| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #ifndef AOM_AV1_COMMON_CDEF_BLOCK_SIMD_H_ |
| #define AOM_AV1_COMMON_CDEF_BLOCK_SIMD_H_ |
| |
| #include "config/av1_rtcd.h" |
| |
| #include "av1/common/cdef_block.h" |
| |
| /* partial A is a 16-bit vector of the form: |
| [x8 x7 x6 x5 x4 x3 x2 x1] and partial B has the form: |
| [0 y1 y2 y3 y4 y5 y6 y7]. |
| This function computes (x1^2+y1^2)*C1 + (x2^2+y2^2)*C2 + ... |
| (x7^2+y2^7)*C7 + (x8^2+0^2)*C8 where the C1..C8 constants are in const1 |
| and const2. */ |
| static INLINE v128 fold_mul_and_sum(v128 partiala, v128 partialb, v128 const1, |
| v128 const2) { |
| v128 tmp; |
| /* Reverse partial B. */ |
| partialb = v128_shuffle_8( |
| partialb, v128_from_32(0x0f0e0100, 0x03020504, 0x07060908, 0x0b0a0d0c)); |
| /* Interleave the x and y values of identical indices and pair x8 with 0. */ |
| tmp = partiala; |
| partiala = v128_ziplo_16(partialb, partiala); |
| partialb = v128_ziphi_16(partialb, tmp); |
| /* Square and add the corresponding x and y values. */ |
| partiala = v128_madd_s16(partiala, partiala); |
| partialb = v128_madd_s16(partialb, partialb); |
| /* Multiply by constant. */ |
| partiala = v128_mullo_s32(partiala, const1); |
| partialb = v128_mullo_s32(partialb, const2); |
| /* Sum all results. */ |
| partiala = v128_add_32(partiala, partialb); |
| return partiala; |
| } |
| |
| static INLINE v128 hsum4(v128 x0, v128 x1, v128 x2, v128 x3) { |
| v128 t0, t1, t2, t3; |
| t0 = v128_ziplo_32(x1, x0); |
| t1 = v128_ziplo_32(x3, x2); |
| t2 = v128_ziphi_32(x1, x0); |
| t3 = v128_ziphi_32(x3, x2); |
| x0 = v128_ziplo_64(t1, t0); |
| x1 = v128_ziphi_64(t1, t0); |
| x2 = v128_ziplo_64(t3, t2); |
| x3 = v128_ziphi_64(t3, t2); |
| return v128_add_32(v128_add_32(x0, x1), v128_add_32(x2, x3)); |
| } |
| |
| /* Computes cost for directions 0, 5, 6 and 7. We can call this function again |
| to compute the remaining directions. */ |
| static INLINE v128 compute_directions(v128 lines[8], int32_t tmp_cost1[4]) { |
| v128 partial4a, partial4b, partial5a, partial5b, partial7a, partial7b; |
| v128 partial6; |
| v128 tmp; |
| /* Partial sums for lines 0 and 1. */ |
| partial4a = v128_shl_n_byte(lines[0], 14); |
| partial4b = v128_shr_n_byte(lines[0], 2); |
| partial4a = v128_add_16(partial4a, v128_shl_n_byte(lines[1], 12)); |
| partial4b = v128_add_16(partial4b, v128_shr_n_byte(lines[1], 4)); |
| tmp = v128_add_16(lines[0], lines[1]); |
| partial5a = v128_shl_n_byte(tmp, 10); |
| partial5b = v128_shr_n_byte(tmp, 6); |
| partial7a = v128_shl_n_byte(tmp, 4); |
| partial7b = v128_shr_n_byte(tmp, 12); |
| partial6 = tmp; |
| |
| /* Partial sums for lines 2 and 3. */ |
| partial4a = v128_add_16(partial4a, v128_shl_n_byte(lines[2], 10)); |
| partial4b = v128_add_16(partial4b, v128_shr_n_byte(lines[2], 6)); |
| partial4a = v128_add_16(partial4a, v128_shl_n_byte(lines[3], 8)); |
| partial4b = v128_add_16(partial4b, v128_shr_n_byte(lines[3], 8)); |
| tmp = v128_add_16(lines[2], lines[3]); |
| partial5a = v128_add_16(partial5a, v128_shl_n_byte(tmp, 8)); |
| partial5b = v128_add_16(partial5b, v128_shr_n_byte(tmp, 8)); |
| partial7a = v128_add_16(partial7a, v128_shl_n_byte(tmp, 6)); |
| partial7b = v128_add_16(partial7b, v128_shr_n_byte(tmp, 10)); |
| partial6 = v128_add_16(partial6, tmp); |
| |
| /* Partial sums for lines 4 and 5. */ |
| partial4a = v128_add_16(partial4a, v128_shl_n_byte(lines[4], 6)); |
| partial4b = v128_add_16(partial4b, v128_shr_n_byte(lines[4], 10)); |
| partial4a = v128_add_16(partial4a, v128_shl_n_byte(lines[5], 4)); |
| partial4b = v128_add_16(partial4b, v128_shr_n_byte(lines[5], 12)); |
| tmp = v128_add_16(lines[4], lines[5]); |
| partial5a = v128_add_16(partial5a, v128_shl_n_byte(tmp, 6)); |
| partial5b = v128_add_16(partial5b, v128_shr_n_byte(tmp, 10)); |
| partial7a = v128_add_16(partial7a, v128_shl_n_byte(tmp, 8)); |
| partial7b = v128_add_16(partial7b, v128_shr_n_byte(tmp, 8)); |
| partial6 = v128_add_16(partial6, tmp); |
| |
| /* Partial sums for lines 6 and 7. */ |
| partial4a = v128_add_16(partial4a, v128_shl_n_byte(lines[6], 2)); |
| partial4b = v128_add_16(partial4b, v128_shr_n_byte(lines[6], 14)); |
| partial4a = v128_add_16(partial4a, lines[7]); |
| tmp = v128_add_16(lines[6], lines[7]); |
| partial5a = v128_add_16(partial5a, v128_shl_n_byte(tmp, 4)); |
| partial5b = v128_add_16(partial5b, v128_shr_n_byte(tmp, 12)); |
| partial7a = v128_add_16(partial7a, v128_shl_n_byte(tmp, 10)); |
| partial7b = v128_add_16(partial7b, v128_shr_n_byte(tmp, 6)); |
| partial6 = v128_add_16(partial6, tmp); |
| |
| /* Compute costs in terms of partial sums. */ |
| partial4a = |
| fold_mul_and_sum(partial4a, partial4b, v128_from_32(210, 280, 420, 840), |
| v128_from_32(105, 120, 140, 168)); |
| partial7a = |
| fold_mul_and_sum(partial7a, partial7b, v128_from_32(210, 420, 0, 0), |
| v128_from_32(105, 105, 105, 140)); |
| partial5a = |
| fold_mul_and_sum(partial5a, partial5b, v128_from_32(210, 420, 0, 0), |
| v128_from_32(105, 105, 105, 140)); |
| partial6 = v128_madd_s16(partial6, partial6); |
| partial6 = v128_mullo_s32(partial6, v128_dup_32(105)); |
| |
| partial4a = hsum4(partial4a, partial5a, partial6, partial7a); |
| v128_store_unaligned(tmp_cost1, partial4a); |
| return partial4a; |
| } |
| |
| /* transpose and reverse the order of the lines -- equivalent to a 90-degree |
| counter-clockwise rotation of the pixels. */ |
| static INLINE void array_reverse_transpose_8x8(v128 *in, v128 *res) { |
| const v128 tr0_0 = v128_ziplo_16(in[1], in[0]); |
| const v128 tr0_1 = v128_ziplo_16(in[3], in[2]); |
| const v128 tr0_2 = v128_ziphi_16(in[1], in[0]); |
| const v128 tr0_3 = v128_ziphi_16(in[3], in[2]); |
| const v128 tr0_4 = v128_ziplo_16(in[5], in[4]); |
| const v128 tr0_5 = v128_ziplo_16(in[7], in[6]); |
| const v128 tr0_6 = v128_ziphi_16(in[5], in[4]); |
| const v128 tr0_7 = v128_ziphi_16(in[7], in[6]); |
| |
| const v128 tr1_0 = v128_ziplo_32(tr0_1, tr0_0); |
| const v128 tr1_1 = v128_ziplo_32(tr0_5, tr0_4); |
| const v128 tr1_2 = v128_ziphi_32(tr0_1, tr0_0); |
| const v128 tr1_3 = v128_ziphi_32(tr0_5, tr0_4); |
| const v128 tr1_4 = v128_ziplo_32(tr0_3, tr0_2); |
| const v128 tr1_5 = v128_ziplo_32(tr0_7, tr0_6); |
| const v128 tr1_6 = v128_ziphi_32(tr0_3, tr0_2); |
| const v128 tr1_7 = v128_ziphi_32(tr0_7, tr0_6); |
| |
| res[7] = v128_ziplo_64(tr1_1, tr1_0); |
| res[6] = v128_ziphi_64(tr1_1, tr1_0); |
| res[5] = v128_ziplo_64(tr1_3, tr1_2); |
| res[4] = v128_ziphi_64(tr1_3, tr1_2); |
| res[3] = v128_ziplo_64(tr1_5, tr1_4); |
| res[2] = v128_ziphi_64(tr1_5, tr1_4); |
| res[1] = v128_ziplo_64(tr1_7, tr1_6); |
| res[0] = v128_ziphi_64(tr1_7, tr1_6); |
| } |
| |
| int SIMD_FUNC(cdef_find_dir)(const uint16_t *img, int stride, int32_t *var, |
| int coeff_shift) { |
| int i; |
| int32_t cost[8]; |
| int32_t best_cost = 0; |
| int best_dir = 0; |
| v128 lines[8]; |
| for (i = 0; i < 8; i++) { |
| lines[i] = v128_load_unaligned(&img[i * stride]); |
| lines[i] = |
| v128_sub_16(v128_shr_s16(lines[i], coeff_shift), v128_dup_16(128)); |
| } |
| |
| /* Compute "mostly vertical" directions. */ |
| v128 dir47 = compute_directions(lines, cost + 4); |
| |
| array_reverse_transpose_8x8(lines, lines); |
| |
| /* Compute "mostly horizontal" directions. */ |
| v128 dir03 = compute_directions(lines, cost); |
| |
| v128 max = v128_max_s32(dir03, dir47); |
| max = v128_max_s32(max, v128_align(max, max, 8)); |
| max = v128_max_s32(max, v128_align(max, max, 4)); |
| best_cost = v128_low_u32(max); |
| v128 t = |
| v128_pack_s32_s16(v128_cmpeq_32(max, dir47), v128_cmpeq_32(max, dir03)); |
| best_dir = v128_movemask_8(v128_pack_s16_s8(t, t)); |
| best_dir = get_msb(best_dir ^ (best_dir - 1)); // Count trailing zeros |
| |
| /* Difference between the optimal variance and the variance along the |
| orthogonal direction. Again, the sum(x^2) terms cancel out. */ |
| *var = best_cost - cost[(best_dir + 4) & 7]; |
| /* We'd normally divide by 840, but dividing by 1024 is close enough |
| for what we're going to do with this. */ |
| *var >>= 10; |
| return best_dir; |
| } |
| |
| // Work around compiler out of memory issues with Win32 builds. This issue has |
| // been observed with Visual Studio 2017, 2019, and 2022 (version 17.4). |
| #if defined(_MSC_VER) && defined(_M_IX86) && _MSC_VER < 1940 |
| #define CDEF_INLINE static INLINE |
| #else |
| #define CDEF_INLINE SIMD_INLINE |
| #endif |
| |
| // sign(a-b) * min(abs(a-b), max(0, threshold - (abs(a-b) >> adjdamp))) |
| CDEF_INLINE v256 constrain16(v256 a, v256 b, unsigned int threshold, |
| unsigned int adjdamp) { |
| v256 diff = v256_sub_16(a, b); |
| const v256 sign = v256_shr_n_s16(diff, 15); |
| diff = v256_abs_s16(diff); |
| const v256 s = |
| v256_ssub_u16(v256_dup_16(threshold), v256_shr_u16(diff, adjdamp)); |
| return v256_xor(v256_add_16(sign, v256_min_s16(diff, s)), sign); |
| } |
| |
| SIMD_INLINE v256 get_max_primary(const int is_lowbd, v256 *tap, v256 max, |
| v256 cdef_large_value_mask) { |
| if (is_lowbd) { |
| v256 max_u8; |
| max_u8 = tap[0]; |
| max_u8 = v256_max_u8(max_u8, tap[1]); |
| max_u8 = v256_max_u8(max_u8, tap[2]); |
| max_u8 = v256_max_u8(max_u8, tap[3]); |
| /* The source is 16 bits, however, we only really care about the lower |
| 8 bits. The upper 8 bits contain the "large" flag. After the final |
| primary max has been calculated, zero out the upper 8 bits. Use this |
| to find the "16 bit" max. */ |
| max = v256_max_s16(max, v256_and(max_u8, cdef_large_value_mask)); |
| } else { |
| /* Convert CDEF_VERY_LARGE to 0 before calculating max. */ |
| max = v256_max_s16(max, v256_and(tap[0], cdef_large_value_mask)); |
| max = v256_max_s16(max, v256_and(tap[1], cdef_large_value_mask)); |
| max = v256_max_s16(max, v256_and(tap[2], cdef_large_value_mask)); |
| max = v256_max_s16(max, v256_and(tap[3], cdef_large_value_mask)); |
| } |
| return max; |
| } |
| |
| SIMD_INLINE v256 get_max_secondary(const int is_lowbd, v256 *tap, v256 max, |
| v256 cdef_large_value_mask) { |
| if (is_lowbd) { |
| v256 max_u8; |
| max_u8 = tap[0]; |
| max_u8 = v256_max_u8(max_u8, tap[1]); |
| max_u8 = v256_max_u8(max_u8, tap[2]); |
| max_u8 = v256_max_u8(max_u8, tap[3]); |
| max_u8 = v256_max_u8(max_u8, tap[4]); |
| max_u8 = v256_max_u8(max_u8, tap[5]); |
| max_u8 = v256_max_u8(max_u8, tap[6]); |
| max_u8 = v256_max_u8(max_u8, tap[7]); |
| /* The source is 16 bits, however, we only really care about the lower |
| 8 bits. The upper 8 bits contain the "large" flag. After the final |
| primary max has been calculated, zero out the upper 8 bits. Use this |
| to find the "16 bit" max. */ |
| max = v256_max_s16(max, v256_and(max_u8, cdef_large_value_mask)); |
| } else { |
| /* Convert CDEF_VERY_LARGE to 0 before calculating max. */ |
| max = v256_max_s16(max, v256_and(tap[0], cdef_large_value_mask)); |
| max = v256_max_s16(max, v256_and(tap[1], cdef_large_value_mask)); |
| max = v256_max_s16(max, v256_and(tap[2], cdef_large_value_mask)); |
| max = v256_max_s16(max, v256_and(tap[3], cdef_large_value_mask)); |
| max = v256_max_s16(max, v256_and(tap[4], cdef_large_value_mask)); |
| max = v256_max_s16(max, v256_and(tap[5], cdef_large_value_mask)); |
| max = v256_max_s16(max, v256_and(tap[6], cdef_large_value_mask)); |
| max = v256_max_s16(max, v256_and(tap[7], cdef_large_value_mask)); |
| } |
| return max; |
| } |
| |
| CDEF_INLINE void filter_block_4x4(const int is_lowbd, void *dest, int dstride, |
| const uint16_t *in, int pri_strength, |
| int sec_strength, int dir, int pri_damping, |
| int sec_damping, int coeff_shift, int height, |
| int enable_primary, int enable_secondary) { |
| uint8_t *dst8 = (uint8_t *)dest; |
| uint16_t *dst16 = (uint16_t *)dest; |
| const int clipping_required = enable_primary && enable_secondary; |
| v256 p0, p1, p2, p3; |
| v256 sum, row, res; |
| v256 max, min; |
| const v256 cdef_large_value_mask = v256_dup_16((uint16_t)~CDEF_VERY_LARGE); |
| const int po1 = cdef_directions[dir][0]; |
| const int po2 = cdef_directions[dir][1]; |
| const int s1o1 = cdef_directions[dir + 2][0]; |
| const int s1o2 = cdef_directions[dir + 2][1]; |
| const int s2o1 = cdef_directions[dir - 2][0]; |
| const int s2o2 = cdef_directions[dir - 2][1]; |
| const int *pri_taps = cdef_pri_taps[(pri_strength >> coeff_shift) & 1]; |
| const int *sec_taps = cdef_sec_taps; |
| int i; |
| |
| if (enable_primary && pri_strength) |
| pri_damping = AOMMAX(0, pri_damping - get_msb(pri_strength)); |
| if (enable_secondary && sec_strength) |
| sec_damping = AOMMAX(0, sec_damping - get_msb(sec_strength)); |
| |
| for (i = 0; i < height; i += 4) { |
| sum = v256_zero(); |
| row = v256_from_v64(v64_load_aligned(&in[(i + 0) * CDEF_BSTRIDE]), |
| v64_load_aligned(&in[(i + 1) * CDEF_BSTRIDE]), |
| v64_load_aligned(&in[(i + 2) * CDEF_BSTRIDE]), |
| v64_load_aligned(&in[(i + 3) * CDEF_BSTRIDE])); |
| max = min = row; |
| |
| if (enable_primary) { |
| v256 tap[4]; |
| // Primary near taps |
| tap[0] = |
| v256_from_v64(v64_load_unaligned(&in[(i + 0) * CDEF_BSTRIDE + po1]), |
| v64_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE + po1]), |
| v64_load_unaligned(&in[(i + 2) * CDEF_BSTRIDE + po1]), |
| v64_load_unaligned(&in[(i + 3) * CDEF_BSTRIDE + po1])); |
| p0 = constrain16(tap[0], row, pri_strength, pri_damping); |
| tap[1] = |
| v256_from_v64(v64_load_unaligned(&in[(i + 0) * CDEF_BSTRIDE - po1]), |
| v64_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE - po1]), |
| v64_load_unaligned(&in[(i + 2) * CDEF_BSTRIDE - po1]), |
| v64_load_unaligned(&in[(i + 3) * CDEF_BSTRIDE - po1])); |
| p1 = constrain16(tap[1], row, pri_strength, pri_damping); |
| |
| // sum += pri_taps[0] * (p0 + p1) |
| sum = v256_add_16( |
| sum, v256_mullo_s16(v256_dup_16(pri_taps[0]), v256_add_16(p0, p1))); |
| |
| // Primary far taps |
| tap[2] = |
| v256_from_v64(v64_load_unaligned(&in[(i + 0) * CDEF_BSTRIDE + po2]), |
| v64_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE + po2]), |
| v64_load_unaligned(&in[(i + 2) * CDEF_BSTRIDE + po2]), |
| v64_load_unaligned(&in[(i + 3) * CDEF_BSTRIDE + po2])); |
| p0 = constrain16(tap[2], row, pri_strength, pri_damping); |
| tap[3] = |
| v256_from_v64(v64_load_unaligned(&in[(i + 0) * CDEF_BSTRIDE - po2]), |
| v64_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE - po2]), |
| v64_load_unaligned(&in[(i + 2) * CDEF_BSTRIDE - po2]), |
| v64_load_unaligned(&in[(i + 3) * CDEF_BSTRIDE - po2])); |
| p1 = constrain16(tap[3], row, pri_strength, pri_damping); |
| |
| // sum += pri_taps[1] * (p0 + p1) |
| sum = v256_add_16( |
| sum, v256_mullo_s16(v256_dup_16(pri_taps[1]), v256_add_16(p0, p1))); |
| if (clipping_required) { |
| max = get_max_primary(is_lowbd, tap, max, cdef_large_value_mask); |
| |
| min = v256_min_s16(min, tap[0]); |
| min = v256_min_s16(min, tap[1]); |
| min = v256_min_s16(min, tap[2]); |
| min = v256_min_s16(min, tap[3]); |
| } |
| } |
| |
| if (enable_secondary) { |
| v256 tap[8]; |
| // Secondary near taps |
| tap[0] = |
| v256_from_v64(v64_load_unaligned(&in[(i + 0) * CDEF_BSTRIDE + s1o1]), |
| v64_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE + s1o1]), |
| v64_load_unaligned(&in[(i + 2) * CDEF_BSTRIDE + s1o1]), |
| v64_load_unaligned(&in[(i + 3) * CDEF_BSTRIDE + s1o1])); |
| p0 = constrain16(tap[0], row, sec_strength, sec_damping); |
| tap[1] = |
| v256_from_v64(v64_load_unaligned(&in[(i + 0) * CDEF_BSTRIDE - s1o1]), |
| v64_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE - s1o1]), |
| v64_load_unaligned(&in[(i + 2) * CDEF_BSTRIDE - s1o1]), |
| v64_load_unaligned(&in[(i + 3) * CDEF_BSTRIDE - s1o1])); |
| p1 = constrain16(tap[1], row, sec_strength, sec_damping); |
| tap[2] = |
| v256_from_v64(v64_load_unaligned(&in[(i + 0) * CDEF_BSTRIDE + s2o1]), |
| v64_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE + s2o1]), |
| v64_load_unaligned(&in[(i + 2) * CDEF_BSTRIDE + s2o1]), |
| v64_load_unaligned(&in[(i + 3) * CDEF_BSTRIDE + s2o1])); |
| p2 = constrain16(tap[2], row, sec_strength, sec_damping); |
| tap[3] = |
| v256_from_v64(v64_load_unaligned(&in[(i + 0) * CDEF_BSTRIDE - s2o1]), |
| v64_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE - s2o1]), |
| v64_load_unaligned(&in[(i + 2) * CDEF_BSTRIDE - s2o1]), |
| v64_load_unaligned(&in[(i + 3) * CDEF_BSTRIDE - s2o1])); |
| p3 = constrain16(tap[3], row, sec_strength, sec_damping); |
| |
| // sum += sec_taps[0] * (p0 + p1 + p2 + p3) |
| sum = v256_add_16(sum, v256_mullo_s16(v256_dup_16(sec_taps[0]), |
| v256_add_16(v256_add_16(p0, p1), |
| v256_add_16(p2, p3)))); |
| |
| // Secondary far taps |
| tap[4] = |
| v256_from_v64(v64_load_unaligned(&in[(i + 0) * CDEF_BSTRIDE + s1o2]), |
| v64_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE + s1o2]), |
| v64_load_unaligned(&in[(i + 2) * CDEF_BSTRIDE + s1o2]), |
| v64_load_unaligned(&in[(i + 3) * CDEF_BSTRIDE + s1o2])); |
| p0 = constrain16(tap[4], row, sec_strength, sec_damping); |
| tap[5] = |
| v256_from_v64(v64_load_unaligned(&in[(i + 0) * CDEF_BSTRIDE - s1o2]), |
| v64_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE - s1o2]), |
| v64_load_unaligned(&in[(i + 2) * CDEF_BSTRIDE - s1o2]), |
| v64_load_unaligned(&in[(i + 3) * CDEF_BSTRIDE - s1o2])); |
| p1 = constrain16(tap[5], row, sec_strength, sec_damping); |
| tap[6] = |
| v256_from_v64(v64_load_unaligned(&in[(i + 0) * CDEF_BSTRIDE + s2o2]), |
| v64_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE + s2o2]), |
| v64_load_unaligned(&in[(i + 2) * CDEF_BSTRIDE + s2o2]), |
| v64_load_unaligned(&in[(i + 3) * CDEF_BSTRIDE + s2o2])); |
| p2 = constrain16(tap[6], row, sec_strength, sec_damping); |
| tap[7] = |
| v256_from_v64(v64_load_unaligned(&in[(i + 0) * CDEF_BSTRIDE - s2o2]), |
| v64_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE - s2o2]), |
| v64_load_unaligned(&in[(i + 2) * CDEF_BSTRIDE - s2o2]), |
| v64_load_unaligned(&in[(i + 3) * CDEF_BSTRIDE - s2o2])); |
| p3 = constrain16(tap[7], row, sec_strength, sec_damping); |
| |
| // sum += sec_taps[1] * (p0 + p1 + p2 + p3) |
| sum = v256_add_16(sum, v256_mullo_s16(v256_dup_16(sec_taps[1]), |
| v256_add_16(v256_add_16(p0, p1), |
| v256_add_16(p2, p3)))); |
| |
| if (clipping_required) { |
| max = get_max_secondary(is_lowbd, tap, max, cdef_large_value_mask); |
| |
| min = v256_min_s16(min, tap[0]); |
| min = v256_min_s16(min, tap[1]); |
| min = v256_min_s16(min, tap[2]); |
| min = v256_min_s16(min, tap[3]); |
| min = v256_min_s16(min, tap[4]); |
| min = v256_min_s16(min, tap[5]); |
| min = v256_min_s16(min, tap[6]); |
| min = v256_min_s16(min, tap[7]); |
| } |
| } |
| |
| // res = row + ((sum - (sum < 0) + 8) >> 4) |
| sum = v256_add_16(sum, v256_cmplt_s16(sum, v256_zero())); |
| res = v256_add_16(sum, v256_dup_16(8)); |
| res = v256_shr_n_s16(res, 4); |
| res = v256_add_16(row, res); |
| if (clipping_required) { |
| res = v256_min_s16(v256_max_s16(res, min), max); |
| } |
| |
| if (is_lowbd) { |
| const v128 res_128 = v256_low_v128(v256_pack_s16_u8(res, res)); |
| u32_store_aligned(&dst8[(i + 0) * dstride], |
| v64_high_u32(v128_high_v64(res_128))); |
| u32_store_aligned(&dst8[(i + 1) * dstride], |
| v64_low_u32(v128_high_v64(res_128))); |
| u32_store_aligned(&dst8[(i + 2) * dstride], |
| v64_high_u32(v128_low_v64(res_128))); |
| u32_store_aligned(&dst8[(i + 3) * dstride], |
| v64_low_u32(v128_low_v64(res_128))); |
| } else { |
| v64_store_aligned(&dst16[(i + 0) * dstride], |
| v128_high_v64(v256_high_v128(res))); |
| v64_store_aligned(&dst16[(i + 1) * dstride], |
| v128_low_v64(v256_high_v128(res))); |
| v64_store_aligned(&dst16[(i + 2) * dstride], |
| v128_high_v64(v256_low_v128(res))); |
| v64_store_aligned(&dst16[(i + 3) * dstride], |
| v128_low_v64(v256_low_v128(res))); |
| } |
| } |
| } |
| |
| CDEF_INLINE void filter_block_8x8(const int is_lowbd, void *dest, int dstride, |
| const uint16_t *in, int pri_strength, |
| int sec_strength, int dir, int pri_damping, |
| int sec_damping, int coeff_shift, int height, |
| int enable_primary, int enable_secondary) { |
| uint8_t *dst8 = (uint8_t *)dest; |
| uint16_t *dst16 = (uint16_t *)dest; |
| const int clipping_required = enable_primary && enable_secondary; |
| int i; |
| v256 sum, p0, p1, p2, p3, row, res; |
| const v256 cdef_large_value_mask = v256_dup_16((uint16_t)~CDEF_VERY_LARGE); |
| v256 max, min; |
| const int po1 = cdef_directions[dir][0]; |
| const int po2 = cdef_directions[dir][1]; |
| const int s1o1 = cdef_directions[dir + 2][0]; |
| const int s1o2 = cdef_directions[dir + 2][1]; |
| const int s2o1 = cdef_directions[dir - 2][0]; |
| const int s2o2 = cdef_directions[dir - 2][1]; |
| const int *pri_taps = cdef_pri_taps[(pri_strength >> coeff_shift) & 1]; |
| const int *sec_taps = cdef_sec_taps; |
| |
| if (enable_primary && pri_strength) |
| pri_damping = AOMMAX(0, pri_damping - get_msb(pri_strength)); |
| if (enable_secondary && sec_strength) |
| sec_damping = AOMMAX(0, sec_damping - get_msb(sec_strength)); |
| |
| for (i = 0; i < height; i += 2) { |
| v256 tap[8]; |
| sum = v256_zero(); |
| row = v256_from_v128(v128_load_aligned(&in[i * CDEF_BSTRIDE]), |
| v128_load_aligned(&in[(i + 1) * CDEF_BSTRIDE])); |
| |
| min = max = row; |
| if (enable_primary) { |
| // Primary near taps |
| tap[0] = v256_from_v128( |
| v128_load_unaligned(&in[i * CDEF_BSTRIDE + po1]), |
| v128_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE + po1])); |
| tap[1] = v256_from_v128( |
| v128_load_unaligned(&in[i * CDEF_BSTRIDE - po1]), |
| v128_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE - po1])); |
| p0 = constrain16(tap[0], row, pri_strength, pri_damping); |
| p1 = constrain16(tap[1], row, pri_strength, pri_damping); |
| |
| // sum += pri_taps[0] * (p0 + p1) |
| sum = v256_add_16( |
| sum, v256_mullo_s16(v256_dup_16(pri_taps[0]), v256_add_16(p0, p1))); |
| |
| // Primary far taps |
| tap[2] = v256_from_v128( |
| v128_load_unaligned(&in[i * CDEF_BSTRIDE + po2]), |
| v128_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE + po2])); |
| tap[3] = v256_from_v128( |
| v128_load_unaligned(&in[i * CDEF_BSTRIDE - po2]), |
| v128_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE - po2])); |
| p0 = constrain16(tap[2], row, pri_strength, pri_damping); |
| p1 = constrain16(tap[3], row, pri_strength, pri_damping); |
| |
| // sum += pri_taps[1] * (p0 + p1) |
| sum = v256_add_16( |
| sum, v256_mullo_s16(v256_dup_16(pri_taps[1]), v256_add_16(p0, p1))); |
| |
| if (clipping_required) { |
| max = get_max_primary(is_lowbd, tap, max, cdef_large_value_mask); |
| |
| min = v256_min_s16(min, tap[0]); |
| min = v256_min_s16(min, tap[1]); |
| min = v256_min_s16(min, tap[2]); |
| min = v256_min_s16(min, tap[3]); |
| } |
| // End primary |
| } |
| |
| if (enable_secondary) { |
| // Secondary near taps |
| tap[0] = v256_from_v128( |
| v128_load_unaligned(&in[i * CDEF_BSTRIDE + s1o1]), |
| v128_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE + s1o1])); |
| tap[1] = v256_from_v128( |
| v128_load_unaligned(&in[i * CDEF_BSTRIDE - s1o1]), |
| v128_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE - s1o1])); |
| tap[2] = v256_from_v128( |
| v128_load_unaligned(&in[i * CDEF_BSTRIDE + s2o1]), |
| v128_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE + s2o1])); |
| tap[3] = v256_from_v128( |
| v128_load_unaligned(&in[i * CDEF_BSTRIDE - s2o1]), |
| v128_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE - s2o1])); |
| p0 = constrain16(tap[0], row, sec_strength, sec_damping); |
| p1 = constrain16(tap[1], row, sec_strength, sec_damping); |
| p2 = constrain16(tap[2], row, sec_strength, sec_damping); |
| p3 = constrain16(tap[3], row, sec_strength, sec_damping); |
| |
| // sum += sec_taps[0] * (p0 + p1 + p2 + p3) |
| sum = v256_add_16(sum, v256_mullo_s16(v256_dup_16(sec_taps[0]), |
| v256_add_16(v256_add_16(p0, p1), |
| v256_add_16(p2, p3)))); |
| |
| // Secondary far taps |
| tap[4] = v256_from_v128( |
| v128_load_unaligned(&in[i * CDEF_BSTRIDE + s1o2]), |
| v128_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE + s1o2])); |
| tap[5] = v256_from_v128( |
| v128_load_unaligned(&in[i * CDEF_BSTRIDE - s1o2]), |
| v128_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE - s1o2])); |
| tap[6] = v256_from_v128( |
| v128_load_unaligned(&in[i * CDEF_BSTRIDE + s2o2]), |
| v128_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE + s2o2])); |
| tap[7] = v256_from_v128( |
| v128_load_unaligned(&in[i * CDEF_BSTRIDE - s2o2]), |
| v128_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE - s2o2])); |
| p0 = constrain16(tap[4], row, sec_strength, sec_damping); |
| p1 = constrain16(tap[5], row, sec_strength, sec_damping); |
| p2 = constrain16(tap[6], row, sec_strength, sec_damping); |
| p3 = constrain16(tap[7], row, sec_strength, sec_damping); |
| |
| // sum += sec_taps[1] * (p0 + p1 + p2 + p3) |
| sum = v256_add_16(sum, v256_mullo_s16(v256_dup_16(sec_taps[1]), |
| v256_add_16(v256_add_16(p0, p1), |
| v256_add_16(p2, p3)))); |
| |
| if (clipping_required) { |
| max = get_max_secondary(is_lowbd, tap, max, cdef_large_value_mask); |
| |
| min = v256_min_s16(min, tap[0]); |
| min = v256_min_s16(min, tap[1]); |
| min = v256_min_s16(min, tap[2]); |
| min = v256_min_s16(min, tap[3]); |
| min = v256_min_s16(min, tap[4]); |
| min = v256_min_s16(min, tap[5]); |
| min = v256_min_s16(min, tap[6]); |
| min = v256_min_s16(min, tap[7]); |
| } |
| // End secondary |
| } |
| |
| // res = row + ((sum - (sum < 0) + 8) >> 4) |
| sum = v256_add_16(sum, v256_cmplt_s16(sum, v256_zero())); |
| res = v256_add_16(sum, v256_dup_16(8)); |
| res = v256_shr_n_s16(res, 4); |
| res = v256_add_16(row, res); |
| if (clipping_required) { |
| res = v256_min_s16(v256_max_s16(res, min), max); |
| } |
| |
| if (is_lowbd) { |
| const v128 res_128 = v256_low_v128(v256_pack_s16_u8(res, res)); |
| v64_store_aligned(&dst8[i * dstride], v128_high_v64(res_128)); |
| v64_store_aligned(&dst8[(i + 1) * dstride], v128_low_v64(res_128)); |
| } else { |
| v128_store_unaligned(&dst16[i * dstride], v256_high_v128(res)); |
| v128_store_unaligned(&dst16[(i + 1) * dstride], v256_low_v128(res)); |
| } |
| } |
| } |
| |
| SIMD_INLINE void copy_block_4xh(const int is_lowbd, void *dest, int dstride, |
| const uint16_t *in, int height) { |
| uint8_t *dst8 = (uint8_t *)dest; |
| uint16_t *dst16 = (uint16_t *)dest; |
| int i; |
| for (i = 0; i < height; i += 4) { |
| const v128 row0 = |
| v128_from_v64(v64_load_aligned(&in[(i + 0) * CDEF_BSTRIDE]), |
| v64_load_aligned(&in[(i + 1) * CDEF_BSTRIDE])); |
| const v128 row1 = |
| v128_from_v64(v64_load_aligned(&in[(i + 2) * CDEF_BSTRIDE]), |
| v64_load_aligned(&in[(i + 3) * CDEF_BSTRIDE])); |
| if (is_lowbd) { |
| /* Note: v128_pack_s16_u8(). The parameter order is swapped internally */ |
| const v128 res_128 = v128_pack_s16_u8(row1, row0); |
| u32_store_aligned(&dst8[(i + 0) * dstride], |
| v64_high_u32(v128_low_v64(res_128))); |
| u32_store_aligned(&dst8[(i + 1) * dstride], |
| v64_low_u32(v128_low_v64(res_128))); |
| u32_store_aligned(&dst8[(i + 2) * dstride], |
| v64_high_u32(v128_high_v64(res_128))); |
| u32_store_aligned(&dst8[(i + 3) * dstride], |
| v64_low_u32(v128_high_v64(res_128))); |
| } else { |
| v64_store_aligned(&dst16[(i + 0) * dstride], v128_high_v64(row0)); |
| v64_store_aligned(&dst16[(i + 1) * dstride], v128_low_v64(row0)); |
| v64_store_aligned(&dst16[(i + 2) * dstride], v128_high_v64(row1)); |
| v64_store_aligned(&dst16[(i + 3) * dstride], v128_low_v64(row1)); |
| } |
| } |
| } |
| |
| SIMD_INLINE void copy_block_8xh(const int is_lowbd, void *dest, int dstride, |
| const uint16_t *in, int height) { |
| uint8_t *dst8 = (uint8_t *)dest; |
| uint16_t *dst16 = (uint16_t *)dest; |
| int i; |
| for (i = 0; i < height; i += 2) { |
| const v128 row0 = v128_load_aligned(&in[i * CDEF_BSTRIDE]); |
| const v128 row1 = v128_load_aligned(&in[(i + 1) * CDEF_BSTRIDE]); |
| if (is_lowbd) { |
| /* Note: v128_pack_s16_u8(). The parameter order is swapped internally */ |
| const v128 res_128 = v128_pack_s16_u8(row1, row0); |
| v64_store_aligned(&dst8[i * dstride], v128_low_v64(res_128)); |
| v64_store_aligned(&dst8[(i + 1) * dstride], v128_high_v64(res_128)); |
| } else { |
| v128_store_unaligned(&dst16[i * dstride], row0); |
| v128_store_unaligned(&dst16[(i + 1) * dstride], row1); |
| } |
| } |
| } |
| |
| void SIMD_FUNC(cdef_filter_8_0)(void *dest, int dstride, const uint16_t *in, |
| int pri_strength, int sec_strength, int dir, |
| int pri_damping, int sec_damping, |
| int coeff_shift, int block_width, |
| int block_height) { |
| uint8_t *dst8 = (uint8_t *)dest; |
| if (block_width == 8) { |
| filter_block_8x8(/*is_lowbd=*/1, dst8, dstride, in, pri_strength, |
| sec_strength, dir, pri_damping, sec_damping, coeff_shift, |
| block_height, /*enable_primary=*/1, |
| /*enable_secondary=*/1); |
| } else { |
| filter_block_4x4(/*is_lowbd=*/1, dst8, dstride, in, pri_strength, |
| sec_strength, dir, pri_damping, sec_damping, coeff_shift, |
| block_height, /*enable_primary=*/1, |
| /*enable_secondary=*/1); |
| } |
| } |
| |
| void SIMD_FUNC(cdef_filter_8_1)(void *dest, int dstride, const uint16_t *in, |
| int pri_strength, int sec_strength, int dir, |
| int pri_damping, int sec_damping, |
| int coeff_shift, int block_width, |
| int block_height) { |
| uint8_t *dst8 = (uint8_t *)dest; |
| if (block_width == 8) { |
| filter_block_8x8(/*is_lowbd=*/1, dst8, dstride, in, pri_strength, |
| sec_strength, dir, pri_damping, sec_damping, coeff_shift, |
| block_height, /*enable_primary=*/1, |
| /*enable_secondary=*/0); |
| } else { |
| filter_block_4x4(/*is_lowbd=*/1, dst8, dstride, in, pri_strength, |
| sec_strength, dir, pri_damping, sec_damping, coeff_shift, |
| block_height, /*enable_primary=*/1, |
| /*enable_secondary=*/0); |
| } |
| } |
| void SIMD_FUNC(cdef_filter_8_2)(void *dest, int dstride, const uint16_t *in, |
| int pri_strength, int sec_strength, int dir, |
| int pri_damping, int sec_damping, |
| int coeff_shift, int block_width, |
| int block_height) { |
| uint8_t *dst8 = (uint8_t *)dest; |
| if (block_width == 8) { |
| filter_block_8x8(/*is_lowbd=*/1, dst8, dstride, in, pri_strength, |
| sec_strength, dir, pri_damping, sec_damping, coeff_shift, |
| block_height, /*enable_primary=*/0, |
| /*enable_secondary=*/1); |
| } else { |
| filter_block_4x4(/*is_lowbd=*/1, dst8, dstride, in, pri_strength, |
| sec_strength, dir, pri_damping, sec_damping, coeff_shift, |
| block_height, /*enable_primary=*/0, |
| /*enable_secondary=*/1); |
| } |
| } |
| |
| void SIMD_FUNC(cdef_filter_8_3)(void *dest, int dstride, const uint16_t *in, |
| int pri_strength, int sec_strength, int dir, |
| int pri_damping, int sec_damping, |
| int coeff_shift, int block_width, |
| int block_height) { |
| uint8_t *dst8 = (uint8_t *)dest; |
| (void)pri_strength; |
| (void)sec_strength; |
| (void)dir; |
| (void)pri_damping; |
| (void)sec_damping; |
| (void)coeff_shift; |
| (void)block_width; |
| |
| if (block_width == 8) { |
| copy_block_8xh(/*is_lowbd=*/1, dst8, dstride, in, block_height); |
| } else { |
| copy_block_4xh(/*is_lowbd=*/1, dst8, dstride, in, block_height); |
| } |
| } |
| |
| void SIMD_FUNC(cdef_filter_16_0)(void *dest, int dstride, const uint16_t *in, |
| int pri_strength, int sec_strength, int dir, |
| int pri_damping, int sec_damping, |
| int coeff_shift, int block_width, |
| int block_height) { |
| uint16_t *dst16 = (uint16_t *)dest; |
| if (block_width == 8) { |
| filter_block_8x8(/*is_lowbd=*/0, dst16, dstride, in, pri_strength, |
| sec_strength, dir, pri_damping, sec_damping, coeff_shift, |
| block_height, /*enable_primary=*/1, |
| /*enable_secondary=*/1); |
| } else { |
| filter_block_4x4(/*is_lowbd=*/0, dst16, dstride, in, pri_strength, |
| sec_strength, dir, pri_damping, sec_damping, coeff_shift, |
| block_height, /*enable_primary=*/1, |
| /*enable_secondary=*/1); |
| } |
| } |
| |
| void SIMD_FUNC(cdef_filter_16_1)(void *dest, int dstride, const uint16_t *in, |
| int pri_strength, int sec_strength, int dir, |
| int pri_damping, int sec_damping, |
| int coeff_shift, int block_width, |
| int block_height) { |
| uint16_t *dst16 = (uint16_t *)dest; |
| if (block_width == 8) { |
| filter_block_8x8(/*is_lowbd=*/0, dst16, dstride, in, pri_strength, |
| sec_strength, dir, pri_damping, sec_damping, coeff_shift, |
| block_height, /*enable_primary=*/1, |
| /*enable_secondary=*/0); |
| } else { |
| filter_block_4x4(/*is_lowbd=*/0, dst16, dstride, in, pri_strength, |
| sec_strength, dir, pri_damping, sec_damping, coeff_shift, |
| block_height, /*enable_primary=*/1, |
| /*enable_secondary=*/0); |
| } |
| } |
| void SIMD_FUNC(cdef_filter_16_2)(void *dest, int dstride, const uint16_t *in, |
| int pri_strength, int sec_strength, int dir, |
| int pri_damping, int sec_damping, |
| int coeff_shift, int block_width, |
| int block_height) { |
| uint16_t *dst16 = (uint16_t *)dest; |
| if (block_width == 8) { |
| filter_block_8x8(/*is_lowbd=*/0, dst16, dstride, in, pri_strength, |
| sec_strength, dir, pri_damping, sec_damping, coeff_shift, |
| block_height, /*enable_primary=*/0, |
| /*enable_secondary=*/1); |
| } else { |
| filter_block_4x4(/*is_lowbd=*/0, dst16, dstride, in, pri_strength, |
| sec_strength, dir, pri_damping, sec_damping, coeff_shift, |
| block_height, /*enable_primary=*/0, |
| /*enable_secondary=*/1); |
| } |
| } |
| |
| void SIMD_FUNC(cdef_filter_16_3)(void *dest, int dstride, const uint16_t *in, |
| int pri_strength, int sec_strength, int dir, |
| int pri_damping, int sec_damping, |
| int coeff_shift, int block_width, |
| int block_height) { |
| uint16_t *dst16 = (uint16_t *)dest; |
| (void)pri_strength; |
| (void)sec_strength; |
| (void)dir; |
| (void)pri_damping; |
| (void)sec_damping; |
| (void)coeff_shift; |
| (void)block_width; |
| if (block_width == 8) { |
| copy_block_8xh(/*is_lowbd=*/0, dst16, dstride, in, block_height); |
| } else { |
| copy_block_4xh(/*is_lowbd=*/0, dst16, dstride, in, block_height); |
| } |
| } |
| |
| void SIMD_FUNC(cdef_copy_rect8_16bit_to_16bit)(uint16_t *dst, int dstride, |
| const uint16_t *src, int sstride, |
| int width, int height) { |
| int i, j; |
| for (i = 0; i < height; i++) { |
| for (j = 0; j < (width & ~0x7); j += 8) { |
| v128 row = v128_load_unaligned(&src[i * sstride + j]); |
| v128_store_unaligned(&dst[i * dstride + j], row); |
| } |
| for (; j < width; j++) { |
| dst[i * dstride + j] = src[i * sstride + j]; |
| } |
| } |
| } |
| |
| #undef CDEF_INLINE |
| |
| #endif // AOM_AV1_COMMON_CDEF_BLOCK_SIMD_H_ |