| /* |
| * Copyright (c) 2018, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <immintrin.h> |
| #include <assert.h> |
| |
| #include "config/av1_rtcd.h" |
| |
| #include "av1/common/convolve.h" |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_dsp/aom_filter.h" |
| #include "aom_dsp/x86/convolve_avx2.h" |
| #include "aom_dsp/x86/synonyms.h" |
| #include "aom_dsp/x86/synonyms_avx2.h" |
| |
| // 128-bit xmmwords are written as [ ... ] with the MSB on the left. |
| // 256-bit ymmwords are written as two xmmwords, [ ... ][ ... ] with the MSB |
| // on the left. |
| // A row of, say, 8-bit pixels with values p0, p1, p2, ..., p30, p31 will be |
| // loaded and stored as [ p31 ... p17 p16 ][ p15 ... p1 p0 ]. |
| |
| // Exploiting the range of wiener filter coefficients, |
| // horizontal filtering can be done in 16 bit intermediate precision. |
| // The details are as follows : |
| // Consider the horizontal wiener filter coefficients of the following form : |
| // [C0, C1, C2, 2^(FILTER_BITS) -2 * (C0 + C1 + C2), C2, C1, C0] |
| // Subtracting 2^(FILTER_BITS) from the centre tap we get the following : |
| // [C0, C1, C2, -2 * (C0 + C1 + C2), C2, C1, C0] |
| // The sum of the product "C0 * p0 + C1 * p1 + C2 * p2 -2 * (C0 + C1 + C2) * p3 |
| // + C2 * p4 + C1 * p5 + C0 * p6" would be in the range of signed 16 bit |
| // precision. Finally, after rounding the above result by round_0, we multiply |
| // the centre pixel by 2^(FILTER_BITS - round_0) and add it to get the |
| // horizontal filter output. |
| |
| void av1_wiener_convolve_add_src_avx2(const uint8_t *src, ptrdiff_t src_stride, |
| uint8_t *dst, ptrdiff_t dst_stride, |
| const int16_t *filter_x, int x_step_q4, |
| const int16_t *filter_y, int y_step_q4, |
| int w, int h, |
| const ConvolveParams *conv_params) { |
| const int filter_bits = conv_params->filter_bits; |
| const int bd = 8; |
| assert(x_step_q4 == 16 && y_step_q4 == 16); |
| assert(!(w & 7)); |
| (void)x_step_q4; |
| (void)y_step_q4; |
| |
| DECLARE_ALIGNED(32, int16_t, im_block[(MAX_SB_SIZE + SUBPEL_TAPS) * 8]); |
| int im_h = h + SUBPEL_TAPS - 2; |
| int im_stride = 8; |
| memset(im_block + (im_h * im_stride), 0, MAX_SB_SIZE); |
| int i, j; |
| const int center_tap = (SUBPEL_TAPS - 1) / 2; |
| const uint8_t *const src_ptr = src - center_tap * src_stride - center_tap; |
| |
| __m256i filt[4], coeffs_h[4], coeffs_v[4], filt_center; |
| |
| assert(conv_params->round_0 > 0); |
| |
| filt[0] = _mm256_load_si256((__m256i const *)filt1_global_avx2); |
| filt[1] = _mm256_load_si256((__m256i const *)filt2_global_avx2); |
| filt[2] = _mm256_load_si256((__m256i const *)filt3_global_avx2); |
| filt[3] = _mm256_load_si256((__m256i const *)filt4_global_avx2); |
| |
| filt_center = _mm256_load_si256((__m256i const *)filt_center_global_avx2); |
| |
| const __m128i coeffs_x = _mm_loadu_si128((__m128i *)filter_x); |
| const __m256i filter_coeffs_x = _mm256_broadcastsi128_si256(coeffs_x); |
| |
| // coeffs 0 1 0 1 0 1 0 1 |
| coeffs_h[0] = |
| _mm256_shuffle_epi8(filter_coeffs_x, _mm256_set1_epi16(0x0200u)); |
| // coeffs 2 3 2 3 2 3 2 3 |
| coeffs_h[1] = |
| _mm256_shuffle_epi8(filter_coeffs_x, _mm256_set1_epi16(0x0604u)); |
| // coeffs 4 5 4 5 4 5 4 5 |
| coeffs_h[2] = |
| _mm256_shuffle_epi8(filter_coeffs_x, _mm256_set1_epi16(0x0a08u)); |
| // coeffs 6 7 6 7 6 7 6 7 |
| coeffs_h[3] = |
| _mm256_shuffle_epi8(filter_coeffs_x, _mm256_set1_epi16(0x0e0cu)); |
| |
| const __m256i round_const_h = |
| _mm256_set1_epi16((1 << (conv_params->round_0 - 1))); |
| const __m256i round_const_horz = |
| _mm256_set1_epi16((1 << (bd + filter_bits - conv_params->round_0 - 1))); |
| const __m256i clamp_low = _mm256_setzero_si256(); |
| const __m256i clamp_high = _mm256_set1_epi16( |
| WIENER_CLAMP_LIMIT(filter_bits, conv_params->round_0, bd) - 1); |
| const __m128i round_shift_h = _mm_cvtsi32_si128(conv_params->round_0); |
| |
| // Add an offset to account for the "add_src" part of the convolve function. |
| const __m128i zero_128 = _mm_setzero_si128(); |
| const __m128i offset_0 = _mm_insert_epi16(zero_128, 1 << filter_bits, 3); |
| const __m128i coeffs_y = _mm_add_epi16(xx_loadu_128(filter_y), offset_0); |
| |
| const __m256i filter_coeffs_y = _mm256_broadcastsi128_si256(coeffs_y); |
| |
| // coeffs 0 1 0 1 0 1 0 1 |
| coeffs_v[0] = _mm256_shuffle_epi32(filter_coeffs_y, 0x00); |
| // coeffs 2 3 2 3 2 3 2 3 |
| coeffs_v[1] = _mm256_shuffle_epi32(filter_coeffs_y, 0x55); |
| // coeffs 4 5 4 5 4 5 4 5 |
| coeffs_v[2] = _mm256_shuffle_epi32(filter_coeffs_y, 0xaa); |
| // coeffs 6 7 6 7 6 7 6 7 |
| coeffs_v[3] = _mm256_shuffle_epi32(filter_coeffs_y, 0xff); |
| |
| const __m256i round_const_v = |
| _mm256_set1_epi32((1 << (conv_params->round_1 - 1)) - |
| (1 << (bd + conv_params->round_1 - 1))); |
| const __m128i round_shift_v = _mm_cvtsi32_si128(conv_params->round_1); |
| |
| for (j = 0; j < w; j += 8) { |
| for (i = 0; i < im_h; i += 2) { |
| __m256i data = _mm256_castsi128_si256( |
| _mm_loadu_si128((__m128i *)&src_ptr[(i * src_stride) + j])); |
| |
| // Load the next line |
| if (i + 1 < im_h) |
| data = _mm256_inserti128_si256( |
| data, |
| _mm_loadu_si128( |
| (__m128i *)&src_ptr[(i * src_stride) + j + src_stride]), |
| 1); |
| |
| __m256i res = convolve_lowbd_x(data, coeffs_h, filt); |
| |
| res = |
| _mm256_sra_epi16(_mm256_add_epi16(res, round_const_h), round_shift_h); |
| |
| __m256i data_0 = _mm256_shuffle_epi8(data, filt_center); |
| |
| // multiply the center pixel by 2^(filter_bits - round_0) and add it to |
| // the result |
| data_0 = _mm256_slli_epi16(data_0, filter_bits - conv_params->round_0); |
| res = _mm256_add_epi16(res, data_0); |
| res = _mm256_add_epi16(res, round_const_horz); |
| const __m256i res_clamped = |
| _mm256_min_epi16(_mm256_max_epi16(res, clamp_low), clamp_high); |
| _mm256_store_si256((__m256i *)&im_block[i * im_stride], res_clamped); |
| } |
| |
| /* Vertical filter */ |
| { |
| __m256i src_0 = _mm256_loadu_si256((__m256i *)(im_block + 0 * im_stride)); |
| __m256i src_1 = _mm256_loadu_si256((__m256i *)(im_block + 1 * im_stride)); |
| __m256i src_2 = _mm256_loadu_si256((__m256i *)(im_block + 2 * im_stride)); |
| __m256i src_3 = _mm256_loadu_si256((__m256i *)(im_block + 3 * im_stride)); |
| __m256i src_4 = _mm256_loadu_si256((__m256i *)(im_block + 4 * im_stride)); |
| __m256i src_5 = _mm256_loadu_si256((__m256i *)(im_block + 5 * im_stride)); |
| |
| __m256i s[8]; |
| s[0] = _mm256_unpacklo_epi16(src_0, src_1); |
| s[1] = _mm256_unpacklo_epi16(src_2, src_3); |
| s[2] = _mm256_unpacklo_epi16(src_4, src_5); |
| |
| s[4] = _mm256_unpackhi_epi16(src_0, src_1); |
| s[5] = _mm256_unpackhi_epi16(src_2, src_3); |
| s[6] = _mm256_unpackhi_epi16(src_4, src_5); |
| |
| for (i = 0; i < h - 1; i += 2) { |
| const int16_t *data = &im_block[i * im_stride]; |
| |
| const __m256i s6 = |
| _mm256_loadu_si256((__m256i *)(data + 6 * im_stride)); |
| const __m256i s7 = |
| _mm256_loadu_si256((__m256i *)(data + 7 * im_stride)); |
| |
| s[3] = _mm256_unpacklo_epi16(s6, s7); |
| s[7] = _mm256_unpackhi_epi16(s6, s7); |
| |
| __m256i res_a = convolve(s, coeffs_v); |
| __m256i res_b = convolve(s + 4, coeffs_v); |
| |
| const __m256i res_a_round = _mm256_sra_epi32( |
| _mm256_add_epi32(res_a, round_const_v), round_shift_v); |
| const __m256i res_b_round = _mm256_sra_epi32( |
| _mm256_add_epi32(res_b, round_const_v), round_shift_v); |
| |
| /* rounding code */ |
| // 16 bit conversion |
| const __m256i res_16bit = _mm256_packs_epi32(res_a_round, res_b_round); |
| // 8 bit conversion and saturation to uint8 |
| const __m256i res_8b = _mm256_packus_epi16(res_16bit, res_16bit); |
| |
| const __m128i res_0 = _mm256_castsi256_si128(res_8b); |
| const __m128i res_1 = _mm256_extracti128_si256(res_8b, 1); |
| |
| // Store values into the destination buffer |
| __m128i *const p_0 = (__m128i *)&dst[i * dst_stride + j]; |
| __m128i *const p_1 = (__m128i *)&dst[i * dst_stride + j + dst_stride]; |
| |
| _mm_storel_epi64(p_0, res_0); |
| _mm_storel_epi64(p_1, res_1); |
| |
| s[0] = s[1]; |
| s[1] = s[2]; |
| s[2] = s[3]; |
| |
| s[4] = s[5]; |
| s[5] = s[6]; |
| s[6] = s[7]; |
| } |
| if (h - i) { |
| s[0] = _mm256_permute2x128_si256(s[0], s[4], 0x20); |
| s[1] = _mm256_permute2x128_si256(s[1], s[5], 0x20); |
| s[2] = _mm256_permute2x128_si256(s[2], s[6], 0x20); |
| |
| const int16_t *data = &im_block[i * im_stride]; |
| const __m128i s6_ = _mm_loadu_si128((__m128i *)(data + 6 * im_stride)); |
| const __m128i s7_ = _mm_loadu_si128((__m128i *)(data + 7 * im_stride)); |
| |
| __m128i s3 = _mm_unpacklo_epi16(s6_, s7_); |
| __m128i s7 = _mm_unpackhi_epi16(s6_, s7_); |
| |
| s[3] = _mm256_inserti128_si256(_mm256_castsi128_si256(s3), s7, 1); |
| __m256i convolveres = convolve(s, coeffs_v); |
| |
| const __m256i res_round = _mm256_sra_epi32( |
| _mm256_add_epi32(convolveres, round_const_v), round_shift_v); |
| |
| /* rounding code */ |
| // 16 bit conversion |
| __m128i reslo = _mm256_castsi256_si128(res_round); |
| __m128i reshi = _mm256_extracti128_si256(res_round, 1); |
| const __m128i res_16bit = _mm_packus_epi32(reslo, reshi); |
| |
| // 8 bit conversion and saturation to uint8 |
| const __m128i res_8b = _mm_packus_epi16(res_16bit, res_16bit); |
| __m128i *const p_0 = (__m128i *)&dst[i * dst_stride + j]; |
| _mm_storel_epi64(p_0, res_8b); |
| } |
| } |
| } |
| } |