free_frame_buffer(&cpi->last_frame_db);
av1_free_restoration_buffers(cm);
#endif // CONFIG_LOOP_RESTORATION
aom_free_frame_buffer(&cpi->scaled_source);
aom_free_frame_buffer(&cpi->scaled_last_source);
aom_free_frame_buffer(&cpi->alt_ref_buffer);
av1_lookahead_destroy(cpi->lookahead);
aom_free(cpi->tile_tok[0][0]);
cpi->tile_tok[0][0] = 0;
av1_free_pc_tree(&cpi->td);
av1_free_var_tree(&cpi->td);
if (cpi->common.allow_screen_content_tools)
aom_free(cpi->td.mb.palette_buffer);
if (cpi->source_diff_var != NULL) {
aom_free(cpi->source_diff_var);
cpi->source_diff_var = NULL;
}
#if CONFIG_ANS
aom_buf_ans_free(&cpi->buf_ans);
#endif // CONFIG_ANS
}
static void save_coding_context(AV1_COMP *cpi) {
CODING_CONTEXT *const cc = &cpi->coding_context;
AV1_COMMON *cm = &cpi->common;
#if CONFIG_REF_MV
int i;
#endif
// Stores a snapshot of key state variables which can subsequently be
// restored with a call to av1_restore_coding_context. These functions are
// intended for use in a re-code loop in av1_compress_frame where the
// quantizer value is adjusted between loop iterations.
#if CONFIG_REF_MV
for (i = 0; i < NMV_CONTEXTS; ++i) {
av1_copy(cc->nmv_vec_cost[i], cpi->td.mb.nmv_vec_cost[i]);
memcpy(cc->nmv_costs[i][0], cpi->nmv_costs[i][0],
MV_VALS * sizeof(*cpi->nmv_costs[i][0]));
memcpy(cc->nmv_costs[i][1], cpi->nmv_costs[i][1],
MV_VALS * sizeof(*cpi->nmv_costs[i][1]));
memcpy(cc->nmv_costs_hp[i][0], cpi->nmv_costs_hp[i][0],
MV_VALS * sizeof(*cpi->nmv_costs_hp[i][0]));
memcpy(cc->nmv_costs_hp[i][1], cpi->nmv_costs_hp[i][1],
MV_VALS * sizeof(*cpi->nmv_costs_hp[i][1]));
}
#else
av1_copy(cc->nmvjointcost, cpi->td.mb.nmvjointcost);
#endif
memcpy(cc->nmvcosts[0], cpi->nmvcosts[0],
MV_VALS * sizeof(*cpi->nmvcosts[0]));
memcpy(cc->nmvcosts[1], cpi->nmvcosts[1],
MV_VALS * sizeof(*cpi->nmvcosts[1]));
memcpy(cc->nmvcosts_hp[0], cpi->nmvcosts_hp[0],
MV_VALS * sizeof(*cpi->nmvcosts_hp[0]));
memcpy(cc->nmvcosts_hp[1], cpi->nmvcosts_hp[1],
MV_VALS * sizeof(*cpi->nmvcosts_hp[1]));
memcpy(cpi->coding_context.last_frame_seg_map_copy, cm->last_frame_seg_map,
(cm->mi_rows * cm->mi_cols));
av1_copy(cc->last_ref_lf_deltas, cm->lf.last_ref_deltas);
av1_copy(cc->last_mode_lf_deltas, cm->lf.last_mode_deltas);
cc->fc = *cm->fc;
}
static void restore_coding_context(AV1_COMP *cpi) {
CODING_CONTEXT *const cc = &cpi->coding_context;
AV1_COMMON *cm = &cpi->common;
#if CONFIG_REF_MV
int i;
#endif
// Restore key state variables to the snapshot state stored in the
// previous call to av1_save_coding_context.
#if CONFIG_REF_MV
for (i = 0; i < NMV_CONTEXTS; ++i) {
av1_copy(cpi->td.mb.nmv_vec_cost[i], cc->nmv_vec_cost[i]);
memcpy(cpi->nmv_costs[i][0], cc->nmv_costs[i][0],
MV_VALS * sizeof(*cc->nmv_costs[i][0]));
memcpy(cpi->nmv_costs[i][1], cc->nmv_costs[i][1],
MV_VALS * sizeof(*cc->nmv_costs[i][1]));
memcpy(cpi->nmv_costs_hp[i][0], cc->nmv_costs_hp[i][0],
MV_VALS * sizeof(*cc->nmv_costs_hp[i][0]));
memcpy(cpi->nmv_costs_hp[i][1], cc->nmv_costs_hp[i][1],
MV_VALS * sizeof(*cc->nmv_costs_hp[i][1]));
}
#else
av1_copy(cpi->td.mb.nmvjointcost, cc->nmvjointcost);
#endif
memcpy(cpi->nmvcosts[0], cc->nmvcosts[0], MV_VALS * sizeof(*cc->nmvcosts[0]));
memcpy(cpi->nmvcosts[1], cc->nmvcosts[1], MV_VALS * sizeof(*cc->nmvcosts[1]));
memcpy(cpi->nmvcosts_hp[0], cc->nmvcosts_hp[0],
MV_VALS * sizeof(*cc->nmvcosts_hp[0]));
memcpy(cpi->nmvcosts_hp[1], cc->nmvcosts_hp[1],
MV_VALS * sizeof(*cc->nmvcosts_hp[1]));
memcpy(cm->last_frame_seg_map, cpi->coding_context.last_frame_seg_map_copy,
(cm->mi_rows * cm->mi_cols));
av1_copy(cm->lf.last_ref_deltas, cc->last_ref_lf_deltas);
av1_copy(cm->lf.last_mode_deltas, cc->last_mode_lf_deltas);
*cm->fc = cc->fc;
}
static void configure_static_seg_features(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
const RATE_CONTROL *const rc = &cpi->rc;
struct segmentation *const seg = &cm->seg;
int high_q = (int)(rc->avg_q > 48.0);
int qi_delta;
// Disable and clear down for KF
if (cm->frame_type == KEY_FRAME) {
// Clear down the global segmentation map
memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols);
seg->update_map = 0;
seg->update_data = 0;
cpi->static_mb_pct = 0;
// Disable segmentation
av1_disable_segmentation(seg);
// Clear down the segment features.
av1_clearall_segfeatures(seg);
} else if (cpi->refresh_alt_ref_frame) {
// If this is an alt ref frame
// Clear down the global segmentation map
memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols);
seg->update_map = 0;
seg->update_data = 0;
cpi->static_mb_pct = 0;
// Disable segmentation and individual segment features by default
av1_disable_segmentation(seg);
av1_clearall_segfeatures(seg);
// Scan frames from current to arf frame.
// This function re-enables segmentation if appropriate.
av1_update_mbgraph_stats(cpi);
// If segmentation was enabled set those features needed for the
// arf itself.
if (seg->enabled) {
seg->update_map = 1;
seg->update_data = 1;
qi_delta =
av1_compute_qdelta(rc, rc->avg_q, rc->avg_q * 0.875, cm->bit_depth);
av1_set_segdata(seg, 1, SEG_LVL_ALT_Q, qi_delta - 2);
av1_set_segdata(seg, 1, SEG_LVL_ALT_LF, -2);
av1_enable_segfeature(seg, 1, SEG_LVL_ALT_Q);
av1_enable_segfeature(seg, 1, SEG_LVL_ALT_LF);
// Where relevant assume segment data is delta data
seg->abs_delta = SEGMENT_DELTADATA;
}
} else if (seg->enabled) {
// All other frames if segmentation has been enabled
// First normal frame in a valid gf or alt ref group
if (rc->frames_since_golden == 0) {
// Set up segment features for normal frames in an arf group
if (rc->source_alt_ref_active) {
seg->update_map = 0;
seg->update_data = 1;
seg->abs_delta = SEGMENT_DELTADATA;
qi_delta =
av1_compute_qdelta(rc, rc->avg_q, rc->avg_q * 1.125, cm->bit_depth);
av1_set_segdata(seg, 1, SEG_LVL_ALT_Q, qi_delta + 2);
av1_enable_segfeature(seg, 1, SEG_LVL_ALT_Q);
av1_set_segdata(seg, 1, SEG_LVL_ALT_LF, -2);
av1_enable_segfeature(seg, 1, SEG_LVL_ALT_LF);
// Segment coding disabled for compred testing
if (high_q || (cpi->static_mb_pct == 100)) {
av1_set_segdata(seg, 1, SEG_LVL_REF_FRAME, ALTREF_FRAME);
av1_enable_segfeature(seg, 1, SEG_LVL_REF_FRAME);
av1_enable_segfeature(seg, 1, SEG_LVL_SKIP);
}
} else {
// Disable segmentation and clear down features if alt ref
// is not active for this group
av1_disable_segmentation(seg);
memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols);
seg->update_map = 0;
seg->update_data = 0;
av1_clearall_segfeatures(seg);
}
} else if (rc->is_src_frame_alt_ref) {
// Special case where we are coding over the top of a previous
// alt ref frame.
// Segment coding disabled for compred testing
// Enable ref frame features for segment 0 as well
av1_enable_segfeature(seg, 0, SEG_LVL_REF_FRAME);
av1_enable_segfeature(seg, 1, SEG_LVL_REF_FRAME);
// All mbs should use ALTREF_FRAME
av1_clear_segdata(seg, 0, SEG_LVL_REF_FRAME);
av1_set_segdata(seg, 0, SEG_LVL_REF_FRAME, ALTREF_FRAME);
av1_clear_segdata(seg, 1, SEG_LVL_REF_FRAME);
av1_set_segdata(seg, 1, SEG_LVL_REF_FRAME, ALTREF_FRAME);
// Skip all MBs if high Q (0,0 mv and skip coeffs)
if (high_q) {
av1_enable_segfeature(seg, 0, SEG_LVL_SKIP);
av1_enable_segfeature(seg, 1, SEG_LVL_SKIP);
}
// Enable data update
seg->update_data = 1;
} else {
// All other frames.
// No updates.. leave things as they are.
seg->update_map = 0;
seg->update_data = 0;
}
}
}
static void update_reference_segmentation_map(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
MODE_INFO **mi_8x8_ptr = cm->mi_grid_visible;
uint8_t *cache_ptr = cm->last_frame_seg_map;
int row, col;
for (row = 0; row < cm->mi_rows; row++) {
MODE_INFO **mi_8x8 = mi_8x8_ptr;
uint8_t *cache = cache_ptr;
for (col = 0; col < cm->mi_cols; col++, mi_8x8++, cache++)
cache[0] = mi_8x8[0]->mbmi.segment_id;
mi_8x8_ptr += cm->mi_stride;
cache_ptr += cm->mi_cols;
}
}
static void alloc_raw_frame_buffers(AV1_COMP *cpi) {
AV1_COMMON *cm = &cpi->common;
const AV1EncoderConfig *oxcf = &cpi->oxcf;
if (!cpi->lookahead)
cpi->lookahead = av1_lookahead_init(oxcf->width, oxcf->height,
cm->subsampling_x, cm->subsampling_y,
#if CONFIG_AOM_HIGHBITDEPTH
cm->use_highbitdepth,
#endif
oxcf->lag_in_frames);
if (!cpi->lookahead)
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate lag buffers");
// TODO(agrange) Check if ARF is enabled and skip allocation if not.
if (aom_realloc_frame_buffer(&cpi->alt_ref_buffer, oxcf->width, oxcf->height,
cm->subsampling_x, cm->subsampling_y,
#if CONFIG_AOM_HIGHBITDEPTH
cm->use_highbitdepth,
#endif
AOM_BORDER_IN_PIXELS, cm->byte_alignment, NULL,
NULL, NULL))
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate altref buffer");
}
static void alloc_util_frame_buffers(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
if (aom_realloc_frame_buffer(&cpi->last_frame_uf, cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
#if CONFIG_AOM_HIGHBITDEPTH
cm->use_highbitdepth,
#endif
AOM_BORDER_IN_PIXELS, cm->byte_alignment, NULL,
NULL, NULL))
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate last frame buffer");
#if CONFIG_LOOP_RESTORATION
if (aom_realloc_frame_buffer(&cpi->last_frame_db, cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
#if CONFIG_AOM_HIGHBITDEPTH
cm->use_highbitdepth,
#endif
AOM_BORDER_IN_PIXELS, cm->byte_alignment, NULL,
NULL, NULL))
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate last frame deblocked buffer");
#endif // CONFIG_LOOP_RESTORATION
if (aom_realloc_frame_buffer(&cpi->scaled_source, cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
#if CONFIG_AOM_HIGHBITDEPTH
cm->use_highbitdepth,
#endif
AOM_BORDER_IN_PIXELS, cm->byte_alignment, NULL,
NULL, NULL))
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate scaled source buffer");
if (aom_realloc_frame_buffer(&cpi->scaled_last_source, cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
#if CONFIG_AOM_HIGHBITDEPTH
cm->use_highbitdepth,
#endif
AOM_BORDER_IN_PIXELS, cm->byte_alignment, NULL,
NULL, NULL))
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate scaled last source buffer");
}
static int alloc_context_buffers_ext(AV1_COMP *cpi) {
AV1_COMMON *cm = &cpi->common;
int mi_size = cm->mi_cols * cm->mi_rows;
cpi->mbmi_ext_base = aom_calloc(mi_size, sizeof(*cpi->mbmi_ext_base));
if (!cpi->mbmi_ext_base) return 1;
return 0;
}
void av1_alloc_compressor_data(AV1_COMP *cpi) {
AV1_COMMON *cm = &cpi->common;
av1_alloc_context_buffers(cm, cm->width, cm->height);
alloc_context_buffers_ext(cpi);
aom_free(cpi->tile_tok[0][0]);
{
unsigned int tokens = get_token_alloc(cm->mb_rows, cm->mb_cols);
CHECK_MEM_ERROR(cm, cpi->tile_tok[0][0],
aom_calloc(tokens, sizeof(*cpi->tile_tok[0][0])));
#if CONFIG_ANS
aom_buf_ans_alloc(&cpi->buf_ans, &cm->error, tokens);
#endif // CONFIG_ANS
}
av1_setup_pc_tree(&cpi->common, &cpi->td);
}
void av1_new_framerate(AV1_COMP *cpi, double framerate) {
cpi->framerate = framerate < 0.1 ? 30 : framerate;
av1_rc_update_framerate(cpi);
}
static void set_tile_info(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
#if CONFIG_EXT_TILE
#if CONFIG_EXT_PARTITION
if (cpi->oxcf.superblock_size != AOM_SUPERBLOCK_SIZE_64X64) {
cm->tile_width = clamp(cpi->oxcf.tile_columns, 1, 32);
cm->tile_height = clamp(cpi->oxcf.tile_rows, 1, 32);
cm->tile_width <<= MAX_MIB_SIZE_LOG2;
cm->tile_height <<= MAX_MIB_SIZE_LOG2;
} else {
cm->tile_width = clamp(cpi->oxcf.tile_columns, 1, 64);
cm->tile_height = clamp(cpi->oxcf.tile_rows, 1, 64);
cm->tile_width <<= MAX_MIB_SIZE_LOG2 - 1;
cm->tile_height <<= MAX_MIB_SIZE_LOG2 - 1;
}
#else
cm->tile_width = clamp(cpi->oxcf.tile_columns, 1, 64);
cm->tile_height = clamp(cpi->oxcf.tile_rows, 1, 64);
cm->tile_width <<= MAX_MIB_SIZE_LOG2;
cm->tile_height <<= MAX_MIB_SIZE_LOG2;
#endif // CONFIG_EXT_PARTITION
cm->tile_width = AOMMIN(cm->tile_width, cm->mi_cols);
cm->tile_height = AOMMIN(cm->tile_height, cm->mi_rows);
assert(cm->tile_width >> MAX_MIB_SIZE <= 32);
assert(cm->tile_height >> MAX_MIB_SIZE <= 32);
// Get the number of tiles
cm->tile_cols = 1;
while (cm->tile_cols * cm->tile_width < cm->mi_cols) ++cm->tile_cols;
cm->tile_rows = 1;
while (cm->tile_rows * cm->tile_height < cm->mi_rows) ++cm->tile_rows;
#else
int min_log2_tile_cols, max_log2_tile_cols;
av1_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
cm->log2_tile_cols =
clamp(cpi->oxcf.tile_columns, min_log2_tile_cols, max_log2_tile_cols);
cm->log2_tile_rows = cpi->oxcf.tile_rows;
cm->tile_cols = 1 << cm->log2_tile_cols;
cm->tile_rows = 1 << cm->log2_tile_rows;
cm->tile_width = ALIGN_POWER_OF_TWO(cm->mi_cols, MAX_MIB_SIZE_LOG2);
cm->tile_width >>= cm->log2_tile_cols;
cm->tile_height = ALIGN_POWER_OF_TWO(cm->mi_rows, MAX_MIB_SIZE_LOG2);
cm->tile_height >>= cm->log2_tile_rows;
// round to integer multiples of max superblock size
cm->tile_width = ALIGN_POWER_OF_TWO(cm->tile_width, MAX_MIB_SIZE_LOG2);
cm->tile_height = ALIGN_POWER_OF_TWO(cm->tile_height, MAX_MIB_SIZE_LOG2);
#endif // CONFIG_EXT_TILE
}
static void update_frame_size(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
av1_set_mb_mi(cm, cm->width, cm->height);
av1_init_context_buffers(cm);
av1_init_macroblockd(cm, xd, NULL);
memset(cpi->mbmi_ext_base, 0,
cm->mi_rows * cm->mi_cols * sizeof(*cpi->mbmi_ext_base));
set_tile_info(cpi);
}
static void init_buffer_indices(AV1_COMP *cpi) {
#if CONFIG_EXT_REFS
int fb_idx;
for (fb_idx = 0; fb_idx < LAST_REF_FRAMES; ++fb_idx)
cpi->lst_fb_idxes[fb_idx] = fb_idx;
cpi->gld_fb_idx = LAST_REF_FRAMES;
cpi->bwd_fb_idx = LAST_REF_FRAMES + 1;
cpi->alt_fb_idx = LAST_REF_FRAMES + 2;
for (fb_idx = 0; fb_idx < MAX_EXT_ARFS + 1; ++fb_idx)
cpi->arf_map[fb_idx] = LAST_REF_FRAMES + 2 + fb_idx;
#else
cpi->lst_fb_idx = 0;
cpi->gld_fb_idx = 1;
cpi->alt_fb_idx = 2;
#endif // CONFIG_EXT_REFS
}
static void init_config(struct AV1_COMP *cpi, AV1EncoderConfig *oxcf) {
AV1_COMMON *const cm = &cpi->common;
cpi->oxcf = *oxcf;
cpi->framerate = oxcf->init_framerate;
cm->profile = oxcf->profile;
cm->bit_depth = oxcf->bit_depth;
#if CONFIG_AOM_HIGHBITDEPTH
cm->use_highbitdepth = oxcf->use_highbitdepth;
#endif
cm->color_space = oxcf->color_space;
cm->color_range = oxcf->color_range;
cm->width = oxcf->width;
cm->height = oxcf->height;
av1_alloc_compressor_data(cpi);
// Single thread case: use counts in common.
cpi->td.counts = &cm->counts;
// change includes all joint functionality
av1_change_config(cpi, oxcf);
cpi->static_mb_pct = 0;
cpi->ref_frame_flags = 0;
init_buffer_indices(cpi);
}
static void set_rc_buffer_sizes(RATE_CONTROL *rc,
const AV1EncoderConfig *oxcf) {
const int64_t bandwidth = oxcf->target_bandwidth;
const int64_t starting = oxcf->starting_buffer_level_ms;
const int64_t optimal = oxcf->optimal_buffer_level_ms;
const int64_t maximum = oxcf->maximum_buffer_size_ms;
rc->starting_buffer_level = starting * bandwidth / 1000;
rc->optimal_buffer_level =
(optimal == 0) ? bandwidth / 8 : optimal * bandwidth / 1000;
rc->maximum_buffer_size =
(maximum == 0) ? bandwidth / 8 : maximum * bandwidth / 1000;
}
#if CONFIG_AOM_HIGHBITDEPTH
#define HIGHBD_BFP(BT, SDF, SDAF, VF, SVF, SVAF, SDX3F, SDX8F, SDX4DF) \
cpi->fn_ptr[BT].sdf = SDF; \
cpi->fn_ptr[BT].sdaf = SDAF; \
cpi->fn_ptr[BT].vf = VF; \
cpi->fn_ptr[BT].svf = SVF; \
cpi->fn_ptr[BT].svaf = SVAF; \
cpi->fn_ptr[BT].sdx3f = SDX3F; \
cpi->fn_ptr[BT].sdx8f = SDX8F; \
cpi->fn_ptr[BT].sdx4df = SDX4DF;
#define MAKE_BFP_SAD_WRAPPER(fnname) \
static unsigned int fnname##_bits8(const uint8_t *src_ptr, \
int source_stride, \
const uint8_t *ref_ptr, int ref_stride) { \
return fnname(src_ptr, source_stride, ref_ptr, ref_stride); \
} \
static unsigned int fnname##_bits10( \
const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \
int ref_stride) { \
return fnname(src_ptr, source_stride, ref_ptr, ref_stride) >> 2; \
} \
static unsigned int fnname##_bits12( \
const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \
int ref_stride) { \
return fnname(src_ptr, source_stride, ref_ptr, ref_stride) >> 4; \
}
#define MAKE_BFP_SADAVG_WRAPPER(fnname) \
static unsigned int fnname##_bits8( \
const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \
int ref_stride, const uint8_t *second_pred) { \
return fnname(src_ptr, source_stride, ref_ptr, ref_stride, second_pred); \
} \
static unsigned int fnname##_bits10( \
const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \
int ref_stride, const uint8_t *second_pred) { \
return fnname(src_ptr, source_stride, ref_ptr, ref_stride, second_pred) >> \
2; \
} \
static unsigned int fnname##_bits12( \
const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \
int ref_stride, const uint8_t *second_pred) { \
return fnname(src_ptr, source_stride, ref_ptr, ref_stride, second_pred) >> \
4; \
}
#define MAKE_BFP_SAD3_WRAPPER(fnname) \
static void fnname##_bits8(const uint8_t *src_ptr, int source_stride, \
const uint8_t *ref_ptr, int ref_stride, \
unsigned int *sad_array) { \
fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \
} \
static void fnname##_bits10(const uint8_t *src_ptr, int source_stride, \
const uint8_t *ref_ptr, int ref_stride, \
unsigned int *sad_array) { \
int i; \
fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \
for (i = 0; i < 3; i++) sad_array[i] >>= 2; \
} \
static void fnname##_bits12(const uint8_t *src_ptr, int source_stride, \
const uint8_t *ref_ptr, int ref_stride, \
unsigned int *sad_array) { \
int i; \
fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \
for (i = 0; i < 3; i++) sad_array[i] >>= 4; \
}
#define MAKE_BFP_SAD8_WRAPPER(fnname) \
static void fnname##_bits8(const uint8_t *src_ptr, int source_stride, \
const uint8_t *ref_ptr, int ref_stride, \
unsigned int *sad_array) { \
fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \
} \
static void fnname##_bits10(const uint8_t *src_ptr, int source_stride, \
const uint8_t *ref_ptr, int ref_stride, \
unsigned int *sad_array) { \
int i; \
fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \
for (i = 0; i < 8; i++) sad_array[i] >>= 2; \
} \
static void fnname##_bits12(const uint8_t *src_ptr, int source_stride, \
const uint8_t *ref_ptr, int ref_stride, \
unsigned int *sad_array) { \
int i; \
fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \
for (i = 0; i < 8; i++) sad_array[i] >>= 4; \
}
#define MAKE_BFP_SAD4D_WRAPPER(fnname) \
static void fnname##_bits8(const uint8_t *src_ptr, int source_stride, \
const uint8_t *const ref_ptr[], int ref_stride, \
unsigned int *sad_array) { \
fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \
} \
static void fnname##_bits10(const uint8_t *src_ptr, int source_stride, \
const uint8_t *const ref_ptr[], int ref_stride, \
unsigned int *sad_array) { \
int i; \
fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \
for (i = 0; i < 4; i++) sad_array[i] >>= 2; \
} \
static void fnname##_bits12(const uint8_t *src_ptr, int source_stride, \
const uint8_t *const ref_ptr[], int ref_stride, \
unsigned int *sad_array) { \
int i; \
fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \
for (i = 0; i < 4; i++) sad_array[i] >>= 4; \
}
#if CONFIG_EXT_PARTITION
MAKE_BFP_SAD_WRAPPER(aom_highbd_sad128x128)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad128x128_avg)
MAKE_BFP_SAD3_WRAPPER(aom_highbd_sad128x128x3)
MAKE_BFP_SAD8_WRAPPER(aom_highbd_sad128x128x8)
MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad128x128x4d)
MAKE_BFP_SAD_WRAPPER(aom_highbd_sad128x64)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad128x64_avg)
MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad128x64x4d)
MAKE_BFP_SAD_WRAPPER(aom_highbd_sad64x128)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad64x128_avg)
MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad64x128x4d)
#endif // CONFIG_EXT_PARTITION
MAKE_BFP_SAD_WRAPPER(aom_highbd_sad32x16)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad32x16_avg)
MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad32x16x4d)
MAKE_BFP_SAD_WRAPPER(aom_highbd_sad16x32)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad16x32_avg)
MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad16x32x4d)
MAKE_BFP_SAD_WRAPPER(aom_highbd_sad64x32)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad64x32_avg)
MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad64x32x4d)
MAKE_BFP_SAD_WRAPPER(aom_highbd_sad32x64)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad32x64_avg)
MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad32x64x4d)
MAKE_BFP_SAD_WRAPPER(aom_highbd_sad32x32)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad32x32_avg)
MAKE_BFP_SAD3_WRAPPER(aom_highbd_sad32x32x3)
MAKE_BFP_SAD8_WRAPPER(aom_highbd_sad32x32x8)
MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad32x32x4d)
MAKE_BFP_SAD_WRAPPER(aom_highbd_sad64x64)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad64x64_avg)
MAKE_BFP_SAD3_WRAPPER(aom_highbd_sad64x64x3)
MAKE_BFP_SAD8_WRAPPER(aom_highbd_sad64x64x8)
MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad64x64x4d)
MAKE_BFP_SAD_WRAPPER(aom_highbd_sad16x16)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad16x16_avg)
MAKE_BFP_SAD3_WRAPPER(aom_highbd_sad16x16x3)
MAKE_BFP_SAD8_WRAPPER(aom_highbd_sad16x16x8)
MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad16x16x4d)
MAKE_BFP_SAD_WRAPPER(aom_highbd_sad16x8)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad16x8_avg)
MAKE_BFP_SAD3_WRAPPER(aom_highbd_sad16x8x3)
MAKE_BFP_SAD8_WRAPPER(aom_highbd_sad16x8x8)
MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad16x8x4d)
MAKE_BFP_SAD_WRAPPER(aom_highbd_sad8x16)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad8x16_avg)
MAKE_BFP_SAD3_WRAPPER(aom_highbd_sad8x16x3)
MAKE_BFP_SAD8_WRAPPER(aom_highbd_sad8x16x8)
MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad8x16x4d)
MAKE_BFP_SAD_WRAPPER(aom_highbd_sad8x8)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad8x8_avg)
MAKE_BFP_SAD3_WRAPPER(aom_highbd_sad8x8x3)
MAKE_BFP_SAD8_WRAPPER(aom_highbd_sad8x8x8)
MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad8x8x4d)
MAKE_BFP_SAD_WRAPPER(aom_highbd_sad8x4)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad8x4_avg)
MAKE_BFP_SAD8_WRAPPER(aom_highbd_sad8x4x8)
MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad8x4x4d)
MAKE_BFP_SAD_WRAPPER(aom_highbd_sad4x8)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad4x8_avg)
MAKE_BFP_SAD8_WRAPPER(aom_highbd_sad4x8x8)
MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad4x8x4d)
MAKE_BFP_SAD_WRAPPER(aom_highbd_sad4x4)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad4x4_avg)
MAKE_BFP_SAD3_WRAPPER(aom_highbd_sad4x4x3)
MAKE_BFP_SAD8_WRAPPER(aom_highbd_sad4x4x8)
MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad4x4x4d)
#if CONFIG_EXT_INTER
#define HIGHBD_MBFP(BT, MSDF, MVF, MSVF) \
cpi->fn_ptr[BT].msdf = MSDF; \
cpi->fn_ptr[BT].mvf = MVF; \
cpi->fn_ptr[BT].msvf = MSVF;
#define MAKE_MBFP_SAD_WRAPPER(fnname) \
static unsigned int fnname##_bits8( \
const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \
int ref_stride, const uint8_t *m, int m_stride) { \
return fnname(src_ptr, source_stride, ref_ptr, ref_stride, m, m_stride); \
} \
static unsigned int fnname##_bits10( \
const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \
int ref_stride, const uint8_t *m, int m_stride) { \
return fnname(src_ptr, source_stride, ref_ptr, ref_stride, m, m_stride) >> \
2; \
} \
static unsigned int fnname##_bits12( \
const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \
int ref_stride, const uint8_t *m, int m_stride) { \
return fnname(src_ptr, source_stride, ref_ptr, ref_stride, m, m_stride) >> \
4; \
}
#if CONFIG_EXT_PARTITION
MAKE_MBFP_SAD_WRAPPER(aom_highbd_masked_sad128x128)
MAKE_MBFP_SAD_WRAPPER(aom_highbd_masked_sad128x64)
MAKE_MBFP_SAD_WRAPPER(aom_highbd_masked_sad64x128)
#endif // CONFIG_EXT_PARTITION
MAKE_MBFP_SAD_WRAPPER(aom_highbd_masked_sad64x64)
MAKE_MBFP_SAD_WRAPPER(aom_highbd_masked_sad64x32)
MAKE_MBFP_SAD_WRAPPER(aom_highbd_masked_sad32x64)
MAKE_MBFP_SAD_WRAPPER(aom_highbd_masked_sad32x32)
MAKE_MBFP_SAD_WRAPPER(aom_highbd_masked_sad32x16)
MAKE_MBFP_SAD_WRAPPER(aom_highbd_masked_sad16x32)
MAKE_MBFP_SAD_WRAPPER(aom_highbd_masked_sad16x16)
MAKE_MBFP_SAD_WRAPPER(aom_highbd_masked_sad16x8)
MAKE_MBFP_SAD_WRAPPER(aom_highbd_masked_sad8x16)
MAKE_MBFP_SAD_WRAPPER(aom_highbd_masked_sad8x8)
MAKE_MBFP_SAD_WRAPPER(aom_highbd_masked_sad8x4)
MAKE_MBFP_SAD_WRAPPER(aom_highbd_masked_sad4x8)
MAKE_MBFP_SAD_WRAPPER(aom_highbd_masked_sad4x4)
#endif // CONFIG_EXT_INTER
#if CONFIG_MOTION_VAR
#define HIGHBD_OBFP(BT, OSDF, OVF, OSVF) \
cpi->fn_ptr[BT].osdf = OSDF; \
cpi->fn_ptr[BT].ovf = OVF; \
cpi->fn_ptr[BT].osvf = OSVF;
#define MAKE_OBFP_SAD_WRAPPER(fnname) \
static unsigned int fnname##_bits8(const uint8_t *ref, int ref_stride, \
const int32_t *wsrc, \
const int32_t *msk) { \
return fnname(ref, ref_stride, wsrc, msk); \
} \
static unsigned int fnname##_bits10(const uint8_t *ref, int ref_stride, \
const int32_t *wsrc, \
const int32_t *msk) { \
return fnname(ref, ref_stride, wsrc, msk) >> 2; \
} \
static unsigned int fnname##_bits12(const uint8_t *ref, int ref_stride, \
const int32_t *wsrc, \
const int32_t *msk) { \
return fnname(ref, ref_stride, wsrc, msk) >> 4; \
}
#if CONFIG_EXT_PARTITION
MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad128x128)
MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad128x64)
MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad64x128)
#endif // CONFIG_EXT_PARTITION
MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad64x64)
MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad64x32)
MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad32x64)
MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad32x32)
MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad32x16)
MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad16x32)
MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad16x16)
MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad16x8)
MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad8x16)
MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad8x8)
MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad8x4)
MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad4x8)
MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad4x4)
#endif // CONFIG_MOTION_VAR
static void highbd_set_var_fns(AV1_COMP *const cpi) {
AV1_COMMON *const cm = &cpi->common;
if (cm->use_highbitdepth) {
switch (cm->bit_depth) {
case AOM_BITS_8:
HIGHBD_BFP(BLOCK_32X16, aom_highbd_sad32x16_bits8,
aom_highbd_sad32x16_avg_bits8, aom_highbd_8_variance32x16,
aom_highbd_8_sub_pixel_variance32x16,
aom_highbd_8_sub_pixel_avg_variance32x16, NULL, NULL,
aom_highbd_sad32x16x4d_bits8)
HIGHBD_BFP(BLOCK_16X32, aom_highbd_sad16x32_bits8,
aom_highbd_sad16x32_avg_bits8, aom_highbd_8_variance16x32,
aom_highbd_8_sub_pixel_variance16x32,
aom_highbd_8_sub_pixel_avg_variance16x32, NULL, NULL,
aom_highbd_sad16x32x4d_bits8)
HIGHBD_BFP(BLOCK_64X32, aom_highbd_sad64x32_bits8,
aom_highbd_sad64x32_avg_bits8, aom_highbd_8_variance64x32,
aom_highbd_8_sub_pixel_variance64x32,
aom_highbd_8_sub_pixel_avg_variance64x32, NULL, NULL,
aom_highbd_sad64x32x4d_bits8)
HIGHBD_BFP(BLOCK_32X64, aom_highbd_sad32x64_bits8,
aom_highbd_sad32x64_avg_bits8, aom_highbd_8_variance32x64,
aom_highbd_8_sub_pixel_variance32x64,
aom_highbd_8_sub_pixel_avg_variance32x64, NULL, NULL,
aom_highbd_sad32x64x4d_bits8)
HIGHBD_BFP(BLOCK_32X32, aom_highbd_sad32x32_bits8,
aom_highbd_sad32x32_avg_bits8, aom_highbd_8_variance32x32,
aom_highbd_8_sub_pixel_variance32x32,
aom_highbd_8_sub_pixel_avg_variance32x32,
aom_highbd_sad32x32x3_bits8, aom_highbd_sad32x32x8_bits8,
aom_highbd_sad32x32x4d_bits8)
HIGHBD_BFP(BLOCK_64X64, aom_highbd_sad64x64_bits8,
aom_highbd_sad64x64_avg_bits8, aom_highbd_8_variance64x64,
aom_highbd_8_sub_pixel_variance64x64,
aom_highbd_8_sub_pixel_avg_variance64x64,
aom_highbd_sad64x64x3_bits8, aom_highbd_sad64x64x8_bits8,
aom_highbd_sad64x64x4d_bits8)
HIGHBD_BFP(BLOCK_16X16, aom_highbd_sad16x16_bits8,
aom_highbd_sad16x16_avg_bits8, aom_highbd_8_variance16x16,
aom_highbd_8_sub_pixel_variance16x16,
aom_highbd_8_sub_pixel_avg_variance16x16,
aom_highbd_sad16x16x3_bits8, aom_highbd_sad16x16x8_bits8,
aom_highbd_sad16x16x4d_bits8)
HIGHBD_BFP(
BLOCK_16X8, aom_highbd_sad16x8_bits8, aom_highbd_sad16x8_avg_bits8,
aom_highbd_8_variance16x8, aom_highbd_8_sub_pixel_variance16x8,
aom_highbd_8_sub_pixel_avg_variance16x8, aom_highbd_sad16x8x3_bits8,
aom_highbd_sad16x8x8_bits8, aom_highbd_sad16x8x4d_bits8)
HIGHBD_BFP(
BLOCK_8X16, aom_highbd_sad8x16_bits8, aom_highbd_sad8x16_avg_bits8,
aom_highbd_8_variance8x16, aom_highbd_8_sub_pixel_variance8x16,
aom_highbd_8_sub_pixel_avg_variance8x16, aom_highbd_sad8x16x3_bits8,
aom_highbd_sad8x16x8_bits8, aom_highbd_sad8x16x4d_bits8)
HIGHBD_BFP(
BLOCK_8X8, aom_highbd_sad8x8_bits8, aom_highbd_sad8x8_avg_bits8,
aom_highbd_8_variance8x8, aom_highbd_8_sub_pixel_variance8x8,
aom_highbd_8_sub_pixel_avg_variance8x8, aom_highbd_sad8x8x3_bits8,
aom_highbd_sad8x8x8_bits8, aom_highbd_sad8x8x4d_bits8)
HIGHBD_BFP(BLOCK_8X4, aom_highbd_sad8x4_bits8,
aom_highbd_sad8x4_avg_bits8, aom_highbd_8_variance8x4,
aom_highbd_8_sub_pixel_variance8x4,
aom_highbd_8_sub_pixel_avg_variance8x4, NULL,
aom_highbd_sad8x4x8_bits8, aom_highbd_sad8x4x4d_bits8)
HIGHBD_BFP(BLOCK_4X8, aom_highbd_sad4x8_bits8,
aom_highbd_sad4x8_avg_bits8, aom_highbd_8_variance4x8,
aom_highbd_8_sub_pixel_variance4x8,
aom_highbd_8_sub_pixel_avg_variance4x8, NULL,
aom_highbd_sad4x8x8_bits8, aom_highbd_sad4x8x4d_bits8)
HIGHBD_BFP(
BLOCK_4X4, aom_highbd_sad4x4_bits8, aom_highbd_sad4x4_avg_bits8,
aom_highbd_8_variance4x4, aom_highbd_8_sub_pixel_variance4x4,
aom_highbd_8_sub_pixel_avg_variance4x4, aom_highbd_sad4x4x3_bits8,
aom_highbd_sad4x4x8_bits8, aom_highbd_sad4x4x4d_bits8)
#if CONFIG_EXT_PARTITION
HIGHBD_BFP(BLOCK_128X128, aom_highbd_sad128x128_bits8,
aom_highbd_sad128x128_avg_bits8,
aom_highbd_8_variance128x128,
aom_highbd_8_sub_pixel_variance128x128,
aom_highbd_8_sub_pixel_avg_variance128x128,
aom_highbd_sad128x128x3_bits8, aom_highbd_sad128x128x8_bits8,
aom_highbd_sad128x128x4d_bits8)
HIGHBD_BFP(BLOCK_128X64, aom_highbd_sad128x64_bits8,
aom_highbd_sad128x64_avg_bits8, aom_highbd_8_variance128x64,
aom_highbd_8_sub_pixel_variance128x64,
aom_highbd_8_sub_pixel_avg_variance128x64, NULL, NULL,
aom_highbd_sad128x64x4d_bits8)
HIGHBD_BFP(BLOCK_64X128, aom_highbd_sad64x128_bits8,
aom_highbd_sad64x128_avg_bits8, aom_highbd_8_variance64x128,
aom_highbd_8_sub_pixel_variance64x128,
aom_highbd_8_sub_pixel_avg_variance64x128, NULL, NULL,
aom_highbd_sad64x128x4d_bits8)
#endif // CONFIG_EXT_PARTITION
#if CONFIG_EXT_INTER
#if CONFIG_EXT_PARTITION
HIGHBD_MBFP(BLOCK_128X128, aom_highbd_masked_sad128x128_bits8,
aom_highbd_masked_variance128x128,
aom_highbd_masked_sub_pixel_variance128x128)
HIGHBD_MBFP(BLOCK_128X64, aom_highbd_masked_sad128x64_bits8,
aom_highbd_masked_variance128x64,
aom_highbd_masked_sub_pixel_variance128x64)
HIGHBD_MBFP(BLOCK_64X128, aom_highbd_masked_sad64x128_bits8,
aom_highbd_masked_variance64x128,
aom_highbd_masked_sub_pixel_variance64x128)
#endif // CONFIG_EXT_PARTITION
HIGHBD_MBFP(BLOCK_64X64, aom_highbd_masked_sad64x64_bits8,
aom_highbd_masked_variance64x64,
aom_highbd_masked_sub_pixel_variance64x64)
HIGHBD_MBFP(BLOCK_64X32, aom_highbd_masked_sad64x32_bits8,
aom_highbd_masked_variance64x32,
aom_highbd_masked_sub_pixel_variance64x32)
HIGHBD_MBFP(BLOCK_32X64, aom_highbd_masked_sad32x64_bits8,
aom_highbd_masked_variance32x64,
aom_highbd_masked_sub_pixel_variance32x64)
HIGHBD_MBFP(BLOCK_32X32, aom_highbd_masked_sad32x32_bits8,
aom_highbd_masked_variance32x32,
aom_highbd_masked_sub_pixel_variance32x32)
HIGHBD_MBFP(BLOCK_32X16, aom_highbd_masked_sad32x16_bits8,
aom_highbd_masked_variance32x16,
aom_highbd_masked_sub_pixel_variance32x16)
HIGHBD_MBFP(BLOCK_16X32, aom_highbd_masked_sad16x32_bits8,
aom_highbd_masked_variance16x32,
aom_highbd_masked_sub_pixel_variance16x32)
HIGHBD_MBFP(BLOCK_16X16, aom_highbd_masked_sad16x16_bits8,
aom_highbd_masked_variance16x16,
aom_highbd_masked_sub_pixel_variance16x16)
HIGHBD_MBFP(BLOCK_8X16, aom_highbd_masked_sad8x16_bits8,
aom_highbd_masked_variance8x16,
aom_highbd_masked_sub_pixel_variance8x16)
HIGHBD_MBFP(BLOCK_16X8, aom_highbd_masked_sad16x8_bits8,
aom_highbd_masked_variance16x8,
aom_highbd_masked_sub_pixel_variance16x8)
HIGHBD_MBFP(BLOCK_8X8, aom_highbd_masked_sad8x8_bits8,
aom_highbd_masked_variance8x8,
aom_highbd_masked_sub_pixel_variance8x8)
HIGHBD_MBFP(BLOCK_4X8, aom_highbd_masked_sad4x8_bits8,
aom_highbd_masked_variance4x8,
aom_highbd_masked_sub_pixel_variance4x8)
HIGHBD_MBFP(BLOCK_8X4, aom_highbd_masked_sad8x4_bits8,
aom_highbd_masked_variance8x4,
aom_highbd_masked_sub_pixel_variance8x4)
HIGHBD_MBFP(BLOCK_4X4, aom_highbd_masked_sad4x4_bits8,
aom_highbd_masked_variance4x4,
aom_highbd_masked_sub_pixel_variance4x4)
#endif // CONFIG_EXT_INTER
#if CONFIG_MOTION_VAR
#if CONFIG_EXT_PARTITION
HIGHBD_OBFP(BLOCK_128X128, aom_highbd_obmc_sad128x128_bits8,
aom_highbd_obmc_variance128x128,
aom_highbd_obmc_sub_pixel_variance128x128)
HIGHBD_OBFP(BLOCK_128X64, aom_highbd_obmc_sad128x64_bits8,
aom_highbd_obmc_variance128x64,
aom_highbd_obmc_sub_pixel_variance128x64)
HIGHBD_OBFP(BLOCK_64X128, aom_highbd_obmc_sad64x128_bits8,
aom_highbd_obmc_variance64x128,
aom_highbd_obmc_sub_pixel_variance64x128)
#endif // CONFIG_EXT_PARTITION
HIGHBD_OBFP(BLOCK_64X64, aom_highbd_obmc_sad64x64_bits8,
aom_highbd_obmc_variance64x64,
aom_highbd_obmc_sub_pixel_variance64x64)
HIGHBD_OBFP(BLOCK_64X32, aom_highbd_obmc_sad64x32_bits8,
aom_highbd_obmc_variance64x32,
aom_highbd_obmc_sub_pixel_variance64x32)
HIGHBD_OBFP(BLOCK_32X64, aom_highbd_obmc_sad32x64_bits8,
aom_highbd_obmc_variance32x64,
aom_highbd_obmc_sub_pixel_variance32x64)
HIGHBD_OBFP(BLOCK_32X32, aom_highbd_obmc_sad32x32_bits8,
aom_highbd_obmc_variance32x32,
aom_highbd_obmc_sub_pixel_variance32x32)
HIGHBD_OBFP(BLOCK_32X16, aom_highbd_obmc_sad32x16_bits8,
aom_highbd_obmc_variance32x16,
aom_highbd_obmc_sub_pixel_variance32x16)
HIGHBD_OBFP(BLOCK_16X32, aom_highbd_obmc_sad16x32_bits8,
aom_highbd_obmc_variance16x32,
aom_highbd_obmc_sub_pixel_variance16x32)
HIGHBD_OBFP(BLOCK_16X16, aom_highbd_obmc_sad16x16_bits8,
aom_highbd_obmc_variance16x16,
aom_highbd_obmc_sub_pixel_variance16x16)
HIGHBD_OBFP(BLOCK_8X16, aom_highbd_obmc_sad8x16_bits8,
aom_highbd_obmc_variance8x16,
aom_highbd_obmc_sub_pixel_variance8x16)
HIGHBD_OBFP(BLOCK_16X8, aom_highbd_obmc_sad16x8_bits8,
aom_highbd_obmc_variance16x8,
aom_highbd_obmc_sub_pixel_variance16x8)
HIGHBD_OBFP(BLOCK_8X8, aom_highbd_obmc_sad8x8_bits8,
aom_highbd_obmc_variance8x8,
aom_highbd_obmc_sub_pixel_variance8x8)
HIGHBD_OBFP(BLOCK_4X8, aom_highbd_obmc_sad4x8_bits8,
aom_highbd_obmc_variance4x8,
aom_highbd_obmc_sub_pixel_variance4x8)
HIGHBD_OBFP(BLOCK_8X4, aom_highbd_obmc_sad8x4_bits8,
aom_highbd_obmc_variance8x4,
aom_highbd_obmc_sub_pixel_variance8x4)
HIGHBD_OBFP(BLOCK_4X4, aom_highbd_obmc_sad4x4_bits8,
aom_highbd_obmc_variance4x4,
aom_highbd_obmc_sub_pixel_variance4x4)
#endif // CONFIG_MOTION_VAR
break;
case AOM_BITS_10:
HIGHBD_BFP(BLOCK_32X16, aom_highbd_sad32x16_bits10,
aom_highbd_sad32x16_avg_bits10, aom_highbd_10_variance32x16,
aom_highbd_10_sub_pixel_variance32x16,
aom_highbd_10_sub_pixel_avg_variance32x16, NULL, NULL,
aom_highbd_sad32x16x4d_bits10)
HIGHBD_BFP(BLOCK_16X32, aom_highbd_sad16x32_bits10,
aom_highbd_sad16x32_avg_bits10, aom_highbd_10_variance16x32,
aom_highbd_10_sub_pixel_variance16x32,
aom_highbd_10_sub_pixel_avg_variance16x32, NULL, NULL,
aom_highbd_sad16x32x4d_bits10)
HIGHBD_BFP(BLOCK_64X32, aom_highbd_sad64x32_bits10,
aom_highbd_sad64x32_avg_bits10, aom_highbd_10_variance64x32,
aom_highbd_10_sub_pixel_variance64x32,
aom_highbd_10_sub_pixel_avg_variance64x32, NULL, NULL,
aom_highbd_sad64x32x4d_bits10)
HIGHBD_BFP(BLOCK_32X64, aom_highbd_sad32x64_bits10,
aom_highbd_sad32x64_avg_bits10, aom_highbd_10_variance32x64,
aom_highbd_10_sub_pixel_variance32x64,
aom_highbd_10_sub_pixel_avg_variance32x64, NULL, NULL,
aom_highbd_sad32x64x4d_bits10)
HIGHBD_BFP(BLOCK_32X32, aom_highbd_sad32x32_bits10,
aom_highbd_sad32x32_avg_bits10, aom_highbd_10_variance32x32,
aom_highbd_10_sub_pixel_variance32x32,
aom_highbd_10_sub_pixel_avg_variance32x32,
aom_highbd_sad32x32x3_bits10, aom_highbd_sad32x32x8_bits10,
aom_highbd_sad32x32x4d_bits10)
HIGHBD_BFP(BLOCK_64X64, aom_highbd_sad64x64_bits10,
aom_highbd_sad64x64_avg_bits10, aom_highbd_10_variance64x64,
aom_highbd_10_sub_pixel_variance64x64,
aom_highbd_10_sub_pixel_avg_variance64x64,
aom_highbd_sad64x64x3_bits10, aom_highbd_sad64x64x8_bits10,
aom_highbd_sad64x64x4d_bits10)
HIGHBD_BFP(BLOCK_16X16, aom_highbd_sad16x16_bits10,
aom_highbd_sad16x16_avg_bits10, aom_highbd_10_variance16x16,
aom_highbd_10_sub_pixel_variance16x16,
aom_highbd_10_sub_pixel_avg_variance16x16,
aom_highbd_sad16x16x3_bits10, aom_highbd_sad16x16x8_bits10,
aom_highbd_sad16x16x4d_bits10)
HIGHBD_BFP(BLOCK_16X8, aom_highbd_sad16x8_bits10,
aom_highbd_sad16x8_avg_bits10, aom_highbd_10_variance16x8,
aom_highbd_10_sub_pixel_variance16x8,
aom_highbd_10_sub_pixel_avg_variance16x8,
aom_highbd_sad16x8x3_bits10, aom_highbd_sad16x8x8_bits10,
aom_highbd_sad16x8x4d_bits10)
HIGHBD_BFP(BLOCK_8X16, aom_highbd_sad8x16_bits10,
aom_highbd_sad8x16_avg_bits10, aom_highbd_10_variance8x16,
aom_highbd_10_sub_pixel_variance8x16,
aom_highbd_10_sub_pixel_avg_variance8x16,
aom_highbd_sad8x16x3_bits10, aom_highbd_sad8x16x8_bits10,
aom_highbd_sad8x16x4d_bits10)
HIGHBD_BFP(
BLOCK_8X8, aom_highbd_sad8x8_bits10, aom_highbd_sad8x8_avg_bits10,
aom_highbd_10_variance8x8, aom_highbd_10_sub_pixel_variance8x8,
aom_highbd_10_sub_pixel_avg_variance8x8, aom_highbd_sad8x8x3_bits10,
aom_highbd_sad8x8x8_bits10, aom_highbd_sad8x8x4d_bits10)
HIGHBD_BFP(BLOCK_8X4, aom_highbd_sad8x4_bits10,
aom_highbd_sad8x4_avg_bits10, aom_highbd_10_variance8x4,
aom_highbd_10_sub_pixel_variance8x4,
aom_highbd_10_sub_pixel_avg_variance8x4, NULL,
aom_highbd_sad8x4x8_bits10, aom_highbd_sad8x4x4d_bits10)
HIGHBD_BFP(BLOCK_4X8, aom_highbd_sad4x8_bits10,
aom_highbd_sad4x8_avg_bits10, aom_highbd_10_variance4x8,
aom_highbd_10_sub_pixel_variance4x8,
aom_highbd_10_sub_pixel_avg_variance4x8, NULL,
aom_highbd_sad4x8x8_bits10, aom_highbd_sad4x8x4d_bits10)
HIGHBD_BFP(
BLOCK_4X4, aom_highbd_sad4x4_bits10, aom_highbd_sad4x4_avg_bits10,
aom_highbd_10_variance4x4, aom_highbd_10_sub_pixel_variance4x4,
aom_highbd_10_sub_pixel_avg_variance4x4, aom_highbd_sad4x4x3_bits10,
aom_highbd_sad4x4x8_bits10, aom_highbd_sad4x4x4d_bits10)
#if CONFIG_EXT_PARTITION
HIGHBD_BFP(
BLOCK_128X128, aom_highbd_sad128x128_bits10,
aom_highbd_sad128x128_avg_bits10, aom_highbd_10_variance128x128,
aom_highbd_10_sub_pixel_variance128x128,
aom_highbd_10_sub_pixel_avg_variance128x128,
aom_highbd_sad128x128x3_bits10, aom_highbd_sad128x128x8_bits10,
aom_highbd_sad128x128x4d_bits10)
HIGHBD_BFP(BLOCK_128X64, aom_highbd_sad128x64_bits10,
aom_highbd_sad128x64_avg_bits10,
aom_highbd_10_variance128x64,
aom_highbd_10_sub_pixel_variance128x64,
aom_highbd_10_sub_pixel_avg_variance128x64, NULL, NULL,
aom_highbd_sad128x64x4d_bits10)
HIGHBD_BFP(BLOCK_64X128, aom_highbd_sad64x128_bits10,
aom_highbd_sad64x128_avg_bits10,
aom_highbd_10_variance64x128,
aom_highbd_10_sub_pixel_variance64x128,
aom_highbd_10_sub_pixel_avg_variance64x128, NULL, NULL,
aom_highbd_sad64x128x4d_bits10)
#endif // CONFIG_EXT_PARTITION
#if CONFIG_EXT_INTER
#if CONFIG_EXT_PARTITION
HIGHBD_MBFP(BLOCK_128X128, aom_highbd_masked_sad128x128_bits10,
aom_highbd_10_masked_variance128x128,
aom_highbd_10_masked_sub_pixel_variance128x128)
HIGHBD_MBFP(BLOCK_128X64, aom_highbd_masked_sad128x64_bits10,
aom_highbd_10_masked_variance128x64,
aom_highbd_10_masked_sub_pixel_variance128x64)
HIGHBD_MBFP(BLOCK_64X128, aom_highbd_masked_sad64x128_bits10,
aom_highbd_10_masked_variance64x128,
aom_highbd_10_masked_sub_pixel_variance64x128)
#endif // CONFIG_EXT_PARTITION
HIGHBD_MBFP(BLOCK_64X64, aom_highbd_masked_sad64x64_bits10,
aom_highbd_10_masked_variance64x64,
aom_highbd_10_masked_sub_pixel_variance64x64)
HIGHBD_MBFP(BLOCK_64X32, aom_highbd_masked_sad64x32_bits10,
aom_highbd_10_masked_variance64x32,
aom_highbd_10_masked_sub_pixel_variance64x32)
HIGHBD_MBFP(BLOCK_32X64, aom_highbd_masked_sad32x64_bits10,
aom_highbd_10_masked_variance32x64,
aom_highbd_10_masked_sub_pixel_variance32x64)
HIGHBD_MBFP(BLOCK_32X32, aom_highbd_masked_sad32x32_bits10,
aom_highbd_10_masked_variance32x32,
aom_highbd_10_masked_sub_pixel_variance32x32)
HIGHBD_MBFP(BLOCK_32X16, aom_highbd_masked_sad32x16_bits10,
aom_highbd_10_masked_variance32x16,
aom_highbd_10_masked_sub_pixel_variance32x16)
HIGHBD_MBFP(BLOCK_16X32, aom_highbd_masked_sad16x32_bits10,
aom_highbd_10_masked_variance16x32,
aom_highbd_10_masked_sub_pixel_variance16x32)
HIGHBD_MBFP(BLOCK_16X16, aom_highbd_masked_sad16x16_bits10,
aom_highbd_10_masked_variance16x16,
aom_highbd_10_masked_sub_pixel_variance16x16)
HIGHBD_MBFP(BLOCK_8X16, aom_highbd_masked_sad8x16_bits10,
aom_highbd_10_masked_variance8x16,
aom_highbd_10_masked_sub_pixel_variance8x16)
HIGHBD_MBFP(BLOCK_16X8, aom_highbd_masked_sad16x8_bits10,
aom_highbd_10_masked_variance16x8,
aom_highbd_10_masked_sub_pixel_variance16x8)
HIGHBD_MBFP(BLOCK_8X8, aom_highbd_masked_sad8x8_bits10,
aom_highbd_10_masked_variance8x8,
aom_highbd_10_masked_sub_pixel_variance8x8)
HIGHBD_MBFP(BLOCK_4X8, aom_highbd_masked_sad4x8_bits10,
aom_highbd_10_masked_variance4x8,
aom_highbd_10_masked_sub_pixel_variance4x8)
HIGHBD_MBFP(BLOCK_8X4, aom_highbd_masked_sad8x4_bits10,
aom_highbd_10_masked_variance8x4,
aom_highbd_10_masked_sub_pixel_variance8x4)
HIGHBD_MBFP(BLOCK_4X4, aom_highbd_masked_sad4x4_bits10,
aom_highbd_10_masked_variance4x4,
aom_highbd_10_masked_sub_pixel_variance4x4)
#endif // CONFIG_EXT_INTER
#if CONFIG_MOTION_VAR
#if CONFIG_EXT_PARTITION
HIGHBD_OBFP(BLOCK_128X128, aom_highbd_obmc_sad128x128_bits10,
aom_highbd_10_obmc_variance128x128,
aom_highbd_10_obmc_sub_pixel_variance128x128)
HIGHBD_OBFP(BLOCK_128X64, aom_highbd_obmc_sad128x64_bits10,
aom_highbd_10_obmc_variance128x64,
aom_highbd_10_obmc_sub_pixel_variance128x64)
HIGHBD_OBFP(BLOCK_64X128, aom_highbd_obmc_sad64x128_bits10,
aom_highbd_10_obmc_variance64x128,
aom_highbd_10_obmc_sub_pixel_variance64x128)
#endif // CONFIG_EXT_PARTITION
HIGHBD_OBFP(BLOCK_64X64, aom_highbd_obmc_sad64x64_bits10,
aom_highbd_10_obmc_variance64x64,
aom_highbd_10_obmc_sub_pixel_variance64x64)
HIGHBD_OBFP(BLOCK_64X32, aom_highbd_obmc_sad64x32_bits10,
aom_highbd_10_obmc_variance64x32,
aom_highbd_10_obmc_sub_pixel_variance64x32)
HIGHBD_OBFP(BLOCK_32X64, aom_highbd_obmc_sad32x64_bits10,
aom_highbd_10_obmc_variance32x64,
aom_highbd_10_obmc_sub_pixel_variance32x64)
HIGHBD_OBFP(BLOCK_32X32, aom_highbd_obmc_sad32x32_bits10,
aom_highbd_10_obmc_variance32x32,
aom_highbd_10_obmc_sub_pixel_variance32x32)
HIGHBD_OBFP(BLOCK_32X16, aom_highbd_obmc_sad32x16_bits10,
aom_highbd_10_obmc_variance32x16,
aom_highbd_10_obmc_sub_pixel_variance32x16)
HIGHBD_OBFP(BLOCK_16X32, aom_highbd_obmc_sad16x32_bits10,
aom_highbd_10_obmc_variance16x32,
aom_highbd_10_obmc_sub_pixel_variance16x32)
HIGHBD_OBFP(BLOCK_16X16, aom_highbd_obmc_sad16x16_bits10,
aom_highbd_10_obmc_variance16x16,
aom_highbd_10_obmc_sub_pixel_variance16x16)
HIGHBD_OBFP(BLOCK_8X16, aom_highbd_obmc_sad8x16_bits10,
aom_highbd_10_obmc_variance8x16,
aom_highbd_10_obmc_sub_pixel_variance8x16)
HIGHBD_OBFP(BLOCK_16X8, aom_highbd_obmc_sad16x8_bits10,
aom_highbd_10_obmc_variance16x8,
aom_highbd_10_obmc_sub_pixel_variance16x8)
HIGHBD_OBFP(BLOCK_8X8, aom_highbd_obmc_sad8x8_bits10,
aom_highbd_10_obmc_variance8x8,
aom_highbd_10_obmc_sub_pixel_variance8x8)
HIGHBD_OBFP(BLOCK_4X8, aom_highbd_obmc_sad4x8_bits10,
aom_highbd_10_obmc_variance4x8,
aom_highbd_10_obmc_sub_pixel_variance4x8)
HIGHBD_OBFP(BLOCK_8X4, aom_highbd_obmc_sad8x4_bits10,
aom_highbd_10_obmc_variance8x4,
aom_highbd_10_obmc_sub_pixel_variance8x4)
HIGHBD_OBFP(BLOCK_4X4, aom_highbd_obmc_sad4x4_bits10,
aom_highbd_10_obmc_variance4x4,
aom_highbd_10_obmc_sub_pixel_variance4x4)
#endif // CONFIG_MOTION_VAR
break;
case AOM_BITS_12:
HIGHBD_BFP(BLOCK_32X16, aom_highbd_sad32x16_bits12,
aom_highbd_sad32x16_avg_bits12, aom_highbd_12_variance32x16,
aom_highbd_12_sub_pixel_variance32x16,
aom_highbd_12_sub_pixel_avg_variance32x16, NULL, NULL,
aom_highbd_sad32x16x4d_bits12)
HIGHBD_BFP(BLOCK_16X32, aom_highbd_sad16x32_bits12,
aom_highbd_sad16x32_avg_bits12, aom_highbd_12_variance16x32,
aom_highbd_12_sub_pixel_variance16x32,
aom_highbd_12_sub_pixel_avg_variance16x32, NULL, NULL,
aom_highbd_sad16x32x4d_bits12)
HIGHBD_BFP(BLOCK_64X32, aom_highbd_sad64x32_bits12,
aom_highbd_sad64x32_avg_bits12, aom_highbd_12_variance64x32,
aom_highbd_12_sub_pixel_variance64x32,
aom_highbd_12_sub_pixel_avg_variance64x32, NULL, NULL,
aom_highbd_sad64x32x4d_bits12)
HIGHBD_BFP(BLOCK_32X64, aom_highbd_sad32x64_bits12,
aom_highbd_sad32x64_avg_bits12, aom_highbd_12_variance32x64,
aom_highbd_12_sub_pixel_variance32x64,
aom_highbd_12_sub_pixel_avg_variance32x64, NULL, NULL,
aom_highbd_sad32x64x4d_bits12)
HIGHBD_BFP(BLOCK_32X32, aom_highbd_sad32x32_bits12,
aom_highbd_sad32x32_avg_bits12, aom_highbd_12_variance32x32,
aom_highbd_12_sub_pixel_variance32x32,
aom_highbd_12_sub_pixel_avg_variance32x32,
aom_highbd_sad32x32x3_bits12, aom_highbd_sad32x32x8_bits12,
aom_highbd_sad32x32x4d_bits12)
HIGHBD_BFP(BLOCK_64X64, aom_highbd_sad64x64_bits12,
aom_highbd_sad64x64_avg_bits12, aom_highbd_12_variance64x64,
aom_highbd_12_sub_pixel_variance64x64,
aom_highbd_12_sub_pixel_avg_variance64x64,
aom_highbd_sad64x64x3_bits12, aom_highbd_sad64x64x8_bits12,
aom_highbd_sad64x64x4d_bits12)
HIGHBD_BFP(BLOCK_16X16, aom_highbd_sad16x16_bits12,
aom_highbd_sad16x16_avg_bits12, aom_highbd_12_variance16x16,
aom_highbd_12_sub_pixel_variance16x16,
aom_highbd_12_sub_pixel_avg_variance16x16,
aom_highbd_sad16x16x3_bits12, aom_highbd_sad16x16x8_bits12,
aom_highbd_sad16x16x4d_bits12)
HIGHBD_BFP(BLOCK_16X8, aom_highbd_sad16x8_bits12,
aom_highbd_sad16x8_avg_bits12, aom_highbd_12_variance16x8,
aom_highbd_12_sub_pixel_variance16x8,
aom_highbd_12_sub_pixel_avg_variance16x8,
aom_highbd_sad16x8x3_bits12, aom_highbd_sad16x8x8_bits12,
aom_highbd_sad16x8x4d_bits12)
HIGHBD_BFP(BLOCK_8X16, aom_highbd_sad8x16_bits12,
aom_highbd_sad8x16_avg_bits12, aom_highbd_12_variance8x16,
aom_highbd_12_sub_pixel_variance8x16,
aom_highbd_12_sub_pixel_avg_variance8x16,
aom_highbd_sad8x16x3_bits12, aom_highbd_sad8x16x8_bits12,
aom_highbd_sad8x16x4d_bits12)
HIGHBD_BFP(
BLOCK_8X8, aom_highbd_sad8x8_bits12, aom_highbd_sad8x8_avg_bits12,
aom_highbd_12_variance8x8, aom_highbd_12_sub_pixel_variance8x8,
aom_highbd_12_sub_pixel_avg_variance8x8, aom_highbd_sad8x8x3_bits12,
aom_highbd_sad8x8x8_bits12, aom_highbd_sad8x8x4d_bits12)
HIGHBD_BFP(BLOCK_8X4, aom_highbd_sad8x4_bits12,
aom_highbd_sad8x4_avg_bits12, aom_highbd_12_variance8x4,
aom_highbd_12_sub_pixel_variance8x4,
aom_highbd_12_sub_pixel_avg_variance8x4, NULL,
aom_highbd_sad8x4x8_bits12, aom_highbd_sad8x4x4d_bits12)
HIGHBD_BFP(BLOCK_4X8, aom_highbd_sad4x8_bits12,
aom_highbd_sad4x8_avg_bits12, aom_highbd_12_variance4x8,
aom_highbd_12_sub_pixel_variance4x8,
aom_highbd_12_sub_pixel_avg_variance4x8, NULL,
aom_highbd_sad4x8x8_bits12, aom_highbd_sad4x8x4d_bits12)
HIGHBD_BFP(
BLOCK_4X4, aom_highbd_sad4x4_bits12, aom_highbd_sad4x4_avg_bits12,
aom_highbd_12_variance4x4, aom_highbd_12_sub_pixel_variance4x4,
aom_highbd_12_sub_pixel_avg_variance4x4, aom_highbd_sad4x4x3_bits12,
aom_highbd_sad4x4x8_bits12, aom_highbd_sad4x4x4d_bits12)
#if CONFIG_EXT_PARTITION
HIGHBD_BFP(
BLOCK_128X128, aom_highbd_sad128x128_bits12,
aom_highbd_sad128x128_avg_bits12, aom_highbd_12_variance128x128,
aom_highbd_12_sub_pixel_variance128x128,
aom_highbd_12_sub_pixel_avg_variance128x128,
aom_highbd_sad128x128x3_bits12, aom_highbd_sad128x128x8_bits12,
aom_highbd_sad128x128x4d_bits12)
HIGHBD_BFP(BLOCK_128X64, aom_highbd_sad128x64_bits12,
aom_highbd_sad128x64_avg_bits12,
aom_highbd_12_variance128x64,
aom_highbd_12_sub_pixel_variance128x64,
aom_highbd_12_sub_pixel_avg_variance128x64, NULL, NULL,
aom_highbd_sad128x64x4d_bits12)
HIGHBD_BFP(BLOCK_64X128, aom_highbd_sad64x128_bits12,
aom_highbd_sad64x128_avg_bits12,
aom_highbd_12_variance64x128,
aom_highbd_12_sub_pixel_variance64x128,
aom_highbd_12_sub_pixel_avg_variance64x128, NULL, NULL,
aom_highbd_sad64x128x4d_bits12)
#endif // CONFIG_EXT_PARTITION
#if CONFIG_EXT_INTER
#if CONFIG_EXT_PARTITION
HIGHBD_MBFP(BLOCK_128X128, aom_highbd_masked_sad128x128_bits12,
aom_highbd_12_masked_variance128x128,
aom_highbd_12_masked_sub_pixel_variance128x128)
HIGHBD_MBFP(BLOCK_128X64, aom_highbd_masked_sad128x64_bits12,
aom_highbd_12_masked_variance128x64,
aom_highbd_12_masked_sub_pixel_variance128x64)
HIGHBD_MBFP(BLOCK_64X128, aom_highbd_masked_sad64x128_bits12,
aom_highbd_12_masked_variance64x128,
aom_highbd_12_masked_sub_pixel_variance64x128)
#endif // CONFIG_EXT_PARTITION
HIGHBD_MBFP(BLOCK_64X64, aom_highbd_masked_sad64x64_bits12,
aom_highbd_12_masked_variance64x64,
aom_highbd_12_masked_sub_pixel_variance64x64)
HIGHBD_MBFP(BLOCK_64X32, aom_highbd_masked_sad64x32_bits12,
aom_highbd_12_masked_variance64x32,
aom_highbd_12_masked_sub_pixel_variance64x32)
HIGHBD_MBFP(BLOCK_32X64, aom_highbd_masked_sad32x64_bits12,
aom_highbd_12_masked_variance32x64,
aom_highbd_12_masked_sub_pixel_variance32x64)
HIGHBD_MBFP(BLOCK_32X32, aom_highbd_masked_sad32x32_bits12,
aom_highbd_12_masked_variance32x32,
aom_highbd_12_masked_sub_pixel_variance32x32)
HIGHBD_MBFP(BLOCK_32X16, aom_highbd_masked_sad32x16_bits12,
aom_highbd_12_masked_variance32x16,
aom_highbd_12_masked_sub_pixel_variance32x16)
HIGHBD_MBFP(BLOCK_16X32, aom_highbd_masked_sad16x32_bits12,
aom_highbd_12_masked_variance16x32,
aom_highbd_12_masked_sub_pixel_variance16x32)
HIGHBD_MBFP(BLOCK_16X16, aom_highbd_masked_sad16x16_bits12,
aom_highbd_12_masked_variance16x16,
aom_highbd_12_masked_sub_pixel_variance16x16)
HIGHBD_MBFP(BLOCK_8X16, aom_highbd_masked_sad8x16_bits12,
aom_highbd_12_masked_variance8x16,
aom_highbd_12_masked_sub_pixel_variance8x16)
HIGHBD_MBFP(BLOCK_16X8, aom_highbd_masked_sad16x8_bits12,
aom_highbd_12_masked_variance16x8,
aom_highbd_12_masked_sub_pixel_variance16x8)
HIGHBD_MBFP(BLOCK_8X8, aom_highbd_masked_sad8x8_bits12,
aom_highbd_12_masked_variance8x8,
aom_highbd_12_masked_sub_pixel_variance8x8)
HIGHBD_MBFP(BLOCK_4X8, aom_highbd_masked_sad4x8_bits12,
aom_highbd_12_masked_variance4x8,
aom_highbd_12_masked_sub_pixel_variance4x8)
HIGHBD_MBFP(BLOCK_8X4, aom_highbd_masked_sad8x4_bits12,
aom_highbd_12_masked_variance8x4,
aom_highbd_12_masked_sub_pixel_variance8x4)
HIGHBD_MBFP(BLOCK_4X4, aom_highbd_masked_sad4x4_bits12,
aom_highbd_12_masked_variance4x4,
aom_highbd_12_masked_sub_pixel_variance4x4)
#endif // CONFIG_EXT_INTER
#if CONFIG_MOTION_VAR
#if CONFIG_EXT_PARTITION
HIGHBD_OBFP(BLOCK_128X128, aom_highbd_obmc_sad128x128_bits12,
aom_highbd_12_obmc_variance128x128,
aom_highbd_12_obmc_sub_pixel_variance128x128)
HIGHBD_OBFP(BLOCK_128X64, aom_highbd_obmc_sad128x64_bits12,
aom_highbd_12_obmc_variance128x64,
aom_highbd_12_obmc_sub_pixel_variance128x64)
HIGHBD_OBFP(BLOCK_64X128, aom_highbd_obmc_sad64x128_bits12,
aom_highbd_12_obmc_variance64x128,
aom_highbd_12_obmc_sub_pixel_variance64x128)
#endif // CONFIG_EXT_PARTITION
HIGHBD_OBFP(BLOCK_64X64, aom_highbd_obmc_sad64x64_bits12,
aom_highbd_12_obmc_variance64x64,
aom_highbd_12_obmc_sub_pixel_variance64x64)
HIGHBD_OBFP(BLOCK_64X32, aom_highbd_obmc_sad64x32_bits12,
aom_highbd_12_obmc_variance64x32,
aom_highbd_12_obmc_sub_pixel_variance64x32)
HIGHBD_OBFP(BLOCK_32X64, aom_highbd_obmc_sad32x64_bits12,
aom_highbd_12_obmc_variance32x64,
aom_highbd_12_obmc_sub_pixel_variance32x64)
HIGHBD_OBFP(BLOCK_32X32, aom_highbd_obmc_sad32x32_bits12,
aom_highbd_12_obmc_variance32x32,
aom_highbd_12_obmc_sub_pixel_variance32x32)
HIGHBD_OBFP(BLOCK_32X16, aom_highbd_obmc_sad32x16_bits12,
aom_highbd_12_obmc_variance32x16,
aom_highbd_12_obmc_sub_pixel_variance32x16)
HIGHBD_OBFP(BLOCK_16X32, aom_highbd_obmc_sad16x32_bits12,
aom_highbd_12_obmc_variance16x32,
aom_highbd_12_obmc_sub_pixel_variance16x32)
HIGHBD_OBFP(BLOCK_16X16, aom_highbd_obmc_sad16x16_bits12,
aom_highbd_12_obmc_variance16x16,
aom_highbd_12_obmc_sub_pixel_variance16x16)
HIGHBD_OBFP(BLOCK_8X16, aom_highbd_obmc_sad8x16_bits12,
aom_highbd_12_obmc_variance8x16,
aom_highbd_12_obmc_sub_pixel_variance8x16)
HIGHBD_OBFP(BLOCK_16X8, aom_highbd_obmc_sad16x8_bits12,
aom_highbd_12_obmc_variance16x8,
aom_highbd_12_obmc_sub_pixel_variance16x8)
HIGHBD_OBFP(BLOCK_8X8, aom_highbd_obmc_sad8x8_bits12,
aom_highbd_12_obmc_variance8x8,
aom_highbd_12_obmc_sub_pixel_variance8x8)
HIGHBD_OBFP(BLOCK_4X8, aom_highbd_obmc_sad4x8_bits12,
aom_highbd_12_obmc_variance4x8,
aom_highbd_12_obmc_sub_pixel_variance4x8)
HIGHBD_OBFP(BLOCK_8X4, aom_highbd_obmc_sad8x4_bits12,
aom_highbd_12_obmc_variance8x4,
aom_highbd_12_obmc_sub_pixel_variance8x4)
HIGHBD_OBFP(BLOCK_4X4, aom_highbd_obmc_sad4x4_bits12,
aom_highbd_12_obmc_variance4x4,
aom_highbd_12_obmc_sub_pixel_variance4x4)
#endif // CONFIG_MOTION_VAR
break;
default:
assert(0 &&
"cm->bit_depth should be AOM_BITS_8, "
"AOM_BITS_10 or AOM_BITS_12");
}
}
}
#endif // CONFIG_AOM_HIGHBITDEPTH
static void realloc_segmentation_maps(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
// Create the encoder segmentation map and set all entries to 0
aom_free(cpi->segmentation_map);
CHECK_MEM_ERROR(cm, cpi->segmentation_map,
aom_calloc(cm->mi_rows * cm->mi_cols, 1));
// Create a map used for cyclic background refresh.
if (cpi->cyclic_refresh) av1_cyclic_refresh_free(cpi->cyclic_refresh);
CHECK_MEM_ERROR(cm, cpi->cyclic_refresh,
av1_cyclic_refresh_alloc(cm->mi_rows, cm->mi_cols));
// Create a map used to mark inactive areas.
aom_free(cpi->active_map.map);
CHECK_MEM_ERROR(cm, cpi->active_map.map,
aom_calloc(cm->mi_rows * cm->mi_cols, 1));
// And a place holder structure is the coding context
// for use if we want to save and restore it
aom_free(cpi->coding_context.last_frame_seg_map_copy);
CHECK_MEM_ERROR(cm, cpi->coding_context.last_frame_seg_map_copy,
aom_calloc(cm->mi_rows * cm->mi_cols, 1));
}
void av1_change_config(struct AV1_COMP *cpi, const AV1EncoderConfig *oxcf) {
AV1_COMMON *const cm = &cpi->common;
RATE_CONTROL *const rc = &cpi->rc;
if (cm->profile != oxcf->profile) cm->profile = oxcf->profile;
cm->bit_depth = oxcf->bit_depth;
cm->color_space = oxcf->color_space;
cm->color_range = oxcf->color_range;
if (cm->profile <= PROFILE_1)
assert(cm->bit_depth == AOM_BITS_8);
else
assert(cm->bit_depth > AOM_BITS_8);
cpi->oxcf = *oxcf;
#if CONFIG_AOM_HIGHBITDEPTH
cpi->td.mb.e_mbd.bd = (int)cm->bit_depth;
#endif // CONFIG_AOM_HIGHBITDEPTH
#if CONFIG_GLOBAL_MOTION
cpi->td.mb.e_mbd.global_motion = cm->global_motion;
#endif // CONFIG_GLOBAL_MOTION
if ((oxcf->pass == 0) && (oxcf->rc_mode == AOM_Q)) {
rc->baseline_gf_interval = FIXED_GF_INTERVAL;
} else {
rc->baseline_gf_interval = (MIN_GF_INTERVAL + MAX_GF_INTERVAL) / 2;
}
cpi->refresh_last_frame = 1;
cpi->refresh_golden_frame = 0;
#if CONFIG_EXT_REFS
cpi->refresh_bwd_ref_frame = 0;
#endif // CONFIG_EXT_REFS
cm->refresh_frame_context =
(oxcf->error_resilient_mode || oxcf->frame_parallel_decoding_mode)
? REFRESH_FRAME_CONTEXT_FORWARD
: REFRESH_FRAME_CONTEXT_BACKWARD;
cm->reset_frame_context = RESET_FRAME_CONTEXT_NONE;
cm->allow_screen_content_tools = (cpi->oxcf.content == AOM_CONTENT_SCREEN);
if (cm->allow_screen_content_tools) {
MACROBLOCK *x = &cpi->td.mb;
if (x->palette_buffer == 0) {
CHECK_MEM_ERROR(cm, x->palette_buffer,
aom_memalign(16, sizeof(*x->palette_buffer)));
}
// Reallocate the pc_tree, as it's contents depends on
// the state of cm->allow_screen_content_tools
av1_free_pc_tree(&cpi->td);
av1_setup_pc_tree(&cpi->common, &cpi->td);
}
av1_reset_segment_features(cm);
av1_set_high_precision_mv(cpi, 0);
{
int i;
for (i = 0; i < MAX_SEGMENTS; i++)
cpi->segment_encode_breakout[i] = cpi->oxcf.encode_breakout;
}
cpi->encode_breakout = cpi->oxcf.encode_breakout;
set_rc_buffer_sizes(rc, &cpi->oxcf);
// Under a configuration change, where maximum_buffer_size may change,
// keep buffer level clipped to the maximum allowed buffer size.
rc->bits_off_target = AOMMIN(rc->bits_off_target, rc->maximum_buffer_size);
rc->buffer_level = AOMMIN(rc->buffer_level, rc->maximum_buffer_size);
// Set up frame rate and related parameters rate control values.
av1_new_framerate(cpi, cpi->framerate);
// Set absolute upper and lower quality limits
rc->worst_quality = cpi->oxcf.worst_allowed_q;
rc->best_quality = cpi->oxcf.best_allowed_q;
cm->interp_filter = cpi->sf.default_interp_filter;
if (cpi->oxcf.render_width > 0 && cpi->oxcf.render_height > 0) {
cm->render_width = cpi->oxcf.render_width;
cm->render_height = cpi->oxcf.render_height;
} else {
cm->render_width = cpi->oxcf.width;
cm->render_height = cpi->oxcf.height;
}
cm->width = cpi->oxcf.width;
cm->height = cpi->oxcf.height;
if (cpi->initial_width) {
if (cm->width > cpi->initial_width || cm->height > cpi->initial_height) {
av1_free_context_buffers(cm);
av1_alloc_compressor_data(cpi);
realloc_segmentation_maps(cpi);
cpi->initial_width = cpi->initial_height = 0;
}
}
update_frame_size(cpi);
cpi->alt_ref_source = NULL;
rc->is_src_frame_alt_ref = 0;
#if CONFIG_EXT_REFS
rc->is_bwd_ref_frame = 0;
rc->is_last_bipred_frame = 0;
rc->is_bipred_frame = 0;
#endif // CONFIG_EXT_REFS
#if 0
// Experimental RD Code
cpi->frame_distortion = 0;
cpi->last_frame_distortion = 0;
#endif
set_tile_info(cpi);
cpi->ext_refresh_frame_flags_pending = 0;
cpi->ext_refresh_frame_context_pending = 0;
#if CONFIG_AOM_HIGHBITDEPTH
highbd_set_var_fns(cpi);
#endif
}
#ifndef M_LOG2_E
#define M_LOG2_E 0.693147180559945309417
#endif
#define log2f(x) (log(x) / (float)M_LOG2_E)
#if !CONFIG_REF_MV
static void cal_nmvjointsadcost(int *mvjointsadcost) {
mvjointsadcost[0] = 600;
mvjointsadcost[1] = 300;
mvjointsadcost[2] = 300;
mvjointsadcost[3] = 300;
}
#endif
static void cal_nmvsadcosts(int *mvsadcost[2]) {
int i = 1;
mvsadcost[0][0] = 0;
mvsadcost[1][0] = 0;
do {
double z = 256 * (2 * (log2f(8 * i) + .6));
mvsadcost[0][i] = (int)z;
mvsadcost[1][i] = (int)z;
mvsadcost[0][-i] = (int)z;
mvsadcost[1][-i] = (int)z;
} while (++i <= MV_MAX);
}
static void cal_nmvsadcosts_hp(int *mvsadcost[2]) {
int i = 1;
mvsadcost[0][0] = 0;
mvsadcost[1][0] = 0;
do {
double z = 256 * (2 * (log2f(8 * i) + .6));
mvsadcost[0][i] = (int)z;
mvsadcost[1][i] = (int)z;
mvsadcost[0][-i] = (int)z;
mvsadcost[1][-i] = (int)z;
} while (++i <= MV_MAX);
}
static INLINE void init_upsampled_ref_frame_bufs(AV1_COMP *cpi) {
int i;
for (i = 0; i < (REF_FRAMES + 1); ++i) {
cpi->upsampled_ref_bufs[i].ref_count = 0;
cpi->upsampled_ref_idx[i] = INVALID_IDX;
}
}
AV1_COMP *av1_create_compressor(AV1EncoderConfig *oxcf,
BufferPool *const pool) {
unsigned int i;
AV1_COMP *volatile const cpi = aom_memalign(32, sizeof(AV1_COMP));
AV1_COMMON *volatile const cm = cpi != NULL ? &cpi->common : NULL;
if (!cm) return NULL;
av1_zero(*cpi);
if (setjmp(cm->error.jmp)) {
cm->error.setjmp = 0;
av1_remove_compressor(cpi);
return 0;
}
cm->error.setjmp = 1;
cm->alloc_mi = av1_enc_alloc_mi;
cm->free_mi = av1_enc_free_mi;
cm->setup_mi = av1_enc_setup_mi;
CHECK_MEM_ERROR(cm, cm->fc, (FRAME_CONTEXT *)aom_calloc(1, sizeof(*cm->fc)));
CHECK_MEM_ERROR(
cm, cm->frame_contexts,
(FRAME_CONTEXT *)aom_calloc(FRAME_CONTEXTS, sizeof(*cm->frame_contexts)));
cpi->resize_state = 0;
cpi->resize_avg_qp = 0;
cpi->resize_buffer_underflow = 0;
cpi->common.buffer_pool = pool;
init_config(cpi, oxcf);
av1_rc_init(&cpi->oxcf, oxcf->pass, &cpi->rc);
cm->current_video_frame = 0;
cpi->partition_search_skippable_frame = 0;
cpi->tile_data = NULL;
cpi->last_show_frame_buf_idx = INVALID_IDX;
realloc_segmentation_maps(cpi);
#if CONFIG_REF_MV
for (i = 0; i < NMV_CONTEXTS; ++i) {
CHECK_MEM_ERROR(cm, cpi->nmv_costs[i][0],
aom_calloc(MV_VALS, sizeof(*cpi->nmv_costs[i][0])));
CHECK_MEM_ERROR(cm, cpi->nmv_costs[i][1],
aom_calloc(MV_VALS, sizeof(*cpi->nmv_costs[i][1])));
CHECK_MEM_ERROR(cm, cpi->nmv_costs_hp[i][0],
aom_calloc(MV_VALS, sizeof(*cpi->nmv_costs_hp[i][0])));
CHECK_MEM_ERROR(cm, cpi->nmv_costs_hp[i][1],
aom_calloc(MV_VALS, sizeof(*cpi->nmv_costs_hp[i][1])));
}
#endif
CHECK_MEM_ERROR(cm, cpi->nmvcosts[0],
aom_calloc(MV_VALS, sizeof(*cpi->nmvcosts[0])));
CHECK_MEM_ERROR(cm, cpi->nmvcosts[1],
aom_calloc(MV_VALS, sizeof(*cpi->nmvcosts[1])));
CHECK_MEM_ERROR(cm, cpi->nmvcosts_hp[0],
aom_calloc(MV_VALS, sizeof(*cpi->nmvcosts_hp[0])));
CHECK_MEM_ERROR(cm, cpi->nmvcosts_hp[1],
aom_calloc(MV_VALS, sizeof(*cpi->nmvcosts_hp[1])));
CHECK_MEM_ERROR(cm, cpi->nmvsadcosts[0],
aom_calloc(MV_VALS, sizeof(*cpi->nmvsadcosts[0])));
CHECK_MEM_ERROR(cm, cpi->nmvsadcosts[1],
aom_calloc(MV_VALS, sizeof(*cpi->nmvsadcosts[1])));
CHECK_MEM_ERROR(cm, cpi->nmvsadcosts_hp[0],
aom_calloc(MV_VALS, sizeof(*cpi->nmvsadcosts_hp[0])));
CHECK_MEM_ERROR(cm, cpi->nmvsadcosts_hp[1],
aom_calloc(MV_VALS, sizeof(*cpi->nmvsadcosts_hp[1])));
for (i = 0; i < (sizeof(cpi->mbgraph_stats) / sizeof(cpi->mbgraph_stats[0]));
i++) {
CHECK_MEM_ERROR(
cm, cpi->mbgraph_stats[i].mb_stats,
aom_calloc(cm->MBs * sizeof(*cpi->mbgraph_stats[i].mb_stats), 1));
}
#if CONFIG_FP_MB_STATS
cpi->use_fp_mb_stats = 0;
if (cpi->use_fp_mb_stats) {
// a place holder used to store the first pass mb stats in the first pass
CHECK_MEM_ERROR(cm, cpi->twopass.frame_mb_stats_buf,
aom_calloc(cm->MBs * sizeof(uint8_t), 1));
} else {
cpi->twopass.frame_mb_stats_buf = NULL;
}
#endif
cpi->refresh_alt_ref_frame = 0;
cpi->multi_arf_last_grp_enabled = 0;
cpi->b_calculate_psnr = CONFIG_INTERNAL_STATS;
#if CONFIG_INTERNAL_STATS
cpi->b_calculate_blockiness = 1;
cpi->b_calculate_consistency = 1;
cpi->total_inconsistency = 0;
cpi->psnr.worst = 100.0;
cpi->worst_ssim = 100.0;
cpi->count = 0;
cpi->bytes = 0;
if (cpi->b_calculate_psnr) {
cpi->total_sq_error = 0;
cpi->total_samples = 0;
cpi->tot_recode_hits = 0;
cpi->summed_quality = 0;
cpi->summed_weights = 0;
}
cpi->fastssim.worst = 100.0;
cpi->psnrhvs.worst = 100.0;
if (cpi->b_calculate_blockiness) {
cpi->total_blockiness = 0;
cpi->worst_blockiness = 0.0;
}
if (cpi->b_calculate_consistency) {
CHECK_MEM_ERROR(cm, cpi->ssim_vars,
aom_malloc(sizeof(*cpi->ssim_vars) * 4 *
cpi->common.mi_rows * cpi->common.mi_cols));
cpi->worst_consistency = 100.0;
}
#endif
cpi->first_time_stamp_ever = INT64_MAX;
#if CONFIG_REF_MV
for (i = 0; i < NMV_CONTEXTS; ++i) {
cpi->td.mb.nmvcost[i][0] = &cpi->nmv_costs[i][0][MV_MAX];
cpi->td.mb.nmvcost[i][1] = &cpi->nmv_costs[i][1][MV_MAX];
cpi->td.mb.nmvcost_hp[i][0] = &cpi->nmv_costs_hp[i][0][MV_MAX];
cpi->td.mb.nmvcost_hp[i][1] = &cpi->nmv_costs_hp[i][1][MV_MAX];
}
#else
cal_nmvjointsadcost(cpi->td.mb.nmvjointsadcost);
cpi->td.mb.nmvcost[0] = &cpi->nmvcosts[0][MV_MAX];
cpi->td.mb.nmvcost[1] = &cpi->nmvcosts[1][MV_MAX];
cpi->td.mb.nmvcost_hp[0] = &cpi->nmvcosts_hp[0][MV_MAX];
cpi->td.mb.nmvcost_hp[1] = &cpi->nmvcosts_hp[1][MV_MAX];
#endif
cpi->td.mb.nmvsadcost[0] = &cpi->nmvsadcosts[0][MV_MAX];
cpi->td.mb.nmvsadcost[1] = &cpi->nmvsadcosts[1][MV_MAX];
cal_nmvsadcosts(cpi->td.mb.nmvsadcost);
cpi->td.mb.nmvsadcost_hp[0] = &cpi->nmvsadcosts_hp[0][MV_MAX];
cpi->td.mb.nmvsadcost_hp[1] = &cpi->nmvsadcosts_hp[1][MV_MAX];
cal_nmvsadcosts_hp(cpi->td.mb.nmvsadcost_hp);
#ifdef OUTPUT_YUV_SKINMAP
yuv_skinmap_file = fopen("skinmap.yuv", "ab");
#endif
#ifdef OUTPUT_YUV_REC
yuv_rec_file = fopen("rec.yuv", "wb");
#endif
#if 0
framepsnr = fopen("framepsnr.stt", "a");
kf_list = fopen("kf_list.stt", "w");
#endif
cpi->allow_encode_breakout = ENCODE_BREAKOUT_ENABLED;
if (oxcf->pass == 1) {
av1_init_first_pass(cpi);
} else if (oxcf->pass == 2) {
const size_t packet_sz = sizeof(FIRSTPASS_STATS);
const int packets = (int)(oxcf->two_pass_stats_in.sz / packet_sz);
#if CONFIG_FP_MB_STATS
if (cpi->use_fp_mb_stats) {
const size_t psz = cpi->common.MBs * sizeof(uint8_t);
const int ps = (int)(oxcf->firstpass_mb_stats_in.sz / psz);
cpi->twopass.firstpass_mb_stats.mb_stats_start =
oxcf->firstpass_mb_stats_in.buf;
cpi->twopass.firstpass_mb_stats.mb_stats_end =
cpi->twopass.firstpass_mb_stats.mb_stats_start +
(ps - 1) * cpi->common.MBs * sizeof(uint8_t);
}
#endif
cpi->twopass.stats_in_start = oxcf->two_pass_stats_in.buf;
cpi->twopass.stats_in = cpi->twopass.stats_in_start;
cpi->twopass.stats_in_end = &cpi->twopass.stats_in[packets - 1];
av1_init_second_pass(cpi);
}
init_upsampled_ref_frame_bufs(cpi);
av1_set_speed_features_framesize_independent(cpi);
av1_set_speed_features_framesize_dependent(cpi);
// Allocate memory to store variances for a frame.
CHECK_MEM_ERROR(cm, cpi->source_diff_var, aom_calloc(cm->MBs, sizeof(diff)));
cpi->source_var_thresh = 0;
cpi->frames_till_next_var_check = 0;
#define BFP(BT, SDF, SDAF, VF, SVF, SVAF, SDX3F, SDX8F, SDX4DF) \
cpi->fn_ptr[BT].sdf = SDF; \
cpi->fn_ptr[BT].sdaf = SDAF; \
cpi->fn_ptr[BT].vf = VF; \
cpi->fn_ptr[BT].svf = SVF; \
cpi->fn_ptr[BT].svaf = SVAF; \
cpi->fn_ptr[BT].sdx3f = SDX3F; \
cpi->fn_ptr[BT].sdx8f = SDX8F; \
cpi->fn_ptr[BT].sdx4df = SDX4DF;
#if CONFIG_EXT_PARTITION
BFP(BLOCK_128X128, aom_sad128x128, aom_sad128x128_avg, aom_variance128x128,
aom_sub_pixel_variance128x128, aom_sub_pixel_avg_variance128x128,
aom_sad128x128x3, aom_sad128x128x8, aom_sad128x128x4d)
BFP(BLOCK_128X64, aom_sad128x64, aom_sad128x64_avg, aom_variance128x64,
aom_sub_pixel_variance128x64, aom_sub_pixel_avg_variance128x64, NULL,
NULL, aom_sad128x64x4d)
BFP(BLOCK_64X128, aom_sad64x128, aom_sad64x128_avg, aom_variance64x128,
aom_sub_pixel_variance64x128, aom_sub_pixel_avg_variance64x128, NULL,
NULL, aom_sad64x128x4d)
#endif // CONFIG_EXT_PARTITION
BFP(BLOCK_32X16, aom_sad32x16, aom_sad32x16_avg, aom_variance32x16,
aom_sub_pixel_variance32x16, aom_sub_pixel_avg_variance32x16, NULL, NULL,
aom_sad32x16x4d)
BFP(BLOCK_16X32, aom_sad16x32, aom_sad16x32_avg, aom_variance16x32,
aom_sub_pixel_variance16x32, aom_sub_pixel_avg_variance16x32, NULL, NULL,
aom_sad16x32x4d)
BFP(BLOCK_64X32, aom_sad64x32, aom_sad64x32_avg, aom_variance64x32,
aom_sub_pixel_variance64x32, aom_sub_pixel_avg_variance64x32, NULL, NULL,
aom_sad64x32x4d)
BFP(BLOCK_32X64, aom_sad32x64, aom_sad32x64_avg, aom_variance32x64,
aom_sub_pixel_variance32x64, aom_sub_pixel_avg_variance32x64, NULL, NULL,
aom_sad32x64x4d)
BFP(BLOCK_32X32, aom_sad32x32, aom_sad32x32_avg, aom_variance32x32,
aom_sub_pixel_variance32x32, aom_sub_pixel_avg_variance32x32,
aom_sad32x32x3, aom_sad32x32x8, aom_sad32x32x4d)
BFP(BLOCK_64X64, aom_sad64x64, aom_sad64x64_avg, aom_variance64x64,
aom_sub_pixel_variance64x64, aom_sub_pixel_avg_variance64x64,
aom_sad64x64x3, aom_sad64x64x8, aom_sad64x64x4d)
BFP(BLOCK_16X16, aom_sad16x16, aom_sad16x16_avg, aom_variance16x16,
aom_sub_pixel_variance16x16, aom_sub_pixel_avg_variance16x16,
aom_sad16x16x3, aom_sad16x16x8, aom_sad16x16x4d)
BFP(BLOCK_16X8, aom_sad16x8, aom_sad16x8_avg, aom_variance16x8,
aom_sub_pixel_variance16x8, aom_sub_pixel_avg_variance16x8, aom_sad16x8x3,
aom_sad16x8x8, aom_sad16x8x4d)
BFP(BLOCK_8X16, aom_sad8x16, aom_sad8x16_avg, aom_variance8x16,
aom_sub_pixel_variance8x16, aom_sub_pixel_avg_variance8x16, aom_sad8x16x3,
aom_sad8x16x8, aom_sad8x16x4d)
BFP(BLOCK_8X8, aom_sad8x8, aom_sad8x8_avg, aom_variance8x8,
aom_sub_pixel_variance8x8, aom_sub_pixel_avg_variance8x8, aom_sad8x8x3,
aom_sad8x8x8, aom_sad8x8x4d)
BFP(BLOCK_8X4, aom_sad8x4, aom_sad8x4_avg, aom_variance8x4,
aom_sub_pixel_variance8x4, aom_sub_pixel_avg_variance8x4, NULL,
aom_sad8x4x8, aom_sad8x4x4d)
BFP(BLOCK_4X8, aom_sad4x8, aom_sad4x8_avg, aom_variance4x8,
aom_sub_pixel_variance4x8, aom_sub_pixel_avg_variance4x8, NULL,
aom_sad4x8x8, aom_sad4x8x4d)
BFP(BLOCK_4X4, aom_sad4x4, aom_sad4x4_avg, aom_variance4x4,
aom_sub_pixel_variance4x4, aom_sub_pixel_avg_variance4x4, aom_sad4x4x3,
aom_sad4x4x8, aom_sad4x4x4d)
#if CONFIG_MOTION_VAR
#define OBFP(BT, OSDF, OVF, OSVF) \
cpi->fn_ptr[BT].osdf = OSDF; \
cpi->fn_ptr[BT].ovf = OVF; \
cpi->fn_ptr[BT].osvf = OSVF;
#if CONFIG_EXT_PARTITION
OBFP(BLOCK_128X128, aom_obmc_sad128x128, aom_obmc_variance128x128,
aom_obmc_sub_pixel_variance128x128)
OBFP(BLOCK_128X64, aom_obmc_sad128x64, aom_obmc_variance128x64,
aom_obmc_sub_pixel_variance128x64)
OBFP(BLOCK_64X128, aom_obmc_sad64x128, aom_obmc_variance64x128,
aom_obmc_sub_pixel_variance64x128)
#endif // CONFIG_EXT_PARTITION
OBFP(BLOCK_64X64, aom_obmc_sad64x64, aom_obmc_variance64x64,
aom_obmc_sub_pixel_variance64x64)
OBFP(BLOCK_64X32, aom_obmc_sad64x32, aom_obmc_variance64x32,
aom_obmc_sub_pixel_variance64x32)
OBFP(BLOCK_32X64, aom_obmc_sad32x64, aom_obmc_variance32x64,
aom_obmc_sub_pixel_variance32x64)
OBFP(BLOCK_32X32, aom_obmc_sad32x32, aom_obmc_variance32x32,
aom_obmc_sub_pixel_variance32x32)
OBFP(BLOCK_32X16, aom_obmc_sad32x16, aom_obmc_variance32x16,
aom_obmc_sub_pixel_variance32x16)
OBFP(BLOCK_16X32, aom_obmc_sad16x32, aom_obmc_variance16x32,
aom_obmc_sub_pixel_variance16x32)
OBFP(BLOCK_16X16, aom_obmc_sad16x16, aom_obmc_variance16x16,
aom_obmc_sub_pixel_variance16x16)
OBFP(BLOCK_16X8, aom_obmc_sad16x8, aom_obmc_variance16x8,
aom_obmc_sub_pixel_variance16x8)
OBFP(BLOCK_8X16, aom_obmc_sad8x16, aom_obmc_variance8x16,
aom_obmc_sub_pixel_variance8x16)
OBFP(BLOCK_8X8, aom_obmc_sad8x8, aom_obmc_variance8x8,
aom_obmc_sub_pixel_variance8x8)
OBFP(BLOCK_4X8, aom_obmc_sad4x8, aom_obmc_variance4x8,
aom_obmc_sub_pixel_variance4x8)
OBFP(BLOCK_8X4, aom_obmc_sad8x4, aom_obmc_variance8x4,
aom_obmc_sub_pixel_variance8x4)
OBFP(BLOCK_4X4, aom_obmc_sad4x4, aom_obmc_variance4x4,
aom_obmc_sub_pixel_variance4x4)
#endif // CONFIG_MOTION_VAR
#if CONFIG_EXT_INTER
#define MBFP(BT, MSDF, MVF, MSVF) \
cpi->fn_ptr[BT].msdf = MSDF; \
cpi->fn_ptr[BT].mvf = MVF; \
cpi->fn_ptr[BT].msvf = MSVF;
#if CONFIG_EXT_PARTITION
MBFP(BLOCK_128X128, aom_masked_sad128x128, aom_masked_variance128x128,
aom_masked_sub_pixel_variance128x128)
MBFP(BLOCK_128X64, aom_masked_sad128x64, aom_masked_variance128x64,
aom_masked_sub_pixel_variance128x64)
MBFP(BLOCK_64X128, aom_masked_sad64x128, aom_masked_variance64x128,
aom_masked_sub_pixel_variance64x128)
#endif // CONFIG_EXT_PARTITION
MBFP(BLOCK_64X64, aom_masked_sad64x64, aom_masked_variance64x64,
aom_masked_sub_pixel_variance64x64)
MBFP(BLOCK_64X32, aom_masked_sad64x32, aom_masked_variance64x32,
aom_masked_sub_pixel_variance64x32)
MBFP(BLOCK_32X64, aom_masked_sad32x64, aom_masked_variance32x64,
aom_masked_sub_pixel_variance32x64)
MBFP(BLOCK_32X32, aom_masked_sad32x32, aom_masked_variance32x32,
aom_masked_sub_pixel_variance32x32)
MBFP(BLOCK_32X16, aom_masked_sad32x16, aom_masked_variance32x16,
aom_masked_sub_pixel_variance32x16)
MBFP(BLOCK_16X32, aom_masked_sad16x32, aom_masked_variance16x32,
aom_masked_sub_pixel_variance16x32)
MBFP(BLOCK_16X16, aom_masked_sad16x16, aom_masked_variance16x16,
aom_masked_sub_pixel_variance16x16)
MBFP(BLOCK_16X8, aom_masked_sad16x8, aom_masked_variance16x8,
aom_masked_sub_pixel_variance16x8)
MBFP(BLOCK_8X16, aom_masked_sad8x16, aom_masked_variance8x16,
aom_masked_sub_pixel_variance8x16)
MBFP(BLOCK_8X8, aom_masked_sad8x8, aom_masked_variance8x8,
aom_masked_sub_pixel_variance8x8)
MBFP(BLOCK_4X8, aom_masked_sad4x8, aom_masked_variance4x8,
aom_masked_sub_pixel_variance4x8)
MBFP(BLOCK_8X4, aom_masked_sad8x4, aom_masked_variance8x4,
aom_masked_sub_pixel_variance8x4)
MBFP(BLOCK_4X4, aom_masked_sad4x4, aom_masked_variance4x4,
aom_masked_sub_pixel_variance4x4)
#endif // CONFIG_EXT_INTER
#if CONFIG_AOM_HIGHBITDEPTH
highbd_set_var_fns(cpi);
#endif
/* av1_init_quantizer() is first called here. Add check in
* av1_frame_init_quantizer() so that av1_init_quantizer is only
* called later when needed. This will avoid unnecessary calls of
* av1_init_quantizer() for every frame.
*/
av1_init_quantizer(cpi);
#if CONFIG_AOM_QM
aom_qm_init(cm);
#endif
av1_loop_filter_init(cm);
#if CONFIG_LOOP_RESTORATION
av1_loop_restoration_precal();
#endif // CONFIG_LOOP_RESTORATION
cm->error.setjmp = 0;
return cpi;
}
#define SNPRINT(H, T) snprintf((H) + strlen(H), sizeof(H) - strlen(H), (T))
#define SNPRINT2(H, T, V) \
snprintf((H) + strlen(H), sizeof(H) - strlen(H), (T), (V))
void av1_remove_compressor(AV1_COMP *cpi) {
AV1_COMMON *cm;
unsigned int i;
int t;
if (!cpi) return;
cm = &cpi->common;
if (cm->current_video_frame > 0) {
#if CONFIG_INTERNAL_STATS
aom_clear_system_state();
if (cpi->oxcf.pass != 1) {
char headings[512] = { 0 };
char results[512] = { 0 };
FILE *f = fopen("opsnr.stt", "a");
double time_encoded =
(cpi->last_end_time_stamp_seen - cpi->first_time_stamp_ever) /
10000000.000;
double total_encode_time =
(cpi->time_receive_data + cpi->time_compress_data) / 1000.000;
const double dr =
(double)cpi->bytes * (double)8 / (double)1000 / time_encoded;
const double peak = (double)((1 << cpi->oxcf.input_bit_depth) - 1);
const double target_rate = (double)cpi->oxcf.target_bandwidth / 1000;
const double rate_err = ((100.0 * (dr - target_rate)) / target_rate);
if (cpi->b_calculate_psnr) {
const double total_psnr = aom_sse_to_psnr(
(double)cpi->total_samples, peak, (double)cpi->total_sq_error);
const double total_ssim =
100 * pow(cpi->summed_quality / cpi->summed_weights, 8.0);
snprintf(headings, sizeof(headings),
"Bitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\tGLPsnrP\t"
"AOMSSIM\tVPSSIMP\tFASTSIM\tPSNRHVS\t"
"WstPsnr\tWstSsim\tWstFast\tWstHVS");
snprintf(results, sizeof(results),
"%7.2f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t"
"%7.3f\t%7.3f\t%7.3f\t%7.3f\t"
"%7.3f\t%7.3f\t%7.3f\t%7.3f",
dr, cpi->psnr.stat[ALL] / cpi->count, total_psnr,
cpi->psnr.stat[ALL] / cpi->count, total_psnr, total_ssim,
total_ssim, cpi->fastssim.stat[ALL] / cpi->count,
cpi->psnrhvs.stat[ALL] / cpi->count, cpi->psnr.worst,
cpi->worst_ssim, cpi->fastssim.worst, cpi->psnrhvs.worst);
if (cpi->b_calculate_blockiness) {
SNPRINT(headings, "\t Block\tWstBlck");
SNPRINT2(results, "\t%7.3f", cpi->total_blockiness / cpi->count);
SNPRINT2(results, "\t%7.3f", cpi->worst_blockiness);
}
if (cpi->b_calculate_consistency) {
double consistency =
aom_sse_to_psnr((double)cpi->total_samples, peak,
(double)cpi->total_inconsistency);
SNPRINT(headings, "\tConsist\tWstCons");
SNPRINT2(results, "\t%7.3f", consistency);
SNPRINT2(results, "\t%7.3f", cpi->worst_consistency);
}
fprintf(f, "%s\t Time\tRcErr\tAbsErr\n", headings);
fprintf(f, "%s\t%8.0f\t%7.2f\t%7.2f\n", results, total_encode_time,
rate_err, fabs(rate_err));
}
fclose(f);
}
#endif
#if 0
{
printf("\n_pick_loop_filter_level:%d\n", cpi->time_pick_lpf / 1000);
printf("\n_frames recive_data encod_mb_row compress_frame Total\n");
printf("%6d %10ld %10ld %10ld %10ld\n", cpi->common.current_video_frame,
cpi->time_receive_data / 1000, cpi->time_encode_sb_row / 1000,
cpi->time_compress_data / 1000,
(cpi->time_receive_data + cpi->time_compress_data) / 1000);
}
#endif
}
for (t = 0; t < cpi->num_workers; ++t) {
AVxWorker *const worker = &cpi->workers[t];
EncWorkerData *const thread_data = &cpi->tile_thr_data[t];
// Deallocate allocated threads.
aom_get_worker_interface()->end(worker);
// Deallocate allocated thread data.
if (t < cpi->num_workers - 1) {
if (cpi->common.allow_screen_content_tools)
aom_free(thread_data->td->mb.palette_buffer);
aom_free(thread_data->td->counts);
av1_free_pc_tree(thread_data->td);
av1_free_var_tree(thread_data->td);
aom_free(thread_data->td);
}
}
aom_free(cpi->tile_thr_data);
aom_free(cpi->workers);
if (cpi->num_workers > 1) av1_loop_filter_dealloc(&cpi->lf_row_sync);
dealloc_compressor_data(cpi);
for (i = 0; i < sizeof(cpi->mbgraph_stats) / sizeof(cpi->mbgraph_stats[0]);
++i) {
aom_free(cpi->mbgraph_stats[i].mb_stats);
}
#if CONFIG_FP_MB_STATS
if (cpi->use_fp_mb_stats) {
aom_free(cpi->twopass.frame_mb_stats_buf);
cpi->twopass.frame_mb_stats_buf = NULL;
}
#endif
av1_remove_common(cm);
av1_free_ref_frame_buffers(cm->buffer_pool);
aom_free(cpi);
#ifdef OUTPUT_YUV_SKINMAP
fclose(yuv_skinmap_file);
#endif
#ifdef OUTPUT_YUV_REC
fclose(yuv_rec_file);
#endif
#if 0
if (keyfile)
fclose(keyfile);
if (framepsnr)
fclose(framepsnr);
if (kf_list)
fclose(kf_list);
#endif
}
static void generate_psnr_packet(AV1_COMP *cpi) {
struct aom_codec_cx_pkt pkt;
int i;
PSNR_STATS psnr;
#if CONFIG_AOM_HIGHBITDEPTH
aom_calc_highbd_psnr(cpi->Source, cpi->common.frame_to_show, &psnr,
cpi->td.mb.e_mbd.bd, cpi->oxcf.input_bit_depth);
#else
aom_calc_psnr(cpi->Source, cpi->common.frame_to_show, &psnr);
#endif
for (i = 0; i < 4; ++i) {
pkt.data.psnr.samples[i] = psnr.samples[i];
pkt.data.psnr.sse[i] = psnr.sse[i];
pkt.data.psnr.psnr[i] = psnr.psnr[i];
}
pkt.kind = AOM_CODEC_PSNR_PKT;
aom_codec_pkt_list_add(cpi->output_pkt_list, &pkt);
}
int av1_use_as_reference(AV1_COMP *cpi, int ref_frame_flags) {
if (ref_frame_flags > ((1 << INTER_REFS_PER_FRAME) - 1)) return -1;
cpi->ref_frame_flags = ref_frame_flags;
return 0;
}
void av1_update_reference(AV1_COMP *cpi, int ref_frame_flags) {
cpi->ext_refresh_golden_frame = (ref_frame_flags & AOM_GOLD_FLAG) != 0;
cpi->ext_refresh_alt_ref_frame = (ref_frame_flags & AOM_ALT_FLAG) != 0;
cpi->ext_refresh_last_frame = (ref_frame_flags & AOM_LAST_FLAG) != 0;
cpi->ext_refresh_frame_flags_pending = 1;
}
static YV12_BUFFER_CONFIG *get_av1_ref_frame_buffer(
AV1_COMP *cpi, AOM_REFFRAME ref_frame_flag) {
MV_REFERENCE_FRAME ref_frame = NONE;
if (ref_frame_flag == AOM_LAST_FLAG) ref_frame = LAST_FRAME;
#if CONFIG_EXT_REFS
else if (ref_frame_flag == AOM_LAST2_FLAG)
ref_frame = LAST2_FRAME;
else if (ref_frame_flag == AOM_LAST3_FLAG)
ref_frame = LAST3_FRAME;
#endif // CONFIG_EXT_REFS
else if (ref_frame_flag == AOM_GOLD_FLAG)
ref_frame = GOLDEN_FRAME;
#if CONFIG_EXT_REFS
else if (ref_frame_flag == AOM_BWD_FLAG)
ref_frame = BWDREF_FRAME;
#endif // CONFIG_EXT_REFS
else if (ref_frame_flag == AOM_ALT_FLAG)
ref_frame = ALTREF_FRAME;
return ref_frame == NONE ? NULL : get_ref_frame_buffer(cpi, ref_frame);
}
int av1_copy_reference_enc(AV1_COMP *cpi, AOM_REFFRAME ref_frame_flag,
YV12_BUFFER_CONFIG *sd) {
YV12_BUFFER_CONFIG *cfg = get_av1_ref_frame_buffer(cpi, ref_frame_flag);
if (cfg) {
aom_yv12_copy_frame(cfg, sd);
return 0;
} else {
return -1;
}
}
int av1_set_reference_enc(AV1_COMP *cpi, AOM_REFFRAME ref_frame_flag,
YV12_BUFFER_CONFIG *sd) {
YV12_BUFFER_CONFIG *cfg = get_av1_ref_frame_buffer(cpi, ref_frame_flag);
if (cfg) {
aom_yv12_copy_frame(sd, cfg);
return 0;
} else {
return -1;
}
}
int av1_update_entropy(AV1_COMP *cpi, int update) {
cpi->ext_refresh_frame_context = update;
cpi->ext_refresh_frame_context_pending = 1;
return 0;
}
#if defined(OUTPUT_YUV_DENOISED) || defined(OUTPUT_YUV_SKINMAP)
// The denoiser buffer is allocated as a YUV 440 buffer. This function writes it
// as YUV 420. We simply use the top-left pixels of the UV buffers, since we do
// not denoise the UV channels at this time. If ever we implement UV channel
// denoising we will have to modify this.
void aom_write_yuv_frame_420(YV12_BUFFER_CONFIG *s, FILE *f) {
uint8_t *src = s->y_buffer;
int h = s->y_height;
do {
fwrite(src, s->y_width, 1, f);
src += s->y_stride;
} while (--h);
src = s->u_buffer;
h = s->uv_height;
do {
fwrite(src, s->uv_width, 1, f);
src += s->uv_stride;
} while (--h);
src = s->v_buffer;
h = s->uv_height;
do {
fwrite(src, s->uv_width, 1, f);
src += s->uv_stride;
} while (--h);
}
#endif
#if CONFIG_EXT_REFS
static void check_show_existing_frame(AV1_COMP *cpi) {
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
AV1_COMMON *const cm = &cpi->common;
const FRAME_UPDATE_TYPE next_frame_update_type =
gf_group->update_type[gf_group->index];
const int which_arf = gf_group->arf_update_idx[gf_group->index];
if (cm->show_existing_frame == 1) {
cm->show_existing_frame = 0;
} else if (cpi->rc.is_last_bipred_frame) {
// NOTE(zoeliu): If the current frame is a last bi-predictive frame, it is
// needed next to show the BWDREF_FRAME, which is pointed by
// the last_fb_idxes[0] after reference frame buffer update
cpi->rc.is_last_bipred_frame = 0;
cm->show_existing_frame = 1;
cpi->existing_fb_idx_to_show = cpi->lst_fb_idxes[0];
} else if (cpi->is_arf_filter_off[which_arf] &&
(next_frame_update_type == OVERLAY_UPDATE ||
next_frame_update_type == INTNL_OVERLAY_UPDATE)) {
// Other parameters related to OVERLAY_UPDATE will be taken care of
// in av1_rc_get_second_pass_params(cpi)
cm->show_existing_frame = 1;
cpi->rc.is_src_frame_alt_ref = 1;
cpi->existing_fb_idx_to_show = cpi->alt_fb_idx;
cpi->is_arf_filter_off[which_arf] = 0;
}
cpi->rc.is_src_frame_ext_arf = 0;
}
#endif // CONFIG_EXT_REFS
#ifdef OUTPUT_YUV_REC
void aom_write_one_yuv_frame(AV1_COMMON *cm, YV12_BUFFER_CONFIG *s) {
uint8_t *src = s->y_buffer;
int h = cm->height;
#if CONFIG_AOM_HIGHBITDEPTH
if (s->flags & YV12_FLAG_HIGHBITDEPTH) {
uint16_t *src16 = CONVERT_TO_SHORTPTR(s->y_buffer);
do {
fwrite(src16, s->y_width, 2, yuv_rec_file);
src16 += s->y_stride;
} while (--h);
src16 = CONVERT_TO_SHORTPTR(s->u_buffer);
h = s->uv_height;
do {
fwrite(src16, s->uv_width, 2, yuv_rec_file);
src16 += s->uv_stride;
} while (--h);
src16 = CONVERT_TO_SHORTPTR(s->v_buffer);
h = s->uv_height;
do {
fwrite(src16, s->uv_width, 2, yuv_rec_file);
src16 += s->uv_stride;
} while (--h);
fflush(yuv_rec_file);
return;
}
#endif // CONFIG_AOM_HIGHBITDEPTH
do {
fwrite(src, s->y_width, 1, yuv_rec_file);
src += s->y_stride;
} while (--h);
src = s->u_buffer;
h = s->uv_height;
do {
fwrite(src, s->uv_width, 1, yuv_rec_file);
src += s->uv_stride;
} while (--h);
src = s->v_buffer;
h = s->uv_height;
do {
fwrite(src, s->uv_width, 1, yuv_rec_file);
src += s->uv_stride;
} while (--h);
fflush(yuv_rec_file);
}
#endif // OUTPUT_YUV_REC
#if CONFIG_AOM_HIGHBITDEPTH
static void scale_and_extend_frame_nonnormative(const YV12_BUFFER_CONFIG *src,
YV12_BUFFER_CONFIG *dst,
int bd) {
#else
static void scale_and_extend_frame_nonnormative(const YV12_BUFFER_CONFIG *src,
YV12_BUFFER_CONFIG *dst) {
#endif // CONFIG_AOM_HIGHBITDEPTH
// TODO(dkovalev): replace YV12_BUFFER_CONFIG with aom_image_t
int i;
const uint8_t *const srcs[3] = { src->y_buffer, src->u_buffer,
src->v_buffer };
const int src_strides[3] = { src->y_stride, src->uv_stride, src->uv_stride };
const int src_widths[3] = { src->y_crop_width, src->uv_crop_width,
src->uv_crop_width };
const int src_heights[3] = { src->y_crop_height, src->uv_crop_height,
src->uv_crop_height };
uint8_t *const dsts[3] = { dst->y_buffer, dst->u_buffer, dst->v_buffer };
const int dst_strides[3] = { dst->y_stride, dst->uv_stride, dst->uv_stride };
const int dst_widths[3] = { dst->y_crop_width, dst->uv_crop_width,
dst->uv_crop_width };
const int dst_heights[3] = { dst->y_crop_height, dst->uv_crop_height,
dst->uv_crop_height };
for (i = 0; i < MAX_MB_PLANE; ++i) {
#if CONFIG_AOM_HIGHBITDEPTH
if (src->flags & YV12_FLAG_HIGHBITDEPTH) {
av1_highbd_resize_plane(srcs[i], src_heights[i], src_widths[i],
src_strides[i], dsts[i], dst_heights[i],
dst_widths[i], dst_strides[i], bd);
} else {
av1_resize_plane(srcs[i], src_heights[i], src_widths[i], src_strides[i],
dsts[i], dst_heights[i], dst_widths[i], dst_strides[i]);
}
#else
av1_resize_plane(srcs[i], src_heights[i], src_widths[i], src_strides[i],
dsts[i], dst_heights[i], dst_widths[i], dst_strides[i]);
#endif // CONFIG_AOM_HIGHBITDEPTH
}
aom_extend_frame_borders(dst);
}
#if CONFIG_AOM_HIGHBITDEPTH
static void scale_and_extend_frame(const YV12_BUFFER_CONFIG *src,
YV12_BUFFER_CONFIG *dst, int planes,
int bd) {
#else
static void scale_and_extend_frame(const YV12_BUFFER_CONFIG *src,
YV12_BUFFER_CONFIG *dst, int planes) {
#endif // CONFIG_AOM_HIGHBITDEPTH
const int src_w = src->y_crop_width;
const int src_h = src->y_crop_height;
const int dst_w = dst->y_crop_width;
const int dst_h = dst->y_crop_height;
const uint8_t *const srcs[3] = { src->y_buffer, src->u_buffer,
src->v_buffer };
const int src_strides[3] = { src->y_stride, src->uv_stride, src->uv_stride };
uint8_t *const dsts[3] = { dst->y_buffer, dst->u_buffer, dst->v_buffer };
const int dst_strides[3] = { dst->y_stride, dst->uv_stride, dst->uv_stride };
const InterpFilterParams interp_filter_params =
av1_get_interp_filter_params(EIGHTTAP_REGULAR);
const int16_t *kernel = interp_filter_params.filter_ptr;
const int taps = interp_filter_params.taps;
int x, y, i;
for (y = 0; y < dst_h; y += 16) {
for (x = 0; x < dst_w; x += 16) {
for (i = 0; i < planes; ++i) {
const int factor = (i == 0 || i == 3 ? 1 : 2);
const int x_q4 = x * (16 / factor) * src_w / dst_w;
const int y_q4 = y * (16 / factor) * src_h / dst_h;
const int src_stride = src_strides[i];
const int dst_stride = dst_strides[i];
const uint8_t *src_ptr = srcs[i] +
(y / factor) * src_h / dst_h * src_stride +
(x / factor) * src_w / dst_w;
uint8_t *dst_ptr = dsts[i] + (y / factor) * dst_stride + (x / factor);
#if CONFIG_AOM_HIGHBITDEPTH
if (src->flags & YV12_FLAG_HIGHBITDEPTH) {
aom_highbd_convolve8(src_ptr, src_stride, dst_ptr, dst_stride,
&kernel[(x_q4 & 0xf) * taps], 16 * src_w / dst_w,
&kernel[(y_q4 & 0xf) * taps], 16 * src_h / dst_h,
16 / factor, 16 / factor, bd);
} else {
aom_scaled_2d(src_ptr, src_stride, dst_ptr, dst_stride,
&kernel[(x_q4 & 0xf) * taps], 16 * src_w / dst_w,
&kernel[(y_q4 & 0xf) * taps], 16 * src_h / dst_h,
16 / factor, 16 / factor);
}
#else
aom_scaled_2d(src_ptr, src_stride, dst_ptr, dst_stride,
&kernel[(x_q4 & 0xf) * taps], 16 * src_w / dst_w,
&kernel[(y_q4 & 0xf) * taps], 16 * src_h / dst_h,
16 / factor, 16 / factor);
#endif // CONFIG_AOM_HIGHBITDEPTH
}
}
}
if (planes == 1)
aom_extend_frame_borders_y(dst);
else
aom_extend_frame_borders(dst);
}
static int scale_down(AV1_COMP *cpi, int q) {
RATE_CONTROL *const rc = &cpi->rc;
GF_GROUP *const gf_group = &cpi->twopass.gf_group;
int scale = 0;
assert(frame_is_kf_gf_arf(cpi));
if (rc->frame_size_selector == UNSCALED &&
q >= rc->rf_level_maxq[gf_group->rf_level[gf_group->index]]) {
const int max_size_thresh =
(int)(rate_thresh_mult[SCALE_STEP1] *
AOMMAX(rc->this_frame_target, rc->avg_frame_bandwidth));
scale = rc->projected_frame_size > max_size_thresh ? 1 : 0;
}
return scale;
}
// Function to test for conditions that indicate we should loop
// back and recode a frame.
static int recode_loop_test(AV1_COMP *cpi, int high_limit, int low_limit, int q,
int maxq, int minq) {
const RATE_CONTROL *const rc = &cpi->rc;
const AV1EncoderConfig *const oxcf = &cpi->oxcf;
const int frame_is_kfgfarf = frame_is_kf_gf_arf(cpi);
int force_recode = 0;
if ((rc->projected_frame_size >= rc->max_frame_bandwidth) ||
(cpi->sf.recode_loop == ALLOW_RECODE) ||
(frame_is_kfgfarf && (cpi->sf.recode_loop == ALLOW_RECODE_KFARFGF))) {
if (frame_is_kfgfarf && (oxcf->resize_mode == RESIZE_DYNAMIC) &&
scale_down(cpi, q)) {
// Code this group at a lower resolution.
cpi->resize_pending = 1;
return 1;
}
// TODO(agrange) high_limit could be greater than the scale-down threshold.
if ((rc->projected_frame_size > high_limit && q < maxq) ||
(rc->projected_frame_size < low_limit && q > minq)) {
force_recode = 1;
} else if (cpi->oxcf.rc_mode == AOM_CQ) {
// Deal with frame undershoot and whether or not we are
// below the automatically set cq level.
if (q > oxcf->cq_level &&
rc->projected_frame_size < ((rc->this_frame_target * 7) >> 3)) {
force_recode = 1;
}
}
}
return force_recode;
}
static INLINE int get_free_upsampled_ref_buf(EncRefCntBuffer *ubufs) {
int i;
for (i = 0; i < (REF_FRAMES + 1); i++) {
if (!ubufs[i].ref_count) {
return i;
}
}
return INVALID_IDX;
}
// Up-sample 1 reference frame.
static INLINE int upsample_ref_frame(AV1_COMP *cpi,
const YV12_BUFFER_CONFIG *const ref) {
AV1_COMMON *const cm = &cpi->common;
EncRefCntBuffer *ubufs = cpi->upsampled_ref_bufs;
int new_uidx = get_free_upsampled_ref_buf(ubufs);
if (new_uidx == INVALID_IDX) {
return INVALID_IDX;
} else {
YV12_BUFFER_CONFIG *upsampled_ref = &ubufs[new_uidx].buf;
// Can allocate buffer for Y plane only.
if (upsampled_ref->buffer_alloc_sz < (ref->buffer_alloc_sz << 6))
if (aom_realloc_frame_buffer(upsampled_ref, (cm->width << 3),
(cm->height << 3), cm->subsampling_x,
cm->subsampling_y,
#if CONFIG_AOM_HIGHBITDEPTH
cm->use_highbitdepth,
#endif
(AOM_BORDER_IN_PIXELS << 3),
cm->byte_alignment, NULL, NULL, NULL))
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate up-sampled frame buffer");
// Currently, only Y plane is up-sampled, U, V are not used.
#if CONFIG_AOM_HIGHBITDEPTH
scale_and_extend_frame(ref, upsampled_ref, 1, (int)cm->bit_depth);
#else
scale_and_extend_frame(ref, upsampled_ref, 1);
#endif
return new_uidx;
}
}
#define DUMP_REF_FRAME_IMAGES 0
#if DUMP_REF_FRAME_IMAGES == 1
static int dump_one_image(AV1_COMMON *cm,
const YV12_BUFFER_CONFIG *const ref_buf,
char *file_name) {
int h;
FILE *f_ref = NULL;
if (ref_buf == NULL) {
printf("Frame data buffer is NULL.\n");
return AOM_CODEC_MEM_ERROR;
}
if ((f_ref = fopen(file_name, "wb")) == NULL) {
printf("Unable to open file %s to write.\n", file_name);
return AOM_CODEC_MEM_ERROR;
}
// --- Y ---
for (h = 0; h < cm->height; ++h) {
fwrite(&ref_buf->y_buffer[h * ref_buf->y_stride], 1, cm->width, f_ref);
}
// --- U ---
for (h = 0; h < (cm->height >> 1); ++h) {
fwrite(&ref_buf->u_buffer[h * ref_buf->uv_stride], 1, (cm->width >> 1),
f_ref);
}
// --- V ---
for (h = 0; h < (cm->height >> 1); ++h) {
fwrite(&ref_buf->v_buffer[h * ref_buf->uv_stride], 1, (cm->width >> 1),
f_ref);
}
fclose(f_ref);
return AOM_CODEC_OK;
}
static void dump_ref_frame_images(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
MV_REFERENCE_FRAME ref_frame;
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
char file_name[256] = "";
snprintf(file_name, sizeof(file_name), "/tmp/enc_F%d_ref_%d.yuv",
cm->current_video_frame, ref_frame);
dump_one_image(cm, get_ref_frame_buffer(cpi, ref_frame), file_name);
}
}
#endif // DUMP_REF_FRAME_IMAGES == 1
#if CONFIG_EXT_REFS
// This function is used to shift the virtual indices of last reference frames
// as follows:
// LAST_FRAME -> LAST2_FRAME -> LAST3_FRAME
// when the LAST_FRAME is updated.
static INLINE void shift_last_ref_frames(AV1_COMP *cpi) {
int ref_frame;
for (ref_frame = LAST_REF_FRAMES - 1; ref_frame > 0; --ref_frame) {
cpi->lst_fb_idxes[ref_frame] = cpi->lst_fb_idxes[ref_frame - 1];
// [0] is allocated to the current coded frame. The statistics for the
// reference frames start at [1].
if (!cpi->rc.is_src_frame_alt_ref) {
memcpy(cpi->interp_filter_selected[ref_frame + 1],
cpi->interp_filter_selected[ref_frame],
sizeof(cpi->interp_filter_selected[ref_frame]));
}
}
}
#endif
void av1_update_reference_frames(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
BufferPool *const pool = cm->buffer_pool;
const int use_upsampled_ref = cpi->sf.use_upsampled_references;
int new_uidx = 0;
// NOTE: Save the new show frame buffer index for --test-code=warn, i.e.,
// for the purpose to verify no mismatch between encoder and decoder.
if (cm->show_frame) cpi->last_show_frame_buf_idx = cm->new_fb_idx;
if (use_upsampled_ref) {
#if CONFIG_EXT_REFS
if (cm->show_existing_frame) {
new_uidx = cpi->upsampled_ref_idx[cpi->existing_fb_idx_to_show];
// TODO(zoeliu): Once following is confirmed, remove it.
assert(cpi->upsampled_ref_bufs[new_uidx].ref_count > 0);
} else {
#endif // CONFIG_EXT_REFS
// Up-sample the current encoded frame.
RefCntBuffer *bufs = pool->frame_bufs;
const YV12_BUFFER_CONFIG *const ref = &bufs[cm->new_fb_idx].buf;
new_uidx = upsample_ref_frame(cpi, ref);
#if CONFIG_EXT_REFS
assert(new_uidx != INVALID_IDX);
}
#endif // CONFIG_EXT_REFS
}
// At this point the new frame has been encoded.
// If any buffer copy / swapping is signaled it should be done here.
if (cm->frame_type == KEY_FRAME) {
ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx],
cm->new_fb_idx);
#if CONFIG_EXT_REFS
ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->bwd_fb_idx],
cm->new_fb_idx);
#endif // CONFIG_EXT_REFS
ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->alt_fb_idx],
cm->new_fb_idx);
if (use_upsampled_ref) {
uref_cnt_fb(cpi->upsampled_ref_bufs,
&cpi->upsampled_ref_idx[cpi->gld_fb_idx], new_uidx);
#if CONFIG_EXT_REFS
uref_cnt_fb(cpi->upsampled_ref_bufs,
&cpi->upsampled_ref_idx[cpi->bwd_fb_idx], new_uidx);
#endif // CONFIG_EXT_REFS
uref_cnt_fb(cpi->upsampled_ref_bufs,
&cpi->upsampled_ref_idx[cpi->alt_fb_idx], new_uidx);
}
} else if (av1_preserve_existing_gf(cpi)) {
// We have decided to preserve the previously existing golden frame as our
// new ARF frame. However, in the short term in function
// av1_bitstream.c::get_refresh_mask() we left it in the GF slot and, if
// we're updating the GF with the current decoded frame, we save it to the
// ARF slot instead.
// We now have to update the ARF with the current frame and swap gld_fb_idx
// and alt_fb_idx so that, overall, we've stored the old GF in the new ARF
// slot and, if we're updating the GF, the current frame becomes the new GF.
int tmp;
ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->alt_fb_idx],
cm->new_fb_idx);
if (use_upsampled_ref)
uref_cnt_fb(cpi->upsampled_ref_bufs,
&cpi->upsampled_ref_idx[cpi->alt_fb_idx], new_uidx);
tmp = cpi->alt_fb_idx;
cpi->alt_fb_idx = cpi->gld_fb_idx;
cpi->gld_fb_idx = tmp;
#if CONFIG_EXT_REFS
// We need to modify the mapping accordingly
cpi->arf_map[0] = cpi->alt_fb_idx;
#endif
// TODO(zoeliu): Do we need to copy cpi->interp_filter_selected[0] over to
// cpi->interp_filter_selected[GOLDEN_FRAME]?
#if CONFIG_EXT_REFS
} else if (cpi->rc.is_last_bipred_frame) {
// Refresh the LAST_FRAME with the BWDREF_FRAME and retire the LAST3_FRAME
// by updating the virtual indices. Note that the frame BWDREF_FRAME points
// to now should be retired, and it should not be used before refreshed.
int tmp = cpi->lst_fb_idxes[LAST_REF_FRAMES - 1];
shift_last_ref_frames(cpi);
cpi->lst_fb_idxes[0] = cpi->bwd_fb_idx;
if (!cpi->rc.is_src_frame_alt_ref) {
memcpy(cpi->interp_filter_selected[0],
cpi->interp_filter_selected[BWDREF_FRAME],
sizeof(cpi->interp_filter_selected[BWDREF_FRAME]));
}
cpi->bwd_fb_idx = tmp;
} else if (cpi->rc.is_src_frame_ext_arf && cm->show_existing_frame) {
// Deal with the special case for showing existing internal ALTREF_FRAME
// Refresh the LAST_FRAME with the ALTREF_FRAME and retire the LAST3_FRAME
// by updating the virtual indices.
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
int which_arf = gf_group->arf_ref_idx[gf_group->index];
int tmp = cpi->lst_fb_idxes[LAST_REF_FRAMES - 1];
shift_last_ref_frames(cpi);
cpi->lst_fb_idxes[0] = cpi->alt_fb_idx;
memcpy(cpi->interp_filter_selected[LAST_FRAME],
cpi->interp_filter_selected[ALTREF_FRAME + which_arf],
sizeof(cpi->interp_filter_selected[ALTREF_FRAME + which_arf]));
cpi->alt_fb_idx = tmp;
// We need to modify the mapping accordingly
cpi->arf_map[which_arf] = cpi->alt_fb_idx;
#endif // CONFIG_EXT_REFS
} else { /* For non key/golden frames */
if (cpi->refresh_alt_ref_frame) {
int arf_idx = cpi->alt_fb_idx;
int which_arf = 0;
#if CONFIG_EXT_REFS
if (cpi->oxcf.pass == 2) {
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
which_arf = gf_group->arf_update_idx[gf_group->index];
arf_idx = cpi->arf_map[which_arf];
}
#else
if ((cpi->oxcf.pass == 2) && cpi->multi_arf_allowed) {
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
arf_idx = gf_group->arf_update_idx[gf_group->index];
}
#endif // CONFIG_EXT_REFS
ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[arf_idx], cm->new_fb_idx);
if (use_upsampled_ref)
uref_cnt_fb(cpi->upsampled_ref_bufs, &cpi->upsampled_ref_idx[arf_idx],
new_uidx);
memcpy(cpi->interp_filter_selected[ALTREF_FRAME + which_arf],
cpi->interp_filter_selected[0],
sizeof(cpi->interp_filter_selected[0]));
}
if (cpi->refresh_golden_frame) {
ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx],
cm->new_fb_idx);
if (use_upsampled_ref)
uref_cnt_fb(cpi->upsampled_ref_bufs,
&cpi->upsampled_ref_idx[cpi->gld_fb_idx], new_uidx);
if (!cpi->rc.is_src_frame_alt_ref) {
memcpy(cpi->interp_filter_selected[GOLDEN_FRAME],
cpi->interp_filter_selected[0],
sizeof(cpi->interp_filter_selected[0]));
} else {
int which_arf = 0;
#if CONFIG_EXT_REFS
if (cpi->oxcf.pass == 2) {
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
which_arf = gf_group->arf_update_idx[gf_group->index];
}
#endif // CONFIG_EXT_REFS
memcpy(cpi->interp_filter_selected[GOLDEN_FRAME],
cpi->interp_filter_selected[ALTREF_FRAME + which_arf],
sizeof(cpi->interp_filter_selected[ALTREF_FRAME + which_arf]));
}
}
#if CONFIG_EXT_REFS
if (cpi->refresh_bwd_ref_frame) {
if (cpi->rc.is_bwd_ref_frame && cpi->num_extra_arfs) {
// We have swapped the virtual indices to allow bwd_ref_frame to use
// ALT0 as reference frame. We need to swap them back.
// NOTE: The ALT_REFs' are indexed reversely, and ALT0 refers to the
// farthest ALT_REF from the first frame in the gf group.
int tmp = cpi->arf_map[0];
cpi->arf_map[0] = cpi->alt_fb_idx;
cpi->alt_fb_idx = cpi->bwd_fb_idx;
cpi->bwd_fb_idx = tmp;
}
ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->bwd_fb_idx],
cm->new_fb_idx);
if (use_upsampled_ref)
uref_cnt_fb(cpi->upsampled_ref_bufs,
&cpi->upsampled_ref_idx[cpi->bwd_fb_idx], new_uidx);
memcpy(cpi->interp_filter_selected[BWDREF_FRAME],
cpi->interp_filter_selected[0],
sizeof(cpi->interp_filter_selected[0]));
}
#endif // CONFIG_EXT_REFS
}
if (cpi->refresh_last_frame) {
#if CONFIG_EXT_REFS
// NOTE(zoeliu): We have two layers of mapping (1) from the per-frame
// reference to the reference frame buffer virtual index; and then (2) from
// the virtual index to the reference frame buffer physical index:
//
// LAST_FRAME, ..., LAST3_FRAME, ..., ALTREF_FRAME
// | | |
// v v v
// lst_fb_idxes[0], ..., lst_fb_idxes[2], ..., alt_fb_idx
// | | |
// v v v
// ref_frame_map[], ..., ref_frame_map[], ..., ref_frame_map[]
//
// When refresh_last_frame is set, it is intended to retire LAST3_FRAME,
// have the other 2 LAST reference frames shifted as follows:
// LAST_FRAME -> LAST2_FRAME -> LAST3_FRAME
// , and then have LAST_FRAME refreshed by the newly coded frame.
//
// To fulfill it, the decoder will be notified to execute following 2 steps:
//
// (a) To change ref_frame_map[] and have the virtual index of LAST3_FRAME
// to point to the newly coded frame, i.e.
// ref_frame_map[lst_fb_idexes[2]] => new_fb_idx;
//
// (b) To change the 1st layer mapping to have LAST_FRAME mapped to the
// original virtual index of LAST3_FRAME and have the other mappings
// shifted as follows:
// LAST_FRAME, LAST2_FRAME, LAST3_FRAME
// | | |
// v v v
// lst_fb_idxes[2], lst_fb_idxes[0], lst_fb_idxes[1]
int ref_frame;
if (cpi->rc.is_bwd_ref_frame && cpi->num_extra_arfs) {
// We have swapped the virtual indices to use ALT0 as BWD_REF
// and we need to swap them back.
int tmp = cpi->arf_map[0];
cpi->arf_map[0] = cpi->alt_fb_idx;
cpi->alt_fb_idx = cpi->bwd_fb_idx;
cpi->bwd_fb_idx = tmp;
}
if (cm->frame_type == KEY_FRAME) {
for (ref_frame = 0; ref_frame < LAST_REF_FRAMES; ++ref_frame) {
ref_cnt_fb(pool->frame_bufs,
&cm->ref_frame_map[cpi->lst_fb_idxes[ref_frame]],
cm->new_fb_idx);
if (use_upsampled_ref)
uref_cnt_fb(cpi->upsampled_ref_bufs,
&cpi->upsampled_ref_idx[cpi->lst_fb_idxes[ref_frame]],
new_uidx);
}
} else {
int tmp;
ref_cnt_fb(pool->frame_bufs,
&cm->ref_frame_map[cpi->lst_fb_idxes[LAST_REF_FRAMES - 1]],
cm->new_fb_idx);
if (use_upsampled_ref)
uref_cnt_fb(
cpi->upsampled_ref_bufs,
&cpi->upsampled_ref_idx[cpi->lst_fb_idxes[LAST_REF_FRAMES - 1]],
new_uidx);
tmp = cpi->lst_fb_idxes[LAST_REF_FRAMES - 1];
shift_last_ref_frames(cpi);
cpi->lst_fb_idxes[0] = tmp;
if (!cpi->rc.is_src_frame_alt_ref) {
if (cm->show_existing_frame) {
memcpy(cpi->interp_filter_selected[LAST_FRAME],
cpi->interp_filter_selected[BWDREF_FRAME],
sizeof(cpi->interp_filter_selected[BWDREF_FRAME]));
} else {
memcpy(cpi->interp_filter_selected[LAST_FRAME],
cpi->interp_filter_selected[0],
sizeof(cpi->interp_filter_selected[0]));
}
}
}
#else
ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->lst_fb_idx],
cm->new_fb_idx);
if (use_upsampled_ref)
uref_cnt_fb(cpi->upsampled_ref_bufs,
&cpi->upsampled_ref_idx[cpi->lst_fb_idx], new_uidx);
if (!cpi->rc.is_src_frame_alt_ref) {
memcpy(cpi->interp_filter_selected[LAST_FRAME],
cpi->interp_filter_selected[0],
sizeof(cpi->interp_filter_selected[0]));
}
#endif // CONFIG_EXT_REFS
}
#if DUMP_REF_FRAME_IMAGES == 1
// Dump out all reference frame images.
dump_ref_frame_images(cpi);
#endif // DUMP_REF_FRAME_IMAGES
}
static void loopfilter_frame(AV1_COMP *cpi, AV1_COMMON *cm) {
MACROBLOCKD *xd = &cpi->td.mb.e_mbd;
struct loopfilter *lf = &cm->lf;
if (is_lossless_requested(&cpi->oxcf)) {
lf->filter_level = 0;
} else {
struct aom_usec_timer timer;
aom_clear_system_state();
aom_usec_timer_start(&timer);
#if CONFIG_LOOP_RESTORATION
av1_pick_filter_restoration(cpi->Source, cpi, cpi->sf.lpf_pick);
#else
av1_pick_filter_level(cpi->Source, cpi, cpi->sf.lpf_pick);
#endif // CONFIG_LOOP_RESTORATION
aom_usec_timer_mark(&timer);
cpi->time_pick_lpf += aom_usec_timer_elapsed(&timer);
}
if (lf->filter_level > 0) {
#if CONFIG_VAR_TX || CONFIG_EXT_PARTITION
av1_loop_filter_frame(cm->frame_to_show, cm, xd, lf->filter_level, 0, 0);
#else
if (cpi->num_workers > 1)
av1_loop_filter_frame_mt(cm->frame_to_show, cm, xd->plane,
lf->filter_level, 0, 0, cpi->workers,
cpi->num_workers, &cpi->lf_row_sync);
else
av1_loop_filter_frame(cm->frame_to_show, cm, xd, lf->filter_level, 0, 0);
#endif
}
#if CONFIG_CLPF
cm->clpf_strength_y = cm->clpf_strength_u = cm->clpf_strength_v = 0;
cm->clpf_size = 2;
CHECK_MEM_ERROR(
cm, cm->clpf_blocks,
aom_malloc(((cm->frame_to_show->y_crop_width + 31) & ~31) *
((cm->frame_to_show->y_crop_height + 31) & ~31) >>
10));
if (!is_lossless_requested(&cpi->oxcf)) {
const YV12_BUFFER_CONFIG *const frame = cm->frame_to_show;
// Find the best strength and block size for the entire frame
int fb_size_log2, strength_y, strength_u, strength_v;
av1_clpf_test_frame(frame, cpi->Source, cm, &strength_y, &fb_size_log2,
AOM_PLANE_Y);
av1_clpf_test_frame(frame, cpi->Source, cm, &strength_u, 0, AOM_PLANE_U);
av1_clpf_test_frame(frame, cpi->Source, cm, &strength_v, 0, AOM_PLANE_V);
if (strength_y) {
// Apply the filter using the chosen strength
cm->clpf_strength_y = strength_y - (strength_y == 4);
cm->clpf_size =
fb_size_log2 ? fb_size_log2 - get_msb(MAX_FB_SIZE) + 3 : 0;
cm->clpf_numblocks = av1_clpf_frame(
frame, cpi->Source, cm, !!cm->clpf_size, strength_y,
4 + cm->clpf_size, cm->clpf_blocks, AOM_PLANE_Y, av1_clpf_decision);
}
if (strength_u) {
cm->clpf_strength_u = strength_u - (strength_u == 4);
av1_clpf_frame(frame, NULL, cm, 0, strength_u, 4, NULL, AOM_PLANE_U,
NULL);
}
if (strength_v) {
cm->clpf_strength_v = strength_v - (strength_v == 4);
av1_clpf_frame(frame, NULL, cm, 0, strength_v, 4, NULL, AOM_PLANE_V,
NULL);
}
}
#endif
#if CONFIG_DERING
if (is_lossless_requested(&cpi->oxcf)) {
cm->dering_level = 0;
} else {
cm->dering_level =
av1_dering_search(cm->frame_to_show, cpi->Source, cm, xd);
av1_dering_frame(cm->frame_to_show, cm, xd, cm->dering_level);
}
#endif // CONFIG_DERING
#if CONFIG_LOOP_RESTORATION
if (cm->rst_info.restoration_type != RESTORE_NONE) {
av1_loop_restoration_init(&cm->rst_internal, &cm->rst_info,
cm->frame_type == KEY_FRAME, cm->width,
cm->height);
av1_loop_restoration_rows(cm->frame_to_show, cm, 0, cm->mi_rows, 0);
}
#endif // CONFIG_LOOP_RESTORATION
aom_extend_frame_inner_borders(cm->frame_to_show);
}
static INLINE void alloc_frame_mvs(AV1_COMMON *const cm, int buffer_idx) {
RefCntBuffer *const new_fb_ptr = &cm->buffer_pool->frame_bufs[buffer_idx];
if (new_fb_ptr->mvs == NULL || new_fb_ptr->mi_rows < cm->mi_rows ||
new_fb_ptr->mi_cols < cm->mi_cols) {
aom_free(new_fb_ptr->mvs);
CHECK_MEM_ERROR(cm, new_fb_ptr->mvs,
(MV_REF *)aom_calloc(cm->mi_rows * cm->mi_cols,
sizeof(*new_fb_ptr->mvs)));
new_fb_ptr->mi_rows = cm->mi_rows;
new_fb_ptr->mi_cols = cm->mi_cols;
}
}
void av1_scale_references(AV1_COMP *cpi) {
AV1_COMMON *cm = &cpi->common;
MV_REFERENCE_FRAME ref_frame;
const AOM_REFFRAME ref_mask[INTER_REFS_PER_FRAME] = {
AOM_LAST_FLAG,
#if CONFIG_EXT_REFS
AOM_LAST2_FLAG,
AOM_LAST3_FLAG,
#endif // CONFIG_EXT_REFS
AOM_GOLD_FLAG,
#if CONFIG_EXT_REFS
AOM_BWD_FLAG,
#endif // CONFIG_EXT_REFS
AOM_ALT_FLAG
};
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
// Need to convert from AOM_REFFRAME to index into ref_mask (subtract 1).
if (cpi->ref_frame_flags & ref_mask[ref_frame - 1]) {
BufferPool *const pool = cm->buffer_pool;
const YV12_BUFFER_CONFIG *const ref =
get_ref_frame_buffer(cpi, ref_frame);
if (ref == NULL) {
cpi->scaled_ref_idx[ref_frame - 1] = INVALID_IDX;
continue;
}
#if CONFIG_AOM_HIGHBITDEPTH
if (ref->y_crop_width != cm->width || ref->y_crop_height != cm->height) {
RefCntBuffer *new_fb_ptr = NULL;
int force_scaling = 0;
int new_fb = cpi->scaled_ref_idx[ref_frame - 1];
if (new_fb == INVALID_IDX) {
new_fb = get_free_fb(cm);
force_scaling = 1;
}
if (new_fb == INVALID_IDX) return;
new_fb_ptr = &pool->frame_bufs[new_fb];
if (force_scaling || new_fb_ptr->buf.y_crop_width != cm->width ||
new_fb_ptr->buf.y_crop_height != cm->height) {
if (aom_realloc_frame_buffer(
&new_fb_ptr->buf, cm->width, cm->height, cm->subsampling_x,
cm->subsampling_y, cm->use_highbitdepth, AOM_BORDER_IN_PIXELS,
cm->byte_alignment, NULL, NULL, NULL))
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate frame buffer");
scale_and_extend_frame(ref, &new_fb_ptr->buf, MAX_MB_PLANE,
(int)cm->bit_depth);
cpi->scaled_ref_idx[ref_frame - 1] = new_fb;
alloc_frame_mvs(cm, new_fb);
}
#else
if (ref->y_crop_width != cm->width || ref->y_crop_height != cm->height) {
RefCntBuffer *new_fb_ptr = NULL;
int force_scaling = 0;
int new_fb = cpi->scaled_ref_idx[ref_frame - 1];
if (new_fb == INVALID_IDX) {
new_fb = get_free_fb(cm);
force_scaling = 1;
}
if (new_fb == INVALID_IDX) return;
new_fb_ptr = &pool->frame_bufs[new_fb];
if (force_scaling || new_fb_ptr->buf.y_crop_width != cm->width ||
new_fb_ptr->buf.y_crop_height != cm->height) {
if (aom_realloc_frame_buffer(&new_fb_ptr->buf, cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
AOM_BORDER_IN_PIXELS, cm->byte_alignment,
NULL, NULL, NULL))
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate frame buffer");
scale_and_extend_frame(ref, &new_fb_ptr->buf, MAX_MB_PLANE);
cpi->scaled_ref_idx[ref_frame - 1] = new_fb;
alloc_frame_mvs(cm, new_fb);
}
#endif // CONFIG_AOM_HIGHBITDEPTH
if (cpi->sf.use_upsampled_references &&
(force_scaling || new_fb_ptr->buf.y_crop_width != cm->width ||
new_fb_ptr->buf.y_crop_height != cm->height)) {
const int map_idx = get_ref_frame_map_idx(cpi, ref_frame);
EncRefCntBuffer *ubuf =
&cpi->upsampled_ref_bufs[cpi->upsampled_ref_idx[map_idx]];
if (aom_realloc_frame_buffer(&ubuf->buf, (cm->width << 3),
(cm->height << 3), cm->subsampling_x,
cm->subsampling_y,
#if CONFIG_AOM_HIGHBITDEPTH
cm->use_highbitdepth,
#endif
(AOM_BORDER_IN_PIXELS << 3),
cm->byte_alignment, NULL, NULL, NULL))
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate up-sampled frame buffer");
#if CONFIG_AOM_HIGHBITDEPTH
scale_and_extend_frame(&new_fb_ptr->buf, &ubuf->buf, 1,
(int)cm->bit_depth);
#else
scale_and_extend_frame(&new_fb_ptr->buf, &ubuf->buf, 1);
#endif
}
} else {
const int buf_idx = get_ref_frame_buf_idx(cpi, ref_frame);
RefCntBuffer *const buf = &pool->frame_bufs[buf_idx];
buf->buf.y_crop_width = ref->y_crop_width;
buf->buf.y_crop_height = ref->y_crop_height;
cpi->scaled_ref_idx[ref_frame - 1] = buf_idx;
++buf->ref_count;
}
} else {
if (cpi->oxcf.pass != 0) cpi->scaled_ref_idx[ref_frame - 1] = INVALID_IDX;
}
}
}
static void release_scaled_references(AV1_COMP *cpi) {
AV1_COMMON *cm = &cpi->common;
int i;
if (cpi->oxcf.pass == 0) {
// Only release scaled references under certain conditions:
// if reference will be updated, or if scaled reference has same resolution.
int refresh[INTER_REFS_PER_FRAME];
refresh[0] = (cpi->refresh_last_frame) ? 1 : 0;
#if CONFIG_EXT_REFS
refresh[1] = refresh[2] = 0;
refresh[3] = (cpi->refresh_golden_frame) ? 1 : 0;
refresh[4] = (cpi->refresh_bwd_ref_frame) ? 1 : 0;
refresh[5] = (cpi->refresh_alt_ref_frame) ? 1 : 0;
#else
refresh[1] = (cpi->refresh_golden_frame) ? 1 : 0;
refresh[2] = (cpi->refresh_alt_ref_frame) ? 1 : 0;
#endif // CONFIG_EXT_REFS
for (i = LAST_FRAME; i <= ALTREF_FRAME; ++i) {
const int idx = cpi->scaled_ref_idx[i - 1];
RefCntBuffer *const buf =
idx != INVALID_IDX ? &cm->buffer_pool->frame_bufs[idx] : NULL;
const YV12_BUFFER_CONFIG *const ref = get_ref_frame_buffer(cpi, i);
if (buf != NULL &&
(refresh[i - 1] || (buf->buf.y_crop_width == ref->y_crop_width &&
buf->buf.y_crop_height == ref->y_crop_height))) {
--buf->ref_count;
cpi->scaled_ref_idx[i - 1] = INVALID_IDX;
}
}
} else {
for (i = 0; i < TOTAL_REFS_PER_FRAME; ++i) {
const int idx = cpi->scaled_ref_idx[i];
RefCntBuffer *const buf =
idx != INVALID_IDX ? &cm->buffer_pool->frame_bufs[idx] : NULL;
if (buf != NULL) {
--buf->ref_count;
cpi->scaled_ref_idx[i] = INVALID_IDX;
}
}
}
}
static void full_to_model_count(unsigned int *model_count,
unsigned int *full_count) {
int n;
model_count[ZERO_TOKEN] = full_count[ZERO_TOKEN];
model_count[ONE_TOKEN] = full_count[ONE_TOKEN];
model_count[TWO_TOKEN] = full_count[TWO_TOKEN];
for (n = THREE_TOKEN; n < EOB_TOKEN; ++n)
model_count[TWO_TOKEN] += full_count[n];
model_count[EOB_MODEL_TOKEN] = full_count[EOB_TOKEN];
}
void av1_full_to_model_counts(av1_coeff_count_model *model_count,
av1_coeff_count *full_count) {
int i, j, k, l;
for (i = 0; i < PLANE_TYPES; ++i)
for (j = 0; j < REF_TYPES; ++j)
for (k = 0; k < COEF_BANDS; ++k)
for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l)
full_to_model_count(model_count[i][j][k][l], full_count[i][j][k][l]);
}
#if 0 && CONFIG_INTERNAL_STATS
static void output_frame_level_debug_stats(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
FILE *const f = fopen("tmp.stt", cm->current_video_frame ? "a" : "w");
int64_t recon_err;
aom_clear_system_state();
recon_err = aom_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
if (cpi->twopass.total_left_stats.coded_error != 0.0)
fprintf(f, "%10u %dx%d %10d %10d %d %d %10d %10d %10d %10d"
"%10"PRId64" %10"PRId64" %5d %5d %10"PRId64" "
"%10"PRId64" %10"PRId64" %10d "
"%7.2lf %7.2lf %7.2lf %7.2lf %7.2lf"
"%6d %6d %5d %5d %5d "
"%10"PRId64" %10.3lf"
"%10lf %8u %10"PRId64" %10d %10d %10d\n",
cpi->common.current_video_frame,
cm->width, cm->height,
cpi->td.rd_counts.m_search_count,
cpi->td.rd_counts.ex_search_count,
cpi->rc.source_alt_ref_pending,
cpi->rc.source_alt_ref_active,
cpi->rc.this_frame_target,
cpi->rc.projected_frame_size,
cpi->rc.projected_frame_size / cpi->common.MBs,
(cpi->rc.projected_frame_size - cpi->rc.this_frame_target),
cpi->rc.vbr_bits_off_target,
cpi->rc.vbr_bits_off_target_fast,
cpi->twopass.extend_minq,
cpi->twopass.extend_minq_fast,
cpi->rc.total_target_vs_actual,
(cpi->rc.starting_buffer_level - cpi->rc.bits_off_target),
cpi->rc.total_actual_bits, cm->base_qindex,
av1_convert_qindex_to_q(cm->base_qindex, cm->bit_depth),
(double)av1_dc_quant(cm->base_qindex, 0, cm->bit_depth) / 4.0,
av1_convert_qindex_to_q(cpi->twopass.active_worst_quality,
cm->bit_depth),
cpi->rc.avg_q,
av1_convert_qindex_to_q(cpi->oxcf.cq_level, cm->bit_depth),
cpi->refresh_last_frame, cpi->refresh_golden_frame,
cpi->refresh_alt_ref_frame, cm->frame_type, cpi->rc.gfu_boost,
cpi->twopass.bits_left,
cpi->twopass.total_left_stats.coded_error,
cpi->twopass.bits_left /
(1 + cpi->twopass.total_left_stats.coded_error),
cpi->tot_recode_hits, recon_err, cpi->rc.kf_boost,
cpi->twopass.kf_zeromotion_pct,
cpi->twopass.fr_content_type);
fclose(f);
if (0) {
FILE *const fmodes = fopen("Modes.stt", "a");
int i;
fprintf(fmodes, "%6d:%1d:%1d:%1d ", cpi->common.current_video_frame,
cm->frame_type, cpi->refresh_golden_frame,
cpi->refresh_alt_ref_frame);
for (i = 0; i < MAX_MODES; ++i)
fprintf(fmodes, "%5d ", cpi->mode_chosen_counts[i]);
fprintf(fmodes, "\n");
fclose(fmodes);
}
}
#endif
static void set_mv_search_params(AV1_COMP *cpi) {
const AV1_COMMON *const cm = &cpi->common;
const unsigned int max_mv_def = AOMMIN(cm->width, cm->height);
// Default based on max resolution.
cpi->mv_step_param = av1_init_search_range(max_mv_def);
if (cpi->sf.mv.auto_mv_step_size) {
if (frame_is_intra_only(cm)) {
// Initialize max_mv_magnitude for use in the first INTER frame
// after a key/intra-only frame.
cpi->max_mv_magnitude = max_mv_def;
} else {
if (cm->show_frame) {
// Allow mv_steps to correspond to twice the max mv magnitude found
// in the previous frame, capped by the default max_mv_magnitude based
// on resolution.
cpi->mv_step_param = av1_init_search_range(
AOMMIN(max_mv_def, 2 * cpi->max_mv_magnitude));
}
cpi->max_mv_magnitude = 0;
}
}
}
static void set_size_independent_vars(AV1_COMP *cpi) {
av1_set_speed_features_framesize_independent(cpi);
av1_set_rd_speed_thresholds(cpi);
av1_set_rd_speed_thresholds_sub8x8(cpi);
cpi->common.interp_filter = cpi->sf.default_interp_filter;
}
static void set_size_dependent_vars(AV1_COMP *cpi, int *q, int *bottom_index,
int *top_index) {
AV1_COMMON *const cm = &cpi->common;
const AV1EncoderConfig *const oxcf = &cpi->oxcf;
// Setup variables that depend on the dimensions of the frame.
av1_set_speed_features_framesize_dependent(cpi);
// Decide q and q bounds.
*q = av1_rc_pick_q_and_bounds(cpi, bottom_index, top_index);
if (!frame_is_intra_only(cm)) {
av1_set_high_precision_mv(cpi, (*q) < HIGH_PRECISION_MV_QTHRESH);
}
// Configure experimental use of segmentation for enhanced coding of
// static regions if indicated.
// Only allowed in the second pass of a two pass encode, as it requires
// lagged coding, and if the relevant speed feature flag is set.
if (oxcf->pass == 2 && cpi->sf.static_segmentation)
configure_static_seg_features(cpi);
}
static void init_motion_estimation(AV1_COMP *cpi) {
int y_stride = cpi->scaled_source.y_stride;
if (cpi->sf.mv.search_method == NSTEP) {
av1_init3smotion_compensation(&cpi->ss_cfg, y_stride);
} else if (cpi->sf.mv.search_method == DIAMOND) {
av1_init_dsmotion_compensation(&cpi->ss_cfg, y_stride);
}
}
static void set_frame_size(AV1_COMP *cpi) {
int ref_frame;
AV1_COMMON *const cm = &cpi->common;
AV1EncoderConfig *const oxcf = &cpi->oxcf;
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
if (oxcf->pass == 2 && oxcf->rc_mode == AOM_VBR &&
((oxcf->resize_mode == RESIZE_FIXED && cm->current_video_frame == 0) ||
(oxcf->resize_mode == RESIZE_DYNAMIC && cpi->resize_pending))) {
av1_calculate_coded_size(cpi, &oxcf->scaled_frame_width,
&oxcf->scaled_frame_height);
// There has been a change in frame size.
av1_set_size_literal(cpi, oxcf->scaled_frame_width,
oxcf->scaled_frame_height);
}
if (oxcf->pass == 0 && oxcf->rc_mode == AOM_CBR &&
oxcf->resize_mode == RESIZE_DYNAMIC) {
if (cpi->resize_pending == 1) {
oxcf->scaled_frame_width =
(cm->width * cpi->resize_scale_num) / cpi->resize_scale_den;
oxcf->scaled_frame_height =
(cm->height * cpi->resize_scale_num) / cpi->resize_scale_den;
} else if (cpi->resize_pending == -1) {
// Go back up to original size.
oxcf->scaled_frame_width = oxcf->width;
oxcf->scaled_frame_height = oxcf->height;
}
if (cpi->resize_pending != 0) {
// There has been a change in frame size.
av1_set_size_literal(cpi, oxcf->scaled_frame_width,
oxcf->scaled_frame_height);
// TODO(agrange) Scale cpi->max_mv_magnitude if frame-size has changed.
set_mv_search_params(cpi);
}
}
if (oxcf->pass == 2) {
av1_set_target_rate(cpi);
}
alloc_frame_mvs(cm, cm->new_fb_idx);
// Reset the frame pointers to the current frame size.
if (aom_realloc_frame_buffer(get_frame_new_buffer(cm), cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
#if CONFIG_AOM_HIGHBITDEPTH
cm->use_highbitdepth,
#endif
AOM_BORDER_IN_PIXELS, cm->byte_alignment, NULL,
NULL, NULL))
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate frame buffer");
alloc_util_frame_buffers(cpi);
init_motion_estimation(cpi);
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
RefBuffer *const ref_buf = &cm->frame_refs[ref_frame - LAST_FRAME];
const int buf_idx = get_ref_frame_buf_idx(cpi, ref_frame);
ref_buf->idx = buf_idx;
if (buf_idx != INVALID_IDX) {
YV12_BUFFER_CONFIG *const buf = &cm->buffer_pool->frame_bufs[buf_idx].buf;
ref_buf->buf = buf;
#if CONFIG_AOM_HIGHBITDEPTH
av1_setup_scale_factors_for_frame(
&ref_buf->sf, buf->y_crop_width, buf->y_crop_height, cm->width,
cm->height, (buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0);
#else
av1_setup_scale_factors_for_frame(&ref_buf->sf, buf->y_crop_width,
buf->y_crop_height, cm->width,
cm->height);
#endif // CONFIG_AOM_HIGHBITDEPTH
if (av1_is_scaled(&ref_buf->sf)) aom_extend_frame_borders(buf);
} else {
ref_buf->buf = NULL;
}
}
set_ref_ptrs(cm, xd, LAST_FRAME, LAST_FRAME);
}
static void reset_use_upsampled_references(AV1_COMP *cpi) {
MV_REFERENCE_FRAME ref_frame;
// reset up-sampled reference buffer structure.
init_upsampled_ref_frame_bufs(cpi);
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
const YV12_BUFFER_CONFIG *const ref = get_ref_frame_buffer(cpi, ref_frame);
int new_uidx = upsample_ref_frame(cpi, ref);
// Update the up-sampled reference index.
cpi->upsampled_ref_idx[get_ref_frame_map_idx(cpi, ref_frame)] = new_uidx;
cpi->upsampled_ref_bufs[new_uidx].ref_count++;
}
}
static void encode_without_recode_loop(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
int q = 0, bottom_index = 0, top_index = 0; // Dummy variables.
const int use_upsampled_ref = cpi->sf.use_upsampled_references;
aom_clear_system_state();
set_frame_size(cpi);
// For 1 pass CBR under dynamic resize mode: use faster scaling for source.
// Only for 2x2 scaling for now.
if (cpi->oxcf.pass == 0 && cpi->oxcf.rc_mode == AOM_CBR &&
cpi->oxcf.resize_mode == RESIZE_DYNAMIC &&
cpi->un_scaled_source->y_width == (cm->width << 1) &&
cpi->un_scaled_source->y_height == (cm->height << 1)) {
cpi->Source = av1_scale_if_required_fast(cm, cpi->un_scaled_source,
&cpi->scaled_source);
if (cpi->unscaled_last_source != NULL)
cpi->Last_Source = av1_scale_if_required_fast(
cm, cpi->unscaled_last_source, &cpi->scaled_last_source);
} else {
cpi->Source =
av1_scale_if_required(cm, cpi->un_scaled_source, &cpi->scaled_source);
if (cpi->unscaled_last_source != NULL)
cpi->Last_Source = av1_scale_if_required(cm, cpi->unscaled_last_source,
&cpi->scaled_last_source);
}
if (frame_is_intra_only(cm) == 0) {
av1_scale_references(cpi);
}
set_size_independent_vars(cpi);
set_size_dependent_vars(cpi, &q, &bottom_index, &top_index);
// cpi->sf.use_upsampled_references can be different from frame to frame.
// Every time when cpi->sf.use_upsampled_references is changed from 0 to 1.
// The reference frames for this frame have to be up-sampled before encoding.
if (!use_upsampled_ref && cpi->sf.use_upsampled_references)
reset_use_upsampled_references(cpi);
av1_set_quantizer(cm, q);
av1_set_variance_partition_thresholds(cpi, q);
setup_frame(cpi);
#if CONFIG_ENTROPY
cm->do_subframe_update = cm->tile_cols == 1 && cm->tile_rows == 1;
av1_copy(cm->starting_coef_probs, cm->fc->coef_probs);
av1_copy(cpi->subframe_stats.enc_starting_coef_probs, cm->fc->coef_probs);
cm->coef_probs_update_idx = 0;
av1_copy(cpi->subframe_stats.coef_probs_buf[0], cm->fc->coef_probs);
#endif // CONFIG_ENTROPY
suppress_active_map(cpi);
// Variance adaptive and in frame q adjustment experiments are mutually
// exclusive.
if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
av1_vaq_frame_setup(cpi);
} else if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) {
av1_setup_in_frame_q_adj(cpi);
} else if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) {
av1_cyclic_refresh_setup(cpi);
}
apply_active_map(cpi);
// transform / motion compensation build reconstruction frame
av1_encode_frame(cpi);
// Update some stats from cyclic refresh, and check if we should not update
// golden reference, for 1 pass CBR.
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->frame_type != KEY_FRAME &&
(cpi->oxcf.pass == 0 && cpi->oxcf.rc_mode == AOM_CBR))
av1_cyclic_refresh_check_golden_update(cpi);
// Update the skip mb flag probabilities based on the distribution
// seen in the last encoder iteration.
// update_base_skip_probs(cpi);
aom_clear_system_state();
}
static void encode_with_recode_loop(AV1_COMP *cpi, size_t *size,
uint8_t *dest) {
AV1_COMMON *const cm = &cpi->common;
RATE_CONTROL *const rc = &cpi->rc;
int bottom_index, top_index;
int loop_count = 0;
int loop_at_this_size = 0;
int loop = 0;
int overshoot_seen = 0;
int undershoot_seen = 0;
int frame_over_shoot_limit;
int frame_under_shoot_limit;
int q = 0, q_low = 0, q_high = 0;
const int use_upsampled_ref = cpi->sf.use_upsampled_references;
set_size_independent_vars(cpi);
// cpi->sf.use_upsampled_references can be different from frame to frame.
// Every time when cpi->sf.use_upsampled_references is changed from 0 to 1.
// The reference frames for this frame have to be up-sampled before encoding.
if (!use_upsampled_ref && cpi->sf.use_upsampled_references)
reset_use_upsampled_references(cpi);
do {
aom_clear_system_state();
set_frame_size(cpi);
if (loop_count == 0 || cpi->resize_pending != 0) {
set_size_dependent_vars(cpi, &q, &bottom_index, &top_index);
// TODO(agrange) Scale cpi->max_mv_magnitude if frame-size has changed.
set_mv_search_params(cpi);
// Reset the loop state for new frame size.
overshoot_seen = 0;
undershoot_seen = 0;
// Reconfiguration for change in frame size has concluded.
cpi->resize_pending = 0;
q_low = bottom_index;
q_high = top_index;
loop_at_this_size = 0;
}
// Decide frame size bounds first time through.
if (loop_count == 0) {
av1_rc_compute_frame_size_bounds(cpi, rc->this_frame_target,
&frame_under_shoot_limit,
&frame_over_shoot_limit);
}
cpi->Source =
av1_scale_if_required(cm, cpi->un_scaled_source, &cpi->scaled_source);
if (cpi->unscaled_last_source != NULL)
cpi->Last_Source = av1_scale_if_required(cm, cpi->unscaled_last_source,
&cpi->scaled_last_source);
if (frame_is_intra_only(cm) == 0) {
if (loop_count > 0) {
release_scaled_references(cpi);
}
av1_scale_references(cpi);
}
av1_set_quantizer(cm, q);
if (loop_count == 0) setup_frame(cpi);
#if CONFIG_ENTROPY
// Base q-index may have changed, so we need to assign proper default coef
// probs before every iteration.
if (frame_is_intra_only(cm) || cm->error_resilient_mode) {
int i;
av1_default_coef_probs(cm);
if (cm->frame_type == KEY_FRAME || cm->error_resilient_mode ||
cm->reset_frame_context == RESET_FRAME_CONTEXT_ALL) {
for (i = 0; i < FRAME_CONTEXTS; ++i) cm->frame_contexts[i] = *cm->fc;
} else if (cm->reset_frame_context == RESET_FRAME_CONTEXT_CURRENT) {
cm->frame_contexts[cm->frame_context_idx] = *cm->fc;
}
}
#endif // CONFIG_ENTROPY
#if CONFIG_ENTROPY
cm->do_subframe_update = cm->tile_cols == 1 && cm->tile_rows == 1;
if (loop_count == 0 || frame_is_intra_only(cm) ||
cm->error_resilient_mode) {
av1_copy(cm->starting_coef_probs, cm->fc->coef_probs);
av1_copy(cpi->subframe_stats.enc_starting_coef_probs, cm->fc->coef_probs);
} else {
if (cm->do_subframe_update) {
av1_copy(cm->fc->coef_probs,
cpi->subframe_stats.enc_starting_coef_probs);
av1_copy(cm->starting_coef_probs,
cpi->subframe_stats.enc_starting_coef_probs);
av1_zero(cpi->subframe_stats.coef_counts_buf);
av1_zero(cpi->subframe_stats.eob_counts_buf);
}
}
cm->coef_probs_update_idx = 0;
av1_copy(cpi->subframe_stats.coef_probs_buf[0], cm->fc->coef_probs);
#endif // CONFIG_ENTROPY
// Variance adaptive and in frame q adjustment experiments are mutually
// exclusive.
if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
av1_vaq_frame_setup(cpi);
} else if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) {
av1_setup_in_frame_q_adj(cpi);
}
// transform / motion compensation build reconstruction frame
av1_encode_frame(cpi);
// Update the skip mb flag probabilities based on the distribution
// seen in the last encoder iteration.
// update_base_skip_probs(cpi);
aom_clear_system_state();
// Dummy pack of the bitstream using up to date stats to get an
// accurate estimate of output frame size to determine if we need
// to recode.
if (cpi->sf.recode_loop >= ALLOW_RECODE_KFARFGF) {
save_coding_context(cpi);
av1_pack_bitstream(cpi, dest, size);
rc->projected_frame_size = (int)(*size) << 3;
restore_coding_context(cpi);
if (frame_over_shoot_limit == 0) frame_over_shoot_limit = 1;
}
if (cpi->oxcf.rc_mode == AOM_Q) {
loop = 0;
} else {
if ((cm->frame_type == KEY_FRAME) && rc->this_key_frame_forced &&
(rc->projected_frame_size < rc->max_frame_bandwidth)) {
int last_q = q;
int64_t kf_err;
int64_t high_err_target = cpi->ambient_err;
int64_t low_err_target = cpi->ambient_err >> 1;
#if CONFIG_AOM_HIGHBITDEPTH
if (cm->use_highbitdepth) {
kf_err = aom_highbd_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
} else {
kf_err = aom_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
}
#else
kf_err = aom_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
#endif // CONFIG_AOM_HIGHBITDEPTH
// Prevent possible divide by zero error below for perfect KF
kf_err += !kf_err;
// The key frame is not good enough or we can afford
// to make it better without undue risk of popping.
if ((kf_err > high_err_target &&
rc->projected_frame_size <= frame_over_shoot_limit) ||
(kf_err > low_err_target &&
rc->projected_frame_size <= frame_under_shoot_limit)) {
// Lower q_high
q_high = q > q_low ? q - 1 : q_low;
// Adjust Q
q = (int)((q * high_err_target) / kf_err);
q = AOMMIN(q, (q_high + q_low) >> 1);
} else if (kf_err < low_err_target &&
rc->projected_frame_size >= frame_under_shoot_limit) {
// The key frame is much better than the previous frame
// Raise q_low
q_low = q < q_high ? q + 1 : q_high;
// Adjust Q
q = (int)((q * low_err_target) / kf_err);
q = AOMMIN(q, (q_high + q_low + 1) >> 1);
}
// Clamp Q to upper and lower limits:
q = clamp(q, q_low, q_high);
loop = q != last_q;
} else if (recode_loop_test(cpi, frame_over_shoot_limit,
frame_under_shoot_limit, q,
AOMMAX(q_high, top_index), bottom_index)) {
// Is the projected frame size out of range and are we allowed
// to attempt to recode.
int last_q = q;
int retries = 0;
if (cpi->resize_pending == 1) {
// Change in frame size so go back around the recode loop.
cpi->rc.frame_size_selector =
SCALE_STEP1 - cpi->rc.frame_size_selector;
cpi->rc.next_frame_size_selector = cpi->rc.frame_size_selector;
#if CONFIG_INTERNAL_STATS
++cpi->tot_recode_hits;
#endif
++loop_count;
loop = 1;
continue;
}
// Frame size out of permitted range:
// Update correction factor & compute new Q to try...
// Frame is too large
if (rc->projected_frame_size > rc->this_frame_target) {
// Special case if the projected size is > the max allowed.
if (rc->projected_frame_size >= rc->max_frame_bandwidth)
q_high = rc->worst_quality;
// Raise Qlow as to at least the current value
q_low = q < q_high ? q + 1 : q_high;
if (undershoot_seen || loop_at_this_size > 1) {
// Update rate_correction_factor unless
av1_rc_update_rate_correction_factors(cpi);
q = (q_high + q_low + 1) / 2;
} else {
// Update rate_correction_factor unless
av1_rc_update_rate_correction_factors(cpi);
q = av1_rc_regulate_q(cpi, rc->this_frame_target, bottom_index,
AOMMAX(q_high, top_index));
while (q < q_low && retries < 10) {
av1_rc_update_rate_correction_factors(cpi);
q = av1_rc_regulate_q(cpi, rc->this_frame_target, bottom_index,
AOMMAX(q_high, top_index));
retries++;
}
}
overshoot_seen = 1;
} else {
// Frame is too small
q_high = q > q_low ? q - 1 : q_low;
if (overshoot_seen || loop_at_this_size > 1) {
av1_rc_update_rate_correction_factors(cpi);
q = (q_high + q_low) / 2;
} else {
av1_rc_update_rate_correction_factors(cpi);
q = av1_rc_regulate_q(cpi, rc->this_frame_target, bottom_index,
top_index);
// Special case reset for qlow for constrained quality.
// This should only trigger where there is very substantial
// undershoot on a frame and the auto cq level is above
// the user passsed in value.
if (cpi->oxcf.rc_mode == AOM_CQ && q < q_low) {
q_low = q;
}
while (q > q_high && retries < 10) {
av1_rc_update_rate_correction_factors(cpi);
q = av1_rc_regulate_q(cpi, rc->this_frame_target, bottom_index,
top_index);
retries++;
}
}
undershoot_seen = 1;
}
// Clamp Q to upper and lower limits:
q = clamp(q, q_low, q_high);
loop = (q != last_q);
} else {
loop = 0;
}
}
// Special case for overlay frame.
if (rc->is_src_frame_alt_ref &&
rc->projected_frame_size < rc->max_frame_bandwidth)
loop = 0;
if (loop) {
++loop_count;
++loop_at_this_size;
#if CONFIG_INTERNAL_STATS
++cpi->tot_recode_hits;
#endif
}
} while (loop);
}
static int get_ref_frame_flags(const AV1_COMP *cpi) {
const int *const map = cpi->common.ref_frame_map;
#if CONFIG_EXT_REFS
const int last2_is_last =
map[cpi->lst_fb_idxes[1]] == map[cpi->lst_fb_idxes[0]];
const int last3_is_last =
map[cpi->lst_fb_idxes[2]] == map[cpi->lst_fb_idxes[0]];
const int gld_is_last = map[cpi->gld_fb_idx] == map[cpi->lst_fb_idxes[0]];
const int bwd_is_last = map[cpi->bwd_fb_idx] == map[cpi->lst_fb_idxes[0]];
const int alt_is_last = map[cpi->alt_fb_idx] == map[cpi->lst_fb_idxes[0]];
const int last3_is_last2 =
map[cpi->lst_fb_idxes[2]] == map[cpi->lst_fb_idxes[1]];
const int gld_is_last2 = map[cpi->gld_fb_idx] == map[cpi->lst_fb_idxes[1]];
const int bwd_is_last2 = map[cpi->bwd_fb_idx] == map[cpi->lst_fb_idxes[1]];
const int gld_is_last3 = map[cpi->gld_fb_idx] == map[cpi->lst_fb_idxes[2]];
const int bwd_is_last3 = map[cpi->bwd_fb_idx] == map[cpi->lst_fb_idxes[2]];
const int bwd_is_gld = map[cpi->bwd_fb_idx] == map[cpi->gld_fb_idx];
const int last2_is_alt = map[cpi->lst_fb_idxes[1]] == map[cpi->alt_fb_idx];
const int last3_is_alt = map[cpi->lst_fb_idxes[2]] == map[cpi->alt_fb_idx];
const int gld_is_alt = map[cpi->gld_fb_idx] == map[cpi->alt_fb_idx];
const int bwd_is_alt = map[cpi->bwd_fb_idx] == map[cpi->alt_fb_idx];
#else
const int gld_is_last = map[cpi->gld_fb_idx] == map[cpi->lst_fb_idx];
const int gld_is_alt = map[cpi->gld_fb_idx] == map[cpi->alt_fb_idx];
const int alt_is_last = map[cpi->alt_fb_idx] == map[cpi->lst_fb_idx];
#endif // CONFIG_EXT_REFS
int flags = AOM_REFFRAME_ALL;
#if CONFIG_EXT_REFS
// Disable the use of BWDREF_FRAME for non-bipredictive frames.
if (!(cpi->rc.is_bipred_frame || cpi->rc.is_last_bipred_frame ||
(cpi->rc.is_bwd_ref_frame && cpi->num_extra_arfs)))
flags &= ~AOM_BWD_FLAG;
#endif // CONFIG_EXT_REFS
if (gld_is_last || gld_is_alt) flags &= ~AOM_GOLD_FLAG;
if (cpi->rc.frames_till_gf_update_due == INT_MAX) flags &= ~AOM_GOLD_FLAG;
if (alt_is_last) flags &= ~AOM_ALT_FLAG;
#if CONFIG_EXT_REFS
if (last2_is_last || last2_is_alt) flags &= ~AOM_LAST2_FLAG;
if (last3_is_last || last3_is_last2 || last3_is_alt) flags &= ~AOM_LAST3_FLAG;
if (gld_is_last2 || gld_is_last3) flags &= ~AOM_GOLD_FLAG;
if ((bwd_is_last || bwd_is_last2 || bwd_is_last3 || bwd_is_gld ||
bwd_is_alt) &&
(flags & AOM_BWD_FLAG))
flags &= ~AOM_BWD_FLAG;
#endif // CONFIG_EXT_REFS
return flags;
}
static void set_ext_overrides(AV1_COMP *cpi) {
// Overrides the defaults with the externally supplied values with
// av1_update_reference() and av1_update_entropy() calls
// Note: The overrides are valid only for the next frame passed
// to encode_frame_to_data_rate() function
if (cpi->ext_refresh_frame_context_pending) {
cpi->common.refresh_frame_context = cpi->ext_refresh_frame_context;
cpi->ext_refresh_frame_context_pending = 0;
}
if (cpi->ext_refresh_frame_flags_pending) {
cpi->refresh_last_frame = cpi->ext_refresh_last_frame;
cpi->refresh_golden_frame = cpi->ext_refresh_golden_frame;
cpi->refresh_alt_ref_frame = cpi->ext_refresh_alt_ref_frame;
cpi->ext_refresh_frame_flags_pending = 0;
}
}
YV12_BUFFER_CONFIG *av1_scale_if_required_fast(AV1_COMMON *cm,
YV12_BUFFER_CONFIG *unscaled,
YV12_BUFFER_CONFIG *scaled) {
if (cm->mi_cols * MI_SIZE != unscaled->y_width ||
cm->mi_rows * MI_SIZE != unscaled->y_height) {
// For 2x2 scaling down.
aom_scale_frame(unscaled, scaled, unscaled->y_buffer, 9, 2, 1, 2, 1, 0);
aom_extend_frame_borders(scaled);
return scaled;
} else {
return unscaled;
}
}
YV12_BUFFER_CONFIG *av1_scale_if_required(AV1_COMMON *cm,
YV12_BUFFER_CONFIG *unscaled,
YV12_BUFFER_CONFIG *scaled) {
if (cm->mi_cols * MI_SIZE != unscaled->y_width ||
cm->mi_rows * MI_SIZE != unscaled->y_height) {
#if CONFIG_AOM_HIGHBITDEPTH
scale_and_extend_frame_nonnormative(unscaled, scaled, (int)cm->bit_depth);
#else
scale_and_extend_frame_nonnormative(unscaled, scaled);
#endif // CONFIG_AOM_HIGHBITDEPTH
return scaled;
} else {
return unscaled;
}
}
static void set_arf_sign_bias(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
int arf_sign_bias;
#if CONFIG_EXT_REFS
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
// The arf_sign_bias will be one for internal ARFs'
arf_sign_bias = cpi->rc.source_alt_ref_active &&
(!cpi->refresh_alt_ref_frame ||
(gf_group->rf_level[gf_group->index] == GF_ARF_LOW));
#else
if ((cpi->oxcf.pass == 2) && cpi->multi_arf_allowed) {
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
arf_sign_bias = cpi->rc.source_alt_ref_active &&
(!cpi->refresh_alt_ref_frame ||
(gf_group->rf_level[gf_group->index] == GF_ARF_LOW));
} else {
arf_sign_bias =
(cpi->rc.source_alt_ref_active && !cpi->refresh_alt_ref_frame);
}
#endif
cm->ref_frame_sign_bias[ALTREF_FRAME] = arf_sign_bias;
#if CONFIG_EXT_REFS
cm->ref_frame_sign_bias[BWDREF_FRAME] = cm->ref_frame_sign_bias[ALTREF_FRAME];
#endif // CONFIG_EXT_REFS
}
static int setup_interp_filter_search_mask(AV1_COMP *cpi) {
InterpFilter ifilter;
int ref_total[TOTAL_REFS_PER_FRAME] = { 0 };
MV_REFERENCE_FRAME ref;
int mask = 0;
int arf_idx = ALTREF_FRAME;
#if CONFIG_EXT_REFS
// Get which arf used as ALTREF_FRAME
if (cpi->oxcf.pass == 2)
arf_idx += cpi->twopass.gf_group.arf_ref_idx[cpi->twopass.gf_group.index];
#endif
if (cpi->common.last_frame_type == KEY_FRAME || cpi->refresh_alt_ref_frame)
return mask;
#if CONFIG_EXT_REFS
for (ref = LAST_FRAME; ref < ALTREF_FRAME; ++ref)
for (ifilter = EIGHTTAP_REGULAR; ifilter < SWITCHABLE_FILTERS; ++ifilter)
ref_total[ref] += cpi->interp_filter_selected[ref][ifilter];
for (ifilter = EIGHTTAP_REGULAR; ifilter < SWITCHABLE_FILTERS; ++ifilter)
ref_total[ref] += cpi->interp_filter_selected[arf_idx][ifilter];
#else
for (ref = LAST_FRAME; ref <= ALTREF_FRAME; ++ref)
for (ifilter = EIGHTTAP_REGULAR; ifilter < SWITCHABLE_FILTERS; ++ifilter)
ref_total[ref] += cpi->interp_filter_selected[ref][ifilter];
#endif
for (ifilter = EIGHTTAP_REGULAR; ifilter < SWITCHABLE_FILTERS; ++ifilter) {
if ((ref_total[LAST_FRAME] &&
cpi->interp_filter_selected[LAST_FRAME][ifilter] == 0) &&
#if CONFIG_EXT_REFS
(ref_total[LAST2_FRAME] == 0 ||
cpi->interp_filter_selected[LAST2_FRAME][ifilter] * 50 <
ref_total[LAST2_FRAME]) &&
(ref_total[LAST3_FRAME] == 0 ||
cpi->interp_filter_selected[LAST3_FRAME][ifilter] * 50 <
ref_total[LAST3_FRAME]) &&
#endif // CONFIG_EXT_REFS
(ref_total[GOLDEN_FRAME] == 0 ||
cpi->interp_filter_selected[GOLDEN_FRAME][ifilter] * 50 <
ref_total[GOLDEN_FRAME]) &&
#if CONFIG_EXT_REFS
(ref_total[BWDREF_FRAME] == 0 ||
cpi->interp_filter_selected[BWDREF_FRAME][ifilter] * 50 <
ref_total[BWDREF_FRAME]) &&
#endif // CONFIG_EXT_REFS
(ref_total[ALTREF_FRAME] == 0 ||
cpi->interp_filter_selected[arf_idx][ifilter] * 50 <
ref_total[ALTREF_FRAME]))
mask |= 1 << ifilter;
}
return mask;
}
#define DUMP_RECON_FRAMES 0
#if DUMP_RECON_FRAMES == 1
// NOTE(zoeliu): For debug - Output the filtered reconstructed video.
static void dump_filtered_recon_frames(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
const YV12_BUFFER_CONFIG *recon_buf = cm->frame_to_show;
int h;
char file_name[256] = "/tmp/enc_filtered_recon.yuv";
FILE *f_recon = NULL;
if (recon_buf == NULL || !cm->show_frame) {
printf("Frame %d is not ready or no show to dump.\n",
cm->current_video_frame);
return;
}
if (cm->current_video_frame == 0) {
if ((f_recon = fopen(file_name, "wb")) == NULL) {
printf("Unable to open file %s to write.\n", file_name);
return;
}
} else {
if ((f_recon = fopen(file_name, "ab")) == NULL) {
printf("Unable to open file %s to append.\n", file_name);
return;
}
}
printf(
"\nFrame=%5d, encode_update_type[%5d]=%1d, show_existing_frame=%d, "
"y_stride=%4d, uv_stride=%4d, width=%4d, height=%4d\n",
cm->current_video_frame, cpi->twopass.gf_group.index,
cpi->twopass.gf_group.update_type[cpi->twopass.gf_group.index],
cm->show_existing_frame, recon_buf->y_stride, recon_buf->uv_stride,
cm->width, cm->height);
// --- Y ---
for (h = 0; h < cm->height; ++h) {
fwrite(&recon_buf->y_buffer[h * recon_buf->y_stride], 1, cm->width,
f_recon);
}
// --- U ---
for (h = 0; h < (cm->height >> 1); ++h) {
fwrite(&recon_buf->u_buffer[h * recon_buf->uv_stride], 1, (cm->width >> 1),
f_recon);
}
// --- V ---
for (h = 0; h < (cm->height >> 1); ++h) {
fwrite(&recon_buf->v_buffer[h * recon_buf->uv_stride], 1, (cm->width >> 1),
f_recon);
}
fclose(f_recon);
}
#endif // DUMP_RECON_FRAMES
static void encode_frame_to_data_rate(AV1_COMP *cpi, size_t *size,
uint8_t *dest,
unsigned int *frame_flags) {
AV1_COMMON *const cm = &cpi->common;
const AV1EncoderConfig *const oxcf = &cpi->oxcf;
struct segmentation *const seg = &cm->seg;
TX_SIZE t;
set_ext_overrides(cpi);
aom_clear_system_state();
// Set the arf sign bias for this frame.
set_arf_sign_bias(cpi);
#if CONFIG_EXT_REFS
// NOTE:
// (1) Move the setup of the ref_frame_flags upfront as it would be
// determined by the current frame properties;
// (2) The setup of the ref_frame_flags applies to both show_existing_frame's
// and the other cases.
if (cm->current_video_frame > 0)
cpi->ref_frame_flags = get_ref_frame_flags(cpi);
if (cm->show_existing_frame) {
// NOTE(zoeliu): In BIDIR_PRED, the existing frame to show is the current
// BWDREF_FRAME in the reference frame buffer.
cm->frame_type = INTER_FRAME;
cm->show_frame = 1;
cpi->frame_flags = *frame_flags;
// In the case of show_existing frame, we will not send fresh flag
// to decoder. Any change in the reference frame buffer can be done by
// switching the virtual indices.
cpi->refresh_last_frame = 0;
cpi->refresh_golden_frame = 0;
cpi->refresh_bwd_ref_frame = 0;
cpi->refresh_alt_ref_frame = 0;
cpi->rc.is_bwd_ref_frame = 0;
cpi->rc.is_last_bipred_frame = 0;
cpi->rc.is_bipred_frame = 0;
// Build the bitstream
av1_pack_bitstream(cpi, dest, size);
// Set up frame to show to get ready for stats collection.
cm->frame_to_show = get_frame_new_buffer(cm);
#if DUMP_RECON_FRAMES == 1
// NOTE(zoeliu): For debug - Output the filtered reconstructed video.
dump_filtered_recon_frames(cpi);
#endif // DUMP_RECON_FRAMES
// Update the LAST_FRAME in the reference frame buffer.
av1_update_reference_frames(cpi);
// Update frame flags
cpi->frame_flags &= ~FRAMEFLAGS_GOLDEN;
cpi->frame_flags &= ~FRAMEFLAGS_BWDREF;
cpi->frame_flags &= ~FRAMEFLAGS_ALTREF;
*frame_flags = cpi->frame_flags & ~FRAMEFLAGS_KEY;
// Update the frame type
cm->last_frame_type = cm->frame_type;
#if CONFIG_EXT_REFS
// Since we allocate a spot for the OVERLAY frame in the gf group, we need
// to do post-encoding update accordingly.
if (cpi->rc.is_src_frame_alt_ref) {
av1_set_target_rate(cpi);
av1_rc_postencode_update(cpi, *size);
}
#endif
cm->last_width = cm->width;
cm->last_height = cm->height;
++cm->current_video_frame;
return;
}
#endif // CONFIG_EXT_REFS
// Set default state for segment based loop filter update flags.
cm->lf.mode_ref_delta_update = 0;
if (cpi->oxcf.pass == 2 && cpi->sf.adaptive_interp_filter_search)
cpi->sf.interp_filter_search_mask = setup_interp_filter_search_mask(cpi);
// Set various flags etc to special state if it is a key frame.
if (frame_is_intra_only(cm)) {
// Reset the loop filter deltas and segmentation map.
av1_reset_segment_features(cm);
// If segmentation is enabled force a map update for key frames.
if (seg->enabled) {
seg->update_map = 1;
seg->update_data = 1;
}
// The alternate reference frame cannot be active for a key frame.
cpi->rc.source_alt_ref_active = 0;
cm->error_resilient_mode = oxcf->error_resilient_mode;
// By default, encoder assumes decoder can use prev_mi.
if (cm->error_resilient_mode) {
cm->reset_frame_context = RESET_FRAME_CONTEXT_NONE;
cm->refresh_frame_context = REFRESH_FRAME_CONTEXT_FORWARD;
} else if (cm->intra_only) {
// Only reset the current context.
cm->reset_frame_context = RESET_FRAME_CONTEXT_CURRENT;
}
}
// For 1 pass CBR, check if we are dropping this frame.
// Never drop on key frame.
if (oxcf->pass == 0 && oxcf->rc_mode == AOM_CBR &&
cm->frame_type != KEY_FRAME) {
if (av1_rc_drop_frame(cpi)) {
av1_rc_postencode_update_drop_frame(cpi);
++cm->current_video_frame;
return;
}
}
aom_clear_system_state();
#if CONFIG_INTERNAL_STATS
memset(cpi->mode_chosen_counts, 0,
MAX_MODES * sizeof(*cpi->mode_chosen_counts));
#endif
if (cpi->sf.recode_loop == DISALLOW_RECODE) {
encode_without_recode_loop(cpi);
} else {
encode_with_recode_loop(cpi, size, dest);
}
#ifdef OUTPUT_YUV_SKINMAP
if (cpi->common.current_video_frame > 1) {
av1_compute_skin_map(cpi, yuv_skinmap_file);
}
#endif // OUTPUT_YUV_SKINMAP
// Special case code to reduce pulsing when key frames are forced at a
// fixed interval. Note the reconstruction error if it is the frame before
// the force key frame
if (cpi->rc.next_key_frame_forced && cpi->rc.frames_to_key == 1) {
#if CONFIG_AOM_HIGHBITDEPTH
if (cm->use_highbitdepth) {
cpi->ambient_err =
aom_highbd_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
} else {
cpi->ambient_err = aom_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
}
#else
cpi->ambient_err = aom_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
#endif // CONFIG_AOM_HIGHBITDEPTH
}
// If the encoder forced a KEY_FRAME decision
if (cm->frame_type == KEY_FRAME) {
cpi->refresh_last_frame = 1;
}
cm->frame_to_show = get_frame_new_buffer(cm);
cm->frame_to_show->color_space = cm->color_space;
cm->frame_to_show->color_range = cm->color_range;
cm->frame_to_show->render_width = cm->render_width;
cm->frame_to_show->render_height = cm->render_height;
#if CONFIG_EXT_REFS
// TODO(zoeliu): For non-ref frames, loop filtering may need to be turned
// off.
#endif // CONFIG_EXT_REFS
// Pick the loop filter level for the frame.
loopfilter_frame(cpi, cm);
// Build the bitstream
av1_pack_bitstream(cpi, dest, size);
#if DUMP_RECON_FRAMES == 1
// NOTE(zoeliu): For debug - Output the filtered reconstructed video.
if (cm->show_frame) dump_filtered_recon_frames(cpi);
#endif // DUMP_RECON_FRAMES
#if CONFIG_CLPF
aom_free(cm->clpf_blocks);
cm->clpf_blocks = 0;
#endif
if (cm->seg.update_map) update_reference_segmentation_map(cpi);
if (frame_is_intra_only(cm) == 0) {
release_scaled_references(cpi);
}
av1_update_reference_frames(cpi);
for (t = TX_4X4; t <= TX_32X32; t++)
av1_full_to_model_counts(cpi->td.counts->coef[t],
cpi->td.rd_counts.coef_counts[t]);
if (cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) {
#if CONFIG_ENTROPY
cm->partial_prob_update = 0;
#endif // CONFIG_ENTROPY
av1_adapt_coef_probs(cm);
av1_adapt_intra_frame_probs(cm);
}
if (!frame_is_intra_only(cm)) {
if (cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) {
av1_adapt_inter_frame_probs(cm);
av1_adapt_mv_probs(cm, cm->allow_high_precision_mv);
}
}
if (cpi->refresh_golden_frame == 1)
cpi->frame_flags |= FRAMEFLAGS_GOLDEN;
else
cpi->frame_flags &= ~FRAMEFLAGS_GOLDEN;
if (cpi->refresh_alt_ref_frame == 1)
cpi->frame_flags |= FRAMEFLAGS_ALTREF;
else
cpi->frame_flags &= ~FRAMEFLAGS_ALTREF;
#if CONFIG_EXT_REFS
if (cpi->refresh_bwd_ref_frame == 1)
cpi->frame_flags |= FRAMEFLAGS_BWDREF;
else
cpi->frame_flags &= ~FRAMEFLAGS_BWDREF;
#endif // CONFIG_EXT_REFS
#if !CONFIG_EXT_REFS
cpi->ref_frame_flags = get_ref_frame_flags(cpi);
#endif // !CONFIG_EXT_REFS
#if CONFIG_EXT_REFS
cm->last3_frame_type = cm->last2_frame_type;
cm->last2_frame_type = cm->last_frame_type;
#endif // CONFIG_EXT_REFS
cm->last_frame_type = cm->frame_type;
av1_rc_postencode_update(cpi, *size);
#if 0
output_frame_level_debug_stats(cpi);
#endif
if (cm->frame_type == KEY_FRAME) {
// Tell the caller that the frame was coded as a key frame
*frame_flags = cpi->frame_flags | FRAMEFLAGS_KEY;
} else {
*frame_flags = cpi->frame_flags & ~FRAMEFLAGS_KEY;
}
// Clear the one shot update flags for segmentation map and mode/ref loop
// filter deltas.
cm->seg.update_map = 0;
cm->seg.update_data = 0;
cm->lf.mode_ref_delta_update = 0;
// keep track of the last coded dimensions
cm->last_width = cm->width;
cm->last_height = cm->height;
// reset to normal state now that we are done.
if (!cm->show_existing_frame) cm->last_show_frame = cm->show_frame;
if (cm->show_frame) {
#if CONFIG_EXT_REFS
// TODO(zoeliu): We may only swamp mi and prev_mi for those frames that are
// being used as reference.
#endif // CONFIG_EXT_REFS
av1_swap_mi_and_prev_mi(cm);
// Don't increment frame counters if this was an altref buffer
// update not a real frame
++cm->current_video_frame;
}
#if CONFIG_EXT_REFS
// NOTE: Shall not refer to any frame not used as reference.
if (cm->is_reference_frame)
#endif // CONFIG_EXT_REFS
cm->prev_frame = cm->cur_frame;
}
static void Pass0Encode(AV1_COMP *cpi, size_t *size, uint8_t *dest,
unsigned int *frame_flags) {
if (cpi->oxcf.rc_mode == AOM_CBR) {
av1_rc_get_one_pass_cbr_params(cpi);
} else {
av1_rc_get_one_pass_vbr_params(cpi);
}
encode_frame_to_data_rate(cpi, size, dest, frame_flags);
}
static void Pass2Encode(AV1_COMP *cpi, size_t *size, uint8_t *dest,
unsigned int *frame_flags) {
cpi->allow_encode_breakout = ENCODE_BREAKOUT_ENABLED;
encode_frame_to_data_rate(cpi, size, dest, frame_flags);
#if CONFIG_EXT_REFS
// Do not do post-encoding update for those frames that do not have a spot in
// a gf group, but note that an OVERLAY frame always has a spot in a gf group,
// even when show_existing_frame is used.
if (!cpi->common.show_existing_frame || cpi->rc.is_src_frame_alt_ref) {
av1_twopass_postencode_update(cpi);
}
check_show_existing_frame(cpi);
#else
av1_twopass_postencode_update(cpi);
#endif // CONFIG_EXT_REFS
}
static void init_ref_frame_bufs(AV1_COMMON *cm) {
int i;
BufferPool *const pool = cm->buffer_pool;
cm->new_fb_idx = INVALID_IDX;
for (i = 0; i < REF_FRAMES; ++i) {
cm->ref_frame_map[i] = INVALID_IDX;
pool->frame_bufs[i].ref_count = 0;
}
}
static void check_initial_width(AV1_COMP *cpi,
#if CONFIG_AOM_HIGHBITDEPTH
int use_highbitdepth,
#endif
int subsampling_x, int subsampling_y) {
AV1_COMMON *const cm = &cpi->common;
if (!cpi->initial_width ||
#if CONFIG_AOM_HIGHBITDEPTH
cm->use_highbitdepth != use_highbitdepth ||
#endif
cm->subsampling_x != subsampling_x ||
cm->subsampling_y != subsampling_y) {
cm->subsampling_x = subsampling_x;
cm->subsampling_y = subsampling_y;
#if CONFIG_AOM_HIGHBITDEPTH
cm->use_highbitdepth = use_highbitdepth;
#endif
alloc_raw_frame_buffers(cpi);
init_ref_frame_bufs(cm);
alloc_util_frame_buffers(cpi);
init_motion_estimation(cpi); // TODO(agrange) This can be removed.
cpi->initial_width = cm->width;
cpi->initial_height = cm->height;
cpi->initial_mbs = cm->MBs;
}
}
int av1_receive_raw_frame(AV1_COMP *cpi, unsigned int frame_flags,
YV12_BUFFER_CONFIG *sd, int64_t time_stamp,
int64_t end_time) {
AV1_COMMON *const cm = &cpi->common;
struct aom_usec_timer timer;
int res = 0;
const int subsampling_x = sd->subsampling_x;
const int subsampling_y = sd->subsampling_y;
#if CONFIG_AOM_HIGHBITDEPTH
const int use_highbitdepth = (sd->flags & YV12_FLAG_HIGHBITDEPTH) != 0;
#endif
#if CONFIG_AOM_HIGHBITDEPTH
check_initial_width(cpi, use_highbitdepth, subsampling_x, subsampling_y);
#else
check_initial_width(cpi, subsampling_x, subsampling_y);
#endif // CONFIG_AOM_HIGHBITDEPTH
aom_usec_timer_start(&timer);
if (av1_lookahead_push(cpi->lookahead, sd, time_stamp, end_time,
#if CONFIG_AOM_HIGHBITDEPTH
use_highbitdepth,
#endif // CONFIG_AOM_HIGHBITDEPTH
frame_flags))
res = -1;
aom_usec_timer_mark(&timer);
cpi->time_receive_data += aom_usec_timer_elapsed(&timer);
if ((cm->profile == PROFILE_0 || cm->profile == PROFILE_2) &&
(subsampling_x != 1 || subsampling_y != 1)) {
aom_internal_error(&cm->error, AOM_CODEC_INVALID_PARAM,
"Non-4:2:0 color format requires profile 1 or 3");
res = -1;
}
if ((cm->profile == PROFILE_1 || cm->profile == PROFILE_3) &&
(subsampling_x == 1 && subsampling_y == 1)) {
aom_internal_error(&cm->error, AOM_CODEC_INVALID_PARAM,
"4:2:0 color format requires profile 0 or 2");
res = -1;
}
return res;
}
static int frame_is_reference(const AV1_COMP *cpi) {
const AV1_COMMON *cm = &cpi->common;
return cm->frame_type == KEY_FRAME || cpi->refresh_last_frame ||
cpi->refresh_golden_frame ||
#if CONFIG_EXT_REFS
cpi->refresh_bwd_ref_frame ||
#endif // CONFIG_EXT_REFS
cpi->refresh_alt_ref_frame || !cm->error_resilient_mode ||
cm->lf.mode_ref_delta_update || cm->seg.update_map ||
cm->seg.update_data;
}
static void adjust_frame_rate(AV1_COMP *cpi,
const struct lookahead_entry *source) {
int64_t this_duration;
int step = 0;
if (source->ts_start == cpi->first_time_stamp_ever) {
this_duration = source->ts_end - source->ts_start;
step = 1;
} else {
int64_t last_duration =
cpi->last_end_time_stamp_seen - cpi->last_time_stamp_seen;
this_duration = source->ts_end - cpi->last_end_time_stamp_seen;
// do a step update if the duration changes by 10%
if (last_duration)
step = (int)((this_duration - last_duration) * 10 / last_duration);
}
if (this_duration) {
if (step) {
av1_new_framerate(cpi, 10000000.0 / this_duration);
} else {
// Average this frame's rate into the last second's average
// frame rate. If we haven't seen 1 second yet, then average
// over the whole interval seen.
const double interval = AOMMIN(
(double)(source->ts_end - cpi->first_time_stamp_ever), 10000000.0);
double avg_duration = 10000000.0 / cpi->framerate;
avg_duration *= (interval - avg_duration + this_duration);
avg_duration /= interval;
av1_new_framerate(cpi, 10000000.0 / avg_duration);
}
}
cpi->last_time_stamp_seen = source->ts_start;
cpi->last_end_time_stamp_seen = source->ts_end;
}
// Returns 0 if this is not an alt ref else the offset of the source frame
// used as the arf midpoint.
static int get_arf_src_index(AV1_COMP *cpi) {
RATE_CONTROL *const rc = &cpi->rc;
int arf_src_index = 0;
if (is_altref_enabled(cpi)) {
if (cpi->oxcf.pass == 2) {
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
if (gf_group->update_type[gf_group->index] == ARF_UPDATE) {
arf_src_index = gf_group->arf_src_offset[gf_group->index];
}
} else if (rc->source_alt_ref_pending) {
arf_src_index = rc->frames_till_gf_update_due;
}
}
return arf_src_index;
}
#if CONFIG_EXT_REFS
static int get_brf_src_index(AV1_COMP *cpi) {
int brf_src_index = 0;
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
// TODO(zoeliu): We need to add the check on the -bwd_ref command line setup
// flag.
if (gf_group->bidir_pred_enabled[gf_group->index]) {
if (cpi->oxcf.pass == 2) {
if (gf_group->update_type[gf_group->index] == BRF_UPDATE)
brf_src_index = gf_group->brf_src_offset[gf_group->index];
} else {
// TODO(zoeliu): To re-visit the setup for this scenario
brf_src_index = cpi->rc.bipred_group_interval - 1;
}
}
return brf_src_index;
}
#endif // CONFIG_EXT_REFS
static void check_src_altref(AV1_COMP *cpi,
const struct lookahead_entry *source) {
RATE_CONTROL *const rc = &cpi->rc;
// If pass == 2, the parameters set here will be reset in
// av1_rc_get_second_pass_params()
if (cpi->oxcf.pass == 2) {
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
rc->is_src_frame_alt_ref =
#if CONFIG_EXT_REFS
(gf_group->update_type[gf_group->index] == INTNL_OVERLAY_UPDATE) ||
#endif
(gf_group->update_type[gf_group->index] == OVERLAY_UPDATE);
} else {
rc->is_src_frame_alt_ref =
cpi->alt_ref_source && (source == cpi->alt_ref_source);
}
if (rc->is_src_frame_alt_ref) {
// Current frame is an ARF overlay frame.
cpi->alt_ref_source = NULL;
// Don't refresh the last buffer for an ARF overlay frame. It will
// become the GF so preserve last as an alternative prediction option.
cpi->refresh_last_frame = 0;
}
}
#if CONFIG_INTERNAL_STATS
extern double av1_get_blockiness(const unsigned char *img1, int img1_pitch,
const unsigned char *img2, int img2_pitch,
int width, int height);
static void adjust_image_stat(double y, double u, double v, double all,
ImageStat *s) {
s->stat[Y] += y;
s->stat[U] += u;
s->stat[V] += v;
s->stat[ALL] += all;
s->worst = AOMMIN(s->worst, all);
}
static void compute_internal_stats(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
double samples = 0.0;
uint32_t in_bit_depth = 8;
uint32_t bit_depth = 8;
#if CONFIG_AOM_HIGHBITDEPTH
if (cm->use_highbitdepth) {
in_bit_depth = cpi->oxcf.input_bit_depth;
bit_depth = cm->bit_depth;
}
#endif
if (cm->show_frame) {
const YV12_BUFFER_CONFIG *orig = cpi->Source;
const YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show;
double y, u, v, frame_all;
cpi->count++;
if (cpi->b_calculate_psnr) {
PSNR_STATS psnr;
double frame_ssim2 = 0.0, weight = 0.0;
aom_clear_system_state();
// TODO(yaowu): unify these two versions into one.
#if CONFIG_AOM_HIGHBITDEPTH
aom_calc_highbd_psnr(orig, recon, &psnr, bit_depth, in_bit_depth);
#else
aom_calc_psnr(orig, recon, &psnr);
#endif // CONFIG_AOM_HIGHBITDEPTH
adjust_image_stat(psnr.psnr[1], psnr.psnr[2], psnr.psnr[3], psnr.psnr[0],
&cpi->psnr);
cpi->total_sq_error += psnr.sse[0];
cpi->total_samples += psnr.samples[0];
samples = psnr.samples[0];
// TODO(yaowu): unify these two versions into one.
#if CONFIG_AOM_HIGHBITDEPTH
if (cm->use_highbitdepth)
frame_ssim2 =
aom_highbd_calc_ssim(orig, recon, &weight, bit_depth, in_bit_depth);
else
frame_ssim2 = aom_calc_ssim(orig, recon, &weight);
#else
frame_ssim2 = aom_calc_ssim(orig, recon, &weight);
#endif // CONFIG_AOM_HIGHBITDEPTH
cpi->worst_ssim = AOMMIN(cpi->worst_ssim, frame_ssim2);
cpi->summed_quality += frame_ssim2 * weight;
cpi->summed_weights += weight;
#if 0
{
FILE *f = fopen("q_used.stt", "a");
fprintf(f, "%5d : Y%f7.3:U%f7.3:V%f7.3:F%f7.3:S%7.3f\n",
cpi->common.current_video_frame, y2, u2, v2,
frame_psnr2, frame_ssim2);
fclose(f);
}
#endif
}
if (cpi->b_calculate_blockiness) {
#if CONFIG_AOM_HIGHBITDEPTH
if (!cm->use_highbitdepth)
#endif
{
const double frame_blockiness =
av1_get_blockiness(orig->y_buffer, orig->y_stride, recon->y_buffer,
recon->y_stride, orig->y_width, orig->y_height);
cpi->worst_blockiness = AOMMAX(cpi->worst_blockiness, frame_blockiness);
cpi->total_blockiness += frame_blockiness;
}
if (cpi->b_calculate_consistency) {
#if CONFIG_AOM_HIGHBITDEPTH
if (!cm->use_highbitdepth)
#endif
{
const double this_inconsistency = aom_get_ssim_metrics(
orig->y_buffer, orig->y_stride, recon->y_buffer, recon->y_stride,
orig->y_width, orig->y_height, cpi->ssim_vars, &cpi->metrics, 1);
const double peak = (double)((1 << in_bit_depth) - 1);
const double consistency =
aom_sse_to_psnr(samples, peak, cpi->total_inconsistency);
if (consistency > 0.0)
cpi->worst_consistency =
AOMMIN(cpi->worst_consistency, consistency);
cpi->total_inconsistency += this_inconsistency;
}
}
}
frame_all =
aom_calc_fastssim(orig, recon, &y, &u, &v, bit_depth, in_bit_depth);
adjust_image_stat(y, u, v, frame_all, &cpi->fastssim);
frame_all = aom_psnrhvs(orig, recon, &y, &u, &v, bit_depth, in_bit_depth);
adjust_image_stat(y, u, v, frame_all, &cpi->psnrhvs);
}
}
#endif // CONFIG_INTERNAL_STATS
int av1_get_compressed_data(AV1_COMP *cpi, unsigned int *frame_flags,
size_t *size, uint8_t *dest, int64_t *time_stamp,
int64_t *time_end, int flush) {
const AV1EncoderConfig *const oxcf = &cpi->oxcf;
AV1_COMMON *const cm = &cpi->common;
BufferPool *const pool = cm->buffer_pool;
RATE_CONTROL *const rc = &cpi->rc;
struct aom_usec_timer cmptimer;
YV12_BUFFER_CONFIG *force_src_buffer = NULL;
struct lookahead_entry *last_source = NULL;
struct lookahead_entry *source = NULL;
int arf_src_index;
#if CONFIG_EXT_REFS
int brf_src_index;
#endif // CONFIG_EXT_REFS
int i;
#if CONFIG_BITSTREAM_DEBUG
assert(cpi->oxcf.max_threads == 0 &&
"bitstream debug tool does not support multithreading");
bitstream_queue_record_write();
bitstream_queue_set_frame_write(cm->current_video_frame * 2 + cm->show_frame);
#endif
aom_usec_timer_start(&cmptimer);
av1_set_high_precision_mv(cpi, ALTREF_HIGH_PRECISION_MV);
// Is multi-arf enabled.
// Note that at the moment multi_arf is only configured for 2 pass VBR
if ((oxcf->pass == 2) && (cpi->oxcf.enable_auto_arf > 1))
cpi->multi_arf_allowed = 1;
else
cpi->multi_arf_allowed = 0;
// Normal defaults
cm->reset_frame_context = RESET_FRAME_CONTEXT_NONE;
cm->refresh_frame_context =
(oxcf->error_resilient_mode || oxcf->frame_parallel_decoding_mode)
? REFRESH_FRAME_CONTEXT_FORWARD
: REFRESH_FRAME_CONTEXT_BACKWARD;
cpi->refresh_last_frame = 1;
cpi->refresh_golden_frame = 0;
#if CONFIG_EXT_REFS
cpi->refresh_bwd_ref_frame = 0;
#endif // CONFIG_EXT_REFS
cpi->refresh_alt_ref_frame = 0;
#if CONFIG_EXT_REFS
if (oxcf->pass == 2 && cm->show_existing_frame) {
// Manage the source buffer and flush out the source frame that has been
// coded already; Also get prepared for PSNR calculation if needed.
if ((source = av1_lookahead_pop(cpi->lookahead, flush)) == NULL) {
*size = 0;
return -1;
}
cpi->Source = &source->img;
// TODO(zoeliu): To track down to determine whether it's needed to adjust
// the frame rate.
*time_stamp = source->ts_start;
*time_end = source->ts_end;
// We need to adjust frame rate for an overlay frame
if (cpi->rc.is_src_frame_alt_ref) {
adjust_frame_rate(cpi, source);
}
// Find a free buffer for the new frame, releasing the reference previously
// held.
if (cm->new_fb_idx != INVALID_IDX) {
--pool->frame_bufs[cm->new_fb_idx].ref_count;
}
cm->new_fb_idx = get_free_fb(cm);
if (cm->new_fb_idx == INVALID_IDX) return -1;
// Clear down mmx registers
aom_clear_system_state();
// Start with a 0 size frame.
*size = 0;
// We need to update the gf_group for show_existing overlay frame
if (cpi->rc.is_src_frame_alt_ref) {
av1_rc_get_second_pass_params(cpi);
}
Pass2Encode(cpi, size, dest, frame_flags);
if (cpi->b_calculate_psnr) generate_psnr_packet(cpi);
#if CONFIG_INTERNAL_STATS
compute_internal_stats(cpi);
cpi->bytes += (int)(*size);
#endif // CONFIG_INTERNAL_STATS
// Clear down mmx registers
aom_clear_system_state();
cm->show_existing_frame = 0;
return 0;
}
#endif // CONFIG_EXT_REFS
// Should we encode an arf frame.
arf_src_index = get_arf_src_index(cpi);
if (arf_src_index) {
for (i = 0; i <= arf_src_index; ++i) {
struct lookahead_entry *e = av1_lookahead_peek(cpi->lookahead, i);
// Avoid creating an alt-ref if there's a forced keyframe pending.
if (e == NULL) {
break;
} else if (e->flags == AOM_EFLAG_FORCE_KF) {
arf_src_index = 0;
flush = 1;
break;
}
}
}
if (arf_src_index) {
assert(arf_src_index <= rc->frames_to_key);
if ((source = av1_lookahead_peek(cpi->lookahead, arf_src_index)) != NULL) {
cpi->alt_ref_source = source;
if (oxcf->arnr_max_frames > 0) {
// Produce the filtered ARF frame.
av1_temporal_filter(cpi, arf_src_index);
aom_extend_frame_borders(&cpi->alt_ref_buffer);
force_src_buffer = &cpi->alt_ref_buffer;
}
cm->show_frame = 0;
cm->intra_only = 0;
cpi->refresh_alt_ref_frame = 1;
cpi->refresh_golden_frame = 0;
cpi->refresh_last_frame = 0;
rc->is_src_frame_alt_ref = 0;
}
rc->source_alt_ref_pending = 0;
}
#if CONFIG_EXT_REFS
rc->is_bwd_ref_frame = 0;
brf_src_index = get_brf_src_index(cpi);
if (brf_src_index) {
assert(brf_src_index <= rc->frames_to_key);
if ((source = av1_lookahead_peek(cpi->lookahead, brf_src_index)) != NULL) {
cm->show_frame = 0;
cm->intra_only = 0;
cpi->refresh_bwd_ref_frame = 1;
cpi->refresh_last_frame = 0;
cpi->refresh_golden_frame = 0;
cpi->refresh_alt_ref_frame = 0;
rc->is_bwd_ref_frame = 1;
}
}
#endif // CONFIG_EXT_REFS
if (!source) {
// Get last frame source.
if (cm->current_video_frame > 0) {
if ((last_source = av1_lookahead_peek(cpi->lookahead, -1)) == NULL)
return -1;
}
// Read in the source frame.
source = av1_lookahead_pop(cpi->lookahead, flush);
if (source != NULL) {
cm->show_frame = 1;
cm->intra_only = 0;
// Check to see if the frame should be encoded as an arf overlay.
check_src_altref(cpi, source);
}
}
if (source) {
cpi->un_scaled_source = cpi->Source =
force_src_buffer ? force_src_buffer : &source->img;
cpi->unscaled_last_source = last_source != NULL ? &last_source->img : NULL;
*time_stamp = source->ts_start;
*time_end = source->ts_end;
*frame_flags = (source->flags & AOM_EFLAG_FORCE_KF) ? FRAMEFLAGS_KEY : 0;
} else {
*size = 0;
if (flush && oxcf->pass == 1 && !cpi->twopass.first_pass_done) {
av1_end_first_pass(cpi); /* get last stats packet */
cpi->twopass.first_pass_done = 1;
}
return -1;
}
if (source->ts_start < cpi->first_time_stamp_ever) {
cpi->first_time_stamp_ever = source->ts_start;
cpi->last_end_time_stamp_seen = source->ts_start;
}
// Clear down mmx registers
aom_clear_system_state();
// adjust frame rates based on timestamps given
if (cm->show_frame) adjust_frame_rate(cpi, source);
// Find a free buffer for the new frame, releasing the reference previously
// held.
if (cm->new_fb_idx != INVALID_IDX) {
--pool->frame_bufs[cm->new_fb_idx].ref_count;
}
cm->new_fb_idx = get_free_fb(cm);
if (cm->new_fb_idx == INVALID_IDX) return -1;
cm->cur_frame = &pool->frame_bufs[cm->new_fb_idx];
#if CONFIG_EXT_REFS
if (oxcf->pass == 2) {
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
cpi->alt_fb_idx = cpi->arf_map[gf_group->arf_ref_idx[gf_group->index]];
}
#else
if (cpi->multi_arf_allowed) {
if (cm->frame_type == KEY_FRAME) {
init_buffer_indices(cpi);
} else if (oxcf->pass == 2) {
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
cpi->alt_fb_idx = gf_group->arf_ref_idx[gf_group->index];
}
}
#endif
// Start with a 0 size frame.
*size = 0;
cpi->frame_flags = *frame_flags;
if (oxcf->pass == 2) {
av1_rc_get_second_pass_params(cpi);
} else if (oxcf->pass == 1) {
set_frame_size(cpi);
}
if (cpi->oxcf.pass != 0 || frame_is_intra_only(cm) == 1) {
for (i = 0; i < TOTAL_REFS_PER_FRAME; ++i)
cpi->scaled_ref_idx[i] = INVALID_IDX;
}
#if CONFIG_AOM_QM
cm->using_qmatrix = cpi->oxcf.using_qm;
cm->min_qmlevel = cpi->oxcf.qm_minlevel;
cm->max_qmlevel = cpi->oxcf.qm_maxlevel;
#endif
if (oxcf->pass == 1) {
cpi->td.mb.e_mbd.lossless[0] = is_lossless_requested(oxcf);
av1_first_pass(cpi, source);
} else if (oxcf->pass == 2) {
Pass2Encode(cpi, size, dest, frame_flags);
} else {
// One pass encode
Pass0Encode(cpi, size, dest, frame_flags);
}
if (!cm->error_resilient_mode)
cm->frame_contexts[cm->frame_context_idx] = *cm->fc;
// No frame encoded, or frame was dropped, release scaled references.
if ((*size == 0) && (frame_is_intra_only(cm) == 0)) {
release_scaled_references(cpi);
}
if (*size > 0) {
cpi->droppable = !frame_is_reference(cpi);
}
aom_usec_timer_mark(&cmptimer);
cpi->time_compress_data += aom_usec_timer_elapsed(&cmptimer);
if (cpi->b_calculate_psnr && oxcf->pass != 1 && cm->show_frame)
generate_psnr_packet(cpi);
#if CONFIG_INTERNAL_STATS
if (oxcf->pass != 1) {
compute_internal_stats(cpi);
cpi->bytes += (int)(*size);
}
#endif // CONFIG_INTERNAL_STATS
aom_clear_system_state();
return 0;
}
int av1_get_preview_raw_frame(AV1_COMP *cpi, YV12_BUFFER_CONFIG *dest) {
AV1_COMMON *cm = &cpi->common;
if (!cm->show_frame) {
return -1;
} else {
int ret;
if (cm->frame_to_show) {
*dest = *cm->frame_to_show;
dest->y_width = cm->width;
dest->y_height = cm->height;
dest->uv_width = cm->width >> cm->subsampling_x;
dest->uv_height = cm->height >> cm->subsampling_y;
ret = 0;
} else {
ret = -1;
}
aom_clear_system_state();
return ret;
}
}
int av1_get_last_show_frame(AV1_COMP *cpi, YV12_BUFFER_CONFIG *frame) {
if (cpi->last_show_frame_buf_idx == INVALID_IDX) return -1;
*frame =
cpi->common.buffer_pool->frame_bufs[cpi->last_show_frame_buf_idx].buf;
return 0;
}
int av1_set_internal_size(AV1_COMP *cpi, AOM_SCALING horiz_mode,
AOM_SCALING vert_mode) {
AV1_COMMON *cm = &cpi->common;
int hr = 0, hs = 0, vr = 0, vs = 0;
if (horiz_mode > ONETWO || vert_mode > ONETWO) return -1;
Scale2Ratio(horiz_mode, &hr, &hs);
Scale2Ratio(vert_mode, &vr, &vs);
// always go to the next whole number
cm->width = (hs - 1 + cpi->oxcf.width * hr) / hs;
cm->height = (vs - 1 + cpi->oxcf.height * vr) / vs;
assert(cm->width <= cpi->initial_width);
assert(cm->height <= cpi->initial_height);
update_frame_size(cpi);
return 0;
}
int av1_set_size_literal(AV1_COMP *cpi, unsigned int width,
unsigned int height) {
AV1_COMMON *cm = &cpi->common;
#if CONFIG_AOM_HIGHBITDEPTH
check_initial_width(cpi, cm->use_highbitdepth, 1, 1);
#else
check_initial_width(cpi, 1, 1);
#endif // CONFIG_AOM_HIGHBITDEPTH
if (width) {
cm->width = width;
if (cm->width > cpi->initial_width) {
cm->width = cpi->initial_width;
printf("Warning: Desired width too large, changed to %d\n", cm->width);
}
}
if (height) {
cm->height = height;
if (cm->height > cpi->initial_height) {
cm->height = cpi->initial_height;
printf("Warning: Desired height too large, changed to %d\n", cm->height);
}
}
assert(cm->width <= cpi->initial_width);
assert(cm->height <= cpi->initial_height);
update_frame_size(cpi);
return 0;
}
int av1_get_quantizer(AV1_COMP *cpi) { return cpi->common.base_qindex; }
void av1_apply_encoding_flags(AV1_COMP *cpi, aom_enc_frame_flags_t flags) {
if (flags &
(AOM_EFLAG_NO_REF_LAST | AOM_EFLAG_NO_REF_GF | AOM_EFLAG_NO_REF_ARF)) {
int ref = AOM_REFFRAME_ALL;
if (flags & AOM_EFLAG_NO_REF_LAST) {
ref ^= AOM_LAST_FLAG;
#if CONFIG_EXT_REFS
ref ^= AOM_LAST2_FLAG;
ref ^= AOM_LAST3_FLAG;
#endif // CONFIG_EXT_REFS
}
if (flags & AOM_EFLAG_NO_REF_GF) ref ^= AOM_GOLD_FLAG;
if (flags & AOM_EFLAG_NO_REF_ARF) ref ^= AOM_ALT_FLAG;
av1_use_as_reference(cpi, ref);
}
if (flags &
(AOM_EFLAG_NO_UPD_LAST | AOM_EFLAG_NO_UPD_GF | AOM_EFLAG_NO_UPD_ARF |
AOM_EFLAG_FORCE_GF | AOM_EFLAG_FORCE_ARF)) {
int upd = AOM_REFFRAME_ALL;
if (flags & AOM_EFLAG_NO_UPD_LAST) {
upd ^= AOM_LAST_FLAG;
#if CONFIG_EXT_REFS
upd ^= AOM_LAST2_FLAG;
upd ^= AOM_LAST3_FLAG;
#endif // CONFIG_EXT_REFS
}
if (flags & AOM_EFLAG_NO_UPD_GF) upd ^= AOM_GOLD_FLAG;
if (flags & AOM_EFLAG_NO_UPD_ARF) upd ^= AOM_ALT_FLAG;
av1_update_reference(cpi, upd);
}
if (flags & AOM_EFLAG_NO_UPD_ENTROPY) {
av1_update_entropy(cpi, 0);
}
}