blob: dcf8da186907632e364ea798225f542d1d64edbd [file] [log] [blame]
/*
* Copyright (c) 2023, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <arm_neon.h>
#include <assert.h>
#include "aom_dsp/arm/mem_neon.h"
#include "av1/common/arm/compound_convolve_neon.h"
#include "config/aom_config.h"
#include "config/av1_rtcd.h"
DECLARE_ALIGNED(16, static const uint8_t, dot_prod_permute_tbl[48]) = {
0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6,
4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10,
8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14
};
static inline int16x4_t convolve4_4_2d_h(uint8x16_t samples,
const int8x8_t x_filter,
const int32x4_t correction,
const uint8x16_t range_limit,
const uint8x16_t permute_tbl) {
// Clamp sample range to [-128, 127] for 8-bit signed dot product.
int8x16_t clamped_samples =
vreinterpretq_s8_u8(vsubq_u8(samples, range_limit));
// Permute samples ready for dot product.
// { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 }
int8x16_t permuted_samples = vqtbl1q_s8(clamped_samples, permute_tbl);
// Accumulate dot product into 'correction' to account for range clamp.
int32x4_t sum = vdotq_lane_s32(correction, permuted_samples, x_filter, 0);
// We halved the convolution filter values so -1 from the right shift.
return vshrn_n_s32(sum, ROUND0_BITS - 1);
}
static inline int16x8_t convolve8_8_2d_h(uint8x16_t samples,
const int8x8_t x_filter,
const int32x4_t correction,
const uint8x16_t range_limit,
const uint8x16x3_t permute_tbl) {
int8x16_t clamped_samples, permuted_samples[3];
int32x4_t sum[2];
// Clamp sample range to [-128, 127] for 8-bit signed dot product.
clamped_samples = vreinterpretq_s8_u8(vsubq_u8(samples, range_limit));
// Permute samples ready for dot product. */
// { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 }
permuted_samples[0] = vqtbl1q_s8(clamped_samples, permute_tbl.val[0]);
// { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 }
permuted_samples[1] = vqtbl1q_s8(clamped_samples, permute_tbl.val[1]);
// { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 }
permuted_samples[2] = vqtbl1q_s8(clamped_samples, permute_tbl.val[2]);
// Accumulate dot product into 'correction' to account for range clamp.
// First 4 output values.
sum[0] = vdotq_lane_s32(correction, permuted_samples[0], x_filter, 0);
sum[0] = vdotq_lane_s32(sum[0], permuted_samples[1], x_filter, 1);
// Second 4 output values.
sum[1] = vdotq_lane_s32(correction, permuted_samples[1], x_filter, 0);
sum[1] = vdotq_lane_s32(sum[1], permuted_samples[2], x_filter, 1);
// Narrow and re-pack.
// We halved the convolution filter values so -1 from the right shift.
return vcombine_s16(vshrn_n_s32(sum[0], ROUND0_BITS - 1),
vshrn_n_s32(sum[1], ROUND0_BITS - 1));
}
static inline void dist_wtd_convolve_2d_horiz_neon_dotprod(
const uint8_t *src, int src_stride, int16_t *im_block, const int im_stride,
const int16_t *x_filter_ptr, const int im_h, int w) {
const int bd = 8;
// Dot product constants and other shims.
const int16x8_t x_filter_s16 = vld1q_s16(x_filter_ptr);
// This shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding shifts
// - which are generally faster than rounding shifts on modern CPUs.
const int32_t horiz_const =
((1 << (bd + FILTER_BITS - 1)) + (1 << (ROUND0_BITS - 1)));
// Halve the total because we will halve the filter values.
const int32x4_t correction =
vdupq_n_s32(((128 << FILTER_BITS) + horiz_const) / 2);
const uint8x16_t range_limit = vdupq_n_u8(128);
const uint8_t *src_ptr = src;
int16_t *dst_ptr = im_block;
int dst_stride = im_stride;
int height = im_h;
if (w == 4) {
const uint8x16_t permute_tbl = vld1q_u8(dot_prod_permute_tbl);
// 4-tap filters are used for blocks having width <= 4.
// Filter values are even, so halve to reduce intermediate precision reqs.
const int8x8_t x_filter =
vshrn_n_s16(vcombine_s16(vld1_s16(x_filter_ptr + 2), vdup_n_s16(0)), 1);
src_ptr += 2;
do {
uint8x16_t s0, s1, s2, s3;
load_u8_16x4(src_ptr, src_stride, &s0, &s1, &s2, &s3);
int16x4_t d0 =
convolve4_4_2d_h(s0, x_filter, correction, range_limit, permute_tbl);
int16x4_t d1 =
convolve4_4_2d_h(s1, x_filter, correction, range_limit, permute_tbl);
int16x4_t d2 =
convolve4_4_2d_h(s2, x_filter, correction, range_limit, permute_tbl);
int16x4_t d3 =
convolve4_4_2d_h(s3, x_filter, correction, range_limit, permute_tbl);
store_s16_4x4(dst_ptr, dst_stride, d0, d1, d2, d3);
src_ptr += 4 * src_stride;
dst_ptr += 4 * dst_stride;
height -= 4;
} while (height > 4);
do {
uint8x16_t s0 = vld1q_u8(src_ptr);
int16x4_t d0 =
convolve4_4_2d_h(s0, x_filter, correction, range_limit, permute_tbl);
vst1_s16(dst_ptr, d0);
src_ptr += src_stride;
dst_ptr += dst_stride;
} while (--height != 0);
} else {
const uint8x16x3_t permute_tbl = vld1q_u8_x3(dot_prod_permute_tbl);
// Filter values are even, so halve to reduce intermediate precision reqs.
const int8x8_t x_filter = vshrn_n_s16(x_filter_s16, 1);
do {
const uint8_t *s = src_ptr;
int16_t *d = dst_ptr;
int width = w;
do {
uint8x16_t s0, s1, s2, s3;
load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3);
int16x8_t d0 = convolve8_8_2d_h(s0, x_filter, correction, range_limit,
permute_tbl);
int16x8_t d1 = convolve8_8_2d_h(s1, x_filter, correction, range_limit,
permute_tbl);
int16x8_t d2 = convolve8_8_2d_h(s2, x_filter, correction, range_limit,
permute_tbl);
int16x8_t d3 = convolve8_8_2d_h(s3, x_filter, correction, range_limit,
permute_tbl);
store_s16_8x4(d, dst_stride, d0, d1, d2, d3);
s += 8;
d += 8;
width -= 8;
} while (width > 0);
src_ptr += 4 * src_stride;
dst_ptr += 4 * dst_stride;
height -= 4;
} while (height > 4);
do {
const uint8_t *s = src_ptr;
int16_t *d = dst_ptr;
int width = w;
do {
uint8x16_t s0 = vld1q_u8(s);
int16x8_t d0 = convolve8_8_2d_h(s0, x_filter, correction, range_limit,
permute_tbl);
vst1q_s16(d, d0);
s += 8;
d += 8;
width -= 8;
} while (width > 0);
src_ptr += src_stride;
dst_ptr += dst_stride;
} while (--height != 0);
}
}
void av1_dist_wtd_convolve_2d_neon_dotprod(
const uint8_t *src, int src_stride, uint8_t *dst8, int dst8_stride, int w,
int h, const InterpFilterParams *filter_params_x,
const InterpFilterParams *filter_params_y, const int subpel_x_qn,
const int subpel_y_qn, ConvolveParams *conv_params) {
assert(w % 4 == 0);
assert(h % 4 == 0);
DECLARE_ALIGNED(16, int16_t,
im_block[(MAX_SB_SIZE + SUBPEL_TAPS - 1) * MAX_SB_SIZE]);
const int y_filter_taps = get_filter_tap(filter_params_y, subpel_y_qn);
const int clamped_y_taps = y_filter_taps < 6 ? 6 : y_filter_taps;
const int im_h = h + clamped_y_taps - 1;
const int im_stride = MAX_SB_SIZE;
const int vert_offset = clamped_y_taps / 2 - 1;
const int horiz_offset = filter_params_x->taps / 2 - 1;
const uint8_t *src_ptr = src - vert_offset * src_stride - horiz_offset;
const int16_t *x_filter_ptr = av1_get_interp_filter_subpel_kernel(
filter_params_x, subpel_x_qn & SUBPEL_MASK);
const int16_t *y_filter_ptr = av1_get_interp_filter_subpel_kernel(
filter_params_y, subpel_y_qn & SUBPEL_MASK);
const int16x8_t y_filter = vld1q_s16(y_filter_ptr);
dist_wtd_convolve_2d_horiz_neon_dotprod(src_ptr, src_stride, im_block,
im_stride, x_filter_ptr, im_h, w);
if (clamped_y_taps == 6) {
if (conv_params->do_average) {
if (UNLIKELY(conv_params->use_dist_wtd_comp_avg)) {
dist_wtd_convolve_2d_vert_6tap_dist_wtd_avg_neon(
im_block, im_stride, dst8, dst8_stride, conv_params, y_filter, h,
w);
} else {
dist_wtd_convolve_2d_vert_6tap_avg_neon(im_block, im_stride, dst8,
dst8_stride, conv_params,
y_filter, h, w);
}
} else {
dist_wtd_convolve_2d_vert_6tap_neon(im_block, im_stride, conv_params,
y_filter, h, w);
}
} else {
if (conv_params->do_average) {
if (UNLIKELY(conv_params->use_dist_wtd_comp_avg)) {
dist_wtd_convolve_2d_vert_8tap_dist_wtd_avg_neon(
im_block, im_stride, dst8, dst8_stride, conv_params, y_filter, h,
w);
} else {
dist_wtd_convolve_2d_vert_8tap_avg_neon(im_block, im_stride, dst8,
dst8_stride, conv_params,
y_filter, h, w);
}
} else {
dist_wtd_convolve_2d_vert_8tap_neon(im_block, im_stride, conv_params,
y_filter, h, w);
}
}
}
static inline uint16x4_t convolve4_4_x(uint8x16_t samples,
const int8x8_t x_filter,
const int32x4_t correction,
const uint8x16_t range_limit,
const uint8x16_t permute_tbl) {
// Clamp sample range to [-128, 127] for 8-bit signed dot product.
int8x16_t clamped_samples =
vreinterpretq_s8_u8(vsubq_u8(samples, range_limit));
// Permute samples ready for dot product.
// { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 }
int8x16_t permuted_samples = vqtbl1q_s8(clamped_samples, permute_tbl);
// Accumulate dot product into 'correction' to account for range clamp.
int32x4_t sum = vdotq_lane_s32(correction, permuted_samples, x_filter, 0);
// We halved the convolution filter values so -1 from the right shift.
return vreinterpret_u16_s16(vshrn_n_s32(sum, ROUND0_BITS - 1));
}
static inline uint16x8_t convolve8_8_x(uint8x16_t samples,
const int8x8_t x_filter,
const int32x4_t correction,
const uint8x16_t range_limit,
const uint8x16x3_t permute_tbl) {
int8x16_t clamped_samples, permuted_samples[3];
int32x4_t sum[2];
// Clamp sample range to [-128, 127] for 8-bit signed dot product.
clamped_samples = vreinterpretq_s8_u8(vsubq_u8(samples, range_limit));
// Permute samples ready for dot product. */
// { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 }
permuted_samples[0] = vqtbl1q_s8(clamped_samples, permute_tbl.val[0]);
// { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 }
permuted_samples[1] = vqtbl1q_s8(clamped_samples, permute_tbl.val[1]);
// { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 }
permuted_samples[2] = vqtbl1q_s8(clamped_samples, permute_tbl.val[2]);
// Accumulate dot product into 'correction' to account for range clamp.
// First 4 output values.
sum[0] = vdotq_lane_s32(correction, permuted_samples[0], x_filter, 0);
sum[0] = vdotq_lane_s32(sum[0], permuted_samples[1], x_filter, 1);
// Second 4 output values.
sum[1] = vdotq_lane_s32(correction, permuted_samples[1], x_filter, 0);
sum[1] = vdotq_lane_s32(sum[1], permuted_samples[2], x_filter, 1);
// Narrow and re-pack.
// We halved the convolution filter values so -1 from the right shift.
int16x8_t res = vcombine_s16(vshrn_n_s32(sum[0], ROUND0_BITS - 1),
vshrn_n_s32(sum[1], ROUND0_BITS - 1));
return vreinterpretq_u16_s16(res);
}
static inline void dist_wtd_convolve_x_dist_wtd_avg_neon_dotprod(
const uint8_t *src, int src_stride, uint8_t *dst8, int dst8_stride, int w,
int h, const InterpFilterParams *filter_params_x, const int subpel_x_qn,
ConvolveParams *conv_params) {
assert(w % 4 == 0);
assert(h % 4 == 0);
const int bd = 8;
const int offset_bits = bd + 2 * FILTER_BITS - ROUND0_BITS;
const int16_t round_offset = (1 << (offset_bits - COMPOUND_ROUND1_BITS)) +
(1 << (offset_bits - COMPOUND_ROUND1_BITS - 1));
const int16x8_t round_offset_vec = vdupq_n_s16(round_offset);
const uint16_t fwd_offset = conv_params->fwd_offset;
const uint16_t bck_offset = conv_params->bck_offset;
// Horizontal filter.
const int16_t *x_filter_ptr = av1_get_interp_filter_subpel_kernel(
filter_params_x, subpel_x_qn & SUBPEL_MASK);
const int16x8_t x_filter_s16 = vld1q_s16(x_filter_ptr);
// Dot-product constants and other shims.
const uint8x16_t range_limit = vdupq_n_u8(128);
// Fold round_offset into the dot-product filter correction constant. The
// additional shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding
// shifts - which are generally faster than rounding shifts on modern CPUs.
// Halve the total because we will halve the filter values.
int32x4_t correction =
vdupq_n_s32(((128 << FILTER_BITS) + (round_offset << ROUND0_BITS) +
(1 << (ROUND0_BITS - 1))) /
2);
const int horiz_offset = filter_params_x->taps / 2 - 1;
const uint8_t *src_ptr = src - horiz_offset;
CONV_BUF_TYPE *dst_ptr = conv_params->dst;
uint8_t *dst8_ptr = dst8;
int dst_stride = conv_params->dst_stride;
int height = h;
if (w == 4) {
const uint8x16_t permute_tbl = vld1q_u8(dot_prod_permute_tbl);
// 4-tap filters are used for blocks having width <= 4.
// Filter values are even, so halve to reduce intermediate precision reqs.
const int8x8_t x_filter =
vshrn_n_s16(vcombine_s16(vld1_s16(x_filter_ptr + 2), vdup_n_s16(0)), 1);
src_ptr += 2;
do {
uint8x16_t s0, s1, s2, s3;
load_u8_16x4(src_ptr, src_stride, &s0, &s1, &s2, &s3);
uint16x4_t d0 =
convolve4_4_x(s0, x_filter, correction, range_limit, permute_tbl);
uint16x4_t d1 =
convolve4_4_x(s1, x_filter, correction, range_limit, permute_tbl);
uint16x4_t d2 =
convolve4_4_x(s2, x_filter, correction, range_limit, permute_tbl);
uint16x4_t d3 =
convolve4_4_x(s3, x_filter, correction, range_limit, permute_tbl);
uint16x4_t dd0, dd1, dd2, dd3;
load_u16_4x4(dst_ptr, dst_stride, &dd0, &dd1, &dd2, &dd3);
uint8x8_t d01_u8, d23_u8;
compute_dist_wtd_avg_4x4(dd0, dd1, dd2, dd3, d0, d1, d2, d3, fwd_offset,
bck_offset, round_offset_vec, &d01_u8, &d23_u8);
store_u8x4_strided_x2(dst8_ptr + 0 * dst8_stride, dst8_stride, d01_u8);
store_u8x4_strided_x2(dst8_ptr + 2 * dst8_stride, dst8_stride, d23_u8);
src_ptr += 4 * src_stride;
dst_ptr += 4 * dst_stride;
dst8_ptr += 4 * dst8_stride;
height -= 4;
} while (height != 0);
} else {
const uint8x16x3_t permute_tbl = vld1q_u8_x3(dot_prod_permute_tbl);
// Filter values are even, so halve to reduce intermediate precision reqs.
const int8x8_t x_filter = vshrn_n_s16(x_filter_s16, 1);
do {
const uint8_t *s = src_ptr;
CONV_BUF_TYPE *d = dst_ptr;
uint8_t *d_u8 = dst8_ptr;
int width = w;
do {
uint8x16_t s0, s1, s2, s3;
load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3);
uint16x8_t d0 =
convolve8_8_x(s0, x_filter, correction, range_limit, permute_tbl);
uint16x8_t d1 =
convolve8_8_x(s1, x_filter, correction, range_limit, permute_tbl);
uint16x8_t d2 =
convolve8_8_x(s2, x_filter, correction, range_limit, permute_tbl);
uint16x8_t d3 =
convolve8_8_x(s3, x_filter, correction, range_limit, permute_tbl);
uint16x8_t dd0, dd1, dd2, dd3;
load_u16_8x4(d, dst_stride, &dd0, &dd1, &dd2, &dd3);
uint8x8_t d0_u8, d1_u8, d2_u8, d3_u8;
compute_dist_wtd_avg_8x4(dd0, dd1, dd2, dd3, d0, d1, d2, d3, fwd_offset,
bck_offset, round_offset_vec, &d0_u8, &d1_u8,
&d2_u8, &d3_u8);
store_u8_8x4(d_u8, dst8_stride, d0_u8, d1_u8, d2_u8, d3_u8);
s += 8;
d += 8;
d_u8 += 8;
width -= 8;
} while (width != 0);
src_ptr += 4 * src_stride;
dst_ptr += 4 * dst_stride;
dst8_ptr += 4 * dst8_stride;
height -= 4;
} while (height != 0);
}
}
static inline void dist_wtd_convolve_x_avg_neon_dotprod(
const uint8_t *src, int src_stride, uint8_t *dst8, int dst8_stride, int w,
int h, const InterpFilterParams *filter_params_x, const int subpel_x_qn,
ConvolveParams *conv_params) {
assert(w % 4 == 0);
assert(h % 4 == 0);
const int bd = 8;
const int offset_bits = bd + 2 * FILTER_BITS - ROUND0_BITS;
const int16_t round_offset = (1 << (offset_bits - COMPOUND_ROUND1_BITS)) +
(1 << (offset_bits - COMPOUND_ROUND1_BITS - 1));
const int16x8_t round_offset_vec = vdupq_n_s16(round_offset);
// Horizontal filter.
const int16_t *x_filter_ptr = av1_get_interp_filter_subpel_kernel(
filter_params_x, subpel_x_qn & SUBPEL_MASK);
const int16x8_t x_filter_s16 = vld1q_s16(x_filter_ptr);
// Dot-product constants and other shims.
const uint8x16_t range_limit = vdupq_n_u8(128);
// Fold round_offset into the dot-product filter correction constant. The
// additional shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding
// shifts - which are generally faster than rounding shifts on modern CPUs.
// Halve the total because we will halve the filter values.
int32x4_t correction =
vdupq_n_s32(((128 << FILTER_BITS) + (round_offset << ROUND0_BITS) +
(1 << (ROUND0_BITS - 1))) /
2);
const int horiz_offset = filter_params_x->taps / 2 - 1;
const uint8_t *src_ptr = src - horiz_offset;
CONV_BUF_TYPE *dst_ptr = conv_params->dst;
uint8_t *dst8_ptr = dst8;
int dst_stride = conv_params->dst_stride;
int height = h;
if (w == 4) {
const uint8x16_t permute_tbl = vld1q_u8(dot_prod_permute_tbl);
// 4-tap filters are used for blocks having width <= 4.
// Filter values are even, so halve to reduce intermediate precision reqs.
const int8x8_t x_filter =
vshrn_n_s16(vcombine_s16(vld1_s16(x_filter_ptr + 2), vdup_n_s16(0)), 1);
src_ptr += 2;
do {
uint8x16_t s0, s1, s2, s3;
load_u8_16x4(src_ptr, src_stride, &s0, &s1, &s2, &s3);
uint16x4_t d0 =
convolve4_4_x(s0, x_filter, correction, range_limit, permute_tbl);
uint16x4_t d1 =
convolve4_4_x(s1, x_filter, correction, range_limit, permute_tbl);
uint16x4_t d2 =
convolve4_4_x(s2, x_filter, correction, range_limit, permute_tbl);
uint16x4_t d3 =
convolve4_4_x(s3, x_filter, correction, range_limit, permute_tbl);
uint16x4_t dd0, dd1, dd2, dd3;
load_u16_4x4(dst_ptr, dst_stride, &dd0, &dd1, &dd2, &dd3);
uint8x8_t d01_u8, d23_u8;
compute_basic_avg_4x4(dd0, dd1, dd2, dd3, d0, d1, d2, d3,
round_offset_vec, &d01_u8, &d23_u8);
store_u8x4_strided_x2(dst8_ptr + 0 * dst8_stride, dst8_stride, d01_u8);
store_u8x4_strided_x2(dst8_ptr + 2 * dst8_stride, dst8_stride, d23_u8);
src_ptr += 4 * src_stride;
dst_ptr += 4 * dst_stride;
dst8_ptr += 4 * dst8_stride;
height -= 4;
} while (height != 0);
} else {
const uint8x16x3_t permute_tbl = vld1q_u8_x3(dot_prod_permute_tbl);
// Filter values are even, so halve to reduce intermediate precision reqs.
const int8x8_t x_filter = vshrn_n_s16(x_filter_s16, 1);
do {
const uint8_t *s = src_ptr;
CONV_BUF_TYPE *d = dst_ptr;
uint8_t *d_u8 = dst8_ptr;
int width = w;
do {
uint8x16_t s0, s1, s2, s3;
load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3);
uint16x8_t d0 =
convolve8_8_x(s0, x_filter, correction, range_limit, permute_tbl);
uint16x8_t d1 =
convolve8_8_x(s1, x_filter, correction, range_limit, permute_tbl);
uint16x8_t d2 =
convolve8_8_x(s2, x_filter, correction, range_limit, permute_tbl);
uint16x8_t d3 =
convolve8_8_x(s3, x_filter, correction, range_limit, permute_tbl);
uint16x8_t dd0, dd1, dd2, dd3;
load_u16_8x4(d, dst_stride, &dd0, &dd1, &dd2, &dd3);
uint8x8_t d0_u8, d1_u8, d2_u8, d3_u8;
compute_basic_avg_8x4(dd0, dd1, dd2, dd3, d0, d1, d2, d3,
round_offset_vec, &d0_u8, &d1_u8, &d2_u8, &d3_u8);
store_u8_8x4(d_u8, dst8_stride, d0_u8, d1_u8, d2_u8, d3_u8);
s += 8;
d += 8;
d_u8 += 8;
width -= 8;
} while (width != 0);
src_ptr += 4 * src_stride;
dst_ptr += 4 * dst_stride;
dst8_ptr += 4 * dst8_stride;
height -= 4;
} while (height != 0);
}
}
static inline void dist_wtd_convolve_x_neon_dotprod(
const uint8_t *src, int src_stride, int w, int h,
const InterpFilterParams *filter_params_x, const int subpel_x_qn,
ConvolveParams *conv_params) {
assert(w % 4 == 0);
assert(h % 4 == 0);
const int bd = 8;
const int offset_bits = bd + 2 * FILTER_BITS - ROUND0_BITS;
const int16_t round_offset = (1 << (offset_bits - COMPOUND_ROUND1_BITS)) +
(1 << (offset_bits - COMPOUND_ROUND1_BITS - 1));
// Horizontal filter.
const int16_t *x_filter_ptr = av1_get_interp_filter_subpel_kernel(
filter_params_x, subpel_x_qn & SUBPEL_MASK);
const int16x8_t x_filter_s16 = vld1q_s16(x_filter_ptr);
// Dot-product constants and other shims.
const uint8x16_t range_limit = vdupq_n_u8(128);
// Fold round_offset into the dot-product filter correction constant. The
// additional shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding
// shifts - which are generally faster than rounding shifts on modern CPUs.
// Halve the total because we will halve the vilter values.
int32x4_t correction =
vdupq_n_s32(((128 << FILTER_BITS) + (round_offset << ROUND0_BITS) +
(1 << (ROUND0_BITS - 1))) /
2);
const int horiz_offset = filter_params_x->taps / 2 - 1;
const uint8_t *src_ptr = src - horiz_offset;
CONV_BUF_TYPE *dst_ptr = conv_params->dst;
int dst_stride = conv_params->dst_stride;
int height = h;
if (w == 4) {
const uint8x16_t permute_tbl = vld1q_u8(dot_prod_permute_tbl);
// 4-tap filters are used for blocks having width <= 4.
// Filter values are even, so halve to reduce intermediate precision reqs.
const int8x8_t x_filter =
vshrn_n_s16(vcombine_s16(vld1_s16(x_filter_ptr + 2), vdup_n_s16(0)), 1);
src_ptr += 2;
do {
uint8x16_t s0, s1, s2, s3;
load_u8_16x4(src_ptr, src_stride, &s0, &s1, &s2, &s3);
uint16x4_t d0 =
convolve4_4_x(s0, x_filter, correction, range_limit, permute_tbl);
uint16x4_t d1 =
convolve4_4_x(s1, x_filter, correction, range_limit, permute_tbl);
uint16x4_t d2 =
convolve4_4_x(s2, x_filter, correction, range_limit, permute_tbl);
uint16x4_t d3 =
convolve4_4_x(s3, x_filter, correction, range_limit, permute_tbl);
store_u16_4x4(dst_ptr, dst_stride, d0, d1, d2, d3);
src_ptr += 4 * src_stride;
dst_ptr += 4 * dst_stride;
height -= 4;
} while (height != 0);
} else {
const uint8x16x3_t permute_tbl = vld1q_u8_x3(dot_prod_permute_tbl);
// Filter values are even, so halve to reduce intermediate precision reqs.
const int8x8_t x_filter = vshrn_n_s16(x_filter_s16, 1);
do {
const uint8_t *s = src_ptr;
CONV_BUF_TYPE *d = dst_ptr;
int width = w;
do {
uint8x16_t s0, s1, s2, s3;
load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3);
uint16x8_t d0 =
convolve8_8_x(s0, x_filter, correction, range_limit, permute_tbl);
uint16x8_t d1 =
convolve8_8_x(s1, x_filter, correction, range_limit, permute_tbl);
uint16x8_t d2 =
convolve8_8_x(s2, x_filter, correction, range_limit, permute_tbl);
uint16x8_t d3 =
convolve8_8_x(s3, x_filter, correction, range_limit, permute_tbl);
store_u16_8x4(d, dst_stride, d0, d1, d2, d3);
s += 8;
d += 8;
width -= 8;
} while (width != 0);
src_ptr += 4 * src_stride;
dst_ptr += 4 * dst_stride;
height -= 4;
} while (height != 0);
}
}
void av1_dist_wtd_convolve_x_neon_dotprod(
const uint8_t *src, int src_stride, uint8_t *dst8, int dst8_stride, int w,
int h, const InterpFilterParams *filter_params_x, const int subpel_x_qn,
ConvolveParams *conv_params) {
if (conv_params->do_average) {
if (UNLIKELY(conv_params->use_dist_wtd_comp_avg)) {
dist_wtd_convolve_x_dist_wtd_avg_neon_dotprod(
src, src_stride, dst8, dst8_stride, w, h, filter_params_x,
subpel_x_qn, conv_params);
} else {
dist_wtd_convolve_x_avg_neon_dotprod(src, src_stride, dst8, dst8_stride,
w, h, filter_params_x, subpel_x_qn,
conv_params);
}
} else {
dist_wtd_convolve_x_neon_dotprod(src, src_stride, w, h, filter_params_x,
subpel_x_qn, conv_params);
}
}