blob: d99e7ddb28a45776b9ee5100f297d66776a3b92a [file] [log] [blame]
/*
* Copyright (c) 2017, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include "./aom_config.h"
#include "aom/aom_codec.h"
#include "aom_dsp/bitreader_buffer.h"
#include "aom_ports/mem_ops.h"
#include "av1/common/common.h"
#include "av1/decoder/decoder.h"
#include "av1/decoder/decodeframe.h"
#include "av1/decoder/obu.h"
// Picture prediction structures (0-12 are predefined) in scalability metadata.
typedef enum {
SCALABILITY_L1T2 = 0,
SCALABILITY_L1T3 = 1,
SCALABILITY_L2T1 = 2,
SCALABILITY_L2T2 = 3,
SCALABILITY_L2T3 = 4,
SCALABILITY_S2T1 = 5,
SCALABILITY_S2T2 = 6,
SCALABILITY_S2T3 = 7,
SCALABILITY_L2T1h = 8,
SCALABILITY_L2T2h = 9,
SCALABILITY_L2T3h = 10,
SCALABILITY_S2T1h = 11,
SCALABILITY_S2T2h = 12,
SCALABILITY_S2T3h = 13,
SCALABILITY_SS = 14
} SCALABILITY_STRUCTURES;
// Returns 1 when OBU type is valid, and 0 otherwise.
static int valid_obu_type(int obu_type) {
int valid_type = 0;
switch (obu_type) {
case OBU_SEQUENCE_HEADER:
case OBU_TEMPORAL_DELIMITER:
case OBU_FRAME_HEADER:
case OBU_REDUNDANT_FRAME_HEADER:
case OBU_FRAME:
case OBU_TILE_GROUP:
case OBU_METADATA:
case OBU_PADDING: valid_type = 1; break;
default: break;
}
return valid_type;
}
// Parses OBU header and stores values in 'header'.
static aom_codec_err_t read_obu_header(struct aom_read_bit_buffer *rb,
int is_annexb, ObuHeader *header) {
if (!rb || !header) return AOM_CODEC_INVALID_PARAM;
const ptrdiff_t bit_buffer_byte_length = rb->bit_buffer_end - rb->bit_buffer;
if (bit_buffer_byte_length < 1) return AOM_CODEC_CORRUPT_FRAME;
header->size = 1;
if (aom_rb_read_bit(rb) != 0) {
// Forbidden bit. Must not be set.
return AOM_CODEC_CORRUPT_FRAME;
}
header->type = (OBU_TYPE)aom_rb_read_literal(rb, 4);
if (!valid_obu_type(header->type)) return AOM_CODEC_CORRUPT_FRAME;
header->has_extension = aom_rb_read_bit(rb);
header->has_length_field = aom_rb_read_bit(rb);
if (!header->has_length_field && !is_annexb) {
// section 5 obu streams must have length field set.
return AOM_CODEC_UNSUP_BITSTREAM;
}
aom_rb_read_bit(rb); // reserved
if (header->has_extension) {
if (bit_buffer_byte_length == 1) return AOM_CODEC_CORRUPT_FRAME;
header->size += 1;
header->temporal_layer_id = aom_rb_read_literal(rb, 3);
header->spatial_layer_id = aom_rb_read_literal(rb, 2);
aom_rb_read_literal(rb, 3); // reserved
}
return AOM_CODEC_OK;
}
aom_codec_err_t aom_read_obu_header(uint8_t *buffer, size_t buffer_length,
size_t *consumed, ObuHeader *header,
int is_annexb) {
if (buffer_length < 1 || !consumed || !header) return AOM_CODEC_INVALID_PARAM;
// TODO(tomfinegan): Set the error handler here and throughout this file, and
// confirm parsing work done via aom_read_bit_buffer is successful.
struct aom_read_bit_buffer rb = { buffer, buffer + buffer_length, 0, NULL,
NULL };
aom_codec_err_t parse_result = read_obu_header(&rb, is_annexb, header);
if (parse_result == AOM_CODEC_OK) *consumed = header->size;
return parse_result;
}
static int is_obu_in_current_operating_point(AV1Decoder *pbi,
ObuHeader obu_header) {
if (!pbi->current_operating_point) {
return 1;
}
if ((pbi->current_operating_point >> obu_header.temporal_layer_id) & 0x1 &&
(pbi->current_operating_point >> (obu_header.spatial_layer_id + 8)) &
0x1) {
return 1;
}
return 0;
}
static uint32_t read_temporal_delimiter_obu() { return 0; }
static BitstreamLevel read_bitstream_level(struct aom_read_bit_buffer *rb) {
BitstreamLevel bl;
bl.major = aom_rb_read_literal(rb, LEVEL_MAJOR_BITS) + LEVEL_MAJOR_MIN;
bl.minor = aom_rb_read_literal(rb, LEVEL_MINOR_BITS);
return bl;
}
static uint32_t read_sequence_header_obu(AV1Decoder *pbi,
struct aom_read_bit_buffer *rb) {
AV1_COMMON *const cm = &pbi->common;
uint32_t saved_bit_offset = rb->bit_offset;
cm->profile = av1_read_profile(rb);
SequenceHeader *seq_params = &cm->seq_params;
// Still picture or not
seq_params->still_picture = aom_rb_read_bit(rb);
seq_params->reduced_still_picture_hdr = aom_rb_read_bit(rb);
// Video must have reduced_still_picture_hdr = 0
if (!cm->seq_params.still_picture &&
cm->seq_params.reduced_still_picture_hdr) {
return AOM_CODEC_UNSUP_BITSTREAM;
}
if (seq_params->reduced_still_picture_hdr) {
seq_params->operating_point_idc[0] = 0;
seq_params->level[0] = read_bitstream_level(rb);
if (seq_params->level[0].major > LEVEL_MAJOR_MAX)
return AOM_CODEC_UNSUP_BITSTREAM;
seq_params->decoder_rate_model_param_present_flag[0] = 0;
} else {
uint8_t operating_points_minus1_cnt =
aom_rb_read_literal(rb, OP_POINTS_MINUS1_BITS);
for (int i = 0; i < operating_points_minus1_cnt + 1; i++) {
seq_params->operating_point_idc[i] =
aom_rb_read_literal(rb, OP_POINTS_IDC_BITS);
seq_params->level[i] = read_bitstream_level(rb);
if (seq_params->level[i].major > LEVEL_MAJOR_MAX)
return AOM_CODEC_UNSUP_BITSTREAM;
#if !CONFIG_BUFFER_MODEL
seq_params->decoder_rate_model_param_present_flag[i] =
aom_rb_read_literal(rb, 1);
if (seq_params->decoder_rate_model_param_present_flag[i]) {
seq_params->decode_to_display_rate_ratio[i] =
aom_rb_read_literal(rb, 12);
seq_params->initial_display_delay[i] = aom_rb_read_literal(rb, 24);
seq_params->extra_frame_buffers[i] = aom_rb_read_literal(rb, 4);
}
#endif
}
}
// This decoder supports all levels. Choose operating point provided by
// external means
int operating_point = pbi->operating_point;
if (operating_point < 0 ||
operating_point >= pbi->common.enhancement_layers_cnt)
operating_point = 0;
pbi->current_operating_point =
seq_params->operating_point_idc[operating_point];
read_sequence_header(cm, rb);
av1_read_bitdepth_colorspace_sampling(cm, rb, pbi->allow_lowbitdepth);
#if !CONFIG_BUFFER_MODEL
if (!seq_params->reduced_still_picture_hdr)
av1_read_timing_info_header(cm, rb);
else
cm->timing_info_present = 0;
#else
if (!seq_params->reduced_still_picture_hdr)
cm->timing_info_present = aom_rb_read_bit(rb); // timing info present flag
else
cm->timing_info_present = 0;
if (cm->timing_info_present) {
av1_read_timing_info_header(cm, rb);
cm->decoder_model_info_present_flag = aom_rb_read_bit(rb);
if (cm->decoder_model_info_present_flag)
av1_read_decoder_model_info(cm, rb);
} else {
cm->decoder_model_info_present_flag = 0;
}
int operating_points_decoder_model_present = aom_rb_read_bit(rb);
if (operating_points_decoder_model_present) {
cm->operating_points_decoder_model_cnt = aom_rb_read_literal(rb, 5) + 1;
} else {
cm->operating_points_decoder_model_cnt = 0;
}
for (int op_num = 0; op_num < cm->operating_points_decoder_model_cnt;
++op_num) {
cm->op_params[op_num].decoder_model_operating_point_idc =
aom_rb_read_literal(rb, 12);
cm->op_params[op_num].display_model_param_present_flag =
aom_rb_read_bit(rb);
if (cm->op_params[op_num].display_model_param_present_flag) {
cm->op_params[op_num].initial_display_delay =
aom_rb_read_literal(rb, 4) + 1;
if (cm->op_params[op_num].initial_display_delay > 10)
aom_internal_error(
&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"AV1 does not support more than 10 decoded frames delay");
}
if (cm->decoder_model_info_present_flag) {
cm->op_params[op_num].decoder_model_param_present_flag =
aom_rb_read_bit(rb);
if (cm->op_params[op_num].decoder_model_param_present_flag)
av1_read_op_parameters_info(cm, rb, op_num);
}
}
#endif
cm->film_grain_params_present = aom_rb_read_bit(rb);
av1_check_trailing_bits(pbi, rb);
pbi->sequence_header_ready = 1;
return ((rb->bit_offset - saved_bit_offset + 7) >> 3);
}
static uint32_t read_frame_header_obu(AV1Decoder *pbi,
struct aom_read_bit_buffer *rb,
const uint8_t *data,
const uint8_t **p_data_end,
int trailing_bits_present) {
av1_decode_frame_headers_and_setup(pbi, rb, data, p_data_end,
trailing_bits_present);
return (uint32_t)(pbi->uncomp_hdr_size);
}
static int32_t read_tile_group_header(AV1Decoder *pbi,
struct aom_read_bit_buffer *rb,
int *startTile, int *endTile,
int tile_start_implicit) {
AV1_COMMON *const cm = &pbi->common;
uint32_t saved_bit_offset = rb->bit_offset;
int tile_start_and_end_present_flag = 0;
const int num_tiles = pbi->common.tile_rows * pbi->common.tile_cols;
if (!pbi->common.large_scale_tile && num_tiles > 1) {
tile_start_and_end_present_flag = aom_rb_read_bit(rb);
}
if (pbi->common.large_scale_tile || num_tiles == 1 ||
!tile_start_and_end_present_flag) {
*startTile = 0;
*endTile = num_tiles - 1;
return ((rb->bit_offset - saved_bit_offset + 7) >> 3);
}
if (tile_start_implicit && tile_start_and_end_present_flag) {
aom_internal_error(
&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"For OBU_FRAME type obu tile_start_and_end_present_flag must be 0");
cm->error.error_code = AOM_CODEC_CORRUPT_FRAME;
return -1;
}
*startTile = aom_rb_read_literal(rb, cm->log2_tile_rows + cm->log2_tile_cols);
*endTile = aom_rb_read_literal(rb, cm->log2_tile_rows + cm->log2_tile_cols);
return ((rb->bit_offset - saved_bit_offset + 7) >> 3);
}
static uint32_t read_one_tile_group_obu(
AV1Decoder *pbi, struct aom_read_bit_buffer *rb, int is_first_tg,
const uint8_t *data, const uint8_t *data_end, const uint8_t **p_data_end,
int *is_last_tg, int tile_start_implicit) {
AV1_COMMON *const cm = &pbi->common;
int startTile, endTile;
int32_t header_size, tg_payload_size;
header_size = read_tile_group_header(pbi, rb, &startTile, &endTile,
tile_start_implicit);
if (header_size == -1) return 0;
if (startTile > endTile) return header_size;
data += header_size;
av1_decode_tg_tiles_and_wrapup(pbi, data, data_end, p_data_end, startTile,
endTile, is_first_tg);
tg_payload_size = (uint32_t)(*p_data_end - data);
// TODO(shan): For now, assume all tile groups received in order
*is_last_tg = endTile == cm->tile_rows * cm->tile_cols - 1;
return header_size + tg_payload_size;
}
static void read_metadata_itut_t35(const uint8_t *data, size_t sz) {
struct aom_read_bit_buffer rb = { data, data + sz, 0, NULL, NULL };
for (size_t i = 0; i < sz; i++) {
aom_rb_read_literal(&rb, 8);
}
}
static void read_metadata_hdr_cll(const uint8_t *data, size_t sz) {
struct aom_read_bit_buffer rb = { data, data + sz, 0, NULL, NULL };
aom_rb_read_literal(&rb, 16); // max_cll
aom_rb_read_literal(&rb, 16); // max_fall
}
static void read_metadata_hdr_mdcv(const uint8_t *data, size_t sz) {
struct aom_read_bit_buffer rb = { data, data + sz, 0, NULL, NULL };
for (int i = 0; i < 3; i++) {
aom_rb_read_literal(&rb, 16); // primary_i_chromaticity_x
aom_rb_read_literal(&rb, 16); // primary_i_chromaticity_y
}
aom_rb_read_literal(&rb, 16); // white_point_chromaticity_x
aom_rb_read_literal(&rb, 16); // white_point_chromaticity_y
aom_rb_read_unsigned_literal(&rb, 32); // luminance_max
aom_rb_read_unsigned_literal(&rb, 32); // luminance_min
}
static void scalability_structure(struct aom_read_bit_buffer *rb) {
int spatial_layers_cnt = aom_rb_read_literal(rb, 2);
int spatial_layer_dimensions_present_flag = aom_rb_read_literal(rb, 1);
int spatial_layer_description_present_flag = aom_rb_read_literal(rb, 1);
int temporal_group_description_present_flag = aom_rb_read_literal(rb, 1);
aom_rb_read_literal(rb, 3); // reserved
if (spatial_layer_dimensions_present_flag) {
int i;
for (i = 0; i < spatial_layers_cnt + 1; i++) {
aom_rb_read_literal(rb, 16);
aom_rb_read_literal(rb, 16);
}
}
if (spatial_layer_description_present_flag) {
int i;
for (i = 0; i < spatial_layers_cnt + 1; i++) {
aom_rb_read_literal(rb, 8);
}
}
if (temporal_group_description_present_flag) {
int i, j, temporal_group_size;
temporal_group_size = aom_rb_read_literal(rb, 8);
for (i = 0; i < temporal_group_size; i++) {
aom_rb_read_literal(rb, 3);
aom_rb_read_literal(rb, 1);
aom_rb_read_literal(rb, 1);
int temporal_group_ref_cnt = aom_rb_read_literal(rb, 3);
for (j = 0; j < temporal_group_ref_cnt; j++) {
aom_rb_read_literal(rb, 8);
}
}
}
}
static void read_metadata_scalability(const uint8_t *data, size_t sz) {
struct aom_read_bit_buffer rb = { data, data + sz, 0, NULL, NULL };
int scalability_mode_idc = aom_rb_read_literal(&rb, 8);
if (scalability_mode_idc == SCALABILITY_SS) {
scalability_structure(&rb);
}
}
static void read_metadata_timecode(const uint8_t *data, size_t sz) {
struct aom_read_bit_buffer rb = { data, data + sz, 0, NULL, NULL };
aom_rb_read_literal(&rb, 5); // counting_type f(5)
int full_timestamp_flag = aom_rb_read_bit(&rb); // full_timestamp_flag f(1)
aom_rb_read_bit(&rb); // discontinuity_flag (f1)
aom_rb_read_bit(&rb); // cnt_dropped_flag f(1)
aom_rb_read_literal(&rb, 9); // n_frames f(9)
if (full_timestamp_flag) {
aom_rb_read_literal(&rb, 6); // seconds_value f(6)
aom_rb_read_literal(&rb, 6); // minutes_value f(6)
aom_rb_read_literal(&rb, 5); // hours_value f(5)
} else {
int seconds_flag = aom_rb_read_bit(&rb); // seconds_flag f(1)
if (seconds_flag) {
aom_rb_read_literal(&rb, 6); // seconds_value f(6)
int minutes_flag = aom_rb_read_bit(&rb); // minutes_flag f(1)
if (minutes_flag) {
aom_rb_read_literal(&rb, 6); // minutes_value f(6)
int hours_flag = aom_rb_read_bit(&rb); // hours_flag f(1)
if (hours_flag) {
aom_rb_read_literal(&rb, 5); // hours_value f(5)
}
}
}
}
// time_offset_length f(5)
int time_offset_length = aom_rb_read_literal(&rb, 5);
if (time_offset_length) {
aom_rb_read_literal(&rb, time_offset_length); // f(time_offset_length)
}
}
static size_t read_metadata(const uint8_t *data, size_t sz) {
size_t type_length;
uint64_t type_value;
OBU_METADATA_TYPE metadata_type;
if (aom_uleb_decode(data, sz, &type_value, &type_length) < 0) {
return sz;
}
metadata_type = (OBU_METADATA_TYPE)type_value;
if (metadata_type == OBU_METADATA_TYPE_ITUT_T35) {
read_metadata_itut_t35(data + type_length, sz - type_length);
} else if (metadata_type == OBU_METADATA_TYPE_HDR_CLL) {
read_metadata_hdr_cll(data + type_length, sz - type_length);
} else if (metadata_type == OBU_METADATA_TYPE_HDR_MDCV) {
read_metadata_hdr_mdcv(data + type_length, sz - type_length);
} else if (metadata_type == OBU_METADATA_TYPE_SCALABILITY) {
read_metadata_scalability(data + type_length, sz - type_length);
} else if (metadata_type == OBU_METADATA_TYPE_TIMECODE) {
read_metadata_timecode(data + type_length, sz - type_length);
}
return sz;
}
static aom_codec_err_t read_obu_size(const uint8_t *data,
size_t bytes_available,
size_t *const obu_size,
size_t *const length_field_size) {
uint64_t u_obu_size = 0;
if (aom_uleb_decode(data, bytes_available, &u_obu_size, length_field_size) !=
0) {
return AOM_CODEC_CORRUPT_FRAME;
}
if (u_obu_size > UINT32_MAX) return AOM_CODEC_CORRUPT_FRAME;
*obu_size = (size_t)u_obu_size;
return AOM_CODEC_OK;
}
aom_codec_err_t aom_read_obu_header_and_size(const uint8_t *data,
size_t bytes_available,
int is_annexb,
ObuHeader *obu_header,
size_t *const payload_size,
size_t *const bytes_read) {
size_t length_field_size = 0, obu_size = 0;
aom_codec_err_t status;
if (is_annexb) {
// Size field comes before the OBU header, and includes the OBU header
status =
read_obu_size(data, bytes_available, &obu_size, &length_field_size);
if (status != AOM_CODEC_OK) return status;
}
struct aom_read_bit_buffer rb = { data + length_field_size,
data + bytes_available, 0, NULL, NULL };
status = read_obu_header(&rb, is_annexb, obu_header);
if (status != AOM_CODEC_OK) return status;
if (is_annexb) {
// Derive the payload size from the data we've already read
if (obu_size < obu_header->size) return AOM_CODEC_CORRUPT_FRAME;
*payload_size = obu_size - obu_header->size;
} else {
// Size field comes after the OBU header, and is just the payload size
status = read_obu_size(data + obu_header->size,
bytes_available - obu_header->size, payload_size,
&length_field_size);
if (status != AOM_CODEC_OK) return status;
}
*bytes_read = length_field_size + obu_header->size;
return AOM_CODEC_OK;
}
void aom_decode_frame_from_obus(struct AV1Decoder *pbi, const uint8_t *data,
const uint8_t *data_end,
const uint8_t **p_data_end) {
AV1_COMMON *const cm = &pbi->common;
int frame_decoding_finished = 0;
int is_first_tg_obu_received = 1;
int frame_header_received = 0;
int frame_header_size = 0;
int seq_header_received = 0;
size_t seq_header_size = 0;
ObuHeader obu_header;
memset(&obu_header, 0, sizeof(obu_header));
pbi->dropped_obus = 0;
if (data_end < data) {
cm->error.error_code = AOM_CODEC_CORRUPT_FRAME;
return;
}
// decode frame as a series of OBUs
while (!frame_decoding_finished && !cm->error.error_code) {
struct aom_read_bit_buffer rb;
size_t payload_size = 0;
size_t decoded_payload_size = 0;
size_t obu_payload_offset = 0;
size_t bytes_read = 0;
const size_t bytes_available = data_end - data;
if (bytes_available == 0 && !frame_header_received) {
cm->error.error_code = AOM_CODEC_OK;
return;
}
aom_codec_err_t status =
aom_read_obu_header_and_size(data, bytes_available, cm->is_annexb,
&obu_header, &payload_size, &bytes_read);
if (status != AOM_CODEC_OK) {
cm->error.error_code = status;
return;
}
// Note: aom_read_obu_header_and_size() takes care of checking that this
// doesn't cause 'data' to advance past 'data_end'.
data += bytes_read;
cm->temporal_layer_id = obu_header.temporal_layer_id;
cm->spatial_layer_id = obu_header.spatial_layer_id;
if (obu_header.type != OBU_TEMPORAL_DELIMITER &&
obu_header.type != OBU_SEQUENCE_HEADER &&
obu_header.type != OBU_PADDING) {
// don't decode obu if it's not in current operating mode
if (!is_obu_in_current_operating_point(pbi, obu_header)) {
data += payload_size;
*p_data_end = data;
pbi->dropped_obus++;
continue;
}
}
av1_init_read_bit_buffer(pbi, &rb, data, data_end);
switch (obu_header.type) {
case OBU_TEMPORAL_DELIMITER:
decoded_payload_size = read_temporal_delimiter_obu();
break;
case OBU_SEQUENCE_HEADER:
if (!seq_header_received) {
decoded_payload_size = read_sequence_header_obu(pbi, &rb);
seq_header_size = decoded_payload_size;
seq_header_received = 1;
} else {
// Seeing another sequence header, skip as all sequence headers
// are required to be identical.
if (payload_size != seq_header_size) {
cm->error.error_code = AOM_CODEC_CORRUPT_FRAME;
return;
}
decoded_payload_size = seq_header_size;
}
break;
case OBU_FRAME_HEADER:
case OBU_REDUNDANT_FRAME_HEADER:
case OBU_FRAME:
// Only decode first frame header received
if (!frame_header_received) {
pbi->dropped_obus = 0;
av1_init_read_bit_buffer(pbi, &rb, data, data_end);
frame_header_size = read_frame_header_obu(
pbi, &rb, data, p_data_end, obu_header.type != OBU_FRAME);
frame_header_received = 1;
}
decoded_payload_size = frame_header_size;
if (cm->show_existing_frame) {
frame_decoding_finished = 1;
break;
}
if (obu_header.type != OBU_FRAME) break;
obu_payload_offset = frame_header_size;
AOM_FALLTHROUGH_INTENDED; // fall through to read tile group.
case OBU_TILE_GROUP:
if (!frame_header_received) {
cm->error.error_code = AOM_CODEC_CORRUPT_FRAME;
return;
}
if (data_end < data + obu_payload_offset ||
data_end < data + payload_size) {
cm->error.error_code = AOM_CODEC_CORRUPT_FRAME;
return;
}
decoded_payload_size += read_one_tile_group_obu(
pbi, &rb, is_first_tg_obu_received, data + obu_payload_offset,
data + payload_size, p_data_end, &frame_decoding_finished,
obu_header.type == OBU_FRAME);
is_first_tg_obu_received = 0;
break;
case OBU_METADATA:
if (data_end < data + payload_size) {
cm->error.error_code = AOM_CODEC_CORRUPT_FRAME;
return;
}
decoded_payload_size = read_metadata(data, payload_size);
break;
case OBU_PADDING:
default:
// Skip unrecognized OBUs
decoded_payload_size = payload_size;
break;
}
// Check that the signalled OBU size matches the actual amount of data read
if (decoded_payload_size > payload_size) {
cm->error.error_code = AOM_CODEC_CORRUPT_FRAME;
return;
}
if (data_end < data + payload_size) {
cm->error.error_code = AOM_CODEC_CORRUPT_FRAME;
return;
}
// If there are extra padding bytes, they should all be zero
while (decoded_payload_size < payload_size) {
uint8_t padding_byte = data[decoded_payload_size++];
if (padding_byte != 0) {
cm->error.error_code = AOM_CODEC_CORRUPT_FRAME;
return;
}
}
data += payload_size;
}
}