| /* |
| * Copyright (c) 2024, Alliance for Open Media. All rights reserved. |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <assert.h> |
| #include <arm_neon.h> |
| #include <stddef.h> |
| #include <stdint.h> |
| |
| #include "config/aom_config.h" |
| #include "config/av1_rtcd.h" |
| |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_dsp/aom_filter.h" |
| #include "aom_dsp/arm/mem_neon.h" |
| #include "aom_dsp/arm/transpose_neon.h" |
| #include "aom_ports/mem.h" |
| #include "av1/common/arm/convolve_scale_neon.h" |
| #include "av1/common/convolve.h" |
| #include "av1/common/enums.h" |
| #include "av1/common/filter.h" |
| |
| // clang-format off |
| DECLARE_ALIGNED(16, static const uint8_t, kScale2DotProdPermuteTbl[32]) = { |
| 0, 1, 2, 3, 2, 3, 4, 5, 4, 5, 6, 7, 6, 7, 8, 9, |
| 4, 5, 6, 7, 6, 7, 8, 9, 8, 9, 10, 11, 10, 11, 12, 13 |
| }; |
| // clang-format on |
| |
| static inline int16x4_t convolve8_4_h(const uint8x8_t s0, const uint8x8_t s1, |
| const uint8x8_t s2, const uint8x8_t s3, |
| const int8x8_t filter, |
| const int32x4_t horiz_const) { |
| const int8x16_t filters = vcombine_s8(filter, filter); |
| |
| uint8x16_t s01 = vcombine_u8(s0, s1); |
| uint8x16_t s23 = vcombine_u8(s2, s3); |
| |
| // Transform sample range to [-128, 127] for 8-bit signed dot product. |
| int8x16_t s01_128 = vreinterpretq_s8_u8(vsubq_u8(s01, vdupq_n_u8(128))); |
| int8x16_t s23_128 = vreinterpretq_s8_u8(vsubq_u8(s23, vdupq_n_u8(128))); |
| |
| int32x4_t sum01 = vdotq_s32(horiz_const, s01_128, filters); |
| int32x4_t sum23 = vdotq_s32(horiz_const, s23_128, filters); |
| |
| int32x4_t sum = vpaddq_s32(sum01, sum23); |
| |
| // We halved the filter values so -1 from right shift. |
| return vshrn_n_s32(sum, ROUND0_BITS - 1); |
| } |
| |
| static inline int16x8_t convolve8_8_h(const uint8x8_t s0, const uint8x8_t s1, |
| const uint8x8_t s2, const uint8x8_t s3, |
| const uint8x8_t s4, const uint8x8_t s5, |
| const uint8x8_t s6, const uint8x8_t s7, |
| const int8x8_t filter, |
| const int32x4_t horiz_const) { |
| const int8x16_t filters = vcombine_s8(filter, filter); |
| |
| uint8x16_t s01 = vcombine_u8(s0, s1); |
| uint8x16_t s23 = vcombine_u8(s2, s3); |
| uint8x16_t s45 = vcombine_u8(s4, s5); |
| uint8x16_t s67 = vcombine_u8(s6, s7); |
| |
| // Transform sample range to [-128, 127] for 8-bit signed dot product. |
| int8x16_t s01_128 = vreinterpretq_s8_u8(vsubq_u8(s01, vdupq_n_u8(128))); |
| int8x16_t s23_128 = vreinterpretq_s8_u8(vsubq_u8(s23, vdupq_n_u8(128))); |
| int8x16_t s45_128 = vreinterpretq_s8_u8(vsubq_u8(s45, vdupq_n_u8(128))); |
| int8x16_t s67_128 = vreinterpretq_s8_u8(vsubq_u8(s67, vdupq_n_u8(128))); |
| |
| int32x4_t sum01 = vdotq_s32(horiz_const, s01_128, filters); |
| int32x4_t sum23 = vdotq_s32(horiz_const, s23_128, filters); |
| int32x4_t sum45 = vdotq_s32(horiz_const, s45_128, filters); |
| int32x4_t sum67 = vdotq_s32(horiz_const, s67_128, filters); |
| |
| int32x4_t sum0123 = vpaddq_s32(sum01, sum23); |
| int32x4_t sum4567 = vpaddq_s32(sum45, sum67); |
| |
| // We halved the filter values so -1 from right shift. |
| return vcombine_s16(vshrn_n_s32(sum0123, ROUND0_BITS - 1), |
| vshrn_n_s32(sum4567, ROUND0_BITS - 1)); |
| } |
| |
| static inline void convolve_horiz_scale_neon_dotprod( |
| const uint8_t *src, int src_stride, int16_t *dst, int dst_stride, int w, |
| int h, const int16_t *x_filter, const int subpel_x_qn, |
| const int x_step_qn) { |
| DECLARE_ALIGNED(16, int16_t, temp[8 * 8]); |
| const int bd = 8; |
| // A shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding |
| // shifts - which are generally faster than rounding shifts on modern CPUs. |
| const int32_t horiz_offset = |
| (1 << (bd + FILTER_BITS - 1)) + (1 << (ROUND0_BITS - 1)); |
| // The shim of 128 << FILTER_BITS is needed because we are subtracting 128 |
| // from every source value. |
| const int32_t dotprod_offset = 128 << FILTER_BITS; |
| // Divide the total by 4: we halved the filter values and will use a pairwise |
| // add in the convolution kernel. |
| const int32x4_t horiz_offset_vec = |
| vdupq_n_s32((horiz_offset + dotprod_offset) >> 2); |
| |
| if (w == 4) { |
| do { |
| int x_qn = subpel_x_qn; |
| |
| // Process a 4x4 tile. |
| for (int r = 0; r < 4; r++) { |
| const uint8_t *const s = &src[x_qn >> SCALE_SUBPEL_BITS]; |
| |
| const ptrdiff_t filter_offset = |
| SUBPEL_TAPS * ((x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS); |
| // Filter values are all even so halve them to fit in int8_t. |
| const int8x8_t filter = |
| vshrn_n_s16(vld1q_s16(x_filter + filter_offset), 1); |
| |
| uint8x8_t t0, t1, t2, t3; |
| load_u8_8x4(s, src_stride, &t0, &t1, &t2, &t3); |
| |
| int16x4_t d0 = convolve8_4_h(t0, t1, t2, t3, filter, horiz_offset_vec); |
| |
| vst1_s16(&temp[r * 4], d0); |
| |
| x_qn += x_step_qn; |
| } |
| |
| // Transpose the 4x4 result tile and store. |
| int16x4_t d0, d1, d2, d3; |
| load_s16_4x4(temp, 4, &d0, &d1, &d2, &d3); |
| |
| transpose_elems_inplace_s16_4x4(&d0, &d1, &d2, &d3); |
| |
| store_s16_4x4(dst, dst_stride, d0, d1, d2, d3); |
| |
| dst += 4 * dst_stride; |
| src += 4 * src_stride; |
| h -= 4; |
| } while (h > 0); |
| } else { |
| do { |
| int x_qn = subpel_x_qn; |
| int16_t *d = dst; |
| int width = w; |
| |
| do { |
| // Process an 8x8 tile. |
| for (int r = 0; r < 8; r++) { |
| const uint8_t *const s = &src[(x_qn >> SCALE_SUBPEL_BITS)]; |
| |
| const ptrdiff_t filter_offset = |
| SUBPEL_TAPS * ((x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS); |
| // Filter values are all even so halve them to fit in int8_t. |
| int8x8_t filter = vshrn_n_s16(vld1q_s16(x_filter + filter_offset), 1); |
| |
| uint8x8_t t0, t1, t2, t3, t4, t5, t6, t7; |
| load_u8_8x8(s, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); |
| |
| int16x8_t d0 = convolve8_8_h(t0, t1, t2, t3, t4, t5, t6, t7, filter, |
| horiz_offset_vec); |
| |
| vst1q_s16(&temp[r * 8], d0); |
| |
| x_qn += x_step_qn; |
| } |
| |
| // Transpose the 8x8 result tile and store. |
| int16x8_t d0, d1, d2, d3, d4, d5, d6, d7; |
| load_s16_8x8(temp, 8, &d0, &d1, &d2, &d3, &d4, &d5, &d6, &d7); |
| |
| transpose_elems_inplace_s16_8x8(&d0, &d1, &d2, &d3, &d4, &d5, &d6, &d7); |
| |
| store_s16_8x8(d, dst_stride, d0, d1, d2, d3, d4, d5, d6, d7); |
| |
| d += 8; |
| width -= 8; |
| } while (width != 0); |
| |
| dst += 8 * dst_stride; |
| src += 8 * src_stride; |
| h -= 8; |
| } while (h > 0); |
| } |
| } |
| |
| static inline int16x4_t convolve8_4_h_scale_2(uint8x16_t samples, |
| const int8x8_t filters, |
| const int32x4_t horiz_const, |
| const uint8x16x2_t permute_tbl) { |
| // Transform sample range to [-128, 127] for 8-bit signed dot product. |
| int8x16_t samples_128 = |
| vreinterpretq_s8_u8(vsubq_u8(samples, vdupq_n_u8(128))); |
| |
| // Permute samples ready for dot product. |
| // { 0, 1, 2, 3, 2, 3, 4, 5, 4, 5, 6, 7, 6, 7, 8, 9 } |
| // { 4, 5, 6, 7, 6, 7, 8, 9, 8, 9, 10, 11, 10, 11, 12, 13 } |
| int8x16_t perm_samples[2] = { vqtbl1q_s8(samples_128, permute_tbl.val[0]), |
| vqtbl1q_s8(samples_128, permute_tbl.val[1]) }; |
| |
| int32x4_t sum = vdotq_lane_s32(horiz_const, perm_samples[0], filters, 0); |
| sum = vdotq_lane_s32(sum, perm_samples[1], filters, 1); |
| |
| // We halved the filter values so -1 from right shift. |
| return vshrn_n_s32(sum, ROUND0_BITS - 1); |
| } |
| |
| static inline int16x8_t convolve8_8_h_scale_2(uint8x16_t samples[2], |
| const int8x8_t filters, |
| const int32x4_t horiz_const, |
| const uint8x16x2_t permute_tbl) { |
| // Transform sample range to [-128, 127] for 8-bit signed dot product. |
| int8x16_t samples0_128 = |
| vreinterpretq_s8_u8(vsubq_u8(samples[0], vdupq_n_u8(128))); |
| int8x16_t samples1_128 = |
| vreinterpretq_s8_u8(vsubq_u8(samples[1], vdupq_n_u8(128))); |
| |
| // Permute samples ready for dot product. |
| // { 0, 1, 2, 3, 2, 3, 4, 5, 4, 5, 6, 7, 6, 7, 8, 9 } |
| // { 4, 5, 6, 7, 6, 7, 8, 9, 8, 9, 10, 11, 10, 11, 12, 13 } |
| int8x16_t perm_samples[4] = { vqtbl1q_s8(samples0_128, permute_tbl.val[0]), |
| vqtbl1q_s8(samples0_128, permute_tbl.val[1]), |
| vqtbl1q_s8(samples1_128, permute_tbl.val[0]), |
| vqtbl1q_s8(samples1_128, permute_tbl.val[1]) }; |
| |
| // First 4 output values. |
| int32x4_t sum0123 = vdotq_lane_s32(horiz_const, perm_samples[0], filters, 0); |
| sum0123 = vdotq_lane_s32(sum0123, perm_samples[1], filters, 1); |
| // Second 4 output values. |
| int32x4_t sum4567 = vdotq_lane_s32(horiz_const, perm_samples[2], filters, 0); |
| sum4567 = vdotq_lane_s32(sum4567, perm_samples[3], filters, 1); |
| |
| // We halved the filter values so -1 from right shift. |
| return vcombine_s16(vshrn_n_s32(sum0123, ROUND0_BITS - 1), |
| vshrn_n_s32(sum4567, ROUND0_BITS - 1)); |
| } |
| |
| static inline void convolve_horiz_scale_2_neon_dotprod( |
| const uint8_t *src, int src_stride, int16_t *dst, int dst_stride, int w, |
| int h, const int16_t *x_filter) { |
| const int bd = 8; |
| // A shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding |
| // shifts - which are generally faster than rounding shifts on modern CPUs. |
| const int32_t horiz_offset = |
| (1 << (bd + FILTER_BITS - 1)) + (1 << (ROUND0_BITS - 1)); |
| // The shim of 128 << FILTER_BITS is needed because we are subtracting 128 |
| // from every source value. |
| const int32_t dotprod_offset = 128 << FILTER_BITS; |
| // Divide the total by 2 because we halved the filter values. |
| const int32x4_t horiz_offset_vec = |
| vdupq_n_s32((horiz_offset + dotprod_offset) >> 1); |
| |
| const uint8x16x2_t permute_tbl = vld1q_u8_x2(kScale2DotProdPermuteTbl); |
| // Filter values are all even so halve them to fit in int8_t. |
| const int8x8_t filter = vshrn_n_s16(vld1q_s16(x_filter), 1); |
| |
| if (w == 4) { |
| do { |
| const uint8_t *s = src; |
| int16_t *d = dst; |
| int width = w; |
| |
| do { |
| uint8x16_t s0, s1, s2, s3; |
| load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3); |
| |
| int16x4_t d0 = |
| convolve8_4_h_scale_2(s0, filter, horiz_offset_vec, permute_tbl); |
| int16x4_t d1 = |
| convolve8_4_h_scale_2(s1, filter, horiz_offset_vec, permute_tbl); |
| int16x4_t d2 = |
| convolve8_4_h_scale_2(s2, filter, horiz_offset_vec, permute_tbl); |
| int16x4_t d3 = |
| convolve8_4_h_scale_2(s3, filter, horiz_offset_vec, permute_tbl); |
| |
| store_s16_4x4(d, dst_stride, d0, d1, d2, d3); |
| |
| s += 8; |
| d += 4; |
| width -= 4; |
| } while (width != 0); |
| |
| dst += 4 * dst_stride; |
| src += 4 * src_stride; |
| h -= 4; |
| } while (h > 0); |
| } else { |
| do { |
| const uint8_t *s = src; |
| int16_t *d = dst; |
| int width = w; |
| |
| do { |
| uint8x16_t s0[2], s1[2], s2[2], s3[2]; |
| load_u8_16x4(s, src_stride, &s0[0], &s1[0], &s2[0], &s3[0]); |
| load_u8_16x4(s + 8, src_stride, &s0[1], &s1[1], &s2[1], &s3[1]); |
| |
| int16x8_t d0 = |
| convolve8_8_h_scale_2(s0, filter, horiz_offset_vec, permute_tbl); |
| int16x8_t d1 = |
| convolve8_8_h_scale_2(s1, filter, horiz_offset_vec, permute_tbl); |
| int16x8_t d2 = |
| convolve8_8_h_scale_2(s2, filter, horiz_offset_vec, permute_tbl); |
| int16x8_t d3 = |
| convolve8_8_h_scale_2(s3, filter, horiz_offset_vec, permute_tbl); |
| |
| store_s16_8x4(d, dst_stride, d0, d1, d2, d3); |
| |
| s += 16; |
| d += 8; |
| width -= 8; |
| } while (width != 0); |
| |
| dst += 4 * dst_stride; |
| src += 4 * src_stride; |
| h -= 4; |
| } while (h > 0); |
| } |
| } |
| |
| void av1_convolve_2d_scale_neon_dotprod( |
| const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int w, |
| int h, const InterpFilterParams *filter_params_x, |
| const InterpFilterParams *filter_params_y, const int subpel_x_qn, |
| const int x_step_qn, const int subpel_y_qn, const int y_step_qn, |
| ConvolveParams *conv_params) { |
| if (w < 4 || h < 4) { |
| av1_convolve_2d_scale_c(src, src_stride, dst, dst_stride, w, h, |
| filter_params_x, filter_params_y, subpel_x_qn, |
| x_step_qn, subpel_y_qn, y_step_qn, conv_params); |
| return; |
| } |
| |
| // For the interpolation 8-tap filters are used. |
| assert(filter_params_y->taps <= 8 && filter_params_x->taps <= 8); |
| |
| DECLARE_ALIGNED(32, int16_t, |
| im_block[(2 * MAX_SB_SIZE + MAX_FILTER_TAP) * MAX_SB_SIZE]); |
| int im_h = (((h - 1) * y_step_qn + subpel_y_qn) >> SCALE_SUBPEL_BITS) + |
| filter_params_y->taps; |
| int im_stride = MAX_SB_SIZE; |
| CONV_BUF_TYPE *dst16 = conv_params->dst; |
| const int dst16_stride = conv_params->dst_stride; |
| |
| // Account for needing filter_taps / 2 - 1 lines prior and filter_taps / 2 |
| // lines post both horizontally and vertically. |
| const ptrdiff_t horiz_offset = filter_params_x->taps / 2 - 1; |
| const ptrdiff_t vert_offset = (filter_params_y->taps / 2 - 1) * src_stride; |
| |
| // Horizontal filter |
| if (x_step_qn != 2 * (1 << SCALE_SUBPEL_BITS)) { |
| convolve_horiz_scale_neon_dotprod( |
| src - horiz_offset - vert_offset, src_stride, im_block, im_stride, w, |
| im_h, filter_params_x->filter_ptr, subpel_x_qn, x_step_qn); |
| } else { |
| assert(subpel_x_qn < (1 << SCALE_SUBPEL_BITS)); |
| // The filter index is calculated using the |
| // ((subpel_x_qn + x * x_step_qn) & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS |
| // equation, where the values of x are from 0 to w. If x_step_qn is a |
| // multiple of SCALE_SUBPEL_MASK we can leave it out of the equation. |
| const ptrdiff_t filter_offset = |
| SUBPEL_TAPS * ((subpel_x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS); |
| const int16_t *x_filter = filter_params_x->filter_ptr + filter_offset; |
| |
| // The source index is calculated using the (subpel_x_qn + x * x_step_qn) >> |
| // SCALE_SUBPEL_BITS, where the values of x are from 0 to w. If subpel_x_qn |
| // < (1 << SCALE_SUBPEL_BITS) and x_step_qn % (1 << SCALE_SUBPEL_BITS) == 0, |
| // the source index can be determined using the value x * (x_step_qn / |
| // (1 << SCALE_SUBPEL_BITS)). |
| convolve_horiz_scale_2_neon_dotprod(src - horiz_offset - vert_offset, |
| src_stride, im_block, im_stride, w, |
| im_h, x_filter); |
| } |
| |
| // Vertical filter |
| if (filter_params_y->interp_filter == MULTITAP_SHARP) { |
| if (UNLIKELY(conv_params->is_compound)) { |
| if (conv_params->do_average) { |
| if (conv_params->use_dist_wtd_comp_avg) { |
| compound_dist_wtd_convolve_vert_scale_8tap_neon( |
| im_block, im_stride, dst, dst_stride, dst16, dst16_stride, w, h, |
| filter_params_y->filter_ptr, conv_params, subpel_y_qn, y_step_qn); |
| } else { |
| compound_avg_convolve_vert_scale_8tap_neon( |
| im_block, im_stride, dst, dst_stride, dst16, dst16_stride, w, h, |
| filter_params_y->filter_ptr, subpel_y_qn, y_step_qn); |
| } |
| } else { |
| compound_convolve_vert_scale_8tap_neon( |
| im_block, im_stride, dst16, dst16_stride, w, h, |
| filter_params_y->filter_ptr, subpel_y_qn, y_step_qn); |
| } |
| } else { |
| convolve_vert_scale_8tap_neon(im_block, im_stride, dst, dst_stride, w, h, |
| filter_params_y->filter_ptr, subpel_y_qn, |
| y_step_qn); |
| } |
| } else { |
| if (UNLIKELY(conv_params->is_compound)) { |
| if (conv_params->do_average) { |
| if (conv_params->use_dist_wtd_comp_avg) { |
| compound_dist_wtd_convolve_vert_scale_6tap_neon( |
| im_block + im_stride, im_stride, dst, dst_stride, dst16, |
| dst16_stride, w, h, filter_params_y->filter_ptr, conv_params, |
| subpel_y_qn, y_step_qn); |
| } else { |
| compound_avg_convolve_vert_scale_6tap_neon( |
| im_block + im_stride, im_stride, dst, dst_stride, dst16, |
| dst16_stride, w, h, filter_params_y->filter_ptr, subpel_y_qn, |
| y_step_qn); |
| } |
| } else { |
| compound_convolve_vert_scale_6tap_neon( |
| im_block + im_stride, im_stride, dst16, dst16_stride, w, h, |
| filter_params_y->filter_ptr, subpel_y_qn, y_step_qn); |
| } |
| } else { |
| convolve_vert_scale_6tap_neon( |
| im_block + im_stride, im_stride, dst, dst_stride, w, h, |
| filter_params_y->filter_ptr, subpel_y_qn, y_step_qn); |
| } |
| } |
| } |