| /* |
| * Copyright (c) 2024, Alliance for Open Media. All rights reserved. |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #ifndef AOM_AV1_COMMON_ARM_CONVOLVE_NEON_I8MM_H_ |
| #define AOM_AV1_COMMON_ARM_CONVOLVE_NEON_I8MM_H_ |
| |
| #include <arm_neon.h> |
| #include <assert.h> |
| |
| #include "config/aom_config.h" |
| #include "config/av1_rtcd.h" |
| |
| #include "aom/aom_integer.h" |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_dsp/arm/mem_neon.h" |
| #include "aom_ports/mem.h" |
| |
| DECLARE_ALIGNED(16, static const uint8_t, kDotProdPermuteTbl[48]) = { |
| 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6, |
| 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10, |
| 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 |
| }; |
| |
| DECLARE_ALIGNED(16, static const uint8_t, kMatMulPermuteTbl[32]) = { |
| // clang-format off |
| 0, 1, 2, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 7, 8, 9, |
| 4, 5, 6, 7, 8, 9, 10, 11, 6, 7, 8, 9, 10, 11, 12, 13 |
| // clang-format on |
| }; |
| |
| static inline int16x4_t convolve12_4_2d_h(uint8x16_t samples[2], |
| const int8x16_t filter[2], |
| const uint8x16_t permute_tbl, |
| int32x4_t horiz_const) { |
| // Permute samples ready for matrix multiply. |
| // { 0, 1, 2, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 7, 8, 9 } |
| // { 4, 5, 6, 7, 8, 9, 10, 11, 6, 7, 8, 9, 10, 11, 12, 13 } |
| uint8x16_t perm_samples[2] = { vqtbl1q_u8(samples[0], permute_tbl), |
| vqtbl1q_u8(samples[1], permute_tbl) }; |
| |
| // These instructions multiply a 2x8 matrix (samples) by an 8x2 matrix |
| // (filter), destructively accumulating into the destination register. |
| int32x4_t sum = vusmmlaq_s32(horiz_const, perm_samples[0], filter[0]); |
| sum = vusmmlaq_s32(sum, perm_samples[1], filter[1]); |
| |
| // Narrow and re-pack. |
| return vshrn_n_s32(sum, ROUND0_BITS); |
| } |
| |
| static inline int16x8_t convolve12_8_2d_h(uint8x16_t samples[2], |
| const int8x16_t filter[2], |
| const uint8x16x2_t permute_tbl, |
| const int32x4_t horiz_const) { |
| /// Permute samples ready for matrix multiply. |
| // { 0, 1, 2, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 7, 8, 9 } |
| // { 4, 5, 6, 7, 8, 9, 10, 11, 6, 7, 8, 9, 10, 11, 12, 13 } |
| // { 6, 7, 8, 9, 10, 11, 12, 13, 8, 9, 10, 11, 12, 13, 14, 15 } |
| // { 10, 11, 12, 13, 14, 15, 16, 17, 12, 13, 14, 15, 16, 17, 18, 19 } |
| uint8x16_t perm_samples[4] = { vqtbl1q_u8(samples[0], permute_tbl.val[0]), |
| vqtbl1q_u8(samples[0], permute_tbl.val[1]), |
| vqtbl1q_u8(samples[1], permute_tbl.val[0]), |
| vqtbl1q_u8(samples[1], permute_tbl.val[1]) }; |
| |
| // These instructions multiply a 2x8 matrix (samples) by an 8x2 matrix |
| // (filter), destructively accumulating into the destination register. |
| int32x4_t sum0123 = vusmmlaq_s32(horiz_const, perm_samples[0], filter[0]); |
| int32x4_t sum4567 = vusmmlaq_s32(horiz_const, perm_samples[1], filter[0]); |
| sum0123 = vusmmlaq_s32(sum0123, perm_samples[2], filter[1]); |
| sum4567 = vusmmlaq_s32(sum4567, perm_samples[3], filter[1]); |
| |
| // Narrow and re-pack. |
| return vcombine_s16(vshrn_n_s32(sum0123, ROUND0_BITS), |
| vshrn_n_s32(sum4567, ROUND0_BITS)); |
| } |
| |
| static inline void convolve_2d_sr_horiz_12tap_neon_i8mm( |
| const uint8_t *src_ptr, int src_stride, int16_t *dst_ptr, |
| const int dst_stride, int w, int h, const int16_t *x_filter_ptr) { |
| // The no-op filter should never be used here. |
| assert(x_filter_ptr[5] != 128); |
| |
| const int bd = 8; |
| |
| // Split 12-tap filter into two 6-tap filters, masking the top two elements. |
| // { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0 } |
| const int8x8_t mask = vcreate_s8(0x0000ffffffffffff); |
| const int8x8_t filter_0 = vand_s8(vmovn_s16(vld1q_s16(x_filter_ptr)), mask); |
| const int8x8_t filter_1 = |
| vext_s8(vmovn_s16(vld1q_s16(x_filter_ptr + 4)), vdup_n_s8(0), 2); |
| |
| // Stagger each 6-tap filter to enable use of matrix multiply instructions. |
| // { f0, f1, f2, f3, f4, f5, 0, 0, 0, f0, f1, f2, f3, f4, f5, 0 } |
| const int8x16_t filter[2] = { |
| vcombine_s8(filter_0, vext_s8(filter_0, filter_0, 7)), |
| vcombine_s8(filter_1, vext_s8(filter_1, filter_1, 7)) |
| }; |
| |
| // This shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding shifts |
| // in convolution kernels - which are generally faster than rounding shifts on |
| // modern CPUs. |
| const int32x4_t horiz_const = |
| vdupq_n_s32((1 << (bd + FILTER_BITS - 1)) + (1 << (ROUND0_BITS - 1))); |
| |
| if (w <= 4) { |
| const uint8x16_t permute_tbl = vld1q_u8(kMatMulPermuteTbl); |
| |
| do { |
| uint8x16_t s0[2], s1[2], s2[2], s3[2]; |
| load_u8_16x4(src_ptr, src_stride, &s0[0], &s1[0], &s2[0], &s3[0]); |
| load_u8_16x4(src_ptr + 6, src_stride, &s0[1], &s1[1], &s2[1], &s3[1]); |
| |
| int16x4_t d0 = convolve12_4_2d_h(s0, filter, permute_tbl, horiz_const); |
| int16x4_t d1 = convolve12_4_2d_h(s1, filter, permute_tbl, horiz_const); |
| int16x4_t d2 = convolve12_4_2d_h(s2, filter, permute_tbl, horiz_const); |
| int16x4_t d3 = convolve12_4_2d_h(s3, filter, permute_tbl, horiz_const); |
| |
| store_s16_4x4(dst_ptr, dst_stride, d0, d1, d2, d3); |
| |
| src_ptr += 4 * src_stride; |
| dst_ptr += 4 * dst_stride; |
| h -= 4; |
| } while (h > 4); |
| |
| do { |
| uint8x16_t s0[2]; |
| s0[0] = vld1q_u8(src_ptr); |
| s0[1] = vld1q_u8(src_ptr + 6); |
| int16x4_t d0 = convolve12_4_2d_h(s0, filter, permute_tbl, horiz_const); |
| vst1_s16(dst_ptr, d0); |
| |
| src_ptr += src_stride; |
| dst_ptr += dst_stride; |
| } while (--h != 0); |
| |
| } else { |
| const uint8x16x2_t permute_tbl = vld1q_u8_x2(kMatMulPermuteTbl); |
| |
| do { |
| const uint8_t *s = src_ptr; |
| int16_t *d = dst_ptr; |
| int width = w; |
| |
| do { |
| uint8x16_t s0[2], s1[2], s2[2], s3[2]; |
| load_u8_16x4(s, src_stride, &s0[0], &s1[0], &s2[0], &s3[0]); |
| load_u8_16x4(s + 6, src_stride, &s0[1], &s1[1], &s2[1], &s3[1]); |
| |
| int16x8_t d0 = convolve12_8_2d_h(s0, filter, permute_tbl, horiz_const); |
| int16x8_t d1 = convolve12_8_2d_h(s1, filter, permute_tbl, horiz_const); |
| int16x8_t d2 = convolve12_8_2d_h(s2, filter, permute_tbl, horiz_const); |
| int16x8_t d3 = convolve12_8_2d_h(s3, filter, permute_tbl, horiz_const); |
| |
| store_s16_8x4(d, dst_stride, d0, d1, d2, d3); |
| |
| s += 8; |
| d += 8; |
| width -= 8; |
| } while (width != 0); |
| |
| src_ptr += 4 * src_stride; |
| dst_ptr += 4 * dst_stride; |
| h -= 4; |
| } while (h > 4); |
| |
| do { |
| const uint8_t *s = src_ptr; |
| int16_t *d = dst_ptr; |
| int width = w; |
| |
| do { |
| uint8x16_t s0[2]; |
| s0[0] = vld1q_u8(s); |
| s0[1] = vld1q_u8(s + 6); |
| int16x8_t d0 = convolve12_8_2d_h(s0, filter, permute_tbl, horiz_const); |
| vst1q_s16(d, d0); |
| |
| s += 8; |
| d += 8; |
| width -= 8; |
| } while (width != 0); |
| src_ptr += src_stride; |
| dst_ptr += dst_stride; |
| } while (--h != 0); |
| } |
| } |
| |
| #endif // AOM_AV1_COMMON_ARM_CONVOLVE_NEON_I8MM_H_ |