| #!/usr/bin/env python3 |
| ## |
| ## Copyright (c) 2016, Alliance for Open Media. All rights reserved. |
| ## |
| ## This source code is subject to the terms of the BSD 2 Clause License and |
| ## the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| ## was not distributed with this source code in the LICENSE file, you can |
| ## obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| ## Media Patent License 1.0 was not distributed with this source code in the |
| ## PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| ## |
| """Generate the probability model for the constrained token set. |
| |
| Model obtained from a 2-sided zero-centered distribution derived |
| from a Pareto distribution. The cdf of the distribution is: |
| cdf(x) = 0.5 + 0.5 * sgn(x) * [1 - {alpha/(alpha + |x|)} ^ beta] |
| |
| For a given beta and a given probability of the 1-node, the alpha |
| is first solved, and then the {alpha, beta} pair is used to generate |
| the probabilities for the rest of the nodes. |
| """ |
| |
| import heapq |
| import sys |
| import numpy as np |
| import scipy.optimize |
| import scipy.stats |
| |
| |
| def cdf_spareto(x, xm, beta): |
| p = 1 - (xm / (np.abs(x) + xm))**beta |
| p = 0.5 + 0.5 * np.sign(x) * p |
| return p |
| |
| |
| def get_spareto(p, beta): |
| cdf = cdf_spareto |
| |
| def func(x): |
| return ((cdf(1.5, x, beta) - cdf(0.5, x, beta)) / |
| (1 - cdf(0.5, x, beta)) - p)**2 |
| |
| alpha = scipy.optimize.fminbound(func, 1e-12, 10000, xtol=1e-12) |
| parray = np.zeros(11) |
| parray[0] = 2 * (cdf(0.5, alpha, beta) - 0.5) |
| parray[1] = (2 * (cdf(1.5, alpha, beta) - cdf(0.5, alpha, beta))) |
| parray[2] = (2 * (cdf(2.5, alpha, beta) - cdf(1.5, alpha, beta))) |
| parray[3] = (2 * (cdf(3.5, alpha, beta) - cdf(2.5, alpha, beta))) |
| parray[4] = (2 * (cdf(4.5, alpha, beta) - cdf(3.5, alpha, beta))) |
| parray[5] = (2 * (cdf(6.5, alpha, beta) - cdf(4.5, alpha, beta))) |
| parray[6] = (2 * (cdf(10.5, alpha, beta) - cdf(6.5, alpha, beta))) |
| parray[7] = (2 * (cdf(18.5, alpha, beta) - cdf(10.5, alpha, beta))) |
| parray[8] = (2 * (cdf(34.5, alpha, beta) - cdf(18.5, alpha, beta))) |
| parray[9] = (2 * (cdf(66.5, alpha, beta) - cdf(34.5, alpha, beta))) |
| parray[10] = 2 * (1. - cdf(66.5, alpha, beta)) |
| return parray |
| |
| |
| def quantize_probs(p, save_first_bin, bits): |
| """Quantize probability precisely. |
| |
| Quantize probabilities minimizing dH (Kullback-Leibler divergence) |
| approximated by: sum (p_i-q_i)^2/p_i. |
| References: |
| https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence |
| https://github.com/JarekDuda/AsymmetricNumeralSystemsToolkit |
| """ |
| num_sym = p.size |
| p = np.clip(p, 1e-16, 1) |
| L = 2**bits |
| pL = p * L |
| ip = 1. / p # inverse probability |
| q = np.clip(np.round(pL), 1, L + 1 - num_sym) |
| quant_err = (pL - q)**2 * ip |
| sgn = np.sign(L - q.sum()) # direction of correction |
| if sgn != 0: # correction is needed |
| v = [] # heap of adjustment results (adjustment err, index) of each symbol |
| for i in range(1 if save_first_bin else 0, num_sym): |
| q_adj = q[i] + sgn |
| if q_adj > 0 and q_adj < L: |
| adj_err = (pL[i] - q_adj)**2 * ip[i] - quant_err[i] |
| heapq.heappush(v, (adj_err, i)) |
| while q.sum() != L: |
| # apply lowest error adjustment |
| (adj_err, i) = heapq.heappop(v) |
| quant_err[i] += adj_err |
| q[i] += sgn |
| # calculate the cost of adjusting this symbol again |
| q_adj = q[i] + sgn |
| if q_adj > 0 and q_adj < L: |
| adj_err = (pL[i] - q_adj)**2 * ip[i] - quant_err[i] |
| heapq.heappush(v, (adj_err, i)) |
| return q |
| |
| |
| def get_quantized_spareto(p, beta, bits, first_token): |
| parray = get_spareto(p, beta) |
| parray = parray[1:] / (1 - parray[0]) |
| # CONFIG_NEW_TOKENSET |
| if first_token > 1: |
| parray = parray[1:] / (1 - parray[0]) |
| qarray = quantize_probs(parray, first_token == 1, bits) |
| return qarray.astype(np.int) |
| |
| |
| def main(bits=15, first_token=1): |
| beta = 8 |
| for q in range(1, 256): |
| parray = get_quantized_spareto(q / 256., beta, bits, first_token) |
| assert parray.sum() == 2**bits |
| print('{', ', '.join('%d' % i for i in parray), '},') |
| |
| |
| if __name__ == '__main__': |
| if len(sys.argv) > 2: |
| main(int(sys.argv[1]), int(sys.argv[2])) |
| elif len(sys.argv) > 1: |
| main(int(sys.argv[1])) |
| else: |
| main() |