Improve global motion model pruning
Three interlinked changes:
* When we aren't going to refine a global motion model (speed 3 and 4),
stop evaluation of the error early if it becomes clear this model
won't pass the required quality threshold
* When we are going to refine (speed 0, 1, 2), skip refinement if the
model fails an initial quality check.
The threshold for this initial check is set a little higher than
the main threshold, because refinement may reduce the error, and
we only want to prune out models which are very unlikely to be used.
* Remove logic where refinement would apply different thresholds at
different refinement steps. Instead, just always set the threshold
equal to the best error seen so far.
Speed | BD-avg-PSNR | BD-ovr-psnr | BD-ssim | Enc time
-------+-------------+-------------+-------------+-------------
1 | 0.000% | 0.000% | 0.000% | -0.336%
2 | +0.002% | +0.002% | 0.000% | -0.502%
3 | 0.000% | 0.000% | 0.000% | -0.021%
4 | 0.000% | 0.000% | 0.000% | -0.017%
STATS_CHANGED for speed 0, 1, 2
Change-Id: I76a3197aaf02e092543fe1a2a1305d5ab214a440
diff --git a/av1/encoder/global_motion.c b/av1/encoder/global_motion.c
index bdbad4a..20bc9db 100644
--- a/av1/encoder/global_motion.c
+++ b/av1/encoder/global_motion.c
@@ -389,24 +389,11 @@
best_error, segment_map, segment_map_stride);
}
-// Factors used to calculate the thresholds for av1_warp_error
-static double thresh_factors[GM_MAX_REFINEMENT_STEPS] = { 1.25, 1.20, 1.15,
- 1.10, 1.05 };
-
-static INLINE int64_t calc_approx_erroradv_threshold(
- double scaling_factor, int64_t erroradv_threshold) {
- return erroradv_threshold <
- (int64_t)(((double)INT64_MAX / scaling_factor) + 0.5)
- ? (int64_t)(scaling_factor * erroradv_threshold + 0.5)
- : INT64_MAX;
-}
-
int64_t av1_refine_integerized_param(
WarpedMotionParams *wm, TransformationType wmtype, int use_hbd, int bd,
uint8_t *ref, int r_width, int r_height, int r_stride, uint8_t *dst,
int d_width, int d_height, int d_stride, int n_refinements,
- int64_t best_frame_error, uint8_t *segment_map, int segment_map_stride,
- int64_t erroradv_threshold) {
+ int64_t ref_frame_error, uint8_t *segment_map, int segment_map_stride) {
static const int max_trans_model_params[TRANS_TYPES] = { 0, 2, 4, 6 };
const int border = ERRORADV_BORDER;
int i = 0, p;
@@ -419,22 +406,36 @@
int32_t best_param;
force_wmtype(wm, wmtype);
+ wm->wmtype = get_wmtype(wm);
+
+ if (n_refinements == 0) {
+ // Compute the maximum error value that will be accepted, so that
+ // av1_warp_error can terminate early if it proves the model will not
+ // be accepted.
+ int64_t selection_threshold = (int64_t)lrint(ref_frame_error * erroradv_tr);
+ return av1_warp_error(wm, use_hbd, bd, ref, r_width, r_height, r_stride,
+ dst + border * d_stride + border, border, border,
+ d_width - 2 * border, d_height - 2 * border, d_stride,
+ 0, 0, selection_threshold, segment_map,
+ segment_map_stride);
+ }
+
+ // When refining, use a slightly higher threshold for the initial error
+ // calculation - see comment above erroradv_early_tr for why.
+ int64_t selection_threshold =
+ (int64_t)lrint(ref_frame_error * erroradv_early_tr);
best_error =
av1_warp_error(wm, use_hbd, bd, ref, r_width, r_height, r_stride,
dst + border * d_stride + border, border, border,
d_width - 2 * border, d_height - 2 * border, d_stride, 0,
- 0, best_frame_error, segment_map, segment_map_stride);
+ 0, selection_threshold, segment_map, segment_map_stride);
- if (n_refinements == 0) {
- wm->wmtype = get_wmtype(wm);
- return best_error;
+ if (best_error > selection_threshold) {
+ return INT64_MAX;
}
- best_error = AOMMIN(best_error, best_frame_error);
step = 1 << (n_refinements - 1);
for (i = 0; i < n_refinements; i++, step >>= 1) {
- int64_t error_adv_thresh =
- calc_approx_erroradv_threshold(thresh_factors[i], erroradv_threshold);
for (p = 0; p < n_params; ++p) {
int step_dir = 0;
param = param_mat + p;
@@ -449,8 +450,7 @@
av1_warp_error(wm, use_hbd, bd, ref, r_width, r_height, r_stride,
dst + border * d_stride + border, border, border,
d_width - 2 * border, d_height - 2 * border, d_stride,
- 0, 0, AOMMIN(best_error, error_adv_thresh),
- segment_map, segment_map_stride);
+ 0, 0, best_error, segment_map, segment_map_stride);
if (step_error < best_error) {
best_error = step_error;
best_param = *param;
@@ -464,8 +464,7 @@
av1_warp_error(wm, use_hbd, bd, ref, r_width, r_height, r_stride,
dst + border * d_stride + border, border, border,
d_width - 2 * border, d_height - 2 * border, d_stride,
- 0, 0, AOMMIN(best_error, error_adv_thresh),
- segment_map, segment_map_stride);
+ 0, 0, best_error, segment_map, segment_map_stride);
if (step_error < best_error) {
best_error = step_error;
best_param = *param;
@@ -477,12 +476,11 @@
while (step_dir) {
*param = add_param_offset(p, best_param, step * step_dir);
force_wmtype(wm, wmtype);
- step_error =
- av1_warp_error(wm, use_hbd, bd, ref, r_width, r_height, r_stride,
- dst + border * d_stride + border, border, border,
- d_width - 2 * border, d_height - 2 * border,
- d_stride, 0, 0, AOMMIN(best_error, error_adv_thresh),
- segment_map, segment_map_stride);
+ step_error = av1_warp_error(
+ wm, use_hbd, bd, ref, r_width, r_height, r_stride,
+ dst + border * d_stride + border, border, border,
+ d_width - 2 * border, d_height - 2 * border, d_stride, 0, 0,
+ best_error, segment_map, segment_map_stride);
if (step_error < best_error) {
best_error = step_error;
best_param = *param;
diff --git a/av1/encoder/global_motion.h b/av1/encoder/global_motion.h
index 4d7755c..bf95261 100644
--- a/av1/encoder/global_motion.h
+++ b/av1/encoder/global_motion.h
@@ -72,11 +72,21 @@
void av1_convert_model_to_params(const double *params,
WarpedMotionParams *model);
-// TODO(sarahparker) These need to be retuned for speed 0 and 1 to
-// maximize gains from segmented error metric
+// Criteria for accepting a global motion model
static const double erroradv_tr = 0.65;
static const double erroradv_prod_tr = 20000;
+// Early exit threshold for global motion refinement
+// This is set slightly higher than erroradv_tr, as a compromise between
+// two factors:
+//
+// 1) By rejecting un-promising models early, we can reduce the encode time
+// spent trying to refine them
+//
+// 2) When we refine a model, its error may decrease to below the acceptance
+// threshold even if the model is initially above the threshold
+static const double erroradv_early_tr = 0.70;
+
int av1_is_enough_erroradvantage(double best_erroradvantage, int params_cost);
void av1_compute_feature_segmentation_map(uint8_t *segment_map, int width,
@@ -128,8 +138,7 @@
WarpedMotionParams *wm, TransformationType wmtype, int use_hbd, int bd,
uint8_t *ref, int r_width, int r_height, int r_stride, uint8_t *dst,
int d_width, int d_height, int d_stride, int n_refinements,
- int64_t best_frame_error, uint8_t *segment_map, int segment_map_stride,
- int64_t erroradv_threshold);
+ int64_t ref_frame_error, uint8_t *segment_map, int segment_map_stride);
#ifdef __cplusplus
} // extern "C"
diff --git a/av1/encoder/global_motion_facade.c b/av1/encoder/global_motion_facade.c
index 3fc8508..62eb117 100644
--- a/av1/encoder/global_motion_facade.c
+++ b/av1/encoder/global_motion_facade.c
@@ -73,11 +73,6 @@
return (params_cost << AV1_PROB_COST_SHIFT);
}
-// Calculates the threshold to be used for warp error computation.
-static AOM_INLINE int64_t calc_erroradv_threshold(int64_t ref_frame_error) {
- return (int64_t)(ref_frame_error * erroradv_tr + 0.5);
-}
-
// For the given reference frame, computes the global motion parameters for
// different motion models and finds the best.
static AOM_INLINE void compute_global_motion_for_ref_frame(
@@ -138,16 +133,12 @@
if (ref_frame_error == 0) continue;
- const int64_t erroradv_threshold =
- calc_erroradv_threshold(ref_frame_error);
-
const int64_t warp_error = av1_refine_integerized_param(
&tmp_wm_params, tmp_wm_params.wmtype, is_cur_buf_hbd(xd), xd->bd,
ref_buf[frame]->y_buffer, ref_buf[frame]->y_crop_width,
ref_buf[frame]->y_crop_height, ref_buf[frame]->y_stride,
cpi->source->y_buffer, src_width, src_height, src_stride,
- num_refinements, best_warp_error, segment_map, segment_map_w,
- erroradv_threshold);
+ num_refinements, ref_frame_error, segment_map, segment_map_w);
// av1_refine_integerized_param() can return a simpler model type than
// its input, so re-check model type here