blob: 97b6a6ff3318e602de1e028a716c90c5c56d034b [file] [log] [blame]
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include <math.h>
#include "./vp10_rtcd.h"
#include "./vpx_dsp_rtcd.h"
#include "vpx_dsp/vpx_dsp_common.h"
#include "vpx_dsp/blend.h"
#include "vpx_mem/vpx_mem.h"
#include "vpx_ports/mem.h"
#include "vpx_ports/system_state.h"
#include "vp10/common/common.h"
#include "vp10/common/common_data.h"
#include "vp10/common/entropy.h"
#include "vp10/common/entropymode.h"
#include "vp10/common/idct.h"
#include "vp10/common/mvref_common.h"
#include "vp10/common/pred_common.h"
#include "vp10/common/quant_common.h"
#include "vp10/common/reconinter.h"
#include "vp10/common/reconintra.h"
#include "vp10/common/scan.h"
#include "vp10/common/seg_common.h"
#include "vp10/encoder/cost.h"
#include "vp10/encoder/encodemb.h"
#include "vp10/encoder/encodemv.h"
#include "vp10/encoder/encoder.h"
#include "vp10/encoder/hybrid_fwd_txfm.h"
#include "vp10/encoder/mcomp.h"
#include "vp10/encoder/palette.h"
#include "vp10/encoder/quantize.h"
#include "vp10/encoder/ratectrl.h"
#include "vp10/encoder/rd.h"
#include "vp10/encoder/rdopt.h"
#include "vp10/encoder/aq_variance.h"
#if CONFIG_DUAL_FILTER
#if CONFIG_EXT_INTERP
static const int filter_sets[25][2] = {
{0, 0}, {0, 1}, {0, 2}, {0, 3}, {0, 4},
{1, 0}, {1, 1}, {1, 2}, {1, 3}, {1, 4},
{2, 0}, {2, 1}, {2, 2}, {2, 3}, {2, 4},
{3, 0}, {3, 1}, {3, 2}, {3, 3}, {3, 4},
{4, 0}, {4, 1}, {4, 2}, {4, 3}, {4, 4},
};
#else
static const int filter_sets[9][2] = {
{0, 0}, {0, 1}, {0, 2},
{1, 0}, {1, 1}, {1, 2},
{2, 0}, {2, 1}, {2, 2},
};
#endif
#endif
#if CONFIG_EXT_REFS
#define LAST_FRAME_MODE_MASK ((1 << INTRA_FRAME) | (1 << LAST2_FRAME) | \
(1 << LAST3_FRAME) | (1 << GOLDEN_FRAME) | \
(1 << BWDREF_FRAME) | (1 << ALTREF_FRAME))
#define LAST2_FRAME_MODE_MASK ((1 << INTRA_FRAME) | (1 << LAST_FRAME) | \
(1 << LAST3_FRAME) | (1 << GOLDEN_FRAME) | \
(1 << BWDREF_FRAME) | (1 << ALTREF_FRAME))
#define LAST3_FRAME_MODE_MASK ((1 << INTRA_FRAME) | (1 << LAST_FRAME) | \
(1 << LAST2_FRAME) | (1 << GOLDEN_FRAME) | \
(1 << BWDREF_FRAME) | (1 << ALTREF_FRAME))
#define GOLDEN_FRAME_MODE_MASK ((1 << INTRA_FRAME) | (1 << LAST_FRAME) | \
(1 << LAST2_FRAME) | (1 << LAST3_FRAME) | \
(1 << BWDREF_FRAME) | (1 << ALTREF_FRAME))
#define BWDREF_FRAME_MODE_MASK ((1 << INTRA_FRAME) | (1 << LAST_FRAME) | \
(1 << LAST2_FRAME) | (1 << LAST3_FRAME) | \
(1 << GOLDEN_FRAME) | (1 << ALTREF_FRAME))
#define ALTREF_FRAME_MODE_MASK ((1 << INTRA_FRAME) | (1 << LAST_FRAME) | \
(1 << LAST2_FRAME) | (1 << LAST3_FRAME) | \
(1 << GOLDEN_FRAME) | (1 << BWDREF_FRAME))
#else
#define LAST_FRAME_MODE_MASK ((1 << GOLDEN_FRAME) | (1 << ALTREF_FRAME) | \
(1 << INTRA_FRAME))
#define GOLDEN_FRAME_MODE_MASK ((1 << LAST_FRAME) | (1 << ALTREF_FRAME) | \
(1 << INTRA_FRAME))
#define ALTREF_FRAME_MODE_MASK ((1 << LAST_FRAME) | (1 << GOLDEN_FRAME) | \
(1 << INTRA_FRAME))
#endif // CONFIG_EXT_REFS
#if CONFIG_EXT_REFS
#define SECOND_REF_FRAME_MASK ((1 << ALTREF_FRAME) | (1 << BWDREF_FRAME) | \
0x01)
#else
#define SECOND_REF_FRAME_MASK ((1 << ALTREF_FRAME) | 0x01)
#endif // CONFIG_EXT_REFS
#define MIN_EARLY_TERM_INDEX 3
#define NEW_MV_DISCOUNT_FACTOR 8
#if CONFIG_EXT_INTRA
#define ANGLE_FAST_SEARCH 1
#define ANGLE_SKIP_THRESH 10
#define FILTER_FAST_SEARCH 1
#endif // CONFIG_EXT_INTRA
const double ADST_FLIP_SVM[8] = {-6.6623, -2.8062, -3.2531, 3.1671, // vert
-7.7051, -3.2234, -3.6193, 3.4533}; // horz
typedef struct {
PREDICTION_MODE mode;
MV_REFERENCE_FRAME ref_frame[2];
} MODE_DEFINITION;
typedef struct {
MV_REFERENCE_FRAME ref_frame[2];
} REF_DEFINITION;
struct rdcost_block_args {
const VP10_COMP *cpi;
MACROBLOCK *x;
ENTROPY_CONTEXT t_above[2 * MAX_MIB_SIZE];
ENTROPY_CONTEXT t_left[2 * MAX_MIB_SIZE];
int this_rate;
int64_t this_dist;
int64_t this_sse;
int64_t this_rd;
int64_t best_rd;
int exit_early;
int use_fast_coef_costing;
const scan_order *so;
uint8_t skippable;
};
#define LAST_NEW_MV_INDEX 6
static const MODE_DEFINITION vp10_mode_order[MAX_MODES] = {
{NEARESTMV, {LAST_FRAME, NONE}},
#if CONFIG_EXT_REFS
{NEARESTMV, {LAST2_FRAME, NONE}},
{NEARESTMV, {LAST3_FRAME, NONE}},
{NEARESTMV, {BWDREF_FRAME, NONE}},
#endif // CONFIG_EXT_REFS
{NEARESTMV, {ALTREF_FRAME, NONE}},
{NEARESTMV, {GOLDEN_FRAME, NONE}},
{DC_PRED, {INTRA_FRAME, NONE}},
{NEWMV, {LAST_FRAME, NONE}},
#if CONFIG_EXT_REFS
{NEWMV, {LAST2_FRAME, NONE}},
{NEWMV, {LAST3_FRAME, NONE}},
{NEWMV, {BWDREF_FRAME, NONE}},
#endif // CONFIG_EXT_REFS
{NEWMV, {ALTREF_FRAME, NONE}},
{NEWMV, {GOLDEN_FRAME, NONE}},
{NEARMV, {LAST_FRAME, NONE}},
#if CONFIG_EXT_REFS
{NEARMV, {LAST2_FRAME, NONE}},
{NEARMV, {LAST3_FRAME, NONE}},
{NEARMV, {BWDREF_FRAME, NONE}},
#endif // CONFIG_EXT_REFS
{NEARMV, {ALTREF_FRAME, NONE}},
{NEARMV, {GOLDEN_FRAME, NONE}},
#if CONFIG_EXT_INTER
{NEWFROMNEARMV, {LAST_FRAME, NONE}},
#if CONFIG_EXT_REFS
{NEWFROMNEARMV, {LAST2_FRAME, NONE}},
{NEWFROMNEARMV, {LAST3_FRAME, NONE}},
{NEWFROMNEARMV, {BWDREF_FRAME, NONE}},
#endif // CONFIG_EXT_REFS
{NEWFROMNEARMV, {ALTREF_FRAME, NONE}},
{NEWFROMNEARMV, {GOLDEN_FRAME, NONE}},
#endif // CONFIG_EXT_INTER
{ZEROMV, {LAST_FRAME, NONE}},
#if CONFIG_EXT_REFS
{ZEROMV, {LAST2_FRAME, NONE}},
{ZEROMV, {LAST3_FRAME, NONE}},
{ZEROMV, {BWDREF_FRAME, NONE}},
#endif // CONFIG_EXT_REFS
{ZEROMV, {GOLDEN_FRAME, NONE}},
{ZEROMV, {ALTREF_FRAME, NONE}},
// TODO(zoeliu): May need to reconsider the order on the modes to check
#if CONFIG_EXT_INTER
{NEAREST_NEARESTMV, {LAST_FRAME, ALTREF_FRAME}},
#if CONFIG_EXT_REFS
{NEAREST_NEARESTMV, {LAST2_FRAME, ALTREF_FRAME}},
{NEAREST_NEARESTMV, {LAST3_FRAME, ALTREF_FRAME}},
#endif // CONFIG_EXT_REFS
{NEAREST_NEARESTMV, {GOLDEN_FRAME, ALTREF_FRAME}},
#if CONFIG_EXT_REFS
{NEAREST_NEARESTMV, {LAST_FRAME, BWDREF_FRAME}},
{NEAREST_NEARESTMV, {LAST2_FRAME, BWDREF_FRAME}},
{NEAREST_NEARESTMV, {LAST3_FRAME, BWDREF_FRAME}},
{NEAREST_NEARESTMV, {GOLDEN_FRAME, BWDREF_FRAME}},
#endif // CONFIG_EXT_REFS
#else // CONFIG_EXT_INTER
{NEARESTMV, {LAST_FRAME, ALTREF_FRAME}},
#if CONFIG_EXT_REFS
{NEARESTMV, {LAST2_FRAME, ALTREF_FRAME}},
{NEARESTMV, {LAST3_FRAME, ALTREF_FRAME}},
#endif // CONFIG_EXT_REFS
{NEARESTMV, {GOLDEN_FRAME, ALTREF_FRAME}},
#if CONFIG_EXT_REFS
{NEARESTMV, {LAST_FRAME, BWDREF_FRAME}},
{NEARESTMV, {LAST2_FRAME, BWDREF_FRAME}},
{NEARESTMV, {LAST3_FRAME, BWDREF_FRAME}},
{NEARESTMV, {GOLDEN_FRAME, BWDREF_FRAME}},
#endif // CONFIG_EXT_REFS
#endif // CONFIG_EXT_INTER
{TM_PRED, {INTRA_FRAME, NONE}},
#if CONFIG_EXT_INTER
{NEAR_NEARESTMV, {LAST_FRAME, ALTREF_FRAME}},
{NEAREST_NEARMV, {LAST_FRAME, ALTREF_FRAME}},
{NEAR_NEARMV, {LAST_FRAME, ALTREF_FRAME}},
{NEW_NEARESTMV, {LAST_FRAME, ALTREF_FRAME}},
{NEAREST_NEWMV, {LAST_FRAME, ALTREF_FRAME}},
{NEW_NEARMV, {LAST_FRAME, ALTREF_FRAME}},
{NEAR_NEWMV, {LAST_FRAME, ALTREF_FRAME}},
{NEW_NEWMV, {LAST_FRAME, ALTREF_FRAME}},
{ZERO_ZEROMV, {LAST_FRAME, ALTREF_FRAME}},
#if CONFIG_EXT_REFS
{NEAR_NEARESTMV, {LAST2_FRAME, ALTREF_FRAME}},
{NEAREST_NEARMV, {LAST2_FRAME, ALTREF_FRAME}},
{NEAR_NEARMV, {LAST2_FRAME, ALTREF_FRAME}},
{NEW_NEARESTMV, {LAST2_FRAME, ALTREF_FRAME}},
{NEAREST_NEWMV, {LAST2_FRAME, ALTREF_FRAME}},
{NEW_NEARMV, {LAST2_FRAME, ALTREF_FRAME}},
{NEAR_NEWMV, {LAST2_FRAME, ALTREF_FRAME}},
{NEW_NEWMV, {LAST2_FRAME, ALTREF_FRAME}},
{ZERO_ZEROMV, {LAST2_FRAME, ALTREF_FRAME}},
{NEAR_NEARESTMV, {LAST3_FRAME, ALTREF_FRAME}},
{NEAREST_NEARMV, {LAST3_FRAME, ALTREF_FRAME}},
{NEAR_NEARMV, {LAST3_FRAME, ALTREF_FRAME}},
{NEW_NEARESTMV, {LAST3_FRAME, ALTREF_FRAME}},
{NEAREST_NEWMV, {LAST3_FRAME, ALTREF_FRAME}},
{NEW_NEARMV, {LAST3_FRAME, ALTREF_FRAME}},
{NEAR_NEWMV, {LAST3_FRAME, ALTREF_FRAME}},
{NEW_NEWMV, {LAST3_FRAME, ALTREF_FRAME}},
{ZERO_ZEROMV, {LAST3_FRAME, ALTREF_FRAME}},
#endif // CONFIG_EXT_REFS
{NEAR_NEARESTMV, {GOLDEN_FRAME, ALTREF_FRAME}},
{NEAREST_NEARMV, {GOLDEN_FRAME, ALTREF_FRAME}},
{NEAR_NEARMV, {GOLDEN_FRAME, ALTREF_FRAME}},
{NEW_NEARESTMV, {GOLDEN_FRAME, ALTREF_FRAME}},
{NEAREST_NEWMV, {GOLDEN_FRAME, ALTREF_FRAME}},
{NEW_NEARMV, {GOLDEN_FRAME, ALTREF_FRAME}},
{NEAR_NEWMV, {GOLDEN_FRAME, ALTREF_FRAME}},
{NEW_NEWMV, {GOLDEN_FRAME, ALTREF_FRAME}},
{ZERO_ZEROMV, {GOLDEN_FRAME, ALTREF_FRAME}},
#if CONFIG_EXT_REFS
{NEAR_NEARESTMV, {LAST_FRAME, BWDREF_FRAME}},
{NEAREST_NEARMV, {LAST_FRAME, BWDREF_FRAME}},
{NEAR_NEARMV, {LAST_FRAME, BWDREF_FRAME}},
{NEW_NEARESTMV, {LAST_FRAME, BWDREF_FRAME}},
{NEAREST_NEWMV, {LAST_FRAME, BWDREF_FRAME}},
{NEW_NEARMV, {LAST_FRAME, BWDREF_FRAME}},
{NEAR_NEWMV, {LAST_FRAME, BWDREF_FRAME}},
{NEW_NEWMV, {LAST_FRAME, BWDREF_FRAME}},
{ZERO_ZEROMV, {LAST_FRAME, BWDREF_FRAME}},
{NEAR_NEARESTMV, {LAST2_FRAME, BWDREF_FRAME}},
{NEAREST_NEARMV, {LAST2_FRAME, BWDREF_FRAME}},
{NEAR_NEARMV, {LAST2_FRAME, BWDREF_FRAME}},
{NEW_NEARESTMV, {LAST2_FRAME, BWDREF_FRAME}},
{NEAREST_NEWMV, {LAST2_FRAME, BWDREF_FRAME}},
{NEW_NEARMV, {LAST2_FRAME, BWDREF_FRAME}},
{NEAR_NEWMV, {LAST2_FRAME, BWDREF_FRAME}},
{NEW_NEWMV, {LAST2_FRAME, BWDREF_FRAME}},
{ZERO_ZEROMV, {LAST2_FRAME, BWDREF_FRAME}},
{NEAR_NEARESTMV, {LAST3_FRAME, BWDREF_FRAME}},
{NEAREST_NEARMV, {LAST3_FRAME, BWDREF_FRAME}},
{NEAR_NEARMV, {LAST3_FRAME, BWDREF_FRAME}},
{NEW_NEARESTMV, {LAST3_FRAME, BWDREF_FRAME}},
{NEAREST_NEWMV, {LAST3_FRAME, BWDREF_FRAME}},
{NEW_NEARMV, {LAST3_FRAME, BWDREF_FRAME}},
{NEAR_NEWMV, {LAST3_FRAME, BWDREF_FRAME}},
{NEW_NEWMV, {LAST3_FRAME, BWDREF_FRAME}},
{ZERO_ZEROMV, {LAST3_FRAME, BWDREF_FRAME}},
{NEAR_NEARESTMV, {GOLDEN_FRAME, BWDREF_FRAME}},
{NEAREST_NEARMV, {GOLDEN_FRAME, BWDREF_FRAME}},
{NEAR_NEARMV, {GOLDEN_FRAME, BWDREF_FRAME}},
{NEW_NEARESTMV, {GOLDEN_FRAME, BWDREF_FRAME}},
{NEAREST_NEWMV, {GOLDEN_FRAME, BWDREF_FRAME}},
{NEW_NEARMV, {GOLDEN_FRAME, BWDREF_FRAME}},
{NEAR_NEWMV, {GOLDEN_FRAME, BWDREF_FRAME}},
{NEW_NEWMV, {GOLDEN_FRAME, BWDREF_FRAME}},
{ZERO_ZEROMV, {GOLDEN_FRAME, BWDREF_FRAME}},
#endif // CONFIG_EXT_REFS
#else // CONFIG_EXT_INTER
{NEARMV, {LAST_FRAME, ALTREF_FRAME}},
{NEWMV, {LAST_FRAME, ALTREF_FRAME}},
#if CONFIG_EXT_REFS
{NEARMV, {LAST2_FRAME, ALTREF_FRAME}},
{NEWMV, {LAST2_FRAME, ALTREF_FRAME}},
{NEARMV, {LAST3_FRAME, ALTREF_FRAME}},
{NEWMV, {LAST3_FRAME, ALTREF_FRAME}},
#endif // CONFIG_EXT_REFS
{NEARMV, {GOLDEN_FRAME, ALTREF_FRAME}},
{NEWMV, {GOLDEN_FRAME, ALTREF_FRAME}},
#if CONFIG_EXT_REFS
{NEARMV, {LAST_FRAME, BWDREF_FRAME}},
{NEWMV, {LAST_FRAME, BWDREF_FRAME}},
{NEARMV, {LAST2_FRAME, BWDREF_FRAME}},
{NEWMV, {LAST2_FRAME, BWDREF_FRAME}},
{NEARMV, {LAST3_FRAME, BWDREF_FRAME}},
{NEWMV, {LAST3_FRAME, BWDREF_FRAME}},
{NEARMV, {GOLDEN_FRAME, BWDREF_FRAME}},
{NEWMV, {GOLDEN_FRAME, BWDREF_FRAME}},
#endif // CONFIG_EXT_REFS
{ZEROMV, {LAST_FRAME, ALTREF_FRAME}},
#if CONFIG_EXT_REFS
{ZEROMV, {LAST2_FRAME, ALTREF_FRAME}},
{ZEROMV, {LAST3_FRAME, ALTREF_FRAME}},
#endif // CONFIG_EXT_REFS
{ZEROMV, {GOLDEN_FRAME, ALTREF_FRAME}},
#if CONFIG_EXT_REFS
{ZEROMV, {LAST_FRAME, BWDREF_FRAME}},
{ZEROMV, {LAST2_FRAME, BWDREF_FRAME}},
{ZEROMV, {LAST3_FRAME, BWDREF_FRAME}},
{ZEROMV, {GOLDEN_FRAME, BWDREF_FRAME}},
#endif // CONFIG_EXT_REFS
#endif // CONFIG_EXT_INTER
{H_PRED, {INTRA_FRAME, NONE}},
{V_PRED, {INTRA_FRAME, NONE}},
{D135_PRED, {INTRA_FRAME, NONE}},
{D207_PRED, {INTRA_FRAME, NONE}},
{D153_PRED, {INTRA_FRAME, NONE}},
{D63_PRED, {INTRA_FRAME, NONE}},
{D117_PRED, {INTRA_FRAME, NONE}},
{D45_PRED, {INTRA_FRAME, NONE}},
#if CONFIG_EXT_INTER
{ZEROMV, {LAST_FRAME, INTRA_FRAME}},
{NEARESTMV, {LAST_FRAME, INTRA_FRAME}},
{NEARMV, {LAST_FRAME, INTRA_FRAME}},
{NEWMV, {LAST_FRAME, INTRA_FRAME}},
#if CONFIG_EXT_REFS
{ZEROMV, {LAST2_FRAME, INTRA_FRAME}},
{NEARESTMV, {LAST2_FRAME, INTRA_FRAME}},
{NEARMV, {LAST2_FRAME, INTRA_FRAME}},
{NEWMV, {LAST2_FRAME, INTRA_FRAME}},
{ZEROMV, {LAST3_FRAME, INTRA_FRAME}},
{NEARESTMV, {LAST3_FRAME, INTRA_FRAME}},
{NEARMV, {LAST3_FRAME, INTRA_FRAME}},
{NEWMV, {LAST3_FRAME, INTRA_FRAME}},
#endif // CONFIG_EXT_REFS
{ZEROMV, {GOLDEN_FRAME, INTRA_FRAME}},
{NEARESTMV, {GOLDEN_FRAME, INTRA_FRAME}},
{NEARMV, {GOLDEN_FRAME, INTRA_FRAME}},
{NEWMV, {GOLDEN_FRAME, INTRA_FRAME}},
#if CONFIG_EXT_REFS
{ZEROMV, {BWDREF_FRAME, INTRA_FRAME}},
{NEARESTMV, {BWDREF_FRAME, INTRA_FRAME}},
{NEARMV, {BWDREF_FRAME, INTRA_FRAME}},
{NEWMV, {BWDREF_FRAME, INTRA_FRAME}},
#endif // CONFIG_EXT_REFS
{ZEROMV, {ALTREF_FRAME, INTRA_FRAME}},
{NEARESTMV, {ALTREF_FRAME, INTRA_FRAME}},
{NEARMV, {ALTREF_FRAME, INTRA_FRAME}},
{NEWMV, {ALTREF_FRAME, INTRA_FRAME}},
#endif // CONFIG_EXT_INTER
};
static const REF_DEFINITION vp10_ref_order[MAX_REFS] = {
{{LAST_FRAME, NONE}},
#if CONFIG_EXT_REFS
{{LAST2_FRAME, NONE}},
{{LAST3_FRAME, NONE}},
{{BWDREF_FRAME, NONE}},
#endif // CONFIG_EXT_REFS
{{GOLDEN_FRAME, NONE}},
{{ALTREF_FRAME, NONE}},
{{LAST_FRAME, ALTREF_FRAME}},
#if CONFIG_EXT_REFS
{{LAST2_FRAME, ALTREF_FRAME}},
{{LAST3_FRAME, ALTREF_FRAME}},
#endif // CONFIG_EXT_REFS
{{GOLDEN_FRAME, ALTREF_FRAME}},
#if CONFIG_EXT_REFS
{{LAST_FRAME, BWDREF_FRAME}},
{{LAST2_FRAME, BWDREF_FRAME}},
{{LAST3_FRAME, BWDREF_FRAME}},
{{GOLDEN_FRAME, BWDREF_FRAME}},
#endif // CONFIG_EXT_REFS
{{INTRA_FRAME, NONE}},
};
static INLINE int write_uniform_cost(int n, int v) {
int l = get_unsigned_bits(n), m = (1 << l) - n;
if (l == 0)
return 0;
if (v < m)
return (l - 1) * vp10_cost_bit(128, 0);
else
return l * vp10_cost_bit(128, 0);
}
// constants for prune 1 and prune 2 decision boundaries
#define FAST_EXT_TX_CORR_MID 0.0
#define FAST_EXT_TX_EDST_MID 0.1
#define FAST_EXT_TX_CORR_MARGIN 0.5
#define FAST_EXT_TX_EDST_MARGIN 0.3
static const TX_TYPE_1D vtx_tab[TX_TYPES] = {
DCT_1D,
ADST_1D,
DCT_1D,
ADST_1D,
#if CONFIG_EXT_TX
FLIPADST_1D,
DCT_1D,
FLIPADST_1D,
ADST_1D,
FLIPADST_1D,
IDTX_1D,
DCT_1D,
IDTX_1D,
ADST_1D,
IDTX_1D,
FLIPADST_1D,
IDTX_1D,
#endif // CONFIG_EXT_TX
};
static const TX_TYPE_1D htx_tab[TX_TYPES] = {
DCT_1D,
DCT_1D,
ADST_1D,
ADST_1D,
#if CONFIG_EXT_TX
DCT_1D,
FLIPADST_1D,
FLIPADST_1D,
FLIPADST_1D,
ADST_1D,
IDTX_1D,
IDTX_1D,
DCT_1D,
IDTX_1D,
ADST_1D,
IDTX_1D,
FLIPADST_1D,
#endif // CONFIG_EXT_TX
};
static void get_energy_distribution_fine(const VP10_COMP *cpi,
BLOCK_SIZE bsize,
uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride,
double *hordist, double *verdist) {
int bw = 4 << (b_width_log2_lookup[bsize]);
int bh = 4 << (b_height_log2_lookup[bsize]);
unsigned int esq[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
unsigned int var[16];
double total = 0;
const int f_index = bsize - BLOCK_16X16;
if (f_index < 0) {
int i, j, index;
int w_shift = bw == 8 ? 1 : 2;
int h_shift = bh == 8 ? 1 : 2;
#if CONFIG_VP9_HIGHBITDEPTH
if (cpi->common.use_highbitdepth) {
uint16_t *src16 = CONVERT_TO_SHORTPTR(src);
uint16_t *dst16 = CONVERT_TO_SHORTPTR(dst);
for (i = 0; i < bh; ++i)
for (j = 0; j < bw; ++j) {
index = (j >> w_shift) + ((i >> h_shift) << 2);
esq[index] += (src16[j + i * src_stride] -
dst16[j + i * dst_stride]) *
(src16[j + i * src_stride] -
dst16[j + i * dst_stride]);
}
} else {
#endif // CONFIG_VP9_HIGHBITDEPTH
for (i = 0; i < bh; ++i)
for (j = 0; j < bw; ++j) {
index = (j >> w_shift) + ((i >> h_shift) << 2);
esq[index] += (src[j + i * src_stride] - dst[j + i * dst_stride]) *
(src[j + i * src_stride] - dst[j + i * dst_stride]);
}
#if CONFIG_VP9_HIGHBITDEPTH
}
#endif // CONFIG_VP9_HIGHBITDEPTH
} else {
var[0] = cpi->fn_ptr[f_index].vf(src, src_stride,
dst, dst_stride, &esq[0]);
var[1] = cpi->fn_ptr[f_index].vf(src + bw / 4, src_stride,
dst + bw / 4, dst_stride, &esq[1]);
var[2] = cpi->fn_ptr[f_index].vf(src + bw / 2, src_stride,
dst + bw / 2, dst_stride, &esq[2]);
var[3] = cpi->fn_ptr[f_index].vf(src + 3 * bw / 4, src_stride,
dst + 3 * bw / 4, dst_stride, &esq[3]);
src += bh / 4 * src_stride;
dst += bh / 4 * dst_stride;
var[4] = cpi->fn_ptr[f_index].vf(src, src_stride,
dst, dst_stride, &esq[4]);
var[5] = cpi->fn_ptr[f_index].vf(src + bw / 4, src_stride,
dst + bw / 4, dst_stride, &esq[5]);
var[6] = cpi->fn_ptr[f_index].vf(src + bw / 2, src_stride,
dst + bw / 2, dst_stride, &esq[6]);
var[7] = cpi->fn_ptr[f_index].vf(src + 3 * bw / 4, src_stride,
dst + 3 * bw / 4, dst_stride, &esq[7]);
src += bh / 4 * src_stride;
dst += bh / 4 * dst_stride;
var[8] = cpi->fn_ptr[f_index].vf(src, src_stride,
dst, dst_stride, &esq[8]);
var[9] = cpi->fn_ptr[f_index].vf(src + bw / 4, src_stride,
dst + bw / 4, dst_stride, &esq[9]);
var[10] = cpi->fn_ptr[f_index].vf(src + bw / 2, src_stride,
dst + bw / 2, dst_stride, &esq[10]);
var[11] = cpi->fn_ptr[f_index].vf(src + 3 * bw / 4, src_stride,
dst + 3 * bw / 4, dst_stride, &esq[11]);
src += bh / 4 * src_stride;
dst += bh / 4 * dst_stride;
var[12] = cpi->fn_ptr[f_index].vf(src, src_stride,
dst, dst_stride, &esq[12]);
var[13] = cpi->fn_ptr[f_index].vf(src + bw / 4, src_stride,
dst + bw / 4, dst_stride, &esq[13]);
var[14] = cpi->fn_ptr[f_index].vf(src + bw / 2, src_stride,
dst + bw / 2, dst_stride, &esq[14]);
var[15] = cpi->fn_ptr[f_index].vf(src + 3 * bw / 4, src_stride,
dst + 3 * bw / 4, dst_stride, &esq[15]);
}
total = esq[0] + esq[1] + esq[2] + esq[3] +
esq[4] + esq[5] + esq[6] + esq[7] +
esq[8] + esq[9] + esq[10] + esq[11] +
esq[12] + esq[13] + esq[14] + esq[15];
if (total > 0) {
const double e_recip = 1.0 / total;
hordist[0] = ((double)esq[0] + (double)esq[4] + (double)esq[8] +
(double)esq[12]) * e_recip;
hordist[1] = ((double)esq[1] + (double)esq[5] + (double)esq[9] +
(double)esq[13]) * e_recip;
hordist[2] = ((double)esq[2] + (double)esq[6] + (double)esq[10] +
(double)esq[14]) * e_recip;
verdist[0] = ((double)esq[0] + (double)esq[1] + (double)esq[2] +
(double)esq[3]) * e_recip;
verdist[1] = ((double)esq[4] + (double)esq[5] + (double)esq[6] +
(double)esq[7]) * e_recip;
verdist[2] = ((double)esq[8] + (double)esq[9] + (double)esq[10] +
(double)esq[11]) * e_recip;
} else {
hordist[0] = verdist[0] = 0.25;
hordist[1] = verdist[1] = 0.25;
hordist[2] = verdist[2] = 0.25;
}
(void) var[0];
(void) var[1];
(void) var[2];
(void) var[3];
(void) var[4];
(void) var[5];
(void) var[6];
(void) var[7];
(void) var[8];
(void) var[9];
(void) var[10];
(void) var[11];
(void) var[12];
(void) var[13];
(void) var[14];
(void) var[15];
}
static int adst_vs_flipadst(const VP10_COMP *cpi, BLOCK_SIZE bsize,
uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride,
double *hdist, double *vdist) {
int prune_bitmask = 0;
double svm_proj_h = 0, svm_proj_v = 0;
get_energy_distribution_fine(cpi, bsize, src, src_stride,
dst, dst_stride, hdist, vdist);
svm_proj_v = vdist[0] * ADST_FLIP_SVM[0] +
vdist[1] * ADST_FLIP_SVM[1] +
vdist[2] * ADST_FLIP_SVM[2] + ADST_FLIP_SVM[3];
svm_proj_h = hdist[0] * ADST_FLIP_SVM[4] +
hdist[1] * ADST_FLIP_SVM[5] +
hdist[2] * ADST_FLIP_SVM[6] + ADST_FLIP_SVM[7];
if (svm_proj_v > FAST_EXT_TX_EDST_MID + FAST_EXT_TX_EDST_MARGIN)
prune_bitmask |= 1 << FLIPADST_1D;
else if (svm_proj_v < FAST_EXT_TX_EDST_MID - FAST_EXT_TX_EDST_MARGIN)
prune_bitmask |= 1 << ADST_1D;
if (svm_proj_h > FAST_EXT_TX_EDST_MID + FAST_EXT_TX_EDST_MARGIN)
prune_bitmask |= 1 << (FLIPADST_1D + 8);
else if (svm_proj_h < FAST_EXT_TX_EDST_MID - FAST_EXT_TX_EDST_MARGIN)
prune_bitmask |= 1 << (ADST_1D + 8);
return prune_bitmask;
}
#if CONFIG_EXT_TX
static void get_horver_correlation(int16_t *diff, int stride,
int w, int h,
double *hcorr, double *vcorr) {
// Returns hor/ver correlation coefficient
const int num = (h - 1) * (w - 1);
double num_r;
int i, j;
int64_t xy_sum = 0, xz_sum = 0;
int64_t x_sum = 0, y_sum = 0, z_sum = 0;
int64_t x2_sum = 0, y2_sum = 0, z2_sum = 0;
double x_var_n, y_var_n, z_var_n, xy_var_n, xz_var_n;
*hcorr = *vcorr = 1;
assert(num > 0);
num_r = 1.0 / num;
for (i = 1; i < h; ++i) {
for (j = 1; j < w; ++j) {
const int16_t x = diff[i * stride + j];
const int16_t y = diff[i * stride + j - 1];
const int16_t z = diff[(i - 1) * stride + j];
xy_sum += x * y;
xz_sum += x * z;
x_sum += x;
y_sum += y;
z_sum += z;
x2_sum += x * x;
y2_sum += y * y;
z2_sum += z * z;
}
}
x_var_n = x2_sum - (x_sum * x_sum) * num_r;
y_var_n = y2_sum - (y_sum * y_sum) * num_r;
z_var_n = z2_sum - (z_sum * z_sum) * num_r;
xy_var_n = xy_sum - (x_sum * y_sum) * num_r;
xz_var_n = xz_sum - (x_sum * z_sum) * num_r;
if (x_var_n > 0 && y_var_n > 0) {
*hcorr = xy_var_n / sqrt(x_var_n * y_var_n);
*hcorr = *hcorr < 0 ? 0 : *hcorr;
}
if (x_var_n > 0 && z_var_n > 0) {
*vcorr = xz_var_n / sqrt(x_var_n * z_var_n);
*vcorr = *vcorr < 0 ? 0 : *vcorr;
}
}
int dct_vs_idtx(int16_t *diff, int stride, int w, int h,
double *hcorr, double *vcorr) {
int prune_bitmask = 0;
get_horver_correlation(diff, stride, w, h, hcorr, vcorr);
if (*vcorr > FAST_EXT_TX_CORR_MID + FAST_EXT_TX_CORR_MARGIN)
prune_bitmask |= 1 << IDTX_1D;
else if (*vcorr < FAST_EXT_TX_CORR_MID - FAST_EXT_TX_CORR_MARGIN)
prune_bitmask |= 1 << DCT_1D;
if (*hcorr > FAST_EXT_TX_CORR_MID + FAST_EXT_TX_CORR_MARGIN)
prune_bitmask |= 1 << (IDTX_1D + 8);
else if (*hcorr < FAST_EXT_TX_CORR_MID - FAST_EXT_TX_CORR_MARGIN)
prune_bitmask |= 1 << (DCT_1D + 8);
return prune_bitmask;
}
// Performance drop: 0.5%, Speed improvement: 24%
static int prune_two_for_sby(const VP10_COMP *cpi,
BLOCK_SIZE bsize,
MACROBLOCK *x,
MACROBLOCKD *xd, int adst_flipadst,
int dct_idtx) {
struct macroblock_plane *const p = &x->plane[0];
struct macroblockd_plane *const pd = &xd->plane[0];
const BLOCK_SIZE bs = get_plane_block_size(bsize, pd);
const int bw = 4 << (b_width_log2_lookup[bs]);
const int bh = 4 << (b_height_log2_lookup[bs]);
double hdist[3] = {0, 0, 0}, vdist[3] = {0, 0, 0};
double hcorr, vcorr;
int prune = 0;
vp10_subtract_plane(x, bsize, 0);
if (adst_flipadst)
prune |= adst_vs_flipadst(cpi, bsize, p->src.buf, p->src.stride,
pd->dst.buf, pd->dst.stride, hdist, vdist);
if (dct_idtx)
prune |= dct_vs_idtx(p->src_diff, bw, bw, bh, &hcorr, &vcorr);
return prune;
}
#endif // CONFIG_EXT_TX
// Performance drop: 0.3%, Speed improvement: 5%
static int prune_one_for_sby(const VP10_COMP *cpi,
BLOCK_SIZE bsize,
MACROBLOCK *x,
MACROBLOCKD *xd) {
struct macroblock_plane *const p = &x->plane[0];
struct macroblockd_plane *const pd = &xd->plane[0];
double hdist[3] = {0, 0, 0}, vdist[3] = {0, 0, 0};
vp10_subtract_plane(x, bsize, 0);
return adst_vs_flipadst(cpi, bsize, p->src.buf, p->src.stride, pd->dst.buf,
pd->dst.stride, hdist, vdist);
}
static int prune_tx_types(const VP10_COMP *cpi,
BLOCK_SIZE bsize,
MACROBLOCK *x,
MACROBLOCKD *xd, int tx_set) {
#if CONFIG_EXT_TX
const int *tx_set_1D = ext_tx_used_inter_1D[tx_set];
#else
const int tx_set_1D[TX_TYPES_1D] = {0};
#endif
switch (cpi->sf.tx_type_search.prune_mode) {
case NO_PRUNE:
return 0;
break;
case PRUNE_ONE :
if ((tx_set >= 0) & !(tx_set_1D[FLIPADST_1D] & tx_set_1D[ADST_1D]))
return 0;
return prune_one_for_sby(cpi, bsize, x, xd);
break;
#if CONFIG_EXT_TX
case PRUNE_TWO :
if ((tx_set >= 0) & !(tx_set_1D[FLIPADST_1D] & tx_set_1D[ADST_1D])) {
if (!(tx_set_1D[DCT_1D] & tx_set_1D[IDTX_1D]))
return 0;
return prune_two_for_sby(cpi, bsize, x, xd, 0, 1);
}
if ((tx_set >= 0) & !(tx_set_1D[DCT_1D] & tx_set_1D[IDTX_1D]))
return prune_two_for_sby(cpi, bsize, x, xd, 1, 0);
return prune_two_for_sby(cpi, bsize, x, xd, 1, 1);
break;
#endif
}
assert(0);
return 0;
}
static int do_tx_type_search(TX_TYPE tx_type,
int prune) {
// TODO(sarahparker) implement for non ext tx
#if CONFIG_EXT_TX
return !(((prune >> vtx_tab[tx_type]) & 1) |
((prune >> (htx_tab[tx_type] + 8)) & 1));
#else
// temporary to avoid compiler warnings
(void) vtx_tab;
(void) htx_tab;
(void) tx_type;
(void) prune;
return 1;
#endif
}
static void model_rd_from_sse(const VP10_COMP *const cpi,
const MACROBLOCKD *const xd,
BLOCK_SIZE bsize,
int plane,
uint64_t sse,
int *rate,
int64_t *dist) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
const int dequant_shift =
#if CONFIG_VP9_HIGHBITDEPTH
(xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ?
xd->bd - 5 :
#endif // CONFIG_VP9_HIGHBITDEPTH
3;
// Fast approximate the modelling function.
if (cpi->sf.simple_model_rd_from_var) {
const int64_t square_error = sse;
int quantizer = (pd->dequant[1] >> dequant_shift);
if (quantizer < 120)
*rate = (square_error * (280 - quantizer)) >> (16 - VP9_PROB_COST_SHIFT);
else
*rate = 0;
*dist = (square_error * quantizer) >> 8;
} else {
vp10_model_rd_from_var_lapndz(sse, num_pels_log2_lookup[bsize],
pd->dequant[1] >> dequant_shift,
rate, dist);
}
*dist <<= 4;
}
static void model_rd_for_sb(const VP10_COMP *const cpi, BLOCK_SIZE bsize,
MACROBLOCK *x, MACROBLOCKD *xd,
int plane_from, int plane_to,
int *out_rate_sum, int64_t *out_dist_sum,
int *skip_txfm_sb, int64_t *skip_sse_sb) {
// Note our transform coeffs are 8 times an orthogonal transform.
// Hence quantizer step is also 8 times. To get effective quantizer
// we need to divide by 8 before sending to modeling function.
int plane;
const int ref = xd->mi[0]->mbmi.ref_frame[0];
int64_t rate_sum = 0;
int64_t dist_sum = 0;
int64_t total_sse = 0;
x->pred_sse[ref] = 0;
for (plane = plane_from; plane <= plane_to; ++plane) {
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
const BLOCK_SIZE bs = get_plane_block_size(bsize, pd);
unsigned int sse;
int rate;
int64_t dist;
// TODO(geza): Write direct sse functions that do not compute
// variance as well.
cpi->fn_ptr[bs].vf(p->src.buf, p->src.stride,
pd->dst.buf, pd->dst.stride, &sse);
if (plane == 0)
x->pred_sse[ref] = sse;
total_sse += sse;
model_rd_from_sse(cpi, xd, bs, plane, sse, &rate, &dist);
rate_sum += rate;
dist_sum += dist;
}
*skip_txfm_sb = total_sse == 0;
*skip_sse_sb = total_sse << 4;
*out_rate_sum = (int)rate_sum;
*out_dist_sum = dist_sum;
}
int64_t vp10_block_error_c(const tran_low_t *coeff, const tran_low_t *dqcoeff,
intptr_t block_size, int64_t *ssz) {
int i;
int64_t error = 0, sqcoeff = 0;
for (i = 0; i < block_size; i++) {
const int diff = coeff[i] - dqcoeff[i];
error += diff * diff;
sqcoeff += coeff[i] * coeff[i];
}
*ssz = sqcoeff;
return error;
}
int64_t vp10_block_error_fp_c(const int16_t *coeff, const int16_t *dqcoeff,
int block_size) {
int i;
int64_t error = 0;
for (i = 0; i < block_size; i++) {
const int diff = coeff[i] - dqcoeff[i];
error += diff * diff;
}
return error;
}
#if CONFIG_VP9_HIGHBITDEPTH
int64_t vp10_highbd_block_error_c(const tran_low_t *coeff,
const tran_low_t *dqcoeff,
intptr_t block_size,
int64_t *ssz, int bd) {
int i;
int64_t error = 0, sqcoeff = 0;
int shift = 2 * (bd - 8);
int rounding = shift > 0 ? 1 << (shift - 1) : 0;
for (i = 0; i < block_size; i++) {
const int64_t diff = coeff[i] - dqcoeff[i];
error += diff * diff;
sqcoeff += (int64_t)coeff[i] * (int64_t)coeff[i];
}
assert(error >= 0 && sqcoeff >= 0);
error = (error + rounding) >> shift;
sqcoeff = (sqcoeff + rounding) >> shift;
*ssz = sqcoeff;
return error;
}
#endif // CONFIG_VP9_HIGHBITDEPTH
/* The trailing '0' is a terminator which is used inside cost_coeffs() to
* decide whether to include cost of a trailing EOB node or not (i.e. we
* can skip this if the last coefficient in this transform block, e.g. the
* 16th coefficient in a 4x4 block or the 64th coefficient in a 8x8 block,
* were non-zero). */
static int cost_coeffs(MACROBLOCK *x,
int plane, int block,
#if CONFIG_VAR_TX
int coeff_ctx,
#else
ENTROPY_CONTEXT *A, ENTROPY_CONTEXT *L,
#endif
TX_SIZE tx_size,
const int16_t *scan, const int16_t *nb,
int use_fast_coef_costing) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
const struct macroblock_plane *p = &x->plane[plane];
const struct macroblockd_plane *pd = &xd->plane[plane];
const PLANE_TYPE type = pd->plane_type;
const uint16_t *band_count = &band_count_table[tx_size][1];
const int eob = p->eobs[block];
const tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
const int tx_size_ctx = txsize_sqr_map[tx_size];
unsigned int (*token_costs)[2][COEFF_CONTEXTS][ENTROPY_TOKENS] =
x->token_costs[tx_size_ctx][type][is_inter_block(mbmi)];
uint8_t token_cache[MAX_TX_SQUARE];
#if CONFIG_VAR_TX
int pt = coeff_ctx;
#else
int pt = combine_entropy_contexts(*A, *L);
#endif
int c, cost;
#if CONFIG_VP9_HIGHBITDEPTH
const int *cat6_high_cost = vp10_get_high_cost_table(xd->bd);
#else
const int *cat6_high_cost = vp10_get_high_cost_table(8);
#endif
#if !CONFIG_VAR_TX && !CONFIG_SUPERTX
// Check for consistency of tx_size with mode info
assert(type == PLANE_TYPE_Y ? mbmi->tx_size == tx_size
: get_uv_tx_size(mbmi, pd) == tx_size);
#endif // !CONFIG_VAR_TX && !CONFIG_SUPERTX
if (eob == 0) {
// single eob token
cost = token_costs[0][0][pt][EOB_TOKEN];
c = 0;
} else {
if (use_fast_coef_costing) {
int band_left = *band_count++;
// dc token
int v = qcoeff[0];
int16_t prev_t;
cost = vp10_get_token_cost(v, &prev_t, cat6_high_cost);
cost += (*token_costs)[0][pt][prev_t];
token_cache[0] = vp10_pt_energy_class[prev_t];
++token_costs;
// ac tokens
for (c = 1; c < eob; c++) {
const int rc = scan[c];
int16_t t;
v = qcoeff[rc];
cost += vp10_get_token_cost(v, &t, cat6_high_cost);
cost += (*token_costs)[!prev_t][!prev_t][t];
prev_t = t;
if (!--band_left) {
band_left = *band_count++;
++token_costs;
}
}
// eob token
if (band_left)
cost += (*token_costs)[0][!prev_t][EOB_TOKEN];
} else { // !use_fast_coef_costing
int band_left = *band_count++;
// dc token
int v = qcoeff[0];
int16_t tok;
unsigned int (*tok_cost_ptr)[COEFF_CONTEXTS][ENTROPY_TOKENS];
cost = vp10_get_token_cost(v, &tok, cat6_high_cost);
cost += (*token_costs)[0][pt][tok];
token_cache[0] = vp10_pt_energy_class[tok];
++token_costs;
tok_cost_ptr = &((*token_costs)[!tok]);
// ac tokens
for (c = 1; c < eob; c++) {
const int rc = scan[c];
v = qcoeff[rc];
cost += vp10_get_token_cost(v, &tok, cat6_high_cost);
pt = get_coef_context(nb, token_cache, c);
cost += (*tok_cost_ptr)[pt][tok];
token_cache[rc] = vp10_pt_energy_class[tok];
if (!--band_left) {
band_left = *band_count++;
++token_costs;
}
tok_cost_ptr = &((*token_costs)[!tok]);
}
// eob token
if (band_left) {
pt = get_coef_context(nb, token_cache, c);
cost += (*token_costs)[0][pt][EOB_TOKEN];
}
}
}
#if !CONFIG_VAR_TX
// is eob first coefficient;
*A = *L = (c > 0);
#endif
return cost;
}
static void dist_block(const VP10_COMP *cpi, MACROBLOCK *x, int plane,
int block, int blk_row, int blk_col, TX_SIZE tx_size,
int64_t *out_dist, int64_t *out_sse) {
MACROBLOCKD* const xd = &x->e_mbd;
const struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &xd->plane[plane];
if (cpi->sf.use_transform_domain_distortion) {
// Transform domain distortion computation is more accurate as it does
// not involve an inverse transform, but it is less accurate.
const int ss_txfrm_size = num_4x4_blocks_txsize_log2_lookup[tx_size];
int64_t this_sse;
int tx_type = get_tx_type(pd->plane_type, xd, block, tx_size);
int shift = (MAX_TX_SCALE - get_tx_scale(xd, tx_type, tx_size)) * 2;
tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
#if CONFIG_VP9_HIGHBITDEPTH
const int bd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd : 8;
*out_dist = vp10_highbd_block_error(coeff, dqcoeff, 16 << ss_txfrm_size,
&this_sse, bd) >> shift;
#else
*out_dist = vp10_block_error(coeff, dqcoeff, 16 << ss_txfrm_size,
&this_sse) >> shift;
#endif // CONFIG_VP9_HIGHBITDEPTH
*out_sse = this_sse >> shift;
} else {
const BLOCK_SIZE tx_bsize = txsize_to_bsize[tx_size];
const int bsw = 4 * num_4x4_blocks_wide_lookup[tx_bsize];
const int bsh = 4 * num_4x4_blocks_high_lookup[tx_bsize];
const int src_stride = x->plane[plane].src.stride;
const int dst_stride = xd->plane[plane].dst.stride;
const int src_idx = 4 * (blk_row * src_stride + blk_col);
const int dst_idx = 4 * (blk_row * dst_stride + blk_col);
const uint8_t *src = &x->plane[plane].src.buf[src_idx];
const uint8_t *dst = &xd->plane[plane].dst.buf[dst_idx];
const tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
const uint16_t eob = p->eobs[block];
unsigned int tmp;
assert(cpi != NULL);
cpi->fn_ptr[tx_bsize].vf(src, src_stride, dst, dst_stride, &tmp);
*out_sse = (int64_t)tmp * 16;
if (eob) {
const MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
#if CONFIG_VP9_HIGHBITDEPTH
DECLARE_ALIGNED(16, uint16_t, recon16[MAX_TX_SQUARE]);
uint8_t *recon = (uint8_t*)recon16;
#else
DECLARE_ALIGNED(16, uint8_t, recon[MAX_TX_SQUARE]);
#endif // CONFIG_VP9_HIGHBITDEPTH
const PLANE_TYPE plane_type = plane == 0 ? PLANE_TYPE_Y : PLANE_TYPE_UV;
INV_TXFM_PARAM inv_txfm_param;
inv_txfm_param.tx_type = get_tx_type(plane_type, xd, block, tx_size);
inv_txfm_param.tx_size = tx_size;
inv_txfm_param.eob = eob;
inv_txfm_param.lossless = xd->lossless[mbmi->segment_id];
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
recon = CONVERT_TO_BYTEPTR(recon);
inv_txfm_param.bd = xd->bd;
vpx_highbd_convolve_copy(dst, dst_stride, recon, MAX_TX_SIZE,
NULL, 0, NULL, 0, bsw, bsh, xd->bd);
highbd_inv_txfm_add(dqcoeff, recon, MAX_TX_SIZE, &inv_txfm_param);
} else
#endif // CONFIG_VP9_HIGHBITDEPTH
{
vpx_convolve_copy(dst, dst_stride, recon, MAX_TX_SIZE,
NULL, 0, NULL, 0, bsw, bsh);
inv_txfm_add(dqcoeff, recon, MAX_TX_SIZE, &inv_txfm_param);
}
cpi->fn_ptr[tx_bsize].vf(src, src_stride, recon, MAX_TX_SIZE, &tmp);
}
*out_dist = (int64_t)tmp * 16;
}
}
static int rate_block(int plane, int block, int blk_row, int blk_col,
TX_SIZE tx_size, struct rdcost_block_args* args) {
#if CONFIG_VAR_TX
int coeff_ctx = combine_entropy_contexts(*(args->t_above + blk_col),
*(args->t_left + blk_row));
int coeff_cost = cost_coeffs(args->x, plane, block, coeff_ctx,
tx_size, args->so->scan, args->so->neighbors,
args->use_fast_coef_costing);
const struct macroblock_plane *p = &args->x->plane[plane];
*(args->t_above + blk_col) = !(p->eobs[block] == 0);
*(args->t_left + blk_row) = !(p->eobs[block] == 0);
return coeff_cost;
#else
return cost_coeffs(args->x, plane, block,
args->t_above + blk_col,
args->t_left + blk_row,
tx_size, args->so->scan, args->so->neighbors,
args->use_fast_coef_costing);
#endif // CONFIG_VAR_TX
}
static uint64_t sum_squares_2d(const int16_t *diff, int diff_stride,
TX_SIZE tx_size) {
uint64_t sse;
switch (tx_size) {
#if CONFIG_EXT_TX
case TX_4X8:
sse = vpx_sum_squares_2d_i16(diff, diff_stride, 4) +
vpx_sum_squares_2d_i16(diff + 4 * diff_stride, diff_stride, 4);
break;
case TX_8X4:
sse = vpx_sum_squares_2d_i16(diff, diff_stride, 4) +
vpx_sum_squares_2d_i16(diff + 4, diff_stride, 4);;
break;
#endif // CONFIG_EXT_TX
default:
assert(tx_size < TX_SIZES);
sse = vpx_sum_squares_2d_i16(
diff, diff_stride, num_4x4_blocks_wide_txsize_lookup[tx_size] << 2);
break;
}
return sse;
}
static void block_rd_txfm(int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, void *arg) {
struct rdcost_block_args *args = arg;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
int64_t rd1, rd2, rd;
int rate;
int64_t dist;
int64_t sse;
int coeff_ctx = combine_entropy_contexts(
*(args->t_above + blk_col), *(args->t_left + blk_row));
if (args->exit_early)
return;
if (!is_inter_block(mbmi)) {
struct encode_b_args intra_arg = {
x, NULL, &mbmi->skip, args->t_above, args->t_left, 1};
vp10_encode_block_intra(plane, block, blk_row, blk_col,
plane_bsize, tx_size, &intra_arg);
if (args->cpi->sf.use_transform_domain_distortion) {
dist_block(args->cpi, x, plane, block, blk_row, blk_col,
tx_size, &dist, &sse);
} else {
// Note that the encode block_intra call above already calls
// inv_txfm_add, so we can't just call dist_block here.
const BLOCK_SIZE tx_bsize = txsize_to_bsize[tx_size];
const vpx_variance_fn_t variance = args->cpi->fn_ptr[tx_bsize].vf;
const struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &xd->plane[plane];
const int src_stride = p->src.stride;
const int dst_stride = pd->dst.stride;
const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
const uint8_t *src = &p->src.buf[4 * (blk_row * src_stride + blk_col)];
const uint8_t *dst = &pd->dst.buf[4 * (blk_row * dst_stride + blk_col)];
const int16_t *diff = &p->src_diff[4 * (blk_row * diff_stride + blk_col)];
unsigned int tmp;
sse = sum_squares_2d(diff, diff_stride, tx_size);
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
sse = ROUND_POWER_OF_TWO(sse, (xd->bd - 8) * 2);
#endif // CONFIG_VP9_HIGHBITDEPTH
sse = (int64_t)sse * 16;
variance(src, src_stride, dst, dst_stride, &tmp);
dist = (int64_t)tmp * 16;
}
} else {
// full forward transform and quantization
#if CONFIG_NEW_QUANT
vp10_xform_quant_fp_nuq(x, plane, block, blk_row, blk_col, plane_bsize,
tx_size, coeff_ctx);
#else
vp10_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
VP10_XFORM_QUANT_FP);
#endif // CONFIG_NEW_QUANT
if (x->plane[plane].eobs[block])
vp10_optimize_b(x, plane, block, tx_size, coeff_ctx);
dist_block(args->cpi, x, plane, block, blk_row, blk_col,
tx_size, &dist, &sse);
}
rd = RDCOST(x->rdmult, x->rddiv, 0, dist);
if (args->this_rd + rd > args->best_rd) {
args->exit_early = 1;
return;
}
rate = rate_block(plane, block, blk_row, blk_col, tx_size, args);
rd1 = RDCOST(x->rdmult, x->rddiv, rate, dist);
rd2 = RDCOST(x->rdmult, x->rddiv, 0, sse);
// TODO(jingning): temporarily enabled only for luma component
rd = VPXMIN(rd1, rd2);
args->this_rate += rate;
args->this_dist += dist;
args->this_sse += sse;
args->this_rd += rd;
if (args->this_rd > args->best_rd) {
args->exit_early = 1;
return;
}
args->skippable &= !x->plane[plane].eobs[block];
}
static void txfm_rd_in_plane(MACROBLOCK *x,
const VP10_COMP *cpi,
int *rate, int64_t *distortion,
int *skippable, int64_t *sse,
int64_t ref_best_rd, int plane,
BLOCK_SIZE bsize, TX_SIZE tx_size,
int use_fast_coef_casting) {
MACROBLOCKD *const xd = &x->e_mbd;
const struct macroblockd_plane *const pd = &xd->plane[plane];
TX_TYPE tx_type;
struct rdcost_block_args args;
vp10_zero(args);
args.x = x;
args.cpi = cpi;
args.best_rd = ref_best_rd;
args.use_fast_coef_costing = use_fast_coef_casting;
args.skippable = 1;
if (plane == 0)
xd->mi[0]->mbmi.tx_size = tx_size;
vp10_get_entropy_contexts(bsize, tx_size, pd, args.t_above, args.t_left);
tx_type = get_tx_type(pd->plane_type, xd, 0, tx_size);
args.so = get_scan(tx_size, tx_type, is_inter_block(&xd->mi[0]->mbmi));
vp10_foreach_transformed_block_in_plane(xd, bsize, plane,
block_rd_txfm, &args);
if (args.exit_early) {
*rate = INT_MAX;
*distortion = INT64_MAX;
*sse = INT64_MAX;
*skippable = 0;
} else {
*distortion = args.this_dist;
*rate = args.this_rate;
*sse = args.this_sse;
*skippable = args.skippable;
}
}
#if CONFIG_SUPERTX
void vp10_txfm_rd_in_plane_supertx(MACROBLOCK *x,
const VP10_COMP *cpi,
int *rate, int64_t *distortion,
int *skippable, int64_t *sse,
int64_t ref_best_rd, int plane,
BLOCK_SIZE bsize, TX_SIZE tx_size,
int use_fast_coef_casting) {
MACROBLOCKD *const xd = &x->e_mbd;
const struct macroblockd_plane *const pd = &xd->plane[plane];
struct rdcost_block_args args;
TX_TYPE tx_type;
vp10_zero(args);
args.cpi = cpi;
args.x = x;
args.best_rd = ref_best_rd;
args.use_fast_coef_costing = use_fast_coef_casting;
#if CONFIG_EXT_TX
assert(tx_size < TX_SIZES);
#endif // CONFIG_EXT_TX
if (plane == 0)
xd->mi[0]->mbmi.tx_size = tx_size;
vp10_get_entropy_contexts(bsize, tx_size, pd, args.t_above, args.t_left);
tx_type = get_tx_type(pd->plane_type, xd, 0, tx_size);
args.so = get_scan(tx_size, tx_type, is_inter_block(&xd->mi[0]->mbmi));
block_rd_txfm(plane, 0, 0, 0, get_plane_block_size(bsize, pd),
tx_size, &args);
if (args.exit_early) {
*rate = INT_MAX;
*distortion = INT64_MAX;
*sse = INT64_MAX;
*skippable = 0;
} else {
*distortion = args.this_dist;
*rate = args.this_rate;
*sse = args.this_sse;
*skippable = !x->plane[plane].eobs[0];
}
}
#endif // CONFIG_SUPERTX
static int64_t txfm_yrd(VP10_COMP *cpi, MACROBLOCK *x,
int *r, int64_t *d, int *s, int64_t *sse,
int64_t ref_best_rd,
BLOCK_SIZE bs, TX_TYPE tx_type, int tx_size) {
VP10_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
int64_t rd = INT64_MAX;
vpx_prob skip_prob = vp10_get_skip_prob(cm, xd);
int s0, s1;
const TX_SIZE max_tx_size = max_txsize_lookup[bs];
const int tx_select = cm->tx_mode == TX_MODE_SELECT;
const int is_inter = is_inter_block(mbmi);
const int r_tx_size =
cpi->tx_size_cost[max_tx_size - TX_8X8][get_tx_size_context(xd)][tx_size];
#if CONFIG_EXT_TX
int ext_tx_set;
#endif // CONFIG_EXT_TX
assert(skip_prob > 0);
s0 = vp10_cost_bit(skip_prob, 0);
s1 = vp10_cost_bit(skip_prob, 1);
mbmi->tx_type = tx_type;
mbmi->tx_size = tx_size;
txfm_rd_in_plane(x,
cpi,
r, d, s,
sse, ref_best_rd, 0, bs, tx_size,
cpi->sf.use_fast_coef_costing);
if (*r == INT_MAX)
return INT64_MAX;
#if CONFIG_EXT_TX
ext_tx_set = get_ext_tx_set(tx_size, bs, is_inter);
if (get_ext_tx_types(tx_size, bs, is_inter) > 1 &&
!xd->lossless[xd->mi[0]->mbmi.segment_id]) {
if (is_inter) {
if (ext_tx_set > 0)
*r += cpi->inter_tx_type_costs[ext_tx_set]
[mbmi->tx_size][mbmi->tx_type];
} else {
if (ext_tx_set > 0 && ALLOW_INTRA_EXT_TX)
*r += cpi->intra_tx_type_costs[ext_tx_set][mbmi->tx_size]
[mbmi->mode][mbmi->tx_type];
}
}
#else
if (tx_size < TX_32X32 &&
!xd->lossless[xd->mi[0]->mbmi.segment_id] && !FIXED_TX_TYPE) {
if (is_inter) {
*r += cpi->inter_tx_type_costs[mbmi->tx_size][mbmi->tx_type];
} else {
*r += cpi->intra_tx_type_costs[mbmi->tx_size]
[intra_mode_to_tx_type_context[mbmi->mode]]
[mbmi->tx_type];
}
}
#endif // CONFIG_EXT_TX
if (*s) {
if (is_inter) {
rd = RDCOST(x->rdmult, x->rddiv, s1, *sse);
} else {
rd = RDCOST(x->rdmult, x->rddiv, s1 + r_tx_size * tx_select, *sse);
}
} else {
rd = RDCOST(x->rdmult, x->rddiv, *r + s0 + r_tx_size * tx_select, *d);
}
if (tx_select)
*r += r_tx_size;
if (is_inter && !xd->lossless[xd->mi[0]->mbmi.segment_id] && !(*s))
rd = VPXMIN(rd, RDCOST(x->rdmult, x->rddiv, s1, *sse));
return rd;
}
static int64_t choose_tx_size_fix_type(VP10_COMP *cpi,
BLOCK_SIZE bs,
MACROBLOCK *x,
int *rate,
int64_t *distortion,
int *skip,
int64_t *psse,
int64_t ref_best_rd,
TX_TYPE tx_type,
int prune) {
VP10_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
int r, s;
int64_t d, sse;
int64_t rd = INT64_MAX;
int n;
int start_tx, end_tx;
int64_t best_rd = INT64_MAX, last_rd = INT64_MAX;
const TX_SIZE max_tx_size = max_txsize_lookup[bs];
TX_SIZE best_tx = max_tx_size;
const int tx_select = cm->tx_mode == TX_MODE_SELECT;
const int is_inter = is_inter_block(mbmi);
#if CONFIG_EXT_TX
int ext_tx_set;
#endif // CONFIG_EXT_TX
if (tx_select) {
start_tx = max_tx_size;
end_tx = 0;
} else {
const TX_SIZE chosen_tx_size =
VPXMIN(max_tx_size, tx_mode_to_biggest_tx_size[cm->tx_mode]);
start_tx = chosen_tx_size;
end_tx = chosen_tx_size;
}
*distortion = INT64_MAX;
*rate = INT_MAX;
*skip = 0;
*psse = INT64_MAX;
mbmi->tx_type = tx_type;
last_rd = INT64_MAX;
for (n = start_tx; n >= end_tx; --n) {
if (FIXED_TX_TYPE && tx_type != get_default_tx_type(0, xd, 0, n))
continue;
if (!is_inter && x->use_default_intra_tx_type &&
tx_type != get_default_tx_type(0, xd, 0, n))
continue;
if (is_inter && x->use_default_inter_tx_type &&
tx_type != get_default_tx_type(0, xd, 0, n))
continue;
if (max_tx_size == TX_32X32 && n == TX_4X4)
continue;
#if CONFIG_EXT_TX
ext_tx_set = get_ext_tx_set(n, bs, is_inter);
if (is_inter) {
if (!ext_tx_used_inter[ext_tx_set][tx_type])
continue;
if (cpi->sf.tx_type_search.prune_mode > NO_PRUNE) {
if (!do_tx_type_search(tx_type, prune))
continue;
}
} else {
if (!ALLOW_INTRA_EXT_TX && bs >= BLOCK_8X8) {
if (tx_type != intra_mode_to_tx_type_context[mbmi->mode])
continue;
}
if (!ext_tx_used_intra[ext_tx_set][tx_type])
continue;
}
#else // CONFIG_EXT_TX
if (n >= TX_32X32 && tx_type != DCT_DCT)
continue;
if (is_inter && cpi->sf.tx_type_search.prune_mode > NO_PRUNE &&
!do_tx_type_search(tx_type, prune))
continue;
#endif // CONFIG_EXT_TX
rd = txfm_yrd(cpi, x, &r, &d, &s, &sse, ref_best_rd, bs, tx_type, n);
// Early termination in transform size search.
if (cpi->sf.tx_size_search_breakout &&
(rd == INT64_MAX ||
(s == 1 && tx_type != DCT_DCT && n < start_tx) ||
(n < (int) max_tx_size && rd > last_rd)))
break;
last_rd = rd;
if (rd < best_rd) {
best_tx = n;
best_rd = rd;
*distortion = d;
*rate = r;
*skip = s;
*psse = sse;
}
}
mbmi->tx_size = best_tx;
return best_rd;
}
#if CONFIG_EXT_INTER
static int64_t estimate_yrd_for_sb(VP10_COMP *cpi,
BLOCK_SIZE bs,
MACROBLOCK *x,
int *r, int64_t *d,
int *s, int64_t *sse,
int64_t ref_best_rd) {
return txfm_yrd(cpi, x, r, d, s, sse, ref_best_rd, bs,
DCT_DCT, max_txsize_lookup[bs]);
}
#endif // CONFIG_EXT_INTER
static void choose_largest_tx_size(VP10_COMP *cpi, MACROBLOCK *x,
int *rate, int64_t *distortion,
int *skip, int64_t *sse,
int64_t ref_best_rd,
BLOCK_SIZE bs) {
const TX_SIZE max_tx_size = max_txsize_lookup[bs];
VP10_COMMON *const cm = &cpi->common;
const TX_SIZE largest_tx_size = tx_mode_to_biggest_tx_size[cm->tx_mode];
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
TX_TYPE tx_type, best_tx_type = DCT_DCT;
int r, s;
int64_t d, psse, this_rd, best_rd = INT64_MAX;
vpx_prob skip_prob = vp10_get_skip_prob(cm, xd);
int s0 = vp10_cost_bit(skip_prob, 0);
int s1 = vp10_cost_bit(skip_prob, 1);
const int is_inter = is_inter_block(mbmi);
int prune = 0;
#if CONFIG_EXT_TX
int ext_tx_set;
#endif // CONFIG_EXT_TX
mbmi->tx_size = VPXMIN(max_tx_size, largest_tx_size);
#if CONFIG_EXT_TX
ext_tx_set = get_ext_tx_set(mbmi->tx_size, bs, is_inter);
#endif // CONFIG_EXT_TX
if (is_inter && cpi->sf.tx_type_search.prune_mode > NO_PRUNE)
#if CONFIG_EXT_TX
prune = prune_tx_types(cpi, bs, x, xd, ext_tx_set);
#else
prune = prune_tx_types(cpi, bs, x, xd, 0);
#endif
#if CONFIG_EXT_TX
if (get_ext_tx_types(mbmi->tx_size, bs, is_inter) > 1 &&
!xd->lossless[mbmi->segment_id]) {
for (tx_type = 0; tx_type < TX_TYPES; ++tx_type) {
if (is_inter) {
if (x->use_default_inter_tx_type &&
tx_type != get_default_tx_type(0, xd, 0, mbmi->tx_size))
continue;
if (!ext_tx_used_inter[ext_tx_set][tx_type])
continue;
if (cpi->sf.tx_type_search.prune_mode > NO_PRUNE) {
if (!do_tx_type_search(tx_type, prune))
continue;
}
} else {
if (x->use_default_intra_tx_type &&
tx_type != get_default_tx_type(0, xd, 0, mbmi->tx_size))
continue;
if (!ALLOW_INTRA_EXT_TX && bs >= BLOCK_8X8) {
if (tx_type != intra_mode_to_tx_type_context[mbmi->mode])
continue;
}
if (!ext_tx_used_intra[ext_tx_set][tx_type])
continue;
}
mbmi->tx_type = tx_type;
txfm_rd_in_plane(x,
cpi,
&r, &d, &s,
&psse, ref_best_rd, 0, bs, mbmi->tx_size,
cpi->sf.use_fast_coef_costing);
if (r == INT_MAX)
continue;
if (get_ext_tx_types(mbmi->tx_size, bs, is_inter) > 1) {
if (is_inter) {
if (ext_tx_set > 0)
r += cpi->inter_tx_type_costs[ext_tx_set]
[mbmi->tx_size][mbmi->tx_type];
} else {
if (ext_tx_set > 0 && ALLOW_INTRA_EXT_TX)
r += cpi->intra_tx_type_costs[ext_tx_set][mbmi->tx_size]
[mbmi->mode][mbmi->tx_type];
}
}
if (s)
this_rd = RDCOST(x->rdmult, x->rddiv, s1, psse);
else
this_rd = RDCOST(x->rdmult, x->rddiv, r + s0, d);
if (is_inter_block(mbmi) && !xd->lossless[mbmi->segment_id] && !s)
this_rd = VPXMIN(this_rd, RDCOST(x->rdmult, x->rddiv, s1, psse));
if (this_rd < best_rd) {
best_rd = this_rd;
best_tx_type = mbmi->tx_type;
}
}
}
#else // CONFIG_EXT_TX
if (mbmi->tx_size < TX_32X32 &&
!xd->lossless[mbmi->segment_id]) {
for (tx_type = 0; tx_type < TX_TYPES; ++tx_type) {
if (!is_inter && x->use_default_intra_tx_type &&
tx_type != get_default_tx_type(0, xd, 0, mbmi->tx_size))
continue;
if (is_inter && x->use_default_inter_tx_type &&
tx_type != get_default_tx_type(0, xd, 0, mbmi->tx_size))
continue;
mbmi->tx_type = tx_type;
txfm_rd_in_plane(x,
cpi,
&r, &d, &s,
&psse, ref_best_rd, 0, bs, mbmi->tx_size,
cpi->sf.use_fast_coef_costing);
if (r == INT_MAX)
continue;
if (is_inter) {
r += cpi->inter_tx_type_costs[mbmi->tx_size][mbmi->tx_type];
if (cpi->sf.tx_type_search.prune_mode > NO_PRUNE &&
!do_tx_type_search(tx_type, prune))
continue;
} else {
r += cpi->intra_tx_type_costs[mbmi->tx_size]
[intra_mode_to_tx_type_context[mbmi->mode]]
[mbmi->tx_type];
}
if (s)
this_rd = RDCOST(x->rdmult, x->rddiv, s1, psse);
else
this_rd = RDCOST(x->rdmult, x->rddiv, r + s0, d);
if (is_inter && !xd->lossless[mbmi->segment_id] && !s)
this_rd = VPXMIN(this_rd, RDCOST(x->rdmult, x->rddiv, s1, psse));
if (this_rd < best_rd) {
best_rd = this_rd;
best_tx_type = mbmi->tx_type;
}
}
}
#endif // CONFIG_EXT_TX
mbmi->tx_type = best_tx_type;
txfm_rd_in_plane(x,
cpi,
rate, distortion, skip,
sse, ref_best_rd, 0, bs,
mbmi->tx_size, cpi->sf.use_fast_coef_costing);
}
static void choose_smallest_tx_size(VP10_COMP *cpi, MACROBLOCK *x,
int *rate, int64_t *distortion,
int *skip, int64_t *sse,
int64_t ref_best_rd,
BLOCK_SIZE bs) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
mbmi->tx_size = TX_4X4;
mbmi->tx_type = DCT_DCT;
txfm_rd_in_plane(x,
cpi,
rate, distortion, skip,
sse, ref_best_rd, 0, bs,
mbmi->tx_size, cpi->sf.use_fast_coef_costing);
}
static void choose_tx_size_type_from_rd(VP10_COMP *cpi, MACROBLOCK *x,
int *rate,
int64_t *distortion,
int *skip,
int64_t *psse,
int64_t ref_best_rd,
BLOCK_SIZE bs) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
int r, s;
int64_t d, sse;
int64_t rd = INT64_MAX;
int64_t best_rd = INT64_MAX;
TX_SIZE best_tx = max_txsize_lookup[bs];
const int is_inter = is_inter_block(mbmi);
TX_TYPE tx_type, best_tx_type = DCT_DCT;
int prune = 0;
if (is_inter && cpi->sf.tx_type_search.prune_mode > NO_PRUNE)
// passing -1 in for tx_type indicates that all 1D
// transforms should be considered for pruning
prune = prune_tx_types(cpi, bs, x, xd, -1);
*distortion = INT64_MAX;
*rate = INT_MAX;
*skip = 0;
*psse = INT64_MAX;
for (tx_type = DCT_DCT; tx_type < TX_TYPES; ++tx_type) {
#if CONFIG_REF_MV
if (tx_type != DCT_DCT && is_inter && mbmi->ref_mv_idx > 0)
continue;
#endif
rd = choose_tx_size_fix_type(cpi, bs, x, &r, &d, &s, &sse, ref_best_rd,
tx_type, prune);
if (rd < best_rd) {
best_rd = rd;
*distortion = d;
*rate = r;
*skip = s;
*psse = sse;
best_tx_type = tx_type;
best_tx = mbmi->tx_size;
}
}
mbmi->tx_size = best_tx;
mbmi->tx_type = best_tx_type;
#if !CONFIG_EXT_TX
if (mbmi->tx_size >= TX_32X32)
assert(mbmi->tx_type == DCT_DCT);
#endif
}
static void super_block_yrd(VP10_COMP *cpi, MACROBLOCK *x, int *rate,
int64_t *distortion, int *skip,
int64_t *psse, BLOCK_SIZE bs,
int64_t ref_best_rd) {
MACROBLOCKD *xd = &x->e_mbd;
int64_t sse;
int64_t *ret_sse = psse ? psse : &sse;
assert(bs == xd->mi[0]->mbmi.sb_type);
if (xd->lossless[xd->mi[0]->mbmi.segment_id]) {
choose_smallest_tx_size(cpi, x, rate, distortion, skip, ret_sse,
ref_best_rd, bs);
} else if (cpi->sf.tx_size_search_method == USE_LARGESTALL) {
choose_largest_tx_size(cpi, x, rate, distortion, skip, ret_sse, ref_best_rd,
bs);
} else {
choose_tx_size_type_from_rd(cpi, x, rate, distortion, skip, ret_sse,
ref_best_rd, bs);
}
}
static int conditional_skipintra(PREDICTION_MODE mode,
PREDICTION_MODE best_intra_mode) {
if (mode == D117_PRED &&
best_intra_mode != V_PRED &&
best_intra_mode != D135_PRED)
return 1;
if (mode == D63_PRED &&
best_intra_mode != V_PRED &&
best_intra_mode != D45_PRED)
return 1;
if (mode == D207_PRED &&
best_intra_mode != H_PRED &&
best_intra_mode != D45_PRED)
return 1;
if (mode == D153_PRED &&
best_intra_mode != H_PRED &&
best_intra_mode != D135_PRED)
return 1;
return 0;
}
static int rd_pick_palette_intra_sby(VP10_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE bsize,
int palette_ctx, int dc_mode_cost,
PALETTE_MODE_INFO *palette_mode_info,
uint8_t *best_palette_color_map,
TX_SIZE *best_tx, TX_TYPE *best_tx_type,
PREDICTION_MODE *mode_selected,
int64_t *best_rd) {
MACROBLOCKD *const xd = &x->e_mbd;
MODE_INFO *const mic = xd->mi[0];
const int rows = 4 * num_4x4_blocks_high_lookup[bsize];
const int cols = 4 * num_4x4_blocks_wide_lookup[bsize];
int this_rate, this_rate_tokenonly, s, colors, n;
int rate_overhead = 0;
int64_t this_distortion, this_rd;
const int src_stride = x->plane[0].src.stride;
const uint8_t *const src = x->plane[0].src.buf;
#if CONFIG_VP9_HIGHBITDEPTH
if (cpi->common.use_highbitdepth)
colors = vp10_count_colors_highbd(src, src_stride, rows, cols,
cpi->common.bit_depth);
else
#endif // CONFIG_VP9_HIGHBITDEPTH
colors = vp10_count_colors(src, src_stride, rows, cols);
palette_mode_info->palette_size[0] = 0;
#if CONFIG_EXT_INTRA
mic->mbmi.ext_intra_mode_info.use_ext_intra_mode[0] = 0;
#endif // CONFIG_EXT_INTRA
if (colors > 1 && colors <= 64 && cpi->common.allow_screen_content_tools) {
int r, c, i, j, k;
const int max_itr = 50;
int color_ctx, color_idx = 0;
int color_order[PALETTE_MAX_SIZE];
float *const data = x->palette_buffer->kmeans_data_buf;
uint8_t *const indices = x->palette_buffer->kmeans_indices_buf;
uint8_t *const pre_indices = x->palette_buffer->kmeans_pre_indices_buf;
float centroids[PALETTE_MAX_SIZE];
uint8_t *const color_map = xd->plane[0].color_index_map;
float lb, ub, val;
MB_MODE_INFO *const mbmi = &mic->mbmi;
PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
#if CONFIG_VP9_HIGHBITDEPTH
uint16_t *src16 = CONVERT_TO_SHORTPTR(src);
if (cpi->common.use_highbitdepth)
lb = ub = src16[0];
else
#endif // CONFIG_VP9_HIGHBITDEPTH
lb = ub = src[0];
#if CONFIG_VP9_HIGHBITDEPTH
if (cpi->common.use_highbitdepth) {
for (r = 0; r < rows; ++r) {
for (c = 0; c < cols; ++c) {
val = src16[r * src_stride + c];
data[r * cols + c] = val;
if (val < lb)
lb = val;
else if (val > ub)
ub = val;
}
}
} else {
#endif // CONFIG_VP9_HIGHBITDEPTH
for (r = 0; r < rows; ++r) {
for (c = 0; c < cols; ++c) {
val = src[r * src_stride + c];
data[r * cols + c] = val;
if (val < lb)
lb = val;
else if (val > ub)
ub = val;
}
}
#if CONFIG_VP9_HIGHBITDEPTH
}
#endif // CONFIG_VP9_HIGHBITDEPTH
mbmi->mode = DC_PRED;
#if CONFIG_EXT_INTRA
mbmi->ext_intra_mode_info.use_ext_intra_mode[0] = 0;
#endif // CONFIG_EXT_INTRA
if (rows * cols > PALETTE_MAX_BLOCK_SIZE)
return 0;
for (n = colors > PALETTE_MAX_SIZE ? PALETTE_MAX_SIZE : colors;
n >= 2; --n) {
for (i = 0; i < n; ++i)
centroids[i] = lb + (2 * i + 1) * (ub - lb) / n / 2;
vp10_k_means(data, centroids, indices, pre_indices, rows * cols,
n, 1, max_itr);
vp10_insertion_sort(centroids, n);
for (i = 0; i < n; ++i)
centroids[i] = roundf(centroids[i]);
// remove duplicates
i = 1;
k = n;
while (i < k) {
if (centroids[i] == centroids[i - 1]) {
j = i;
while (j < k - 1) {
assert((j + 1) < PALETTE_MAX_SIZE);
assert(j > 0);
centroids[j] = centroids[j + 1];
++j;
}
--k;
} else {
++i;
}
}
#if CONFIG_VP9_HIGHBITDEPTH
if (cpi->common.use_highbitdepth)
for (i = 0; i < k; ++i)
pmi->palette_colors[i] = clip_pixel_highbd((int)lroundf(centroids[i]),
cpi->common.bit_depth);
else
#endif // CONFIG_VP9_HIGHBITDEPTH
for (i = 0; i < k; ++i)
pmi->palette_colors[i] = clip_pixel((int)lroundf(centroids[i]));
pmi->palette_size[0] = k;
vp10_calc_indices(data, centroids, indices, rows * cols, k, 1);
for (r = 0; r < rows; ++r)
for (c = 0; c < cols; ++c)
color_map[r * cols + c] = indices[r * cols + c];
super_block_yrd(cpi, x, &this_rate_tokenonly, &this_distortion,
&s, NULL, bsize, *best_rd);
if (this_rate_tokenonly == INT_MAX)
continue;
this_rate = this_rate_tokenonly + dc_mode_cost +
cpi->common.bit_depth * k * vp10_cost_bit(128, 0) +
cpi->palette_y_size_cost[bsize - BLOCK_8X8][k - 2] +
write_uniform_cost(k, color_map[0]) +
vp10_cost_bit(vp10_default_palette_y_mode_prob[bsize - BLOCK_8X8]
[palette_ctx], 1);
for (i = 0; i < rows; ++i) {
for (j = (i == 0 ? 1 : 0); j < cols; ++j) {
color_ctx = vp10_get_palette_color_context(color_map, cols, i, j,
k, color_order);
for (r = 0; r < k; ++r)
if (color_map[i * cols + j] == color_order[r]) {
color_idx = r;
break;
}
assert(color_idx >= 0 && color_idx < k);
this_rate +=
cpi->palette_y_color_cost[k - 2][color_ctx][color_idx];
}
}
this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion);
if (this_rd < *best_rd) {
*best_rd = this_rd;
*palette_mode_info = *pmi;
memcpy(best_palette_color_map, color_map,
rows * cols * sizeof(color_map[0]));
*mode_selected = DC_PRED;
*best_tx = mbmi->tx_size;
*best_tx_type = mbmi->tx_type;
rate_overhead = this_rate - this_rate_tokenonly;
}
}
}
return rate_overhead;
}
static int64_t rd_pick_intra4x4block(VP10_COMP *cpi, MACROBLOCK *x,
int row, int col,
PREDICTION_MODE *best_mode,
const int *bmode_costs,
ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l,
int *bestrate, int *bestratey,
int64_t *bestdistortion,
BLOCK_SIZE bsize, int64_t rd_thresh) {
PREDICTION_MODE mode;
MACROBLOCKD *const xd = &x->e_mbd;
int64_t best_rd = rd_thresh;
struct macroblock_plane *p = &x->plane[0];
struct macroblockd_plane *pd = &xd->plane[0];
const int src_stride = p->src.stride;
const int dst_stride = pd->dst.stride;
const uint8_t *src_init = &p->src.buf[row * 4 * src_stride + col * 4];
uint8_t *dst_init = &pd->dst.buf[row * 4 * src_stride + col * 4];
ENTROPY_CONTEXT ta[2], tempa[2];
ENTROPY_CONTEXT tl[2], templ[2];
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
int idx, idy;
uint8_t best_dst[8 * 8];
#if CONFIG_VP9_HIGHBITDEPTH
uint16_t best_dst16[8 * 8];
#endif
memcpy(ta, a, num_4x4_blocks_wide * sizeof(a[0]));
memcpy(tl, l, num_4x4_blocks_high * sizeof(l[0]));
xd->mi[0]->mbmi.tx_size = TX_4X4;
xd->mi[0]->mbmi.palette_mode_info.palette_size[0] = 0;
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
for (mode = DC_PRED; mode <= TM_PRED; ++mode) {
int64_t this_rd;
int ratey = 0;
int64_t distortion = 0;
int rate = bmode_costs[mode];
if (!(cpi->sf.intra_y_mode_mask[TX_4X4] & (1 << mode)))
continue;
// Only do the oblique modes if the best so far is
// one of the neighboring directional modes
if (cpi->sf.mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) {
if (conditional_skipintra(mode, *best_mode))
continue;
}
memcpy(tempa, ta, num_4x4_blocks_wide * sizeof(ta[0]));
memcpy(templ, tl, num_4x4_blocks_high * sizeof(tl[0]));
for (idy = 0; idy < num_4x4_blocks_high; ++idy) {
for (idx = 0; idx < num_4x4_blocks_wide; ++idx) {
const int block = (row + idy) * 2 + (col + idx);
const uint8_t *const src = &src_init[idx * 4 + idy * 4 * src_stride];
uint8_t *const dst = &dst_init[idx * 4 + idy * 4 * dst_stride];
int16_t *const src_diff = vp10_raster_block_offset_int16(BLOCK_8X8,
block,
p->src_diff);
xd->mi[0]->bmi[block].as_mode = mode;
vp10_predict_intra_block(xd, 1, 1, TX_4X4, mode, dst, dst_stride,
dst, dst_stride,
col + idx, row + idy, 0);
vpx_highbd_subtract_block(4, 4, src_diff, 8, src, src_stride,
dst, dst_stride, xd->bd);
if (xd->lossless[xd->mi[0]->mbmi.segment_id]) {
TX_TYPE tx_type = get_tx_type(PLANE_TYPE_Y, xd, block, TX_4X4);
const scan_order *so = get_scan(TX_4X4, tx_type, 0);
#if CONFIG_VAR_TX | CONFIG_NEW_QUANT
const int coeff_ctx = combine_entropy_contexts(*(tempa + idx),
*(templ + idy));
#endif // CONFIG_VAR_TX | CONFIG_NEW_QUANT
#if CONFIG_NEW_QUANT
vp10_xform_quant_fp_nuq(x, 0, block, row + idy, col + idx,
BLOCK_8X8, TX_4X4, coeff_ctx);
#else
vp10_xform_quant(x, 0, block, row + idy, col + idx, BLOCK_8X8,
TX_4X4, VP10_XFORM_QUANT_FP);
#endif // CONFIG_NEW_QUANT
#if CONFIG_VAR_TX
ratey += cost_coeffs(x, 0, block, coeff_ctx, TX_4X4, so->scan,
so->neighbors, cpi->sf.use_fast_coef_costing);
*(tempa + idx) = !(p->eobs[block] == 0);
*(templ + idy) = !(p->eobs[block] == 0);
#else
ratey += cost_coeffs(x, 0, block, tempa + idx, templ + idy,
TX_4X4,
so->scan, so->neighbors,
cpi->sf.use_fast_coef_costing);
#endif // CONFIG_VAR_TX
if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd)
goto next_highbd;
vp10_highbd_inv_txfm_add_4x4(BLOCK_OFFSET(pd->dqcoeff, block),
dst, dst_stride, p->eobs[block],
xd->bd, DCT_DCT, 1);
} else {
int64_t dist;
unsigned int tmp;
TX_TYPE tx_type = get_tx_type(PLANE_TYPE_Y, xd, block, TX_4X4);
const scan_order *so = get_scan(TX_4X4, tx_type, 0);
const int coeff_ctx = combine_entropy_contexts(*(tempa + idx),
*(templ + idy));
#if CONFIG_NEW_QUANT
vp10_xform_quant_fp_nuq(x, 0, block, row + idy, col + idx,
BLOCK_8X8, TX_4X4, coeff_ctx);
#else
vp10_xform_quant(x, 0, block, row + idy, col + idx, BLOCK_8X8,
TX_4X4, VP10_XFORM_QUANT_FP);
#endif // CONFIG_NEW_QUANT
vp10_optimize_b(x, 0, block, TX_4X4, coeff_ctx);
#if CONFIG_VAR_TX
ratey += cost_coeffs(x, 0, block, coeff_ctx, TX_4X4, so->scan,
so->neighbors, cpi->sf.use_fast_coef_costing);
*(tempa + idx) = !(p->eobs[block] == 0);
*(templ + idy) = !(p->eobs[block] == 0);
#else
ratey += cost_coeffs(x, 0, block, tempa + idx, templ + idy,
TX_4X4, so->scan, so->neighbors,
cpi->sf.use_fast_coef_costing);
#endif // CONFIG_VAR_TX
vp10_highbd_inv_txfm_add_4x4(BLOCK_OFFSET(pd->dqcoeff, block),
dst, dst_stride, p->eobs[block],
xd->bd, tx_type, 0);
cpi->fn_ptr[BLOCK_4X4].vf(src, src_stride, dst, dst_stride, &tmp);
dist = (int64_t)tmp << 4;
distortion += dist;
if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd)
goto next_highbd;
}
}
}
rate += ratey;
this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion);
if (this_rd < best_rd) {
*bestrate = rate;
*bestratey = ratey;
*bestdistortion = distortion;
best_rd = this_rd;
*best_mode = mode;
memcpy(a, tempa, num_4x4_blocks_wide * sizeof(tempa[0]));
memcpy(l, templ, num_4x4_blocks_high * sizeof(templ[0]));
for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy) {
memcpy(best_dst16 + idy * 8,
CONVERT_TO_SHORTPTR(dst_init + idy * dst_stride),
num_4x4_blocks_wide * 4 * sizeof(uint16_t));
}
}
next_highbd:
{}
}
if (best_rd >= rd_thresh)
return best_rd;
for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy) {
memcpy(CONVERT_TO_SHORTPTR(dst_init + idy * dst_stride),
best_dst16 + idy * 8,
num_4x4_blocks_wide * 4 * sizeof(uint16_t));
}
return best_rd;
}
#endif // CONFIG_VP9_HIGHBITDEPTH
for (mode = DC_PRED; mode <= TM_PRED; ++mode) {
int64_t this_rd;
int ratey = 0;
int64_t distortion = 0;
int rate = bmode_costs[mode];
if (!(cpi->sf.intra_y_mode_mask[TX_4X4] & (1 << mode)))
continue;
// Only do the oblique modes if the best so far is
// one of the neighboring directional modes
if (cpi->sf.mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) {
if (conditional_skipintra(mode, *best_mode))
continue;
}
memcpy(tempa, ta, num_4x4_blocks_wide * sizeof(ta[0]));
memcpy(templ, tl, num_4x4_blocks_high * sizeof(tl[0]));
for (idy = 0; idy < num_4x4_blocks_high; ++idy) {
for (idx = 0; idx < num_4x4_blocks_wide; ++idx) {
const int block = (row + idy) * 2 + (col + idx);
const uint8_t *const src = &src_init[idx * 4 + idy * 4 * src_stride];
uint8_t *const dst = &dst_init[idx * 4 + idy * 4 * dst_stride];
int16_t *const src_diff =
vp10_raster_block_offset_int16(BLOCK_8X8, block, p->src_diff);
xd->mi[0]->bmi[block].as_mode = mode;
vp10_predict_intra_block(xd, 1, 1, TX_4X4, mode, dst, dst_stride,
dst, dst_stride, col + idx, row + idy, 0);
vpx_subtract_block(4, 4, src_diff, 8, src, src_stride, dst, dst_stride);
if (xd->lossless[xd->mi[0]->mbmi.segment_id]) {
TX_TYPE tx_type = get_tx_type(PLANE_TYPE_Y, xd, block, TX_4X4);
const scan_order *so = get_scan(TX_4X4, tx_type, 0);
#if CONFIG_VAR_TX | CONFIG_NEW_QUANT
const int coeff_ctx = combine_entropy_contexts(*(tempa + idx),
*(templ + idy));
#endif // CONFIG_VAR_TX | CONFIG_NEW_QUANT
#if CONFIG_NEW_QUANT
vp10_xform_quant_fp_nuq(x, 0, block, row + idy, col + idx, BLOCK_8X8,
TX_4X4, coeff_ctx);
#else
vp10_xform_quant(x, 0, block, row + idy, col + idx, BLOCK_8X8,
TX_4X4, VP10_XFORM_QUANT_B);
#endif // CONFIG_NEW_QUANT
#if CONFIG_VAR_TX
ratey += cost_coeffs(x, 0, block, coeff_ctx, TX_4X4, so->scan,
so->neighbors, cpi->sf.use_fast_coef_costing);
*(tempa + idx) = !(p->eobs[block] == 0);
*(templ + idy) = !(p->eobs[block] == 0);
#else
ratey += cost_coeffs(x, 0, block, tempa + idx, templ + idy,
TX_4X4,
so->scan, so->neighbors,
cpi->sf.use_fast_coef_costing);
#endif
if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd)
goto next;
vp10_inv_txfm_add_4x4(BLOCK_OFFSET(pd->dqcoeff, block),
dst, dst_stride, p->eobs[block], DCT_DCT, 1);
} else {
int64_t dist;
unsigned int tmp;
TX_TYPE tx_type = get_tx_type(PLANE_TYPE_Y, xd, block, TX_4X4);
const scan_order *so = get_scan(TX_4X4, tx_type, 0);
const int coeff_ctx = combine_entropy_contexts(*(tempa + idx),
*(templ + idy));
#if CONFIG_NEW_QUANT
vp10_xform_quant_fp_nuq(x, 0, block, row + idy, col + idx, BLOCK_8X8,
TX_4X4, coeff_ctx);
#else
vp10_xform_quant(x, 0, block, row + idy, col + idx, BLOCK_8X8,
TX_4X4, VP10_XFORM_QUANT_FP);
#endif // CONFIG_NEW_QUANT
vp10_optimize_b(x, 0, block, TX_4X4, coeff_ctx);
#if CONFIG_VAR_TX
ratey += cost_coeffs(x, 0, block, coeff_ctx, TX_4X4, so->scan,
so->neighbors, cpi->sf.use_fast_coef_costing);
*(tempa + idx) = !(p->eobs[block] == 0);
*(templ + idy) = !(p->eobs[block] == 0);
#else
ratey += cost_coeffs(x, 0, block, tempa + idx, templ + idy,
TX_4X4, so->scan, so->neighbors,
cpi->sf.use_fast_coef_costing);
#endif
vp10_inv_txfm_add_4x4(BLOCK_OFFSET(pd->dqcoeff, block),
dst, dst_stride, p->eobs[block], tx_type, 0);
cpi->fn_ptr[BLOCK_4X4].vf(src, src_stride, dst, dst_stride, &tmp);
dist = (int64_t)tmp << 4;
distortion += dist;
// To use the pixel domain distortion, the step below needs to be
// put behind the inv txfm. Compared to calculating the distortion
// in the frequency domain, the overhead of encoding effort is low.
if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd)
goto next;
}
}
}
rate += ratey;
this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion);
if (this_rd < best_rd) {
*bestrate = rate;
*bestratey = ratey;
*bestdistortion = distortion;
best_rd = this_rd;
*best_mode = mode;
memcpy(a, tempa, num_4x4_blocks_wide * sizeof(tempa[0]));
memcpy(l, templ, num_4x4_blocks_high * sizeof(templ[0]));
for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy)
memcpy(best_dst + idy * 8, dst_init + idy * dst_stride,
num_4x4_blocks_wide * 4);
}
next:
{}
}
if (best_rd >= rd_thresh)
return best_rd;
for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy)
memcpy(dst_init + idy * dst_stride, best_dst + idy * 8,
num_4x4_blocks_wide * 4);
return best_rd;
}
static int64_t rd_pick_intra_sub_8x8_y_mode(VP10_COMP *cpi, MACROBLOCK *mb,
int *rate, int *rate_y,
int64_t *distortion,
int64_t best_rd) {
int i, j;
const MACROBLOCKD *const xd = &mb->e_mbd;
MODE_INFO *const mic = xd->mi[0];
const MODE_INFO *above_mi = xd->above_mi;
const MODE_INFO *left_mi = xd->left_mi;
const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
int idx, idy;
int cost = 0;
int64_t total_distortion = 0;
int tot_rate_y = 0;
int64_t total_rd = 0;
const int *bmode_costs = cpi->mbmode_cost[0];
#if CONFIG_EXT_INTRA
mic->mbmi.ext_intra_mode_info.use_ext_intra_mode[0] = 0;
mic->mbmi.intra_filter = INTRA_FILTER_LINEAR;
#endif // CONFIG_EXT_INTRA
// TODO(any): Add search of the tx_type to improve rd performance at the
// expense of speed.
mic->mbmi.tx_type = DCT_DCT;
mic->mbmi.tx_size = TX_4X4;
// Pick modes for each sub-block (of size 4x4, 4x8, or 8x4) in an 8x8 block.
for (idy = 0; idy < 2; idy += num_4x4_blocks_high) {
for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) {
PREDICTION_MODE best_mode = DC_PRED;
int r = INT_MAX, ry = INT_MAX;
int64_t d = INT64_MAX, this_rd = INT64_MAX;
i = idy * 2 + idx;
if (cpi->common.frame_type == KEY_FRAME) {
const PREDICTION_MODE A = vp10_above_block_mode(mic, above_mi, i);
const PREDICTION_MODE L = vp10_left_block_mode(mic, left_mi, i);
bmode_costs = cpi->y_mode_costs[A][L];
}
this_rd = rd_pick_intra4x4block(cpi, mb, idy, idx, &best_mode,
bmode_costs,
xd->plane[0].above_context + idx,
xd->plane[0].left_context + idy,
&r, &ry, &d, bsize, best_rd - total_rd);
if (this_rd >= best_rd - total_rd)
return INT64_MAX;
total_rd += this_rd;
cost += r;
total_distortion += d;
tot_rate_y += ry;
mic->bmi[i].as_mode = best_mode;
for (j = 1; j < num_4x4_blocks_high; ++j)
mic->bmi[i + j * 2].as_mode = best_mode;
for (j = 1; j < num_4x4_blocks_wide; ++j)
mic->bmi[i + j].as_mode = best_mode;
if (total_rd >= best_rd)
return INT64_MAX;
}
}
mic->mbmi.mode = mic->bmi[3].as_mode;
// Add in the cost of the transform type
if (!xd->lossless[mic->mbmi.segment_id]) {
int rate_tx_type = 0;
#if CONFIG_EXT_TX
if (get_ext_tx_types(TX_4X4, bsize, 0) > 1) {
const int eset = get_ext_tx_set(TX_4X4, bsize, 0);
rate_tx_type =
cpi->intra_tx_type_costs[eset][TX_4X4]
[mic->mbmi.mode][mic->mbmi.tx_type];
}
#else
rate_tx_type =
cpi->intra_tx_type_costs[TX_4X4]
[intra_mode_to_tx_type_context[mic->mbmi.mode]]
[mic->mbmi.tx_type];
#endif
assert(mic->mbmi.tx_size == TX_4X4);
cost += rate_tx_type;
tot_rate_y += rate_tx_type;
}
*rate = cost;
*rate_y = tot_rate_y;
*distortion = total_distortion;
return RDCOST(mb->rdmult, mb->rddiv, cost, total_distortion);
}
#if CONFIG_EXT_INTRA
// Return 1 if an ext intra mode is selected; return 0 otherwise.
static int rd_pick_ext_intra_sby(VP10_COMP *cpi, MACROBLOCK *x,
int *rate, int *rate_tokenonly,
int64_t *distortion, int *skippable,
BLOCK_SIZE bsize, int mode_cost,
int64_t *best_rd, uint16_t skip_mask) {
MACROBLOCKD *const xd = &x->e_mbd;
MODE_INFO *const mic = xd->mi[0];
MB_MODE_INFO *mbmi = &mic->mbmi;
int this_rate, this_rate_tokenonly, s;
int ext_intra_selected_flag = 0;
int64_t this_distortion, this_rd;
EXT_INTRA_MODE mode;
TX_SIZE best_tx_size = TX_4X4;
EXT_INTRA_MODE_INFO ext_intra_mode_info;
TX_TYPE best_tx_type;
vp10_zero(ext_intra_mode_info);
mbmi->ext_intra_mode_info.use_ext_intra_mode[0] = 1;
mbmi->mode = DC_PRED;
mbmi->palette_mode_info.palette_size[0] = 0;
for (mode = 0; mode < FILTER_INTRA_MODES; ++mode) {
if (skip_mask & (1 << mode))
continue;
mbmi->ext_intra_mode_info.ext_intra_mode[0] = mode;
super_block_yrd(cpi, x, &this_rate_tokenonly, &this_distortion,
&s, NULL, bsize, *best_rd);
if (this_rate_tokenonly == INT_MAX)
continue;
this_rate = this_rate_tokenonly +
vp10_cost_bit(cpi->common.fc->ext_intra_probs[0], 1) +
write_uniform_cost(FILTER_INTRA_MODES, mode) + mode_cost;
this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion);
if (this_rd < *best_rd) {
*best_rd = this_rd;
best_tx_size = mic->mbmi.tx_size;
ext_intra_mode_info = mbmi->ext_intra_mode_info;
best_tx_type = mic->mbmi.tx_type;
*rate = this_rate;
*rate_tokenonly = this_rate_tokenonly;
*distortion = this_distortion;
*skippable = s;
ext_intra_selected_flag = 1;
}
}
if (ext_intra_selected_flag) {
mbmi->mode = DC_PRED;
mbmi->tx_size = best_tx_size;
mbmi->ext_intra_mode_info.use_ext_intra_mode[0] =
ext_intra_mode_info.use_ext_intra_mode[0];
mbmi->ext_intra_mode_info.ext_intra_mode[0] =
ext_intra_mode_info.ext_intra_mode[0];
mbmi->tx_type = best_tx_type;
return 1;
} else {
return 0;
}
}
static void pick_intra_angle_routine_sby(VP10_COMP *cpi, MACROBLOCK *x,
int *rate, int *rate_tokenonly,
int64_t *distortion, int *skippable,
int *best_angle_delta,
TX_SIZE *best_tx_size,
TX_TYPE *best_tx_type,
INTRA_FILTER *best_filter,
BLOCK_SIZE bsize, int rate_overhead,
int64_t *best_rd) {
int this_rate, this_rate_tokenonly, s;
int64_t this_distortion, this_rd;
MB_MODE_INFO *mbmi = &x->e_mbd.mi[0]->mbmi;
super_block_yrd(cpi, x, &this_rate_tokenonly, &this_distortion,
&s, NULL, bsize, *best_rd);
if (this_rate_tokenonly == INT_MAX)
return;
this_rate = this_rate_tokenonly + rate_overhead;
this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion);
if (this_rd < *best_rd) {
*best_rd = this_rd;
*best_angle_delta = mbmi->angle_delta[0];
*best_tx_size = mbmi->tx_size;
*best_filter = mbmi->intra_filter;
*best_tx_type = mbmi->tx_type;
*rate = this_rate;
*rate_tokenonly = this_rate_tokenonly;
*distortion = this_distortion;
*skippable = s;
}
}
static int64_t rd_pick_intra_angle_sby(VP10_COMP *cpi, MACROBLOCK *x,
int *rate, int *rate_tokenonly,
int64_t *distortion, int *skippable,
BLOCK_SIZE bsize, int rate_overhead,
int64_t best_rd) {
MACROBLOCKD *const xd = &x->e_mbd;
MODE_INFO *const mic = xd->mi[0];
MB_MODE_INFO *mbmi = &mic->mbmi;
int this_rate, this_rate_tokenonly, s;
int angle_delta, best_angle_delta = 0, p_angle;
const int intra_filter_ctx = vp10_get_pred_context_intra_interp(xd);
INTRA_FILTER filter, best_filter = INTRA_FILTER_LINEAR;
const double rd_adjust = 1.2;
int64_t this_distortion, this_rd;
TX_SIZE best_tx_size = mic->mbmi.tx_size;
TX_TYPE best_tx_type = mbmi->tx_type;
if (ANGLE_FAST_SEARCH) {
int deltas_level1[3] = {0, -2, 2};
int deltas_level2[3][2] = {
{-1, 1}, {-3, -1}, {1, 3},
};
const int level1 = 3, level2 = 2;
int i, j, best_i = -1;
for (i = 0; i < level1; ++i) {
mic->mbmi.angle_delta[0] = deltas_level1[i];
p_angle = mode_to_angle_map[mbmi->mode] +
mbmi->angle_delta[0] * ANGLE_STEP;
for (filter = INTRA_FILTER_LINEAR; filter < INTRA_FILTERS; ++filter) {
int64_t tmp_best_rd;
if ((FILTER_FAST_SEARCH || !vp10_is_intra_filter_switchable(p_angle)) &&
filter != INTRA_FILTER_LINEAR)
continue;
mic->mbmi.intra_filter = filter;
tmp_best_rd = (i == 0 && filter == INTRA_FILTER_LINEAR &&
best_rd < INT64_MAX) ? (int64_t)(best_rd * rd_adjust) : best_rd;
super_block_yrd(cpi, x, &this_rate_tokenonly, &this_distortion,
&s, NULL, bsize, tmp_best_rd);
if (this_rate_tokenonly == INT_MAX) {
if (i == 0 && filter == INTRA_FILTER_LINEAR)
return best_rd;
else
continue;
}
this_rate = this_rate_tokenonly + rate_overhead +
cpi->intra_filter_cost[intra_filter_ctx][filter];
this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion);
if (i == 0 && filter == INTRA_FILTER_LINEAR &&
best_rd < INT64_MAX && this_rd > best_rd * rd_adjust)
return best_rd;
if (this_rd < best_rd) {
best_i = i;
best_rd = this_rd;
best_angle_delta = mbmi->angle_delta[0];
best_tx_size = mbmi->tx_size;
best_filter = mbmi->intra_filter;
best_tx_type = mbmi->tx_type;
*rate = this_rate;
*rate_tokenonly = this_rate_tokenonly;
*distortion = this_distortion;
*skippable = s;
}
}
}
if (best_i >= 0) {
for (j = 0; j < level2; ++j) {
mic->mbmi.angle_delta[0] = deltas_level2[best_i][j];
p_angle = mode_to_angle_map[mbmi->mode] +
mbmi->angle_delta[0] * ANGLE_STEP;
for (filter = INTRA_FILTER_LINEAR; filter < INTRA_FILTERS; ++filter) {
mic->mbmi.intra_filter = filter;
if ((FILTER_FAST_SEARCH || !vp10_is_intra_filter_switchable(p_angle))
&& filter != INTRA_FILTER_LINEAR)
continue;
pick_intra_angle_routine_sby(cpi, x, rate, rate_tokenonly,
distortion, skippable,
&best_angle_delta, &best_tx_size,
&best_tx_type, &best_filter, bsize,
rate_overhead +
cpi->intra_filter_cost
[intra_filter_ctx][filter],
&best_rd);
}
}
}
} else {
for (angle_delta = -MAX_ANGLE_DELTAS; angle_delta <= MAX_ANGLE_DELTAS;
++angle_delta) {
mbmi->angle_delta[0] = angle_delta;
p_angle = mode_to_angle_map[mbmi->mode] +
mbmi->angle_delta[0] * ANGLE_STEP;
for (filter = INTRA_FILTER_LINEAR; filter < INTRA_FILTERS; ++filter) {
mic->mbmi.intra_filter = filter;
if ((FILTER_FAST_SEARCH || !vp10_is_intra_filter_switchable(p_angle)) &&
filter != INTRA_FILTER_LINEAR)
continue;
pick_intra_angle_routine_sby(cpi, x, rate, rate_tokenonly,
distortion, skippable,
&best_angle_delta, &best_tx_size,
&best_tx_type, &best_filter, bsize,
rate_overhead +
cpi->intra_filter_cost
[intra_filter_ctx][filter],
&best_rd);
}
}
}
if (FILTER_FAST_SEARCH && *rate_tokenonly < INT_MAX) {
mbmi->angle_delta[0] = best_angle_delta;
p_angle = mode_to_angle_map[mbmi->mode] +
mbmi->angle_delta[0] * ANGLE_STEP;
if (vp10_is_intra_filter_switchable(p_angle)) {
for (filter = INTRA_FILTER_LINEAR + 1; filter < INTRA_FILTERS; ++filter) {
mic->mbmi.intra_filter = filter;
pick_intra_angle_routine_sby(cpi, x, rate, rate_tokenonly,
distortion, skippable,
&best_angle_delta, &best_tx_size,
&best_tx_type, &best_filter, bsize,
rate_overhead + cpi->intra_filter_cost
[intra_filter_ctx][filter], &best_rd);
}
}
}
mbmi->tx_size = best_tx_size;
mbmi->angle_delta[0] = best_angle_delta;
mic->mbmi.intra_filter = best_filter;
mbmi->tx_type = best_tx_type;
return best_rd;
}
// Indices are sign, integer, and fractional part of the gradient value
static const uint8_t gradient_to_angle_bin[2][7][16] = {
{
{6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 0, 0, 0, 0, },
{0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, },
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, },
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, },
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, },
{2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, },
{2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, },
},
{
{6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, },
{4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, },
{3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, },
{3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, },
{3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, },
{3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, },
{2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, },
},
};
static const uint8_t mode_to_angle_bin[INTRA_MODES] = {
0, 2, 6, 0, 4, 3, 5, 7, 1, 0,
};
static void angle_estimation(const uint8_t *src, int src_stride,
int rows, int cols,
uint8_t *directional_mode_skip_mask) {
int i, r, c, index, dx, dy, temp, sn, remd, quot;
uint64_t hist[DIRECTIONAL_MODES];
uint64_t hist_sum = 0;
memset(hist, 0, DIRECTIONAL_MODES * sizeof(hist[0]));
src += src_stride;
for (r = 1; r < rows; ++r) {
for (c = 1; c < cols; ++c) {
dx = src[c] - src[c - 1];
dy = src[c] - src[c - src_stride];
temp = dx * dx + dy * dy;
if (dy == 0) {
index = 2;
} else {
sn = (dx > 0) ^ (dy > 0);
dx = abs(dx);
dy = abs(dy);
remd = dx % dy;
quot = dx / dy;
remd = remd * 16 / dy;
index = gradient_to_angle_bin[sn][VPXMIN(quot, 6)][VPXMIN(remd, 15)];
}
hist[index] += temp;
}
src += src_stride;
}
for (i = 0; i < DIRECTIONAL_MODES; ++i)
hist_sum += hist[i];
for (i = 0; i < INTRA_MODES; ++i) {
if (i != DC_PRED && i != TM_PRED) {
int index = mode_to_angle_bin[i];
uint64_t score = 2 * hist[index];
int weight = 2;
if (index > 0) {
score += hist[index - 1];
weight += 1;
}
if (index < DIRECTIONAL_MODES - 1) {
score += hist[index + 1];
weight += 1;
}
if (score * ANGLE_SKIP_THRESH < hist_sum * weight)
directional_mode_skip_mask[i] = 1;
}
}
}
#if CONFIG_VP9_HIGHBITDEPTH
static void highbd_angle_estimation(const uint8_t *src8, int src_stride,
int rows, int cols,
uint8_t *directional_mode_skip_mask) {
int i, r, c, index, dx, dy, temp, sn, remd, quot;
uint64_t hist[DIRECTIONAL_MODES];
uint64_t hist_sum = 0;
uint16_t *src = CONVERT_TO_SHORTPTR(src8);
memset(hist, 0, DIRECTIONAL_MODES * sizeof(hist[0]));
src += src_stride;
for (r = 1; r < rows; ++r) {
for (c = 1; c < cols; ++c) {
dx = src[c] - src[c - 1];
dy = src[c] - src[c - src_stride];
temp = dx * dx + dy * dy;
if (dy == 0) {
index = 2;
} else {
sn = (dx > 0) ^ (dy > 0);
dx = abs(dx);
dy = abs(dy);
remd = dx % dy;
quot = dx / dy;
remd = remd * 16 / dy;
index = gradient_to_angle_bin[sn][VPXMIN(quot, 6)][VPXMIN(remd, 15)];
}
hist[index] += temp;
}
src += src_stride;
}
for (i = 0; i < DIRECTIONAL_MODES; ++i)
hist_sum += hist[i];
for (i = 0; i < INTRA_MODES; ++i) {
if (i != DC_PRED && i != TM_PRED) {
int index = mode_to_angle_bin[i];
uint64_t score = 2 * hist[index];
int weight = 2;
if (index > 0) {
score += hist[index - 1];
weight += 1;
}
if (index < DIRECTIONAL_MODES - 1) {
score += hist[index + 1];
weight += 1;
}
if (score * ANGLE_SKIP_THRESH < hist_sum * weight)
directional_mode_skip_mask[i] = 1;
}
}
}
#endif // CONFIG_VP9_HIGHBITDEPTH
#endif // CONFIG_EXT_INTRA
// This function is used only for intra_only frames
static int64_t rd_pick_intra_sby_mode(VP10_COMP *cpi, MACROBLOCK *x,
int *rate, int *rate_tokenonly,
int64_t *distortion, int *skippable,
BLOCK_SIZE bsize,
int64_t best_rd) {
uint8_t mode_idx;
PREDICTION_MODE mode_selected = DC_PRED;
MACROBLOCKD *const xd = &x->e_mbd;
MODE_INFO *const mic = xd->mi[0];
int this_rate, this_rate_tokenonly, s;
int64_t this_distortion, this_rd;
TX_SIZE best_tx = TX_4X4;
#if CONFIG_EXT_INTRA
const int intra_filter_ctx = vp10_get_pred_context_intra_interp(xd);
EXT_INTRA_MODE_INFO ext_intra_mode_info;
int is_directional_mode, rate_overhead, best_angle_delta = 0;
INTRA_FILTER best_filter = INTRA_FILTER_LINEAR;
uint8_t directional_mode_skip_mask[INTRA_MODES];
uint16_t filter_intra_mode_skip_mask = (1 << FILTER_INTRA_MODES) - 1;
const int src_stride = x->plane[0].src.stride;
const uint8_t *src = x->plane[0].src.buf;
#endif // CONFIG_EXT_INTRA
TX_TYPE best_tx_type = DCT_DCT;
int *bmode_costs;
PALETTE_MODE_INFO palette_mode_info;
PALETTE_MODE_INFO *const pmi = &mic->mbmi.palette_mode_info;
uint8_t *best_palette_color_map = cpi->common.allow_screen_content_tools ?
x->palette_buffer->best_palette_color_map : NULL;
const int rows = 4 * num_4x4_blocks_high_lookup[bsize];
const int cols = 4 * num_4x4_blocks_wide_lookup[bsize];
int palette_ctx = 0;
const MODE_INFO *above_mi = xd->above_mi;
const MODE_INFO *left_mi = xd->left_mi;
const PREDICTION_MODE A = vp10_above_block_mode(mic, above_mi, 0);
const PREDICTION_MODE L = vp10_left_block_mode(mic, left_mi, 0);
const PREDICTION_MODE FINAL_MODE_SEARCH = TM_PRED + 1;
const TX_SIZE max_tx_size = max_txsize_lookup[bsize];
bmode_costs = cpi->y_mode_costs[A][L];
#if CONFIG_EXT_INTRA
ext_intra_mode_info.use_ext_intra_mode[0] = 0;
mic->mbmi.ext_intra_mode_info.use_ext_intra_mode[0] = 0;
mic->mbmi.angle_delta[0] = 0;
memset(directional_mode_skip_mask, 0,
sizeof(directional_mode_skip_mask[0]) * INTRA_MODES);
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
highbd_angle_estimation(src, src_stride, rows, cols,
directional_mode_skip_mask);
else
#endif
angle_estimation(src, src_stride, rows, cols, directional_mode_skip_mask);
#endif // CONFIG_EXT_INTRA
palette_mode_info.palette_size[0] = 0;
pmi->palette_size[0] = 0;
if (above_mi)
palette_ctx += (above_mi->mbmi.palette_mode_info.palette_size[0] > 0);
if (left_mi)
palette_ctx += (left_mi->mbmi.palette_mode_info.palette_size[0] > 0);
if (cpi->sf.tx_type_search.fast_intra_tx_type_search)
x->use_default_intra_tx_type = 1;
else
x->use_default_intra_tx_type = 0;
/* Y Search for intra prediction mode */
for (mode_idx = DC_PRED; mode_idx <= FINAL_MODE_SEARCH; ++mode_idx) {
if (mode_idx == FINAL_MODE_SEARCH) {
if (x->use_default_intra_tx_type == 0)
break;
mic->mbmi.mode = mode_selected;
x->use_default_intra_tx_type = 0;
} else {
mic->mbmi.mode = mode_idx;
}
#if CONFIG_EXT_INTRA
is_directional_mode =
(mic->mbmi.mode != DC_PRED && mic->mbmi.mode != TM_PRED);
if (is_directional_mode && directional_mode_skip_mask[mic->mbmi.mode])
continue;
if (is_directional_mode) {
rate_overhead = bmode_costs[mic->mbmi.mode] +
write_uniform_cost(2 * MAX_ANGLE_DELTAS + 1, 0);
this_rate_tokenonly = INT_MAX;
this_rd =
rd_pick_intra_angle_sby(cpi, x, &this_rate, &this_rate_tokenonly,
&this_distortion, &s, bsize, rate_overhead,
best_rd);
} else {
mic->mbmi.angle_delta[0] = 0;
super_block_yrd(cpi, x, &this_rate_tokenonly, &this_distortion,
&s, NULL, bsize, best_rd);
}
#else
super_block_yrd(cpi, x, &this_rate_tokenonly, &this_distortion,
&s, NULL, bsize, best_rd);
#endif // CONFIG_EXT_INTRA
if (this_rate_tokenonly == INT_MAX)
continue;
this_rate = this_rate_tokenonly + bmode_costs[mic->mbmi.mode];
if (!xd->lossless[xd->mi[0]->mbmi.segment_id]) {
// super_block_yrd above includes the cost of the tx_size in the
// tokenonly rate, but for intra blocks, tx_size is always coded
// (prediction granularity), so we account for it in the full rate,
// not the tokenonly rate.
this_rate_tokenonly -=
cpi->tx_size_cost[max_tx_size - TX_8X8][get_tx_size_context(xd)]
[mic->mbmi.tx_size];
}
if (cpi->common.allow_screen_content_tools && mic->mbmi.mode == DC_PRED)
this_rate +=
vp10_cost_bit(vp10_default_palette_y_mode_prob[bsize - BLOCK_8X8]
[palette_ctx], 0);
#if CONFIG_EXT_INTRA
if (mic->mbmi.mode == DC_PRED && ALLOW_FILTER_INTRA_MODES)
this_rate += vp10_cost_bit(cpi->common.fc->ext_intra_probs[0], 0);
if (is_directional_mode) {
int p_angle;
this_rate += write_uniform_cost(2 * MAX_ANGLE_DELTAS + 1,
MAX_ANGLE_DELTAS +
mic->mbmi.angle_delta[0]);
p_angle = mode_to_angle_map[mic->mbmi.mode] +
mic->mbmi.angle_delta[0] * ANGLE_STEP;
if (vp10_is_intra_filter_switchable(p_angle))
this_rate +=
cpi->intra_filter_cost[intra_filter_ctx][mic->mbmi.intra_filter];
}
filter_intra_mode_skip_mask ^= (1 << mic->mbmi.mode);
#endif // CONFIG_EXT_INTRA
this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion);
if (this_rd < best_rd) {
mode_selected = mic->mbmi.mode;
best_rd = this_rd;
best_tx = mic->mbmi.tx_size;
#if CONFIG_EXT_INTRA
best_angle_delta = mic->mbmi.angle_delta[0];
best_filter = mic->mbmi.intra_filter;
#endif // CONFIG_EXT_INTRA
best_tx_type = mic->mbmi.tx_type;
*rate = this_rate;
*rate_tokenonly = this_rate_tokenonly;
*distortion = this_distortion;
*skippable = s;
}
}
if (cpi->common.allow_screen_content_tools)
rd_pick_palette_intra_sby(cpi, x, bsize, palette_ctx, bmode_costs[DC_PRED],
&palette_mode_info, best_palette_color_map,
&best_tx, &best_tx_type, &mode_selected,
&best_rd);
#if CONFIG_EXT_INTRA
if (ALLOW_FILTER_INTRA_MODES) {
if (rd_pick_ext_intra_sby(cpi, x, rate, rate_tokenonly, distortion,
skippable, bsize, bmode_costs[DC_PRED],
&best_rd, filter_intra_mode_skip_mask)) {
mode_selected = mic->mbmi.mode;
best_tx = mic->mbmi.tx_size;
ext_intra_mode_info = mic->mbmi.ext_intra_mode_info;
best_tx_type = mic->mbmi.tx_type;
}
}
mic->mbmi.ext_intra_mode_info.use_ext_intra_mode[0] =
ext_intra_mode_info.use_ext_intra_mode[0];
if (ext_intra_mode_info.use_ext_intra_mode[0]) {
mic->mbmi.ext_intra_mode_info.ext_intra_mode[0] =
ext_intra_mode_info.ext_intra_mode[0];
palette_mode_info.palette_size[0] = 0;
}
#endif // CONFIG_EXT_INTRA
mic->mbmi.mode = mode_selected;
mic->mbmi.tx_size = best_tx;
#if CONFIG_EXT_INTRA
mic->mbmi.angle_delta[0] = best_angle_delta;
mic->mbmi.intra_filter = best_filter;
#endif // CONFIG_EXT_INTRA
mic->mbmi.tx_type = best_tx_type;
pmi->palette_size[0] = palette_mode_info.palette_size[0];
if (palette_mode_info.palette_size[0] > 0) {
memcpy(pmi->palette_colors, palette_mode_info.palette_colors,
PALETTE_MAX_SIZE * sizeof(palette_mode_info.palette_colors[0]));
memcpy(xd->plane[0].color_index_map, best_palette_color_map,
rows * cols * sizeof(best_palette_color_map[0]));
}
return best_rd;
}
#if CONFIG_VAR_TX
void vp10_tx_block_rd_b(const VP10_COMP *cpi, MACROBLOCK *x, TX_SIZE tx_size,
int blk_row, int blk_col, int plane, int block,
int plane_bsize, int coeff_ctx,
int *rate, int64_t *dist, int64_t *bsse, int *skip) {
MACROBLOCKD *xd = &x->e_mbd;
const struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
int64_t tmp;
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV;
TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size);
const scan_order *const scan_order =
get_scan(tx_size, tx_type, is_inter_block(&xd->mi[0]->mbmi));
BLOCK_SIZE txm_bsize = txsize_to_bsize[tx_size];
int bh = 4 * num_4x4_blocks_wide_lookup[txm_bsize];
int src_stride = p->src.stride;
uint8_t *src = &p->src.buf[4 * blk_row * src_stride + 4 * blk_col];
uint8_t *dst = &pd->dst.buf[4 * blk_row * pd->dst.stride + 4 * blk_col];
#if CONFIG_VP9_HIGHBITDEPTH
DECLARE_ALIGNED(16, uint16_t, rec_buffer16[MAX_TX_SQUARE]);
uint8_t *rec_buffer;
#else
DECLARE_ALIGNED(16, uint8_t, rec_buffer[MAX_TX_SQUARE]);
#endif // CONFIG_VP9_HIGHBITDEPTH
const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
const int16_t *diff = &p->src_diff[4 * (blk_row * diff_stride + blk_col)];
int max_blocks_high = num_4x4_blocks_high_lookup[plane_bsize];
int max_blocks_wide = num_4x4_blocks_wide_lookup[plane_bsize];
#if CONFIG_EXT_TX
assert(tx_size < TX_SIZES);
#endif // CONFIG_EXT_TX
if (xd->mb_to_bottom_edge < 0)
max_blocks_high += xd->mb_to_bottom_edge >> (5 + pd->subsampling_y);
if (xd->mb_to_right_edge < 0)
max_blocks_wide += xd->mb_to_right_edge >> (5 + pd->subsampling_x);
#if CONFIG_NEW_QUANT
vp10_xform_quant_fp_nuq(x, plane, block, blk_row, blk_col,
plane_bsize, tx_size, coeff_ctx);
#else
vp10_xform_quant(x, plane, block, blk_row, blk_col,
plane_bsize, tx_size, VP10_XFORM_QUANT_FP);
#endif // CONFIG_NEW_QUANT
vp10_optimize_b(x, plane, block, tx_size, coeff_ctx);
// TODO(any): Use dist_block to compute distortion
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
rec_buffer = CONVERT_TO_BYTEPTR(rec_buffer16);
vpx_highbd_convolve_copy(dst, pd->dst.stride, rec_buffer, MAX_TX_SIZE,
NULL, 0, NULL, 0, bh, bh, xd->bd);
} else {
rec_buffer = (uint8_t *)rec_buffer16;
vpx_convolve_copy(dst, pd->dst.stride, rec_buffer, MAX_TX_SIZE,
NULL, 0, NULL, 0, bh, bh);
}
#else
vpx_convolve_copy(dst, pd->dst.stride, rec_buffer, MAX_TX_SIZE,
NULL, 0, NULL, 0, bh, bh);
#endif // CONFIG_VP9_HIGHBITDEPTH
if (blk_row + (bh >> 2) > max_blocks_high ||
blk_col + (bh >> 2) > max_blocks_wide) {
int idx, idy;
int blocks_height = VPXMIN(bh >> 2, max_blocks_high - blk_row);
int blocks_width = VPXMIN(bh >> 2, max_blocks_wide - blk_col);
tmp = 0;
for (idy = 0; idy < blocks_height; idy += 2) {
for (idx = 0; idx < blocks_width; idx += 2) {
const int16_t *d = diff + 4 * idy * diff_stride + 4 * idx;
tmp += vpx_sum_squares_2d_i16(d, diff_stride, 8);
}
}
} else {
tmp = vpx_sum_squares_2d_i16(diff, diff_stride, bh);
}
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
tmp = ROUND_POWER_OF_TWO(tmp, (xd->bd - 8) * 2);
#endif // CONFIG_VP9_HIGHBITDEPTH
*bsse += tmp * 16;
if (p->eobs[block] > 0) {
INV_TXFM_PARAM inv_txfm_param;
inv_txfm_param.tx_type = tx_type;
inv_txfm_param.tx_size = tx_size;
inv_txfm_param.eob = p->eobs[block];
inv_txfm_param.lossless = xd->lossless[xd->mi[0]->mbmi.segment_id];
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
inv_txfm_param.bd = xd->bd;
highbd_inv_txfm_add(dqcoeff, rec_buffer, MAX_TX_SIZE, &inv_txfm_param);
} else {
inv_txfm_add(dqcoeff, rec_buffer, MAX_TX_SIZE, &inv_txfm_param);
}
#else // CONFIG_VP9_HIGHBITDEPTH
inv_txfm_add(dqcoeff, rec_buffer, MAX_TX_SIZE, &inv_txfm_param);
#endif // CONFIG_VP9_HIGHBITDEPTH
if ((bh >> 2) + blk_col > max_blocks_wide ||
(bh >> 2) + blk_row > max_blocks_high) {
int idx, idy;
unsigned int this_dist;
int blocks_height = VPXMIN(bh >> 2, max_blocks_high - blk_row);
int blocks_width = VPXMIN(bh >> 2, max_blocks_wide - blk_col);
tmp = 0;
for (idy = 0; idy < blocks_height; idy += 2) {
for (idx = 0; idx < blocks_width; idx += 2) {
uint8_t *const s = src + 4 * idy * src_stride + 4 * idx;
uint8_t *const r = rec_buffer + 4 * idy * MAX_TX_SIZE + 4 * idx;
cpi->fn_ptr[BLOCK_8X8].vf(s, src_stride, r, MAX_TX_SIZE, &this_dist);
tmp += this_dist;
}
}
} else {
uint32_t this_dist;
cpi->fn_ptr[txm_bsize].vf(src, src_stride, rec_buffer, MAX_TX_SIZE,
&this_dist);
tmp = this_dist;
}
}
*dist += tmp * 16;
*rate += cost_coeffs(x, plane, block, coeff_ctx, tx_size,
scan_order->scan, scan_order->neighbors, 0);
*skip &= (p->eobs[block] == 0);
}
static void select_tx_block(const VP10_COMP *cpi, MACROBLOCK *x,
int blk_row, int blk_col, int plane, int block,
TX_SIZE tx_size, BLOCK_SIZE plane_bsize,
ENTROPY_CONTEXT *ta, ENTROPY_CONTEXT *tl,
TXFM_CONTEXT *tx_above, TXFM_CONTEXT *tx_left,
int *rate, int64_t *dist,
int64_t *bsse, int *skip,
int64_t ref_best_rd, int *is_cost_valid) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
const int tx_row = blk_row >> (1 - pd->subsampling_y);
const int tx_col = blk_col >> (1 - pd->subsampling_x);
TX_SIZE (*const inter_tx_size)[MAX_MIB_SIZE] =
(TX_SIZE (*)[MAX_MIB_SIZE])&mbmi->inter_tx_size[tx_row][tx_col];
const int bw = num_4x4_blocks_wide_lookup[plane_bsize];
int max_blocks_high = num_4x4_blocks_high_lookup[plane_bsize];
int max_blocks_wide = bw;
int64_t this_rd = INT64_MAX;
ENTROPY_CONTEXT *pta = ta + blk_col;
ENTROPY_CONTEXT *ptl = tl + blk_row;
ENTROPY_CONTEXT stxa = 0, stxl = 0;
int coeff_ctx, i;
int ctx = txfm_partition_context(tx_above + (blk_col >> 1),
tx_left + (blk_row >> 1), tx_size);
int64_t sum_dist = 0, sum_bsse = 0;
int64_t sum_rd = INT64_MAX;
int sum_rate = vp10_cost_bit(cpi->common.fc->txfm_partition_prob[ctx], 1);
int all_skip = 1;
int tmp_eob = 0;
int zero_blk_rate;
#if CONFIG_EXT_TX
assert(tx_size < TX_SIZES);
#endif // CONFIG_EXT_TX
if (ref_best_rd < 0) {
*is_cost_valid = 0;
return;
}
switch (tx_size) {
case TX_4X4:
stxa = pta[0];
stxl = ptl[0];
break;
case TX_8X8:
stxa = !!*(const uint16_t *)&pta[0];
stxl = !!*(const uint16_t *)&ptl[0];
break;
case TX_16X16:
stxa = !!*(const uint32_t *)&pta[0];
stxl = !!*(const uint32_t *)&ptl[0];
break;
case TX_32X32:
stxa = !!*(const uint64_t *)&pta[0];
stxl = !!*(const uint64_t *)&ptl[0];
break;
default:
assert(0 && "Invalid transform size.");
break;
}
coeff_ctx = combine_entropy_contexts(stxa, stxl);
if (xd->mb_to_bottom_edge < 0)
max_blocks_high += xd->mb_to_bottom_edge >> (5 + pd->subsampling_y);
if (xd->mb_to_right_edge < 0)
max_blocks_wide += xd->mb_to_right_edge >> (5 + pd->subsampling_x);
*rate = 0;
*dist = 0;
*bsse = 0;
*skip = 1;
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide)
return;
zero_blk_rate =
x->token_costs[tx_size][pd->plane_type][1][0][0][coeff_ctx][EOB_TOKEN];
if (cpi->common.tx_mode == TX_MODE_SELECT || tx_size == TX_4X4) {
inter_tx_size[0][0] = tx_size;
vp10_tx_block_rd_b(cpi, x, tx_size, blk_row, blk_col, plane, block,
plane_bsize, coeff_ctx, rate, dist, bsse, skip);
if ((RDCOST(x->rdmult, x->rddiv, *rate, *dist) >=
RDCOST(x->rdmult, x->rddiv, zero_blk_rate, *bsse) || *skip == 1) &&
!xd->lossless[mbmi->segment_id]) {
*rate = zero_blk_rate;
*dist = *bsse;
*skip = 1;
x->blk_skip[plane][blk_row * bw + blk_col] = 1;
p->eobs[block] = 0;
} else {
x->blk_skip[plane][blk_row * bw + blk_col] = 0;
*skip = 0;
}
if (tx_size > TX_4X4)
*rate += vp10_cost_bit(cpi->common.fc->txfm_partition_prob[ctx], 0);
this_rd = RDCOST(x->rdmult, x->rddiv, *rate, *dist);
tmp_eob = p->eobs[block];
}
if (tx_size > TX_4X4) {
BLOCK_SIZE bsize = txsize_to_bsize[tx_size];
int bsl = b_height_log2_lookup[bsize];
int sub_step = num_4x4_blocks_txsize_lookup[tx_size - 1];
int i;
int this_rate;
int64_t this_dist;
int64_t this_bsse;
int this_skip;
int this_cost_valid = 1;
int64_t tmp_rd = 0;
#if CONFIG_EXT_TX
assert(tx_size < TX_SIZES);
#endif // CONFIG_EXT_TX
--bsl;
for (i = 0; i < 4 && this_cost_valid; ++i) {
int offsetr = (i >> 1) << bsl;
int offsetc = (i & 0x01) << bsl;
select_tx_block(cpi, x, blk_row + offsetr, blk_col + offsetc,
plane, block + i * sub_step, tx_size - 1,
plane_bsize, ta, tl, tx_above, tx_left,
&this_rate, &this_dist,
&this_bsse, &this_skip,
ref_best_rd - tmp_rd, &this_cost_valid);
sum_rate += this_rate;
sum_dist += this_dist;
sum_bsse += this_bsse;
all_skip &= this_skip;
tmp_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
if (this_rd < tmp_rd)
break;
}
if (this_cost_valid)
sum_rd = tmp_rd;
}
if (this_rd < sum_rd) {
int idx, idy;
for (i = 0; i < num_4x4_blocks_wide_txsize_lookup[tx_size]; ++i)
pta[i] = !(tmp_eob == 0);
for (i = 0; i < num_4x4_blocks_high_txsize_lookup[tx_size]; ++i)
ptl[i] = !(tmp_eob == 0);
txfm_partition_update(tx_above + (blk_col >> 1),
tx_left + (blk_row >> 1), tx_size);
inter_tx_size[0][0] = tx_size;
for (idy = 0; idy < num_4x4_blocks_high_txsize_lookup[tx_size] / 2; ++idy)
for (idx = 0; idx < num_4x4_blocks_wide_txsize_lookup[tx_size] / 2; ++idx)
inter_tx_size[idy][idx] = tx_size;
mbmi->tx_size = tx_size;
if (this_rd == INT64_MAX)
*is_cost_valid = 0;
x->blk_skip[plane][blk_row * bw + blk_col] = *skip;
} else {
*rate = sum_rate;
*dist = sum_dist;
*bsse = sum_bsse;
*skip = all_skip;
if (sum_rd == INT64_MAX)
*is_cost_valid = 0;
}
}
static void inter_block_yrd(const VP10_COMP *cpi, MACROBLOCK *x,
int *rate, int64_t *distortion, int *skippable,
int64_t *sse, BLOCK_SIZE bsize,
int64_t ref_best_rd) {
MACROBLOCKD *const xd = &x->e_mbd;
int is_cost_valid = 1;
int64_t this_rd = 0;
if (ref_best_rd < 0)
is_cost_valid = 0;
*rate = 0;
*distortion = 0;
*sse = 0;
*skippable = 1;
if (is_cost_valid) {
const struct macroblockd_plane *const pd = &xd->plane[0];
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
const int mi_width = num_4x4_blocks_wide_lookup[plane_bsize];
const int mi_height = num_4x4_blocks_high_lookup[plane_bsize];
BLOCK_SIZE txb_size = txsize_to_bsize[max_txsize_lookup[plane_bsize]];
int bh = num_4x4_blocks_wide_lookup[txb_size];
int idx, idy;
int block = 0;
int step = 1 << (max_txsize_lookup[plane_bsize] * 2);
ENTROPY_CONTEXT ctxa[2 * MAX_MIB_SIZE];
ENTROPY_CONTEXT ctxl[2 * MAX_MIB_SIZE];
TXFM_CONTEXT tx_above[MAX_MIB_SIZE];
TXFM_CONTEXT tx_left[MAX_MIB_SIZE];
int pnrate = 0, pnskip = 1;
int64_t pndist = 0, pnsse = 0;
vp10_get_entropy_contexts(bsize, TX_4X4, pd, ctxa, ctxl);
memcpy(tx_above, xd->above_txfm_context,
sizeof(TXFM_CONTEXT) * (mi_width >> 1));
memcpy(tx_left, xd->left_txfm_context,
sizeof(TXFM_CONTEXT) * (mi_height >> 1));
for (idy = 0; idy < mi_height; idy += bh) {
for (idx = 0; idx < mi_width; idx += bh) {
select_tx_block(cpi, x, idy, idx, 0, block,
max_txsize_lookup[plane_bsize], plane_bsize,
ctxa, ctxl, tx_above, tx_left,
&pnrate, &pndist, &pnsse, &pnskip,
ref_best_rd - this_rd, &is_cost_valid);
*rate += pnrate;
*distortion += pndist;
*sse += pnsse;
*skippable &= pnskip;
this_rd += VPXMIN(RDCOST(x->rdmult, x->rddiv, pnrate, pndist),
RDCOST(x->rdmult, x->rddiv, 0, pnsse));
block += step;
}
}
}
this_rd = VPXMIN(RDCOST(x->rdmult, x->rddiv, *rate, *distortion),
RDCOST(x->rdmult, x->rddiv, 0, *sse));
if (this_rd > ref_best_rd)
is_cost_valid = 0;
if (!is_cost_valid) {
// reset cost value
*rate = INT_MAX;
*distortion = INT64_MAX;
*sse = INT64_MAX;
*skippable = 0;
}
}
static int64_t select_tx_size_fix_type(const VP10_COMP *cpi, MACROBLOCK *x,
int *rate, int64_t *dist,
int *skippable,
int64_t *sse, BLOCK_SIZE bsize,
int64_t ref_best_rd, TX_TYPE tx_type) {
const VP10_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
const TX_SIZE max_tx_size = max_txsize_lookup[bsize];
const int is_inter = is_inter_block(mbmi);
#if CONFIG_EXT_TX
int ext_tx_set = get_ext_tx_set(max_tx_size, bsize, is_inter);
#endif // CONFIG_EXT_TX
vpx_prob skip_prob = vp10_get_skip_prob(cm, xd);
int s0 = vp10_cost_bit(skip_prob, 0);
int s1 = vp10_cost_bit(skip_prob, 1);
int64_t rd;
mbmi->tx_type = tx_type;
inter_block_yrd(cpi, x, rate, dist, skippable, sse, bsize, ref_best_rd);
if (*rate == INT_MAX)
return INT64_MAX;
#if CONFIG_EXT_TX
if (get_ext_tx_types(max_tx_size, bsize, is_inter) > 1 &&
!xd->lossless[xd->mi[0]->mbmi.segment_id]) {
if (is_inter) {
if (ext_tx_set > 0)
*rate += cpi->inter_tx_type_costs[ext_tx_set]
[max_tx_size][mbmi->tx_type];
} else {
if (ext_tx_set > 0 && ALLOW_INTRA_EXT_TX)
*rate += cpi->intra_tx_type_costs[ext_tx_set][max_tx_size]
[mbmi->mode][mbmi->tx_type];
}
}
#else // CONFIG_EXT_TX
if (max_tx_size < TX_32X32 && !xd->lossless[xd->mi[0]->mbmi.segment_id]) {
if (is_inter)
*rate += cpi->inter_tx_type_costs[max_tx_size][mbmi->tx_type];
else
*rate += cpi->intra_tx_type_costs[max_tx_size]
[intra_mode_to_tx_type_context[mbmi->mode]][mbmi->tx_type];
}
#endif // CONFIG_EXT_TX
if (*skippable)
rd = RDCOST(x->rdmult, x->rddiv, s1, *sse);
else
rd = RDCOST(x->rdmult, x->rddiv, *rate + s0, *dist);
if (is_inter && !xd->lossless[xd->mi[0]->mbmi.segment_id] && !(*skippable))
rd = VPXMIN(rd, RDCOST(x->rdmult, x->rddiv, s1, *sse));
return rd;
}
static void select_tx_type_yrd(const VP10_COMP *cpi, MACROBLOCK *x,
int *rate, int64_t *distortion, int *skippable,
int64_t *sse, BLOCK_SIZE bsize,
int64_t ref_best_rd) {
const TX_SIZE max_tx_size = max_txsize_lookup[bsize];
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
int64_t rd = INT64_MAX;
int64_t best_rd = INT64_MAX;
TX_TYPE tx_type, best_tx_type = DCT_DCT;
const int is_inter = is_inter_block(mbmi);
TX_SIZE best_tx_size[MAX_MIB_SIZE][MAX_MIB_SIZE];
TX_SIZE best_tx = TX_SIZES;
uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE * 4];
const int n4 = 1 << (num_pels_log2_lookup[bsize] - 4);
int idx, idy;
int prune = 0;
#if CONFIG_EXT_TX
int ext_tx_set = get_ext_tx_set(max_tx_size, bsize, is_inter);
#endif // CONFIG_EXT_TX
if (is_inter && cpi->sf.tx_type_search.prune_mode > NO_PRUNE)
#if CONFIG_EXT_TX
prune = prune_tx_types(cpi, bsize, x, xd, ext_tx_set);
#else
prune = prune_tx_types(cpi, bsize, x, xd, 0);
#endif
*distortion = INT64_MAX;
*rate = INT_MAX;
*skippable = 0;
*sse = INT64_MAX;
for (tx_type = DCT_DCT; tx_type < TX_TYPES; ++tx_type) {
int this_rate = 0;
int this_skip = 1;
int64_t this_dist = 0;
int64_t this_sse = 0;
#if CONFIG_EXT_TX
if (is_inter) {
if (!ext_tx_used_inter[ext_tx_set][tx_type])
continue;
if (cpi->sf.tx_type_search.prune_mode > NO_PRUNE) {
if (!do_tx_type_search(tx_type, prune))
continue;
}
} else {
if (!ALLOW_INTRA_EXT_TX && bsize >= BLOCK_8X8) {
if (tx_type != intra_mode_to_tx_type_context[mbmi->mode])
continue;
}
if (!ext_tx_used_intra[ext_tx_set][tx_type])
continue;
}
#else // CONFIG_EXT_TX
if (max_tx_size >= TX_32X32 && tx_type != DCT_DCT)
continue;
if (is_inter && cpi->sf.tx_type_search.prune_mode > NO_PRUNE &&
!do_tx_type_search(tx_type, prune))
continue;
#endif // CONFIG_EXT_TX
if (is_inter && x->use_default_inter_tx_type &&
tx_type != get_default_tx_type(0, xd, 0, max_tx_size))
continue;
rd = select_tx_size_fix_type(cpi, x, &this_rate, &this_dist, &this_skip,
&this_sse, bsize, ref_best_rd, tx_type);
if (rd < best_rd) {
best_rd = rd;
*distortion = this_dist;
*rate = this_rate;
*skippable = this_skip;
*sse = this_sse;
best_tx_type = mbmi->tx_type;
best_tx = mbmi->tx_size;
memcpy(best_blk_skip, x->blk_skip[0], sizeof(best_blk_skip[0]) * n4);
for (idy = 0; idy < xd->n8_h; ++idy)
for (idx = 0; idx < xd->n8_w; ++idx)
best_tx_size[idy][idx] = mbmi->inter_tx_size[idy][idx];
}
}
mbmi->tx_type = best_tx_type;
for (idy = 0; idy < xd->n8_h; ++idy)
for (idx = 0; idx < xd->n8_w; ++idx)
mbmi->inter_tx_size[idy][idx] = best_tx_size[idy][idx];
mbmi->tx_size = best_tx;
memcpy(x->blk_skip[0], best_blk_skip, sizeof(best_blk_skip[0]) * n4);
}
static void tx_block_rd(const VP10_COMP *cpi, MACROBLOCK *x,
int blk_row, int blk_col, int plane, int block,
TX_SIZE tx_size, BLOCK_SIZE plane_bsize,
ENTROPY_CONTEXT *above_ctx, ENTROPY_CONTEXT *left_ctx,
int *rate, int64_t *dist, int64_t *bsse, int *skip) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
BLOCK_SIZE bsize = txsize_to_bsize[tx_size];
const int tx_row = blk_row >> (1 - pd->subsampling_y);
const int tx_col = blk_col >> (1 - pd->subsampling_x);
const TX_SIZE plane_tx_size = plane ?
get_uv_tx_size_impl(mbmi->inter_tx_size[tx_row][tx_col], bsize, 0, 0) :
mbmi->inter_tx_size[tx_row][tx_col];
int max_blocks_high = num_4x4_blocks_high_lookup[plane_bsize];
int max_blocks_wide = num_4x4_blocks_wide_lookup[plane_bsize];
#if CONFIG_EXT_TX
assert(tx_size < TX_SIZES);
#endif // CONFIG_EXT_TX
if (xd->mb_to_bottom_edge < 0)
max_blocks_high += xd->mb_to_bottom_edge >> (5 + pd->subsampling_y);
if (xd->mb_to_right_edge < 0)
max_blocks_wide += xd->mb_to_right_edge >> (5 + pd->subsampling_x);
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide)
return;
if (tx_size == plane_tx_size) {
int coeff_ctx, i;
ENTROPY_CONTEXT *ta = above_ctx + blk_col;
ENTROPY_CONTEXT *tl = left_ctx + blk_row;
switch (tx_size) {
case TX_4X4:
break;
case TX_8X8:
ta[0] = !!*(const uint16_t *)&ta[0];
tl[0] = !!*(const uint16_t *)&tl[0];
break;
case TX_16X16:
ta[0] = !!*(const uint32_t *)&ta[0];
tl[0] = !!*(const uint32_t *)&tl[0];
break;
case TX_32X32:
ta[0] = !!*(const uint64_t *)&ta[0];
tl[0] = !!*(const uint64_t *)&tl[0];
break;
default:
assert(0 && "Invalid transform size.");
break;
}
coeff_ctx = combine_entropy_contexts(ta[0], tl[0]);
vp10_tx_block_rd_b(cpi, x, tx_size, blk_row, blk_col, plane, block,
plane_bsize, coeff_ctx, rate, dist, bsse, skip);
for (i = 0; i < num_4x4_blocks_wide_txsize_lookup[tx_size]; ++i)
ta[i] = !(p->eobs[block] == 0);
for (i = 0; i < num_4x4_blocks_high_txsize_lookup[tx_size]; ++i)
tl[i] = !(p->eobs[block] == 0);
} else {
int bsl = b_width_log2_lookup[bsize];
int step = num_4x4_blocks_txsize_lookup[tx_size - 1];
int i;
assert(bsl > 0);
--bsl;
for (i = 0; i < 4; ++i) {
int offsetr = (i >> 1) << bsl;
int offsetc = (i & 0x01) << bsl;
tx_block_rd(cpi, x, blk_row + offsetr, blk_col + offsetc, plane,
block + i * step, tx_size - 1, plane_bsize,
above_ctx, left_ctx, rate, dist, bsse, skip);
}
}
}
// Return value 0: early termination triggered, no valid rd cost available;
// 1: rd cost values are valid.
static int inter_block_uvrd(const VP10_COMP *cpi, MACROBLOCK *x,
int *rate, int64_t *distortion, int *skippable,
int64_t *sse, BLOCK_SIZE bsize,
int64_t ref_best_rd) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
int plane;
int is_cost_valid = 1;
int64_t this_rd;
if (ref_best_rd < 0)
is_cost_valid = 0;
if (is_inter_block(mbmi) && is_cost_valid) {
int plane;
for (plane = 1; plane < MAX_MB_PLANE; ++plane)
vp10_subtract_plane(x, bsize, plane);
}
*rate = 0;
*distortion = 0;
*sse = 0;
*skippable = 1;
for (plane = 1; plane < MAX_MB_PLANE; ++plane) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
const int mi_width = num_4x4_blocks_wide_lookup[plane_bsize];
const int mi_height = num_4x4_blocks_high_lookup[plane_bsize];
BLOCK_SIZE txb_size = txsize_to_bsize[max_txsize_lookup[plane_bsize]];
int bh = num_4x4_blocks_wide_lookup[txb_size];
int idx, idy;
int block = 0;
int step = 1 << (max_txsize_lookup[plane_bsize] * 2);
int pnrate = 0, pnskip = 1;
int64_t pndist = 0, pnsse = 0;
ENTROPY_CONTEXT ta[2 * MAX_MIB_SIZE];
ENTROPY_CONTEXT tl[2 * MAX_MIB_SIZE];
vp10_get_entropy_contexts(bsize, TX_4X4, pd, ta, tl);
for (idy = 0; idy < mi_height; idy += bh) {
for (idx = 0; idx < mi_width; idx += bh) {
tx_block_rd(cpi, x, idy, idx, plane, block,
max_txsize_lookup[plane_bsize], plane_bsize, ta, tl,
&pnrate, &pndist, &pnsse, &pnskip);
block += step;
}
}
if (pnrate == INT_MAX) {
is_cost_valid = 0;
break;
}
*rate += pnrate;
*distortion += pndist;
*sse += pnsse;
*skippable &= pnskip;
this_rd = VPXMIN(RDCOST(x->rdmult, x->rddiv, *rate, *distortion),
RDCOST(x->rdmult, x->rddiv, 0, *sse));
if (this_rd > ref_best_rd) {
is_cost_valid = 0;
break;
}
}
if (!is_cost_valid) {
// reset cost value
*rate = INT_MAX;
*distortion = INT64_MAX;
*sse = INT64_MAX;
*skippable = 0;
}
return is_cost_valid;
}
#endif // CONFIG_VAR_TX
// Return value 0: early termination triggered, no valid rd cost available;
// 1: rd cost values are valid.
static int super_block_uvrd(const VP10_COMP *cpi, MACROBLOCK *x,
int *rate, int64_t *distortion, int *skippable,
int64_t *sse, BLOCK_SIZE bsize,
int64_t ref_best_rd) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
const TX_SIZE uv_tx_size = get_uv_tx_size(mbmi, &xd->plane[1]);
int plane;
int pnrate = 0, pnskip = 1;
int64_t pndist = 0, pnsse = 0;
int is_cost_valid = 1;
if (ref_best_rd < 0)
is_cost_valid = 0;
if (is_inter_block(mbmi) && is_cost_valid) {
int plane;
for (plane = 1; plane < MAX_MB_PLANE; ++plane)
vp10_subtract_plane(x, bsize, plane);
}
*rate = 0;
*distortion = 0;
*sse = 0;
*skippable = 1;
for (plane = 1; plane < MAX_MB_PLANE; ++plane) {
txfm_rd_in_plane(x,
cpi,
&pnrate, &pndist, &pnskip, &pnsse,
ref_best_rd, plane, bsize, uv_tx_size,
cpi->sf.use_fast_coef_costing);
if (pnrate == INT_MAX) {
is_cost_valid = 0;
break;
}
*rate += pnrate;
*distortion += pndist;
*sse += pnsse;
*skippable &= pnskip;
if (RDCOST(x->rdmult, x->rddiv, *rate, *distortion) > ref_best_rd &&
RDCOST(x->rdmult, x->rddiv, 0, *sse) > ref_best_rd) {
is_cost_valid = 0;
break;
}
}
if (!is_cost_valid) {
// reset cost value
*rate = INT_MAX;
*distortion = INT64_MAX;
*sse = INT64_MAX;
*skippable = 0;
}
return is_cost_valid;
}
static void rd_pick_palette_intra_sbuv(VP10_COMP *cpi, MACROBLOCK *x,
int dc_mode_cost,
PALETTE_MODE_INFO *palette_mode_info,
uint8_t *best_palette_color_map,
PREDICTION_MODE *mode_selected,
int64_t *best_rd, int *rate,
int *rate_tokenonly,
int64_t *distortion, int *skippable) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
const BLOCK_SIZE bsize = mbmi->sb_type;
const int rows = (4 * num_4x4_blocks_high_lookup[bsize]) >>
(xd->plane[1].subsampling_y);
const int cols = (4 * num_4x4_blocks_wide_lookup[bsize]) >>
(xd->plane[1].subsampling_x);
int this_rate, this_rate_tokenonly, s;
int64_t this_distortion, this_rd;
int colors_u, colors_v, colors;
const int src_stride = x->plane[1].src.stride;
const uint8_t *const src_u = x->plane[1].src.buf;
const uint8_t *const src_v = x->plane[2].src.buf;
if (rows * cols > PALETTE_MAX_BLOCK_SIZE)
return;
#if CONFIG_EXT_INTRA
mbmi->ext_intra_mode_info.use_ext_intra_mode[1] = 0;
#endif // CONFIG_EXT_INTRA
#if CONFIG_VP9_HIGHBITDEPTH
if (cpi->common.use_highbitdepth) {
colors_u = vp10_count_colors_highbd(src_u, src_stride, rows, cols,
cpi->common.bit_depth);
colors_v = vp10_count_colors_highbd(src_v, src_stride, rows, cols,
cpi->common.bit_depth);
} else {
#endif // CONFIG_VP9_HIGHBITDEPTH
colors_u = vp10_count_colors(src_u, src_stride, rows, cols);
colors_v = vp10_count_colors(src_v, src_stride, rows, cols);
#if CONFIG_VP9_HIGHBITDEPTH
}
#endif // CONFIG_VP9_HIGHBITDEPTH
colors = colors_u > colors_v ? colors_u : colors_v;
if (colors > 1 && colors <= 64) {
int r, c, n, i, j;
const int max_itr = 50;
int color_ctx, color_idx = 0;
int color_order[PALETTE_MAX_SIZE];
int64_t this_sse;
float lb_u, ub_u, val_u;
float lb_v, ub_v, val_v;
float *const data = x->palette_buffer->kmeans_data_buf;
uint8_t *const indices = x->palette_buffer->kmeans_indices_buf;
uint8_t *const pre_indices = x->palette_buffer->kmeans_pre_indices_buf;
float centroids[2 * PALETTE_MAX_SIZE];
uint8_t *const color_map = xd->plane[1].color_index_map;
PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
#if CONFIG_VP9_HIGHBITDEPTH
uint16_t *src_u16 = CONVERT_TO_SHORTPTR(src_u);
uint16_t *src_v16 = CONVERT_TO_SHORTPTR(src_v);
if (cpi->common.use_highbitdepth) {
lb_u = src_u16[0];
ub_u = src_u16[0];
lb_v = src_v16[0];
ub_v = src_v16[0];
} else {
#endif // CONFIG_VP9_HIGHBITDEPTH
lb_u = src_u[0];
ub_u = src_u[0];
lb_v = src_v[0];
ub_v = src_v[0];
#if CONFIG_VP9_HIGHBITDEPTH
}
#endif // CONFIG_VP9_HIGHBITDEPTH
mbmi->uv_mode = DC_PRED;
#if CONFIG_EXT_INTRA
mbmi->ext_intra_mode_info.use_ext_intra_mode[1] = 0;
#endif // CONFIG_EXT_INTRA
for (r = 0; r < rows; ++r) {
for (c = 0; c < cols; ++c) {
#if CONFIG_VP9_HIGHBITDEPTH
if (cpi->common.use_highbitdepth) {
val_u = src_u16[r * src_stride + c];
val_v = src_v16[r * src_stride + c];
data[(r * cols + c) * 2 ] = val_u;
data[(r * cols + c) * 2 + 1] = val_v;
} else {
#endif // CONFIG_VP9_HIGHBITDEPTH
val_u = src_u[r * src_stride + c];
val_v = src_v[r * src_stride + c];
data[(r * cols + c) * 2 ] = val_u;
data[(r * cols + c) * 2 + 1] = val_v;
#if CONFIG_VP9_HIGHBITDEPTH
}
#endif // CONFIG_VP9_HIGHBITDEPTH
if (val_u < lb_u)
lb_u = val_u;
else if (val_u > ub_u)
ub_u = val_u;
if (val_v < lb_v)
lb_v = val_v;
else if (val_v > ub_v)
ub_v = val_v;
}
}
for (n = colors > PALETTE_MAX_SIZE ? PALETTE_MAX_SIZE : colors;
n >= 2; --n) {
for (i = 0; i < n; ++i) {
centroids[i * 2] = lb_u + (2 * i + 1) * (ub_u - lb_u) / n / 2;
centroids[i * 2 + 1] =
lb_v + (2 * i + 1) * (ub_v - lb_v) / n / 2;;
}
r = vp10_k_means(data, centroids, indices, pre_indices, rows * cols, n,
2, max_itr);
pmi->palette_size[1] = n;
for (i = 1; i < 3; ++i) {
for (j = 0; j < n; ++j) {
#if CONFIG_VP9_HIGHBITDEPTH
if (cpi->common.use_highbitdepth)
pmi->palette_colors[i * PALETTE_MAX_SIZE + j] =
clip_pixel_highbd(roundf(centroids[j * 2 + i - 1]),
cpi->common.bit_depth);
else
#endif // CONFIG_VP9_HIGHBITDEPTH
pmi->palette_colors[i * PALETTE_MAX_SIZE + j] =
clip_pixel(roundf(centroids[j * 2 + i - 1]));
}
}
for (r = 0; r < rows; ++r)
for (c = 0; c < cols; ++c)
color_map[r * cols + c] = indices[r * cols + c];
super_block_uvrd(cpi, x, &this_rate_tokenonly,
&this_distortion, &s, &this_sse, bsize, *best_rd);
if (this_rate_tokenonly == INT_MAX)
continue;
this_rate = this_rate_tokenonly + dc_mode_cost +
2 * cpi->common.bit_depth * n * vp10_cost_bit(128, 0) +
cpi->palette_uv_size_cost[bsize - BLOCK_8X8][n - 2] +
write_uniform_cost(n, color_map[0]) +
vp10_cost_bit(vp10_default_palette_uv_mode_prob
[pmi->palette_size[0] > 0], 1);
for (i = 0; i < rows; ++i) {
for (j = (i == 0 ? 1 : 0); j < cols; ++j) {
color_ctx = vp10_get_palette_color_context(color_map, cols, i, j, n,
color_order);
for (r = 0; r < n; ++r)
if (color_map[i * cols + j] == color_order[r]) {
color_idx = r;
break;
}
assert(color_idx >= 0 && color_idx < n);
this_rate +=
cpi->palette_uv_color_cost[n - 2][color_ctx][color_idx];
}
}
this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion);
if (this_rd < *best_rd) {
*best_rd = this_rd;
*palette_mode_info = *pmi;
memcpy(best_palette_color_map, xd->plane[1].color_index_map,
rows * cols * sizeof(best_palette_color_map[0]));
*mode_selected = DC_PRED;
*rate = this_rate;
*distortion = this_distortion;
*rate_tokenonly = this_rate_tokenonly;
*skippable = s;
}
}
}
}
#if CONFIG_EXT_INTRA
// Return 1 if an ext intra mode is selected; return 0 otherwise.
static int rd_pick_ext_intra_sbuv(VP10_COMP *cpi, MACROBLOCK *x,
int *rate, int *rate_tokenonly,
int64_t *distortion, int *skippable,
BLOCK_SIZE bsize, int64_t *best_rd) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
int ext_intra_selected_flag = 0;
int this_rate_tokenonly, this_rate, s;
int64_t this_distortion, this_sse, this_rd;
EXT_INTRA_MODE mode;
EXT_INTRA_MODE_INFO ext_intra_mode_info;
vp10_zero(ext_intra_mode_info);
mbmi->ext_intra_mode_info.use_ext_intra_mode[1] = 1;
mbmi->uv_mode = DC_PRED;
mbmi->palette_mode_info.palette_size[1] = 0;
for (mode = 0; mode < FILTER_INTRA_MODES; ++mode) {
mbmi->ext_intra_mode_info.ext_intra_mode[1] = mode;
if (!super_block_uvrd(cpi, x, &this_rate_tokenonly,
&this_distortion, &s, &this_sse, bsize, *best_rd))
continue;
this_rate = this_rate_tokenonly +
vp10_cost_bit(cpi->common.fc->ext_intra_probs[1], 1) +
cpi->intra_uv_mode_cost[mbmi->mode][mbmi->uv_mode] +
write_uniform_cost(FILTER_INTRA_MODES, mode);
this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion);
if (this_rd < *best_rd) {
*best_rd = this_rd;
*rate = this_rate;
*rate_tokenonly = this_rate_tokenonly;
*distortion = this_distortion;
*skippable = s;
ext_intra_mode_info = mbmi->ext_intra_mode_info;
ext_intra_selected_flag = 1;
}
}
if (ext_intra_selected_flag) {
mbmi->uv_mode = DC_PRED;
mbmi->ext_intra_mode_info.use_ext_intra_mode[1] =
ext_intra_mode_info.use_ext_intra_mode[1];
mbmi->ext_intra_mode_info.ext_intra_mode[1] =
ext_intra_mode_info.ext_intra_mode[1];
return 1;
} else {
return 0;
}
}
static void pick_intra_angle_routine_sbuv(VP10_COMP *cpi, MACROBLOCK *x,
int *rate, int *rate_tokenonly,
int64_t *distortion, int *skippable,
int *best_angle_delta,
BLOCK_SIZE bsize, int rate_overhead,
int64_t *best_rd) {
MB_MODE_INFO *mbmi = &x->e_mbd.mi[0]->mbmi;
int this_rate_tokenonly, this_rate, s;
int64_t this_distortion, this_sse, this_rd;
if (!super_block_uvrd(cpi, x, &this_rate_tokenonly,
&this_distortion, &s, &this_sse, bsize, *best_rd))
return;
this_rate = this_rate_tokenonly + rate_overhead;
this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion);
if (this_rd < *best_rd) {
*best_rd = this_rd;
*best_angle_delta = mbmi->angle_delta[1];
*rate = this_rate;
*rate_tokenonly = this_rate_tokenonly;
*distortion = this_distortion;
*skippable = s;
}
}
static int rd_pick_intra_angle_sbuv(VP10_COMP *cpi, MACROBLOCK *x,
int *rate, int *rate_tokenonly,
int64_t *distortion, int *skippable,
BLOCK_SIZE bsize, int rate_overhead,
int64_t best_rd) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
int this_rate_tokenonly, this_rate, s;
int64_t this_distortion, this_sse, this_rd;
int angle_delta, best_angle_delta = 0;
const double rd_adjust = 1.2;
*rate_tokenonly = INT_MAX;
if (ANGLE_FAST_SEARCH) {
int deltas_level1[3] = {0, -2, 2};
int deltas_level2[3][2] = {
{-1, 1}, {-3, -1}, {1, 3},
};
const int level1 = 3, level2 = 2;
int i, j, best_i = -1;
for (i = 0; i < level1; ++i) {
int64_t tmp_best_rd;
mbmi->angle_delta[1] = deltas_level1[i];
tmp_best_rd = (i == 0 && best_rd < INT64_MAX) ?
(int64_t)(best_rd * rd_adjust) : best_rd;
if (!super_block_uvrd(cpi, x, &this_rate_tokenonly, &this_distortion,
&s, &this_sse, bsize, tmp_best_rd)) {
if (i == 0)
break;
else
continue;
}
this_rate = this_rate_tokenonly + rate_overhead;
this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion);
if (i == 0 && best_rd < INT64_MAX && this_rd > best_rd * rd_adjust)
break;
if (this_rd < best_rd) {
best_i = i;
best_rd = this_rd;
best_angle_delta = mbmi->angle_delta[1];
*rate = this_rate;
*rate_tokenonly = this_rate_tokenonly;
*distortion = this_distortion;
*skippable = s;
}
}
if (best_i >= 0) {
for (j = 0; j < level2; ++j) {
mbmi->angle_delta[1] = deltas_level2[best_i][j];
pick_intra_angle_routine_sbuv(cpi, x, rate, rate_tokenonly,
distortion, skippable,
&best_angle_delta, bsize,
rate_overhead, &best_rd);
}
}
} else {
for (angle_delta = -MAX_ANGLE_DELTAS; angle_delta <= MAX_ANGLE_DELTAS;
++angle_delta) {
mbmi->angle_delta[1] = angle_delta;
pick_intra_angle_routine_sbuv(cpi, x, rate, rate_tokenonly,
distortion, skippable,
&best_angle_delta, bsize,
rate_overhead, &best_rd);
}
}
mbmi->angle_delta[1] = best_angle_delta;
return *rate_tokenonly != INT_MAX;
}
#endif // CONFIG_EXT_INTRA
static int64_t rd_pick_intra_sbuv_mode(VP10_COMP *cpi, MACROBLOCK *x,
int *rate, int *rate_tokenonly,
int64_t *distortion, int *skippable,
BLOCK_SIZE bsize, TX_SIZE max_tx_size) {
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
PREDICTION_MODE mode;
PREDICTION_MODE mode_selected = DC_PRED;
int64_t best_rd = INT64_MAX, this_rd;
int this_rate_tokenonly, this_rate, s;
int64_t this_distortion, this_sse;
const int rows = (4 * num_4x4_blocks_high_lookup[bsize]) >>
(xd->plane[1].subsampling_y);
const int cols = (4 * num_4x4_blocks_wide_lookup[bsize]) >>
(xd->plane[1].subsampling_x);
PALETTE_MODE_INFO palette_mode_info;
PALETTE_MODE_INFO *const pmi = &xd->mi[0]->mbmi.palette_mode_info;
uint8_t *best_palette_color_map = NULL;
#if CONFIG_EXT_INTRA
int is_directional_mode, rate_overhead, best_angle_delta = 0;
EXT_INTRA_MODE_INFO ext_intra_mode_info;
ext_intra_mode_info.use_ext_intra_mode[1] = 0;
mbmi->ext_intra_mode_info.use_ext_intra_mode[1] = 0;
#endif // CONFIG_EXT_INTRA
palette_mode_info.palette_size[1] = 0;
pmi->palette_size[1] = 0;
for (mode = DC_PRED; mode <= TM_PRED; ++mode) {
if (!(cpi->sf.intra_uv_mode_mask[max_tx_size] & (1 << mode)))
continue;
mbmi->uv_mode = mode;
#if CONFIG_EXT_INTRA
is_directional_mode = (mode != DC_PRED && mode != TM_PRED);
rate_overhead = cpi->intra_uv_mode_cost[mbmi->mode][mode] +
write_uniform_cost(2 * MAX_ANGLE_DELTAS + 1, 0);
mbmi->angle_delta[1] = 0;
if (mbmi->sb_type >= BLOCK_8X8 && is_directional_mode) {
if (!rd_pick_intra_angle_sbuv(cpi, x, &this_rate,
&this_rate_tokenonly, &this_distortion, &s,
bsize, rate_overhead, best_rd))
continue;
} else {
if (!super_block_uvrd(cpi, x, &this_rate_tokenonly,
&this_distortion, &s, &this_sse, bsize, best_rd))
continue;
}
this_rate = this_rate_tokenonly +
cpi->intra_uv_mode_cost[mbmi->mode][mode];
if (mbmi->sb_type >= BLOCK_8X8 && is_directional_mode)
this_rate += write_uniform_cost(2 * MAX_ANGLE_DELTAS + 1,
MAX_ANGLE_DELTAS +
mbmi->angle_delta[1]);
if (mode == DC_PRED)
this_rate += vp10_cost_bit(cpi->common.fc->ext_intra_probs[1], 0);
#else
if (!super_block_uvrd(cpi, x, &this_rate_tokenonly,
&this_distortion, &s, &this_sse, bsize, best_rd))
continue;
this_rate = this_rate_tokenonly +
cpi->intra_uv_mode_cost[mbmi->mode][mode];
#endif // CONFIG_EXT_INTRA
if (cpi->common.allow_screen_content_tools && mbmi->sb_type >= BLOCK_8X8 &&
mode == DC_PRED)
this_rate += vp10_cost_bit(vp10_default_palette_uv_mode_prob
[pmi->palette_size[0] > 0], 0);
this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion);
if (this_rd < best_rd) {
mode_selected = mode;
#if CONFIG_EXT_INTRA
best_angle_delta = mbmi->angle_delta[1];
#endif // CONFIG_EXT_INTRA
best_rd = this_rd;
*rate = this_rate;
*rate_tokenonly = this_rate_tokenonly;
*distortion = this_distortion;
*skippable = s;
}
}
if (cpi->common.allow_screen_content_tools && mbmi->sb_type >= BLOCK_8X8) {
best_palette_color_map = x->palette_buffer->best_palette_color_map;
rd_pick_palette_intra_sbuv(cpi, x,
cpi->intra_uv_mode_cost[mbmi->mode][DC_PRED],
&palette_mode_info, best_palette_color_map,
&mode_selected, &best_rd, rate, rate_tokenonly,
distortion, skippable);
}
#if CONFIG_EXT_INTRA
if (mbmi->sb_type >= BLOCK_8X8 && ALLOW_FILTER_INTRA_MODES) {
if (rd_pick_ext_intra_sbuv(cpi, x, rate, rate_tokenonly, distortion,
skippable, bsize, &best_rd)) {
mode_selected = mbmi->uv_mode;
ext_intra_mode_info = mbmi->ext_intra_mode_info;
}
}
mbmi->ext_intra_mode_info.use_ext_intra_mode[1] =
ext_intra_mode_info.use_ext_intra_mode[1];
if (ext_intra_mode_info.use_ext_intra_mode[1]) {
mbmi->ext_intra_mode_info.ext_intra_mode[1] =
ext_intra_mode_info.ext_intra_mode[1];
palette_mode_info.palette_size[1] = 0;
}
mbmi->angle_delta[1] = best_angle_delta;
#endif // CONFIG_EXT_INTRA
mbmi->uv_mode = mode_selected;
pmi->palette_size[1] = palette_mode_info.palette_size[1];
if (palette_mode_info.palette_size[1] > 0) {
memcpy(pmi->palette_colors + PALETTE_MAX_SIZE,
palette_mode_info.palette_colors + PALETTE_MAX_SIZE,
2 * PALETTE_MAX_SIZE * sizeof(palette_mode_info.palette_colors[0]));
memcpy(xd->plane[1].color_index_map, best_palette_color_map,
rows * cols * sizeof(best_palette_color_map[0]));
}
return best_rd;
}
static int64_t rd_sbuv_dcpred(const VP10_COMP *cpi, MACROBLOCK *x,
int *rate, int *rate_tokenonly,
int64_t *distortion, int *skippable,
BLOCK_SIZE bsize) {
int64_t unused;
x->e_mbd.mi[0]->mbmi.uv_mode = DC_PRED;
super_block_uvrd(cpi, x, rate_tokenonly, distortion,
skippable, &unused, bsize, INT64_MAX);
*rate = *rate_tokenonly +
cpi->intra_uv_mode_cost[x->e_mbd.mi[0]->mbmi.mode][DC_PRED];
return RDCOST(x->rdmult, x->rddiv, *rate, *distortion);
}
static void choose_intra_uv_mode(VP10_COMP *cpi, MACROBLOCK *const x,
PICK_MODE_CONTEXT *ctx,
BLOCK_SIZE bsize, TX_SIZE max_tx_size,
int *rate_uv, int *rate_uv_tokenonly,
int64_t *dist_uv, int *skip_uv,
PREDICTION_MODE *mode_uv) {
// Use an estimated rd for uv_intra based on DC_PRED if the
// appropriate speed flag is set.
if (cpi->sf.use_uv_intra_rd_estimate) {
rd_sbuv_dcpred(cpi, x, rate_uv, rate_uv_tokenonly, dist_uv,
skip_uv, bsize < BLOCK_8X8 ? BLOCK_8X8 : bsize);
// Else do a proper rd search for each possible transform size that may
// be considered in the main rd loop.
} else {
(void)ctx;
rd_pick_intra_sbuv_mode(cpi, x,
rate_uv, rate_uv_tokenonly, dist_uv, skip_uv,
bsize < BLOCK_8X8 ? BLOCK_8X8 : bsize, max_tx_size);
}
*mode_uv = x->e_mbd.mi[0]->mbmi.uv_mode;
}
static int cost_mv_ref(const VP10_COMP *cpi, PREDICTION_MODE mode,
#if CONFIG_REF_MV && CONFIG_EXT_INTER
int is_compound,
#endif // CONFIG_REF_MV && CONFIG_EXT_INTER
int16_t mode_context) {
#if CONFIG_REF_MV
int mode_cost = 0;
#if CONFIG_EXT_INTER
int16_t mode_ctx = is_compound ? mode_context :
(mode_context & NEWMV_CTX_MASK);
#else
int16_t mode_ctx = mode_context & NEWMV_CTX_MASK;
#endif // CONFIG_EXT_INTER
int16_t is_all_zero_mv = mode_context & (1 << ALL_ZERO_FLAG_OFFSET);
assert(is_inter_mode(mode));
#if CONFIG_EXT_INTER
if (is_compound) {
return cpi->inter_compound_mode_cost[mode_context]
[INTER_COMPOUND_OFFSET(mode)];
} else {
if (mode == NEWMV || mode == NEWFROMNEARMV) {
#else
if (mode == NEWMV) {
#endif // CONFIG_EXT_INTER
mode_cost = cpi->newmv_mode_cost[mode_ctx][0];
#if CONFIG_EXT_INTER
if (!is_compound)
mode_cost += cpi->new2mv_mode_cost[mode == NEWFROMNEARMV];
#endif // CONFIG_EXT_INTER
return mode_cost;
} else {
mode_cost = cpi->newmv_mode_cost[mode_ctx][1];
mode_ctx = (mode_context >> ZEROMV_OFFSET) & ZEROMV_CTX_MASK;
if (is_all_zero_mv)
return mode_cost;
if (mode == ZEROMV) {
mode_cost += cpi->zeromv_mode_cost[mode_ctx][0];
return mode_cost;
} else {
mode_cost += cpi->zeromv_mode_cost[mode_ctx][1];
mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK;
if (mode_context & (1 << SKIP_NEARESTMV_OFFSET))
mode_ctx = 6;
if (mode_context & (1 << SKIP_NEARMV_OFFSET))
mode_ctx = 7;
if (mode_context & (1 << SKIP_NEARESTMV_SUB8X8_OFFSET))
mode_ctx = 8;
mode_cost += cpi->refmv_mode_cost[mode_ctx][mode != NEARESTMV];
return mode_cost;
}
}
#if CONFIG_EXT_INTER
}
#endif // CONFIG_EXT_INTER
#else
assert(is_inter_mode(mode));
#if CONFIG_EXT_INTER
if (is_inter_compound_mode(mode)) {
return cpi->inter_compound_mode_cost[mode_context]
[INTER_COMPOUND_OFFSET(mode)];
} else {
#endif // CONFIG_EXT_INTER
return cpi->inter_mode_cost[mode_context][INTER_OFFSET(mode)];
#if CONFIG_EXT_INTER
}
#endif // CONFIG_EXT_INTER
#endif
}
static int set_and_cost_bmi_mvs(VP10_COMP *cpi, MACROBLOCK *x, MACROBLOCKD *xd,
int i,
PREDICTION_MODE mode, int_mv this_mv[2],
int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES],
int_mv seg_mvs[MAX_REF_FRAMES],
#if CONFIG_EXT_INTER
int_mv compound_seg_newmvs[2],
#endif // CONFIG_EXT_INTER
int_mv *best_ref_mv[2], const int *mvjcost,
int *mvcost[2]) {
MODE_INFO *const mic = xd->mi[0];
const MB_MODE_INFO *const mbmi = &mic->mbmi;
const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
int thismvcost = 0;
int idx, idy;
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[mbmi->sb_type];
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[mbmi->sb_type];
const int is_compound = has_second_ref(mbmi);
int mode_ctx = mbmi_ext->mode_context[mbmi->ref_frame[0]];
switch (mode) {
case NEWMV:
#if CONFIG_EXT_INTER
case NEWFROMNEARMV:
#endif // CONFIG_EXT_INTER
this_mv[0].as_int = seg_mvs[mbmi->ref_frame[0]].as_int;
#if CONFIG_EXT_INTER
if (!cpi->common.allow_high_precision_mv ||
!vp10_use_mv_hp(&best_ref_mv[0]->as_mv))
lower_mv_precision(&this_mv[0].as_mv, 0);
#endif // CONFIG_EXT_INTER
#if CONFIG_REF_MV
for (idx = 0; idx < 1 + is_compound; ++idx) {
this_mv[idx] = seg_mvs[mbmi->ref_frame[idx]];
vp10_set_mvcost(x, mbmi->ref_frame[idx]);
thismvcost += vp10_mv_bit_cost(&this_mv[idx].as_mv,
&best_ref_mv[idx]->as_mv,
x->nmvjointcost, x->mvcost,
MV_COST_WEIGHT_SUB);
}
(void)mvjcost;
(void)mvcost;
#else
thismvcost += vp10_mv_bit_cost(&this_mv[0].as_mv, &best_ref_mv[0]->as_mv,
mvjcost, mvcost, MV_COST_WEIGHT_SUB);
#if !CONFIG_EXT_INTER
if (is_compound) {
this_mv[1].as_int = seg_mvs[mbmi->ref_frame[1]].as_int;
thismvcost += vp10_mv_bit_cost(&this_mv[1].as_mv,
&best_ref_mv[1]->as_mv,
mvjcost, mvcost, MV_COST_WEIGHT_SUB);
}
#endif // !CONFIG_EXT_INTER
#endif
break;
case NEARMV:
case NEARESTMV:
this_mv[0].as_int = frame_mv[mode][mbmi->ref_frame[0]].as_int;
if (is_compound)
this_mv[1].as_int = frame_mv[mode][mbmi->ref_frame[1]].as_int;
break;
case ZEROMV:
this_mv[0].as_int = 0;
if (is_compound)
this_mv[1].as_int = 0;
break;
#if CONFIG_EXT_INTER
case NEW_NEWMV:
if (compound_seg_newmvs[0].as_int == INVALID_MV ||
compound_seg_newmvs[1].as_int == INVALID_MV) {
this_mv[0].as_int = seg_mvs[mbmi->ref_frame[0]].as_int;
this_mv[1].as_int = seg_mvs[mbmi->ref_frame[1]].as_int;
} else {
this_mv[0].as_int = compound_seg_newmvs[0].as_int;
this_mv[1].as_int = compound_seg_newmvs[1].as_int;
}
if (!cpi->common.allow_high_precision_mv ||
!vp10_use_mv_hp(&best_ref_mv[0]->as_mv))
lower_mv_precision(&this_mv[0].as_mv, 0);
if (!cpi->common.allow_high_precision_mv ||
!vp10_use_mv_hp(&best_ref_mv[1]->as_mv))
lower_mv_precision(&this_mv[1].as_mv, 0);
thismvcost += vp10_mv_bit_cost(&this_mv[0].as_mv,
&best_ref_mv[0]->as_mv,
mvjcost, mvcost, MV_COST_WEIGHT_SUB);
thismvcost += vp10_mv_bit_cost(&this_mv[1].as_mv,
&best_ref_mv[1]->as_mv,
mvjcost, mvcost, MV_COST_WEIGHT_SUB);
break;
case NEW_NEARMV:
case NEW_NEARESTMV:
this_mv[0].as_int = seg_mvs[mbmi->ref_frame[0]].as_int;
if (!cpi->common.allow_high_precision_mv ||
!vp10_use_mv_hp(&best_ref_mv[0]->as_mv))
lower_mv_precision(&this_mv[0].as_mv, 0);
thismvcost += vp10_mv_bit_cost(&this_mv[0].as_mv, &best_ref_mv[0]->as_mv,
mvjcost, mvcost, MV_COST_WEIGHT_SUB);
this_mv[1].as_int = frame_mv[mode][mbmi->ref_frame[1]].as_int;
break;
case NEAR_NEWMV:
case NEAREST_NEWMV:
this_mv[0].as_int = frame_mv[mode][mbmi->ref_frame[0]].as_int;
this_mv[1].as_int = seg_mvs[mbmi->ref_frame[1]].as_int;
if (!cpi->common.allow_high_precision_mv ||
!vp10_use_mv_hp(&best_ref_mv[1]->as_mv))
lower_mv_precision(&this_mv[1].as_mv, 0);
thismvcost += vp10_mv_bit_cost(&this_mv[1].as_mv, &best_ref_mv[1]->as_mv,
mvjcost, mvcost, MV_COST_WEIGHT_SUB);
break;
case NEAREST_NEARMV:
case NEAR_NEARESTMV:
case NEAREST_NEARESTMV:
case NEAR_NEARMV:
this_mv[0].as_int = frame_mv[mode][mbmi->ref_frame[0]].as_int;
this_mv[1].as_int = frame_mv[mode][mbmi->ref_frame[1]].as_int;
break;
case ZERO_ZEROMV:
this_mv[0].as_int = 0;
this_mv[1].as_int = 0;
break;
#endif // CONFIG_EXT_INTER
default:
break;
}
mic->bmi[i].as_mv[0].as_int = this_mv[0].as_int;
if (is_compound)
mic->bmi[i].as_mv[1].as_int = this_mv[1].as_int;
mic->bmi[i].as_mode = mode;
#if CONFIG_REF_MV
if (mode == NEWMV) {
mic->bmi[i].pred_mv_s8[0].as_int = best_ref_mv[0]->as_int;
if (is_compound)
mic->bmi[i].pred_mv_s8[1].as_int = best_ref_mv[1]->as_int;
} else {
mic->bmi[i].pred_mv_s8[0].as_int = this_mv[0].as_int;
if (is_compound)
mic->bmi[i].pred_mv_s8[1].as_int = this_mv[1].as_int;
}
#endif
for (idy = 0; idy < num_4x4_blocks_high; ++idy)
for (idx = 0; idx < num_4x4_blocks_wide; ++idx)
memmove(&mic->bmi[i + idy * 2 + idx], &mic->bmi[i], sizeof(mic->bmi[i]));
#if CONFIG_REF_MV
#if CONFIG_EXT_INTER
if (is_compound)
mode_ctx = mbmi_ext->compound_mode_context[mbmi->ref_frame[0]];
else
#endif // CONFIG_EXT_INTER
mode_ctx = vp10_mode_context_analyzer(mbmi_ext->mode_context,
mbmi->ref_frame, mbmi->sb_type, i);
#endif
#if CONFIG_REF_MV && CONFIG_EXT_INTER
return cost_mv_ref(cpi, mode, is_compound, mode_ctx) + thismvcost;
#else
return cost_mv_ref(cpi, mode, mode_ctx) + thismvcost;
#endif // CONFIG_REF_MV && CONFIG_EXT_INTER
}
static int64_t encode_inter_mb_segment(VP10_COMP *cpi,
MACROBLOCK *x,
int64_t best_yrd,
int i,
int *labelyrate,
int64_t *distortion, int64_t *sse,
ENTROPY_CONTEXT *ta,
ENTROPY_CONTEXT *tl,
int ir, int ic,
int mi_row, int mi_col) {
int k;
MACROBLOCKD *xd = &x->e_mbd;
struct macroblockd_plane *const pd = &xd->plane[0];
struct macroblock_plane *const p = &x->plane[0];
MODE_INFO *const mi = xd->mi[0];
const BLOCK_SIZE plane_bsize = get_plane_block_size(mi->mbmi.sb_type, pd);
const int width = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
const int height = 4 * num_4x4_blocks_high_lookup[plane_bsize];
int idx, idy;
const uint8_t *const src =
&p->src.buf[vp10_raster_block_offset(BLOCK_8X8, i, p->src.stride)];
uint8_t *const dst = &pd->dst.buf[vp10_raster_block_offset(BLOCK_8X8, i,
pd->dst.stride)];
int64_t thisdistortion = 0, thissse = 0;
int thisrate = 0;
TX_SIZE tx_size = mi->mbmi.tx_size;
TX_TYPE tx_type = get_tx_type(PLANE_TYPE_Y, xd, i, tx_size);
const scan_order *so = get_scan(tx_size, tx_type, 1);
const int num_4x4_w = num_4x4_blocks_wide_txsize_lookup[tx_size];
const int num_4x4_h = num_4x4_blocks_high_txsize_lookup[tx_size];
#if CONFIG_EXT_TX && CONFIG_RECT_TX && !CONFIG_VAR_TX
assert(tx_size == max_txsize_rect_lookup[mi->mbmi.sb_type]);
#else
assert(tx_size == TX_4X4);
#endif // CONFIG_EXT_TX && CONFIG_RECT_TX && !CONFIG_VAR_TX
assert(tx_type == DCT_DCT);
vp10_build_inter_predictor_sub8x8(xd, 0, i, ir, ic, mi_row, mi_col);
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
vpx_highbd_subtract_block(
height, width, vp10_raster_block_offset_int16(BLOCK_8X8, i, p->src_diff),
8, src, p->src.stride, dst, pd->dst.stride, xd->bd);
} else {
vpx_subtract_block(
height, width, vp10_raster_block_offset_int16(BLOCK_8X8, i, p->src_diff),
8, src, p->src.stride, dst, pd->dst.stride);
}
#else
vpx_subtract_block(height, width,
vp10_raster_block_offset_int16(BLOCK_8X8, i, p->src_diff),
8, src, p->src.stride, dst, pd->dst.stride);
#endif // CONFIG_VP9_HIGHBITDEPTH
k = i;
for (idy = 0; idy < height / 4; idy += num_4x4_h) {
for (idx = 0; idx < width / 4; idx += num_4x4_w) {
int64_t dist, ssz, rd, rd1, rd2, block;
int coeff_ctx;
k += (idy * 2 + idx);
if (tx_size == TX_4X4)
block = k;
else
block = (i ? 2 : 0);
coeff_ctx = combine_entropy_contexts(*(ta + (k & 1)),
*(tl + (k >> 1)));
#if CONFIG_NEW_QUANT
vp10_xform_quant_fp_nuq(x, 0, block, idy + (i >> 1), idx + (i & 0x01),
BLOCK_8X8, tx_size, coeff_ctx);
#else
vp10_xform_quant(x, 0, block, idy + (i >> 1), idx + (i & 0x01), BLOCK_8X8,
tx_size, VP10_XFORM_QUANT_FP);
#endif // CONFIG_NEW_QUANT
if (xd->lossless[xd->mi[0]->mbmi.segment_id] == 0)
vp10_optimize_b(x, 0, block, tx_size, coeff_ctx);
dist_block(cpi, x, 0, block, idy + (i >> 1), idx + (i & 0x1), tx_size,
&dist, &ssz);
thisdistortion += dist;
thissse += ssz;
#if CONFIG_VAR_TX
thisrate += cost_coeffs(x, 0, block, coeff_ctx,
tx_size,
so->scan, so->neighbors,
cpi->sf.use_fast_coef_costing);
*(ta + (k & 1)) = !(p->eobs[block] == 0);
*(tl + (k >> 1)) = !(p->eobs[block] == 0);
#else
thisrate += cost_coeffs(x, 0, block, ta + (k & 1), tl + (k >> 1),
tx_size,
so->scan, so->neighbors,
cpi->sf.use_fast_coef_costing);
#if CONFIG_EXT_TX
if (tx_size == TX_8X4) {
*(ta + (k & 1) + 1) = *(ta + (k & 1));
}
if (tx_size == TX_4X8) {
*(tl + (k >> 1) + 1) = *(tl + (k >> 1));
}
#endif // CONFIG_EXT_TX
#endif // CONFIG_VAR_TX
rd1 = RDCOST(x->rdmult, x->rddiv, thisrate, thisdistortion);
rd2 = RDCOST(x->rdmult, x->rddiv, 0, thissse);
rd = VPXMIN(rd1, rd2);
if (rd >= best_yrd)
return INT64_MAX;
}
}
*distortion = thisdistortion;
*labelyrate = thisrate;
*sse = thissse;
return RDCOST(x->rdmult, x->rddiv, *labelyrate, *distortion);
}
typedef struct {
int eobs;
int brate;
int byrate;
int64_t bdist;
int64_t bsse;
int64_t brdcost;
int_mv mvs[2];
#if CONFIG_REF_MV
int_mv pred_mv[2];
#endif
#if CONFIG_EXT_INTER
int_mv ref_mv[2];
#endif // CONFIG_EXT_INTER
ENTROPY_CONTEXT ta[2];
ENTROPY_CONTEXT tl[2];
} SEG_RDSTAT;
typedef struct {
int_mv *ref_mv[2];
int_mv mvp;
int64_t segment_rd;
int r;
int64_t d;
int64_t sse;
int segment_yrate;
PREDICTION_MODE modes[4];
#if CONFIG_EXT_INTER
SEG_RDSTAT rdstat[4][INTER_MODES + INTER_COMPOUND_MODES];
#else
SEG_RDSTAT rdstat[4][INTER_MODES];
#endif // CONFIG_EXT_INTER
int mvthresh;
} BEST_SEG_INFO;
static INLINE int mv_check_bounds(const MACROBLOCK *x, const MV *mv) {
return (mv->row >> 3) < x->mv_row_min ||
(mv->row >> 3) > x->mv_row_max ||
(mv->col >> 3) < x->mv_col_min ||
(mv->col >> 3) > x->mv_col_max;
}
static INLINE void mi_buf_shift(MACROBLOCK *x, int i) {
MB_MODE_INFO *const mbmi = &x->e_mbd.mi[0]->mbmi;
struct macroblock_plane *const p = &x->plane[0];
struct macroblockd_plane *const pd = &x->e_mbd.plane[0];
p->src.buf = &p->src.buf[vp10_raster_block_offset(BLOCK_8X8, i,
p->src.stride)];
assert(((intptr_t)pd->pre[0].buf & 0x7) == 0);
pd->pre[0].buf = &pd->pre[0].buf[vp10_raster_block_offset(BLOCK_8X8, i,
pd->pre[0].stride)];
if (has_second_ref(mbmi))
pd->pre[1].buf = &pd->pre[1].buf[vp10_raster_block_offset(BLOCK_8X8, i,
pd->pre[1].stride)];
}
static INLINE void mi_buf_restore(MACROBLOCK *x, struct buf_2d orig_src,
struct buf_2d orig_pre[2]) {
MB_MODE_INFO *mbmi = &x->e_mbd.mi[0]->mbmi;
x->plane[0].src = orig_src;
x->e_mbd.plane[0].pre[0] = orig_pre[0];
if (has_second_ref(mbmi))
x->e_mbd.plane[0].pre[1] = orig_pre[1];
}
// Check if NEARESTMV/NEARMV/ZEROMV is the cheapest way encode zero motion.
// TODO(aconverse): Find out if this is still productive then clean up or remove
static int check_best_zero_mv(
const VP10_COMP *cpi, const int16_t mode_context[MAX_REF_FRAMES],
#if CONFIG_REF_MV && CONFIG_EXT_INTER
const int16_t compound_mode_context[MAX_REF_FRAMES],
#endif // CONFIG_REF_MV && CONFIG_EXT_INTER
int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES], int this_mode,
const MV_REFERENCE_FRAME ref_frames[2],
const BLOCK_SIZE bsize, int block) {
#if !CONFIG_EXT_INTER
assert(ref_frames[1] != INTRA_FRAME); // Just sanity check
#endif
if ((this_mode == NEARMV || this_mode == NEARESTMV || this_mode == ZEROMV) &&
frame_mv[this_mode][ref_frames[0]].as_int == 0 &&
(ref_frames[1] <= INTRA_FRAME ||
frame_mv[this_mode][ref_frames[1]].as_int == 0)) {
#if CONFIG_REF_MV
int16_t rfc = vp10_mode_context_analyzer(mode_context,
ref_frames, bsize, block);
#else
int16_t rfc = mode_context[ref_frames[0]];
#endif
#if CONFIG_REF_MV && CONFIG_EXT_INTER
int c1 = cost_mv_ref(cpi, NEARMV, ref_frames[1] > INTRA_FRAME, rfc);
int c2 = cost_mv_ref(cpi, NEARESTMV, ref_frames[1] > INTRA_FRAME, rfc);
int c3 = cost_mv_ref(cpi, ZEROMV, ref_frames[1] > INTRA_FRAME, rfc);
#else
int c1 = cost_mv_ref(cpi, NEARMV, rfc);
int c2 = cost_mv_ref(cpi, NEARESTMV, rfc);
int c3 = cost_mv_ref(cpi, ZEROMV, rfc);
#endif // CONFIG_REF_MV && CONFIG_EXT_INTER
#if !CONFIG_REF_MV
(void)bsize;
(void)block;
#endif
if (this_mode == NEARMV) {
if (c1 > c3) return 0;
} else if (this_mode == NEARESTMV) {
if (c2 > c3) return 0;
} else {
assert(this_mode == ZEROMV);
if (ref_frames[1] <= INTRA_FRAME) {
if ((c3 >= c2 && frame_mv[NEARESTMV][ref_frames[0]].as_int == 0) ||
(c3 >= c1 && frame_mv[NEARMV][ref_frames[0]].as_int == 0))
return 0;
} else {
if ((c3 >= c2 && frame_mv[NEARESTMV][ref_frames[0]].as_int == 0 &&
frame_mv[NEARESTMV][ref_frames[1]].as_int == 0) ||
(c3 >= c1 && frame_mv[NEARMV][ref_frames[0]].as_int == 0 &&
frame_mv[NEARMV][ref_frames[1]].as_int == 0))
return 0;
}
}
}
#if CONFIG_EXT_INTER
else if ((this_mode == NEAREST_NEARESTMV || this_mode == NEAREST_NEARMV ||
this_mode == NEAR_NEARESTMV || this_mode == NEAR_NEARMV ||
this_mode == ZERO_ZEROMV) &&
frame_mv[this_mode][ref_frames[0]].as_int == 0 &&
frame_mv[this_mode][ref_frames[1]].as_int == 0) {
#if CONFIG_REF_MV
int16_t rfc = compound_mode_context[ref_frames[0]];
int c1 = cost_mv_ref(cpi, NEAREST_NEARMV, 1, rfc);
int c2 = cost_mv_ref(cpi, NEAREST_NEARESTMV, 1, rfc);
int c3 = cost_mv_ref(cpi, ZERO_ZEROMV, 1, rfc);
int c4 = cost_mv_ref(cpi, NEAR_NEARESTMV, 1, rfc);
int c5 = cost_mv_ref(cpi, NEAR_NEARMV, 1, rfc);
#else
int16_t rfc = mode_context[ref_frames[0]];
int c1 = cost_mv_ref(cpi, NEAREST_NEARMV, rfc);
int c2 = cost_mv_ref(cpi, NEAREST_NEARESTMV, rfc);
int c3 = cost_mv_ref(cpi, ZERO_ZEROMV, rfc);
int c4 = cost_mv_ref(cpi, NEAR_NEARESTMV, rfc);
int c5 = cost_mv_ref(cpi, NEAR_NEARMV, rfc);
#endif
if (this_mode == NEAREST_NEARMV) {
if (c1 > c3) return 0;
} else if (this_mode == NEAREST_NEARESTMV) {
if (c2 > c3) return 0;
} else if (this_mode == NEAR_NEARESTMV) {
if (c4 > c3) return 0;
} else if (this_mode == NEAR_NEARMV) {
if (c5 > c3) return 0;
} else {
assert(this_mode == ZERO_ZEROMV);
if ((c3 >= c2 &&
frame_mv[NEAREST_NEARESTMV][ref_frames[0]].as_int == 0 &&
frame_mv[NEAREST_NEARESTMV][ref_frames[1]].as_int == 0) ||
(c3 >= c1 &&
frame_mv[NEAREST_NEARMV][ref_frames[0]].as_int == 0 &&
frame_mv[NEAREST_NEARMV][ref_frames[1]].as_int == 0) ||
(c3 >= c5 &&
frame_mv[NEAR_NEARMV][ref_frames[0]].as_int == 0 &&
frame_mv[NEAR_NEARMV][ref_frames[1]].as_int == 0) ||
(c3 >= c4 &&
frame_mv[NEAR_NEARESTMV][ref_frames[0]].as_int == 0 &&
frame_mv[NEAR_NEARESTMV][ref_frames[1]].as_int == 0))
return 0;
}
}
#endif // CONFIG_EXT_INTER
return 1;
}
static void joint_motion_search(VP10_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE bsize,
int_mv *frame_mv,
int mi_row, int mi_col,
#if CONFIG_EXT_INTER
int_mv* ref_mv_sub8x8[2],
#endif
int_mv single_newmv[MAX_REF_FRAMES],
int *rate_mv,
const int block) {
const VP10_COMMON *const cm = &cpi->common;
const int pw = 4 * num_4x4_blocks_wide_lookup[bsize];
const int ph = 4 * num_4x4_blocks_high_lookup[bsize];
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
const int refs[2] = {mbmi->ref_frame[0],
mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1]};
int_mv ref_mv[2];
int ite, ref;
#if CONFIG_DUAL_FILTER
INTERP_FILTER interp_filter[4] = {
mbmi->interp_filter[0], mbmi->interp_filter[1],
mbmi->interp_filter[2], mbmi->interp_filter[3],
};
#else
const INTERP_FILTER interp_filter = mbmi->interp_filter;
#endif
struct scale_factors sf;
// Do joint motion search in compound mode to get more accurate mv.
struct buf_2d backup_yv12[2][MAX_MB_PLANE];
int last_besterr[2] = {INT_MAX, INT_MAX};
const YV12_BUFFER_CONFIG *const scaled_ref_frame[2] = {
vp10_get_scaled_ref_frame(cpi, mbmi->ref_frame[0]),
vp10_get_scaled_ref_frame(cpi, mbmi->ref_frame[1])
};
// Prediction buffer from second frame.
#if CONFIG_VP9_HIGHBITDEPTH
DECLARE_ALIGNED(16, uint16_t, second_pred_alloc_16[MAX_SB_SQUARE]);
uint8_t *second_pred;
#else
DECLARE_ALIGNED(16, uint8_t, second_pred[MAX_SB_SQUARE]);
#endif // CONFIG_VP9_HIGHBITDEPTH
for (ref = 0; ref < 2; ++ref) {
#if CONFIG_EXT_INTER
if (bsize < BLOCK_8X8 && ref_mv_sub8x8 != NULL)
ref_mv[ref].as_int = ref_mv_sub8x8[ref]->as_int;
else
#endif // CONFIG_EXT_INTER
ref_mv[ref] = x->mbmi_ext->ref_mvs[refs[ref]][0];
if (scaled_ref_frame[ref]) {
int i;
// Swap out the reference frame for a version that's been scaled to
// match the resolution of the current frame, allowing the existing
// motion search code to be used without additional modifications.
for (i = 0; i < MAX_MB_PLANE; i++)
backup_yv12[ref][i] = xd->plane[i].pre[ref];
vp10_setup_pre_planes(xd, ref, scaled_ref_frame[ref], mi_row, mi_col,
NULL);
}
frame_mv[refs[ref]].as_int = single_newmv[refs[ref]].as_int;
}
// Since we have scaled the reference frames to match the size of the current
// frame we must use a unit scaling factor during mode selection.
#if CONFIG_VP9_HIGHBITDEPTH
vp10_setup_scale_factors_for_frame(&sf, cm->width, cm->height,
cm->width, cm->height,
cm->use_highbitdepth);
#else
vp10_setup_scale_factors_for_frame(&sf, cm->width, cm->height,
cm->width, cm->height);
#endif // CONFIG_VP9_HIGHBITDEPTH
// Allow joint search multiple times iteratively for each reference frame
// and break out of the search loop if it couldn't find a better mv.
for (ite = 0; ite < 4; ite++) {
struct buf_2d ref_yv12[2];
int bestsme = INT_MAX;
int sadpb = x->sadperbit16;
MV *const best_mv = &x->best_mv.as_mv;
int search_range = 3;
int tmp_col_min = x->mv_col_min;
int tmp_col_max = x->mv_col_max;
int tmp_row_min = x->mv_row_min;
int tmp_row_max = x->mv_row_max;
int id = ite % 2; // Even iterations search in the first reference frame,
// odd iterations search in the second. The predictor
// found for the 'other' reference frame is factored in.
// Initialized here because of compiler problem in Visual Studio.
ref_yv12[0] = xd->plane[0].pre[0];
ref_yv12[1] = xd->plane[0].pre[1];
#if CONFIG_DUAL_FILTER
// reload the filter types
interp_filter[0] = (id == 0) ?
mbmi->interp_filter[2] : mbmi->interp_filter[0];
interp_filter[1] = (id == 0) ?
mbmi->interp_filter[3] : mbmi->interp_filter[1];
#endif
// Get the prediction block from the 'other' reference frame.
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
second_pred = CONVERT_TO_BYTEPTR(second_pred_alloc_16);
vp10_highbd_build_inter_predictor(ref_yv12[!id].buf,
ref_yv12[!id].stride,
second_pred, pw,
&frame_mv[refs[!id]].as_mv,
&sf, pw, ph, 0,
interp_filter, MV_PRECISION_Q3,
mi_col * MI_SIZE, mi_row * MI_SIZE,
xd->bd);
} else {
second_pred = (uint8_t *)second_pred_alloc_16;
vp10_build_inter_predictor(ref_yv12[!id].buf,
ref_yv12[!id].stride,
second_pred, pw,
&frame_mv[refs[!id]].as_mv,
&sf, pw, ph, 0,
interp_filter, MV_PRECISION_Q3,
mi_col * MI_SIZE, mi_row * MI_SIZE);
}
#else
vp10_build_inter_predictor(ref_yv12[!id].buf,
ref_yv12[!id].stride,
second_pred, pw,
&frame_mv[refs[!id]].as_mv,
&sf, pw, ph, 0,
interp_filter, MV_PRECISION_Q3,
mi_col * MI_SIZE, mi_row * MI_SIZE);
#endif // CONFIG_VP9_HIGHBITDEPTH
// Do compound motion search on the current reference frame.
if (id)
xd->plane[0].pre[0] = ref_yv12[id];
vp10_set_mv_search_range(x, &ref_mv[id].as_mv);
// Use the mv result from the single mode as mv predictor.
*best_mv = frame_mv[refs[id]].as_mv;
best_mv->col >>= 3;
best_mv->row >>= 3;
#if CONFIG_REF_MV
vp10_set_mvcost(x, refs[id]);
#endif
// Small-range full-pixel motion search.
bestsme = vp10_refining_search_8p_c(x, sadpb, search_range,
&cpi->fn_ptr[bsize],
&ref_mv[id].as_mv, second_pred);
if (bestsme < INT_MAX)
bestsme = vp10_get_mvpred_av_var(x, best_mv, &ref_mv[id].as_mv,
second_pred, &cpi->fn_ptr[bsize], 1);
x->mv_col_min = tmp_col_min;
x->mv_col_max = tmp_col_max;
x->mv_row_min = tmp_row_min;
x->mv_row_max = tmp_row_max;
if (bestsme < INT_MAX) {
int dis; /* TODO: use dis in distortion calculation later. */
unsigned int sse;
if (cpi->sf.use_upsampled_references) {
// Use up-sampled reference frames.
struct macroblockd_plane *const pd = &xd->plane[0];
struct buf_2d backup_pred = pd->pre[0];
const YV12_BUFFER_CONFIG *upsampled_ref =
get_upsampled_ref(cpi, refs[id]);
// Set pred for Y plane
setup_pred_plane(&pd->pre[0], upsampled_ref->y_buffer,
upsampled_ref->y_crop_width,
upsampled_ref->y_crop_height,
upsampled_ref->y_stride, (mi_row << 3), (mi_col << 3),
NULL, pd->subsampling_x, pd->subsampling_y);
// If bsize < BLOCK_8X8, adjust pred pointer for this block
if (bsize < BLOCK_8X8)
pd->pre[0].buf =
&pd->pre[0].buf[(vp10_raster_block_offset(BLOCK_8X8, block,
pd->pre[0].stride)) << 3];
bestsme = cpi->find_fractional_mv_step(
x, &ref_mv[id].as_mv,
cpi->common.allow_high_precision_mv,
x->errorperbit,
&cpi->fn_ptr[bsize],
0, cpi->sf.mv.subpel_iters_per_step,
NULL,
x->nmvjointcost, x->mvcost,
&dis, &sse, second_pred,
pw, ph, 1);
// Restore the reference frames.
pd->pre[0] = backup_pred;
} else {
(void) block;
bestsme = cpi->find_fractional_mv_step(
x, &ref_mv[id].as_mv,
cpi->common.allow_high_precision_mv,
x->errorperbit,
&cpi->fn_ptr[bsize],
0, cpi->sf.mv.subpel_iters_per_step,
NULL,
x->nmvjointcost, x->mvcost,
&dis, &sse, second_pred,
pw, ph, 0);
}
}
// Restore the pointer to the first (possibly scaled) prediction buffer.
if (id)
xd->plane[0].pre[0] = ref_yv12[0];
if (bestsme < last_besterr[id]) {
frame_mv[refs[id]].as_mv = *best_mv;
last_besterr[id] = bestsme;
} else {
break;
}
}
*rate_mv = 0;
for (ref = 0; ref < 2; ++ref) {
if (scaled_ref_frame[ref]) {
// Restore the prediction frame pointers to their unscaled versions.
int i;
for (i = 0; i < MAX_MB_PLANE; i++)
xd->plane[i].pre[ref] = backup_yv12[ref][i];
}
#if CONFIG_REF_MV
vp10_set_mvcost(x, refs[ref]);
#endif
#if CONFIG_EXT_INTER
if (bsize >= BLOCK_8X8)
#endif // CONFIG_EXT_INTER
*rate_mv += vp10_mv_bit_cost(&frame_mv[refs[ref]].as_mv,
&x->mbmi_ext->ref_mvs[refs[ref]][0].as_mv,
x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
#if CONFIG_EXT_INTER
else
*rate_mv += vp10_mv_bit_cost(&frame_mv[refs[ref]].as_mv,
&ref_mv_sub8x8[ref]->as_mv,
x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
#endif // CONFIG_EXT_INTER
}
}
static int64_t rd_pick_best_sub8x8_mode(VP10_COMP *cpi, MACROBLOCK *x,
int_mv *best_ref_mv,
int_mv *second_best_ref_mv,
int64_t best_rd, int *returntotrate,
int *returnyrate,
int64_t *returndistortion,
int *skippable, int64_t *psse,
int mvthresh,
#if CONFIG_EXT_INTER
int_mv seg_mvs[4][2][MAX_REF_FRAMES],
int_mv compound_seg_newmvs[4][2],
#else
int_mv seg_mvs[4][MAX_REF_FRAMES],
#endif // CONFIG_EXT_INTER
BEST_SEG_INFO *bsi_buf, int filter_idx,
int mi_row, int mi_col) {
BEST_SEG_INFO *bsi = bsi_buf + filter_idx;
#if CONFIG_REF_MV
int_mv tmp_ref_mv[2];
#endif
MACROBLOCKD *xd = &x->e_mbd;
MODE_INFO *mi = xd->mi[0];
MB_MODE_INFO *mbmi = &mi->mbmi;
int mode_idx;
int k, br = 0, idx, idy;
int64_t bd = 0, block_sse = 0;
PREDICTION_MODE this_mode;
VP10_COMMON *cm = &cpi->common;
struct macroblock_plane *const p = &x->plane[0];
struct macroblockd_plane *const pd = &xd->plane[0];
const int label_count = 4;
int64_t this_segment_rd = 0;
int label_mv_thresh;
int segmentyrate = 0;
const BLOCK_SIZE bsize = mbmi->sb_type;
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
ENTROPY_CONTEXT t_above[2], t_left[2];
int subpelmv = 1, have_ref = 0;
const int has_second_rf = has_second_ref(mbmi);
const int inter_mode_mask = cpi->sf.inter_mode_mask[bsize];
MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
#if CONFIG_EXT_TX && CONFIG_RECT_TX && !CONFIG_VAR_TX
mbmi->tx_size = max_txsize_rect_lookup[bsize];
#else
mbmi->tx_size = TX_4X4;
#endif // CONFIG_EXT_TX && CONFIG_RECT_TX && !CONFIG_VAR_TX
vp10_zero(*bsi);
bsi->segment_rd = best_rd;
bsi->ref_mv[0] = best_ref_mv;
bsi->ref_mv[1] = second_best_ref_mv;
bsi->mvp.as_int = best_ref_mv->as_int;
bsi->mvthresh = mvthresh;
for (idx = 0; idx < 4; ++idx)
bsi->modes[idx] = ZEROMV;
#if CONFIG_REFMV
for (idx = 0; idx < 4; ++idx) {
for (k = NEARESTMV; k <= NEWMV; ++k) {
bsi->rdstat[idx][INTER_OFFSET(k)].pred_mv[0].as_int = INVALID_MV;
bsi->rdstat[idx][INTER_OFFSET(k)].pred_mv[1].as_int = INVALID_MV;
bsi->rdstat[idx][INTER_OFFSET(k)].mvs[0].as_int = INVALID_MV;
bsi->rdstat[idx][INTER_OFFSET(k)].mvs[1].as_int = INVALID_MV;
}
}
#endif
memcpy(t_above, pd->above_context, sizeof(t_above));
memcpy(t_left, pd->left_context, sizeof(t_left));
// 64 makes this threshold really big effectively
// making it so that we very rarely check mvs on
// segments. setting this to 1 would make mv thresh
// roughly equal to what it is for macroblocks
label_mv_thresh = 1 * bsi->mvthresh / label_count;
// Segmentation method overheads
for (idy = 0; idy < 2; idy += num_4x4_blocks_high) {
for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) {
// TODO(jingning,rbultje): rewrite the rate-distortion optimization
// loop for 4x4/4x8/8x4 block coding. to be replaced with new rd loop
int_mv mode_mv[MB_MODE_COUNT][2];
int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES];
PREDICTION_MODE mode_selected = ZEROMV;
int64_t best_rd = INT64_MAX;
const int i = idy * 2 + idx;
int ref;
#if CONFIG_REF_MV
CANDIDATE_MV ref_mv_stack[2][MAX_REF_MV_STACK_SIZE];
uint8_t ref_mv_count[2];
#endif
#if CONFIG_EXT_INTER
int mv_idx;
int_mv ref_mvs_sub8x8[2][2];
#endif // CONFIG_EXT_INTER
for (ref = 0; ref < 1 + has_second_rf; ++ref) {
const MV_REFERENCE_FRAME frame = mbmi->ref_frame[ref];
#if CONFIG_EXT_INTER
int_mv mv_ref_list[MAX_MV_REF_CANDIDATES];
vp10_update_mv_context(xd, mi, frame, mv_ref_list, i,
mi_row, mi_col, NULL);
#endif // CONFIG_EXT_INTER
frame_mv[ZEROMV][frame].as_int = 0;
vp10_append_sub8x8_mvs_for_idx(cm, xd, i, ref, mi_row, mi_col,
#if CONFIG_REF_MV
ref_mv_stack[ref],
&ref_mv_count[ref],
#endif
#if CONFIG_EXT_INTER
mv_ref_list,
#endif // CONFIG_EXT_INTER
&frame_mv[NEARESTMV][frame],
&frame_mv[NEARMV][frame]);
#if CONFIG_REF_MV
tmp_ref_mv[ref] = frame_mv[NEARESTMV][mbmi->ref_frame[ref]];
lower_mv_precision(&tmp_ref_mv[ref].as_mv, cm->allow_high_precision_mv);
bsi->ref_mv[ref] = &tmp_ref_mv[ref];
mbmi_ext->ref_mvs[frame][0] = tmp_ref_mv[ref];
#endif
#if CONFIG_EXT_INTER
mv_ref_list[0].as_int = frame_mv[NEARESTMV][frame].as_int;
mv_ref_list[1].as_int = frame_mv[NEARMV][frame].as_int;
vp10_find_best_ref_mvs(cm->allow_high_precision_mv, mv_ref_list,
&ref_mvs_sub8x8[0][ref], &ref_mvs_sub8x8[1][ref]);
if (has_second_rf) {
frame_mv[ZERO_ZEROMV][frame].as_int = 0;
frame_mv[NEAREST_NEARESTMV][frame].as_int =
frame_mv[NEARESTMV][frame].as_int;
if (ref == 0) {
frame_mv[NEAREST_NEARMV][frame].as_int =
frame_mv[NEARESTMV][frame].as_int;
frame_mv[NEAR_NEARESTMV][frame].as_int =
frame_mv[NEARMV][frame].as_int;
frame_mv[NEAREST_NEWMV][frame].as_int =
frame_mv[NEARESTMV][frame].as_int;
frame_mv[NEAR_NEWMV][frame].as_int =
frame_mv[NEARMV][frame].as_int;
frame_mv[NEAR_NEARMV][frame].as_int =
frame_mv[NEARMV][frame].as_int;
} else if (ref == 1) {
frame_mv[NEAREST_NEARMV][frame].as_int =
frame_mv[NEARMV][frame].as_int;
frame_mv[NEAR_NEARESTMV][frame].as_int =
frame_mv[NEARESTMV][frame].as_int;
frame_mv[NEW_NEARESTMV][frame].as_int =
frame_mv[NEARESTMV][frame].as_int;
frame_mv[NEW_NEARMV][frame].as_int =
frame_mv[NEARMV][frame].as_int;
frame_mv[NEAR_NEARMV][frame].as_int =
frame_mv[NEARMV][frame].as_int;
}
}
#endif // CONFIG_EXT_INTER
}
// search for the best motion vector on this segment
#if CONFIG_EXT_INTER
for (this_mode = (has_second_rf ? NEAREST_NEARESTMV : NEARESTMV);
this_mode <= (has_second_rf ? NEW_NEWMV : NEWFROMNEARMV);
++this_mode)
#else
for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode)
#endif // CONFIG_EXT_INTER
{
const struct buf_2d orig_src = x->plane[0].src;
struct buf_2d orig_pre[2];
// This flag controls if the motion estimation will kick off. When it
// is set to a non-zero value, the encoder will force motion estimation.
int run_mv_search = 0;
mode_idx = INTER_OFFSET(this_mode);
#if CONFIG_EXT_INTER
mv_idx = (this_mode == NEWFROMNEARMV) ? 1 : 0;
for (ref = 0; ref < 1 + has_second_rf; ++ref)
bsi->ref_mv[ref]->as_int = ref_mvs_sub8x8[mv_idx][ref].as_int;
#endif // CONFIG_EXT_INTER
bsi->rdstat[i][mode_idx].brdcost = INT64_MAX;
if (!(inter_mode_mask & (1 << this_mode)))
continue;
#if CONFIG_REF_MV
run_mv_search = 2;
#if !CONFIG_EXT_INTER
if (filter_idx > 0 && this_mode == NEWMV) {
BEST_SEG_INFO* ref_bsi = bsi_buf;
SEG_RDSTAT *ref_rdstat = &ref_bsi->rdstat[i][mode_idx];
if (has_second_rf) {
if (seg_mvs[i][mbmi->ref_frame[0]].as_int ==
ref_rdstat->mvs[0].as_int &&
ref_rdstat->mvs[0].as_int != INVALID_MV)
if (bsi->ref_mv[0]->as_int == ref_rdstat->pred_mv[0].as_int)
--run_mv_search;
if (seg_mvs[i][mbmi->ref_frame[1]].as_int ==
ref_rdstat->mvs[1].as_int &&
ref_rdstat->mvs[1].as_int != INVALID_MV)
if (bsi->ref_mv[1]->as_int == ref_rdstat->pred_mv[1].as_int)
--run_mv_search;
} else {
if (bsi->ref_mv[0]->as_int == ref_rdstat->pred_mv[0].as_int &&
ref_rdstat->mvs[0].as_int != INVALID_MV) {
run_mv_search = 0;
seg_mvs[i][mbmi->ref_frame[0]].as_int =
ref_rdstat->mvs[0].as_int;
}
}
if (run_mv_search != 0 && filter_idx > 1) {
ref_bsi = bsi_buf + 1;
ref_rdstat = &ref_bsi->rdstat[i][mode_idx];
run_mv_search = 2;
if (has_second_rf) {
if (seg_mvs[i][mbmi->ref_frame[0]].as_int ==
ref_rdstat->mvs[0].as_int &&
ref_rdstat->mvs[0].as_int != INVALID_MV)
if (bsi->ref_mv[0]->as_int == ref_rdstat->pred_mv[0].as_int)
--run_mv_search;
if (seg_mvs[i][mbmi->ref_frame[1]].as_int ==
ref_rdstat->mvs[1].as_int &&
ref_rdstat->mvs[1].as_int != INVALID_MV)
if (bsi->ref_mv[1]->as_int == ref_rdstat->pred_mv[1].as_int)
--run_mv_search;
} else {
if (bsi->ref_mv[0]->as_int ==
ref_rdstat->pred_mv[0].as_int &&
ref_rdstat->mvs[0].as_int != INVALID_MV) {
run_mv_search = 0;
seg_mvs[i][mbmi->ref_frame[0]].as_int =
ref_rdstat->mvs[0].as_int;
}
}
}
}
#endif // CONFIG_EXT_INTER
#endif // CONFIG_REF_MV
if (!check_best_zero_mv(cpi, mbmi_ext->mode_context,
#if CONFIG_REF_MV && CONFIG_EXT_INTER
mbmi_ext->compound_mode_context,
#endif // CONFIG_REF_MV && CONFIG_EXT_INTER
frame_mv,
this_mode, mbmi->ref_frame, bsize, i))
continue;
memcpy(orig_pre, pd->pre, sizeof(orig_pre));
memcpy(bsi->rdstat[i][mode_idx].ta, t_above,
sizeof(bsi->rdstat[i][mode_idx].ta));
memcpy(bsi->rdstat[i][mode_idx].tl, t_left,
sizeof(bsi->rdstat[i][mode_idx].tl));
// motion search for newmv (single predictor case only)
if (!has_second_rf &&
#if CONFIG_EXT_INTER
have_newmv_in_inter_mode(this_mode) &&
(seg_mvs[i][mv_idx][mbmi->ref_frame[0]].as_int == INVALID_MV ||
vp10_use_mv_hp(&bsi->ref_mv[0]->as_mv) == 0)
#else
this_mode == NEWMV &&
(seg_mvs[i][mbmi->ref_frame[0]].as_int == INVALID_MV ||
run_mv_search)
#endif // CONFIG_EXT_INTER
) {
int step_param = 0;
int bestsme = INT_MAX;
int sadpb = x->sadperbit4;
MV mvp_full;
int max_mv;
int cost_list[5];
/* Is the best so far sufficiently good that we cant justify doing
* and new motion search. */
if (best_rd < label_mv_thresh)
break;
if (cpi->oxcf.mode != BEST) {
#if CONFIG_EXT_INTER
bsi->mvp.as_int = bsi->ref_mv[0]->as_int;
#else
// use previous block's result as next block's MV predictor.
#if !CONFIG_REF_MV
if (i > 0) {
bsi->mvp.as_int = mi->bmi[i - 1].as_mv[0].as_int;
if (i == 2)
bsi->mvp.as_int = mi->bmi[i - 2].as_mv[0].as_int;
}
#endif
#endif // CONFIG_EXT_INTER
}
if (i == 0)
max_mv = x->max_mv_context[mbmi->ref_frame[0]];
else
max_mv =
VPXMAX(abs(bsi->mvp.as_mv.row), abs(bsi->mvp.as_mv.col)) >> 3;
if (cpi->sf.mv.auto_mv_step_size && cm->show_frame) {
// Take wtd average of the step_params based on the last frame's
// max mv magnitude and the best ref mvs of the current block for
// the given reference.
step_param = (vp10_init_search_range(max_mv) +
cpi->mv_step_param) / 2;
} else {
step_param = cpi->mv_step_param;
}
#if CONFIG_REF_MV
mvp_full.row = bsi->ref_mv[0]->as_mv.row >> 3;
mvp_full.col = bsi->ref_mv[0]->as_mv.col >> 3;
#else
mvp_full.row = bsi->mvp.as_mv.row >> 3;
mvp_full.col = bsi->mvp.as_mv.col >> 3;
#endif
if (cpi->sf.adaptive_motion_search) {
mvp_full.row = x->pred_mv[mbmi->ref_frame[0]].row >> 3;
mvp_full.col = x->pred_mv[mbmi->ref_frame[0]].col >> 3;
step_param = VPXMAX(step_param, 8);
}
// adjust src pointer for this block
mi_buf_shift(x, i);
vp10_set_mv_search_range(x, &bsi->ref_mv[0]->as_mv);
#if CONFIG_REF_MV
vp10_set_mvcost(x, mbmi->ref_frame[0]);
#endif
bestsme = vp10_full_pixel_search(
cpi, x, bsize, &mvp_full, step_param, sadpb,
cpi->sf.mv.subpel_search_method != SUBPEL_TREE ? cost_list : NULL,
&bsi->ref_mv[0]->as_mv, INT_MAX, 1);
if (bestsme < INT_MAX) {
int distortion;
if (cpi->sf.use_upsampled_references) {
const int pw = 4 * num_4x4_blocks_wide_lookup[bsize];
const int ph = 4 * num_4x4_blocks_high_lookup[bsize];
// Use up-sampled reference frames.
struct macroblockd_plane *const pd = &xd->plane[0];
struct buf_2d backup_pred = pd->pre[0];
const YV12_BUFFER_CONFIG *upsampled_ref =
get_upsampled_ref(cpi, mbmi->ref_frame[0]);
// Set pred for Y plane
setup_pred_plane(&pd->pre[0], upsampled_ref->y_buffer,
upsampled_ref->y_crop_width,
upsampled_ref->y_crop_height,
upsampled_ref->y_stride,
(mi_row << 3), (mi_col << 3),
NULL, pd->subsampling_x, pd->subsampling_y);
// adjust pred pointer for this block
pd->pre[0].buf =
&pd->pre[0].buf[(vp10_raster_block_offset(BLOCK_8X8, i,
pd->pre[0].stride)) << 3];
cpi->find_fractional_mv_step(
x, &bsi->ref_mv[0]->as_mv,
cm->allow_high_precision_mv,
x->errorperbit, &cpi->fn_ptr[bsize],
cpi->sf.mv.subpel_force_stop,
cpi->sf.mv.subpel_iters_per_step,
cond_cost_list(cpi, cost_list),
x->nmvjointcost, x->mvcost,
&distortion,
&x->pred_sse[mbmi->ref_frame[0]],
NULL, pw, ph, 1);
// Restore the reference frames.
pd->pre[0] = backup_pred;
} else {
cpi->find_fractional_mv_step(
x, &bsi->ref_mv[0]->as_mv,
cm->allow_high_precision_mv,
x->errorperbit, &cpi->fn_ptr[bsize],
cpi->sf.mv.subpel_force_stop,
cpi->sf.mv.subpel_iters_per_step,
cond_cost_list(cpi, cost_list),
x->nmvjointcost, x->mvcost,
&distortion,
&x->pred_sse[mbmi->ref_frame[0]],
NULL, 0, 0, 0);
}
// save motion search result for use in compound prediction
#if CONFIG_EXT_INTER
seg_mvs[i][mv_idx][mbmi->ref_frame[0]].as_mv = x->best_mv.as_mv;
#else
seg_mvs[i][mbmi->ref_frame[0]].as_mv = x->best_mv.as_mv;
#endif // CONFIG_EXT_INTER
}
if (cpi->sf.adaptive_motion_search)
x->pred_mv[mbmi->ref_frame[0]] = x->best_mv.as_mv;
#if CONFIG_EXT_INTER
mode_mv[this_mode][0] = x->best_mv;
#else
mode_mv[NEWMV][0] = x->best_mv;
#endif // CONFIG_EXT_INTER
// restore src pointers
mi_buf_restore(x, orig_src, orig_pre);
}
if (has_second_rf) {
#if CONFIG_EXT_INTER
if (seg_mvs[i][mv_idx][mbmi->ref_frame[1]].as_int == INVALID_MV ||
seg_mvs[i][mv_idx][mbmi->ref_frame[0]].as_int == INVALID_MV)
#else
if (seg_mvs[i][mbmi->ref_frame[1]].as_int == INVALID_MV ||
seg_mvs[i][mbmi->ref_frame[0]].as_int == INVALID_MV)
#endif // CONFIG_EXT_INTER
continue;
}
#if CONFIG_DUAL_FILTER
(void)run_mv_search;
#endif
if (has_second_rf &&
#if CONFIG_EXT_INTER
this_mode == NEW_NEWMV &&
#else
this_mode == NEWMV &&
#endif // CONFIG_EXT_INTER
#if CONFIG_DUAL_FILTER
(mbmi->interp_filter[0] == EIGHTTAP_REGULAR || run_mv_search))
#else
(mbmi->interp_filter == EIGHTTAP_REGULAR || run_mv_search))
#endif
{
// adjust src pointers
mi_buf_shift(x, i);
if (cpi->sf.comp_inter_joint_search_thresh <= bsize) {
int rate_mv;
joint_motion_search(cpi, x, bsize, frame_mv[this_mode],
mi_row, mi_col,
#if CONFIG_EXT_INTER
bsi->ref_mv,
seg_mvs[i][mv_idx],
#else
seg_mvs[i],
#endif // CONFIG_EXT_INTER
&rate_mv, i);
#if CONFIG_EXT_INTER
compound_seg_newmvs[i][0].as_int =
frame_mv[this_mode][mbmi->ref_frame[0]].as_int;
compound_seg_newmvs[i][1].as_int =
frame_mv[this_mode][mbmi->ref_frame[1]].as_int;
#else
seg_mvs[i][mbmi->ref_frame[0]].as_int =
frame_mv[this_mode][mbmi->ref_frame[0]].as_int;
seg_mvs[i][mbmi->ref_frame[1]].as_int =
frame_mv[this_mode][mbmi->ref_frame[1]].as_int;
#endif // CONFIG_EXT_INTER
}
// restore src pointers
mi_buf_restore(x, orig_src, orig_pre);
}
bsi->rdstat[i][mode_idx].brate =
set_and_cost_bmi_mvs(cpi, x, xd, i, this_mode, mode_mv[this_mode],
frame_mv,
#if CONFIG_EXT_INTER
seg_mvs[i][mv_idx],
compound_seg_newmvs[i],
#else
seg_mvs[i],
#endif // CONFIG_EXT_INTER
bsi->ref_mv,
x->nmvjointcost, x->mvcost);
for (ref = 0; ref < 1 + has_second_rf; ++ref) {
bsi->rdstat[i][mode_idx].mvs[ref].as_int =
mode_mv[this_mode][ref].as_int;
if (num_4x4_blocks_wide > 1)
bsi->rdstat[i + 1][mode_idx].mvs[ref].as_int =
mode_mv[this_mode][ref].as_int;
if (num_4x4_blocks_high > 1)
bsi->rdstat[i + 2][mode_idx].mvs[ref].as_int =
mode_mv[this_mode][ref].as_int;
#if CONFIG_REF_MV
bsi->rdstat[i][mode_idx].pred_mv[ref].as_int =
mi->bmi[i].pred_mv_s8[ref].as_int;
if (num_4x4_blocks_wide > 1)
bsi->rdstat[i + 1][mode_idx].pred_mv[ref].as_int =
mi->bmi[i].pred_mv_s8[ref].as_int;
if (num_4x4_blocks_high > 1)
bsi->rdstat[i + 2][mode_idx].pred_mv[ref].as_int =
mi->bmi[i].pred_mv_s8[ref].as_int;
#endif
#if CONFIG_EXT_INTER
bsi->rdstat[i][mode_idx].ref_mv[ref].as_int =
bsi->ref_mv[ref]->as_int;
if (num_4x4_blocks_wide > 1)
bsi->rdstat[i + 1][mode_idx].ref_mv[ref].as_int =
bsi->ref_mv[ref]->as_int;
if (num_4x4_blocks_high > 1)
bsi->rdstat[i + 2][mode_idx].ref_mv[ref].as_int =
bsi->ref_mv[ref]->as_int;
#endif // CONFIG_EXT_INTER
}
// Trap vectors that reach beyond the UMV borders
if (mv_check_bounds(x, &mode_mv[this_mode][0].as_mv) ||
(has_second_rf &&
mv_check_bounds(x, &mode_mv[this_mode][1].as_mv)))
continue;
if (filter_idx > 0) {
BEST_SEG_INFO *ref_bsi = bsi_buf;
subpelmv = 0;
have_ref = 1;
for (ref = 0; ref < 1 + has_second_rf; ++ref) {
subpelmv |= mv_has_subpel(&mode_mv[this_mode][ref].as_mv);
#if CONFIG_EXT_INTER
if (have_newmv_in_inter_mode(this_mode))
have_ref &= (
(mode_mv[this_mode][ref].as_int ==
ref_bsi->rdstat[i][mode_idx].mvs[ref].as_int) &&
(bsi->ref_mv[ref]->as_int ==
ref_bsi->rdstat[i][mode_idx].ref_mv[ref].as_int));
else
#endif // CONFIG_EXT_INTER
have_ref &= mode_mv[this_mode][ref].as_int ==
ref_bsi->rdstat[i][mode_idx].mvs[ref].as_int;
}
have_ref &= ref_bsi->rdstat[i][mode_idx].brate > 0;
if (filter_idx > 1 && !subpelmv && !have_ref) {
ref_bsi = bsi_buf + 1;
have_ref = 1;
for (ref = 0; ref < 1 + has_second_rf; ++ref)
#if CONFIG_EXT_INTER
if (have_newmv_in_inter_mode(this_mode))
have_ref &= (
(mode_mv[this_mode][ref].as_int ==
ref_bsi->rdstat[i][mode_idx].mvs[ref].as_int) &&
(bsi->ref_mv[ref]->as_int ==
ref_bsi->rdstat[i][mode_idx].ref_mv[ref].as_int));
else
#endif // CONFIG_EXT_INTER
have_ref &= mode_mv[this_mode][ref].as_int ==
ref_bsi->rdstat[i][mode_idx].mvs[ref].as_int;
have_ref &= ref_bsi->rdstat[i][mode_idx].brate > 0;
}
if (!subpelmv && have_ref &&
ref_bsi->rdstat[i][mode_idx].brdcost < INT64_MAX) {
#if CONFIG_REF_MV
bsi->rdstat[i][mode_idx].byrate =
ref_bsi->rdstat[i][mode_idx].byrate;
bsi->rdstat[i][mode_idx].bdist =
ref_bsi->rdstat[i][mode_idx].bdist;
bsi->rdstat[i][mode_idx].bsse =
ref_bsi->rdstat[i][mode_idx].bsse;
bsi->rdstat[i][mode_idx].brate +=
ref_bsi->rdstat[i][mode_idx].byrate;
bsi->rdstat[i][mode_idx].eobs =
ref_bsi->rdstat[i][mode_idx].eobs;
bsi->rdstat[i][mode_idx].brdcost =
RDCOST(x->rdmult, x->rddiv, bsi->rdstat[i][mode_idx].brate,
bsi->rdstat[i][mode_idx].bdist);
memcpy(bsi->rdstat[i][mode_idx].ta,
ref_bsi->rdstat[i][mode_idx].ta,
sizeof(bsi->rdstat[i][mode_idx].ta));
memcpy(bsi->rdstat[i][mode_idx].tl,
ref_bsi->rdstat[i][mode_idx].tl,
sizeof(bsi->rdstat[i][mode_idx].tl));
#else
memcpy(&bsi->rdstat[i][mode_idx], &ref_bsi->rdstat[i][mode_idx],
sizeof(SEG_RDSTAT));
#endif
if (num_4x4_blocks_wide > 1)
bsi->rdstat[i + 1][mode_idx].eobs =
ref_bsi->rdstat[i + 1][mode_idx].eobs;
if (num_4x4_blocks_high > 1)
bsi->rdstat[i + 2][mode_idx].eobs =
ref_bsi->rdstat[i + 2][mode_idx].eobs;
if (bsi->rdstat[i][mode_idx].brdcost < best_rd) {
#if CONFIG_REF_MV
// If the NEWMV mode is using the same motion vector as the
// NEARESTMV mode, skip the rest rate-distortion calculations
// and use the inferred motion vector modes.
if (this_mode == NEWMV) {
if (has_second_rf) {
if (bsi->rdstat[i][mode_idx].mvs[0].as_int ==
bsi->ref_mv[0]->as_int &&
bsi->rdstat[i][mode_idx].mvs[1].as_int ==
bsi->ref_mv[1]->as_int)
continue;
} else {
if (bsi->rdstat[i][mode_idx].mvs[0].as_int ==
bsi->ref_mv[0]->as_int)
continue;
}
}
#endif
mode_selected = this_mode;
best_rd = bsi->rdstat[i][mode_idx].brdcost;
}
continue;
}
}
bsi->rdstat[i][mode_idx].brdcost =
encode_inter_mb_segment(cpi, x,
bsi->segment_rd - this_segment_rd, i,
&bsi->rdstat[i][mode_idx].byrate,
&bsi->rdstat[i][mode_idx].bdist,
&bsi->rdstat[i][mode_idx].bsse,
bsi->rdstat[i][mode_idx].ta,
bsi->rdstat[i][mode_idx].tl,
idy, idx,
mi_row, mi_col);
if (bsi->rdstat[i][mode_idx].brdcost < INT64_MAX) {
bsi->rdstat[i][mode_idx].brdcost += RDCOST(x->rdmult, x->rddiv,
bsi->rdstat[i][mode_idx].brate, 0);
bsi->rdstat[i][mode_idx].brate += bsi->rdstat[i][mode_idx].byrate;
bsi->rdstat[i][mode_idx].eobs = p->eobs[i];
if (num_4x4_blocks_wide > 1)
bsi->rdstat[i + 1][mode_idx].eobs = p->eobs[i + 1];
if (num_4x4_blocks_high > 1)
bsi->rdstat[i + 2][mode_idx].eobs = p->eobs[i + 2];
}
if (bsi->rdstat[i][mode_idx].brdcost < best_rd) {
#if CONFIG_REF_MV
// If the NEWMV mode is using the same motion vector as the
// NEARESTMV mode, skip the rest rate-distortion calculations
// and use the inferred motion vector modes.
if (this_mode == NEWMV) {
if (has_second_rf) {
if (bsi->rdstat[i][mode_idx].mvs[0].as_int ==
bsi->ref_mv[0]->as_int &&
bsi->rdstat[i][mode_idx].mvs[1].as_int ==
bsi->ref_mv[1]->as_int)
continue;
} else {
if (bsi->rdstat[i][mode_idx].mvs[0].as_int ==
bsi->ref_mv[0]->as_int)
continue;
}
}
#endif
mode_selected = this_mode;
best_rd = bsi->rdstat[i][mode_idx].brdcost;
}
} /*for each 4x4 mode*/
if (best_rd == INT64_MAX) {
int iy, midx;
for (iy = i + 1; iy < 4; ++iy)
#if CONFIG_EXT_INTER
for (midx = 0; midx < INTER_MODES + INTER_COMPOUND_MODES; ++midx)
#else
for (midx = 0; midx < INTER_MODES; ++midx)
#endif // CONFIG_EXT_INTER
bsi->rdstat[iy][midx].brdcost = INT64_MAX;
bsi->segment_rd = INT64_MAX;
return INT64_MAX;
}
mode_idx = INTER_OFFSET(mode_selected);
memcpy(t_above, bsi->rdstat[i][mode_idx].ta, sizeof(t_above));
memcpy(t_left, bsi->rdstat[i][mode_idx].tl, sizeof(t_left));
#if CONFIG_EXT_INTER
mv_idx = (mode_selected == NEWFROMNEARMV) ? 1 : 0;
bsi->ref_mv[0]->as_int = bsi->rdstat[i][mode_idx].ref_mv[0].as_int;
if (has_second_rf)
bsi->ref_mv[1]->as_int = bsi->rdstat[i][mode_idx].ref_mv[1].as_int;
#endif // CONFIG_EXT_INTER
set_and_cost_bmi_mvs(cpi, x, xd, i, mode_selected, mode_mv[mode_selected],
frame_mv,
#if CONFIG_EXT_INTER
seg_mvs[i][mv_idx],
compound_seg_newmvs[i],
#else
seg_mvs[i],
#endif // CONFIG_EXT_INTER
bsi->ref_mv, x->nmvjointcost, x->mvcost);
br += bsi->rdstat[i][mode_idx].brate;
bd += bsi->rdstat[i][mode_idx].bdist;
block_sse += bsi->rdstat[i][mode_idx].bsse;
segmentyrate += bsi->rdstat[i][mode_idx].byrate;
this_segment_rd += bsi->rdstat[i][mode_idx].brdcost;
if (this_segment_rd > bsi->segment_rd) {
int iy, midx;
for (iy = i + 1; iy < 4; ++iy)
#if CONFIG_EXT_INTER
for (midx = 0; midx < INTER_MODES + INTER_COMPOUND_MODES; ++midx)
#else
for (midx = 0; midx < INTER_MODES; ++midx)
#endif // CONFIG_EXT_INTER
bsi->rdstat[iy][midx].brdcost = INT64_MAX;
bsi->segment_rd = INT64_MAX;
return INT64_MAX;
}
}
} /* for each label */
bsi->r = br;
bsi->d = bd;
bsi->segment_yrate = segmentyrate;
bsi->segment_rd = this_segment_rd;
bsi->sse = block_sse;
// update the coding decisions
for (k = 0; k < 4; ++k)
bsi->modes[k] = mi->bmi[k].as_mode;
if (bsi->segment_rd > best_rd)
return INT64_MAX;
/* set it to the best */
for (idx = 0; idx < 4; idx++) {
mode_idx = INTER_OFFSET(bsi->modes[idx]);
mi->bmi[idx].as_mv[0].as_int = bsi->rdstat[idx][mode_idx].mvs[0].as_int;
if (has_second_ref(mbmi))
mi->bmi[idx].as_mv[1].as_int = bsi->rdstat[idx][mode_idx].mvs[1].as_int;
#if CONFIG_REF_MV
mi->bmi[idx].pred_mv_s8[0] = bsi->rdstat[idx][mode_idx].pred_mv[0];
if (has_second_ref(mbmi))
mi->bmi[idx].pred_mv_s8[1] = bsi->rdstat[idx][mode_idx].pred_mv[1];
#endif
#if CONFIG_EXT_INTER
mi->bmi[idx].ref_mv[0].as_int = bsi->rdstat[idx][mode_idx].ref_mv[0].as_int;
if (has_second_rf)
mi->bmi[idx].ref_mv[1].as_int =
bsi->rdstat[idx][mode_idx].ref_mv[1].as_int;
#endif // CONFIG_EXT_INTER
x->plane[0].eobs[idx] = bsi->rdstat[idx][mode_idx].eobs;
mi->bmi[idx].as_mode = bsi->modes[idx];
}
/*
* used to set mbmi->mv.as_int
*/
*returntotrate = bsi->r;
*returndistortion = bsi->d;
*returnyrate = bsi->segment_yrate;
*skippable = vp10_is_skippable_in_plane(x, BLOCK_8X8, 0);
*psse = bsi->sse;
mbmi->mode = bsi->modes[3];
return bsi->segment_rd;
}
static void estimate_ref_frame_costs(const VP10_COMMON *cm,
const MACROBLOCKD *xd,
int segment_id,
unsigned int *ref_costs_single,
unsigned int *ref_costs_comp,
vpx_prob *comp_mode_p) {
int seg_ref_active = segfeature_active(&cm->seg, segment_id,
SEG_LVL_REF_FRAME);
if (seg_ref_active) {
memset(ref_costs_single, 0, MAX_REF_FRAMES * sizeof(*ref_costs_single));
memset(ref_costs_comp, 0, MAX_REF_FRAMES * sizeof(*ref_costs_comp));
*comp_mode_p = 128;
} else {
vpx_prob intra_inter_p = vp10_get_intra_inter_prob(cm, xd);
vpx_prob comp_inter_p = 128;
if (cm->reference_mode == REFERENCE_MODE_SELECT) {
comp_inter_p = vp10_get_reference_mode_prob(cm, xd);
*comp_mode_p = comp_inter_p;
} else {
*comp_mode_p = 128;
}
ref_costs_single[INTRA_FRAME] = vp10_cost_bit(intra_inter_p, 0);
if (cm->reference_mode != COMPOUND_REFERENCE) {
vpx_prob ref_single_p1 = vp10_get_pred_prob_single_ref_p1(cm, xd);
vpx_prob ref_single_p2 = vp10_get_pred_prob_single_ref_p2(cm, xd);
#if CONFIG_EXT_REFS
vpx_prob ref_single_p3 = vp10_get_pred_prob_single_ref_p3(cm, xd);
vpx_prob ref_single_p4 = vp10_get_pred_prob_single_ref_p4(cm, xd);
vpx_prob ref_single_p5 = vp10_get_pred_prob_single_ref_p5(cm, xd);
#endif // CONFIG_EXT_REFS
unsigned int base_cost = vp10_cost_bit(intra_inter_p, 1);
ref_costs_single[LAST_FRAME] =
#if CONFIG_EXT_REFS
ref_costs_single[LAST2_FRAME] =
ref_costs_single[LAST3_FRAME] =
ref_costs_single[BWDREF_FRAME] =
#endif // CONFIG_EXT_REFS
ref_costs_single[GOLDEN_FRAME] =
ref_costs_single[ALTREF_FRAME] = base_cost;
#if CONFIG_EXT_REFS
ref_costs_single[LAST_FRAME] += vp10_cost_bit(ref_single_p1, 0);
ref_costs_single[LAST2_FRAME] += vp10_cost_bit(ref_single_p1, 0);
ref_costs_single[LAST3_FRAME] += vp10_cost_bit(ref_single_p1, 0);
ref_costs_single[GOLDEN_FRAME] += vp10_cost_bit(ref_single_p1, 0);
ref_costs_single[BWDREF_FRAME] += vp10_cost_bit(ref_single_p1, 1);
ref_costs_single[ALTREF_FRAME] += vp10_cost_bit(ref_single_p1, 1);
ref_costs_single[LAST_FRAME] += vp10_cost_bit(ref_single_p3, 0);
ref_costs_single[LAST2_FRAME] += vp10_cost_bit(ref_single_p3, 0);
ref_costs_single[LAST3_FRAME] += vp10_cost_bit(ref_single_p3, 1);
ref_costs_single[GOLDEN_FRAME] += vp10_cost_bit(ref_single_p3, 1);
ref_costs_single[BWDREF_FRAME] += vp10_cost_bit(ref_single_p2, 0);
ref_costs_single[ALTREF_FRAME] += vp10_cost_bit(ref_single_p2, 1);
ref_costs_single[LAST_FRAME] += vp10_cost_bit(ref_single_p4, 0);
ref_costs_single[LAST2_FRAME] += vp10_cost_bit(ref_single_p4, 1);
ref_costs_single[LAST3_FRAME] += vp10_cost_bit(ref_single_p5, 0);
ref_costs_single[GOLDEN_FRAME] += vp10_cost_bit(ref_single_p5, 1);
#else
ref_costs_single[LAST_FRAME] += vp10_cost_bit(ref_single_p1, 0);
ref_costs_single[GOLDEN_FRAME] += vp10_cost_bit(ref_single_p1, 1);
ref_costs_single[ALTREF_FRAME] += vp10_cost_bit(ref_single_p1, 1);
ref_costs_single[GOLDEN_FRAME] += vp10_cost_bit(ref_single_p2, 0);
ref_costs_single[ALTREF_FRAME] += vp10_cost_bit(ref_single_p2, 1);
#endif // CONFIG_EXT_REFS
} else {
ref_costs_single[LAST_FRAME] = 512;
#if CONFIG_EXT_REFS
ref_costs_single[LAST2_FRAME] = 512;
ref_costs_single[LAST3_FRAME] = 512;
ref_costs_single[BWDREF_FRAME] = 512;
#endif // CONFIG_EXT_REFS
ref_costs_single[GOLDEN_FRAME] = 512;
ref_costs_single[ALTREF_FRAME] = 512;
}
if (cm->reference_mode != SINGLE_REFERENCE) {
vpx_prob ref_comp_p = vp10_get_pred_prob_comp_ref_p(cm, xd);
#if CONFIG_EXT_REFS
vpx_prob ref_comp_p1 = vp10_get_pred_prob_comp_ref_p1(cm, xd);
vpx_prob ref_comp_p2 = vp10_get_pred_prob_comp_ref_p2(cm, xd);
vpx_prob bwdref_comp_p = vp10_get_pred_prob_comp_bwdref_p(cm, xd);
#endif // CONFIG_EXT_REFS
unsigned int base_cost = vp10_cost_bit(intra_inter_p, 1);
ref_costs_comp[LAST_FRAME] =
#if CONFIG_EXT_REFS
ref_costs_comp[LAST2_FRAME] =
ref_costs_comp[LAST3_FRAME] =
#endif // CONFIG_EXT_REFS
ref_costs_comp[GOLDEN_FRAME] = base_cost;
#if CONFIG_EXT_REFS
ref_costs_comp[BWDREF_FRAME] = ref_costs_comp[ALTREF_FRAME] = 0;
#endif // CONFIG_EXT_REFS
#if CONFIG_EXT_REFS
ref_costs_comp[LAST_FRAME] += vp10_cost_bit(ref_comp_p, 0);
ref_costs_comp[LAST2_FRAME] += vp10_cost_bit(ref_comp_p, 0);
ref_costs_comp[LAST3_FRAME] += vp10_cost_bit(ref_comp_p, 1);
ref_costs_comp[GOLDEN_FRAME] += vp10_cost_bit(ref_comp_p, 1);
ref_costs_comp[LAST_FRAME] += vp10_cost_bit(ref_comp_p1, 1);
ref_costs_comp[LAST2_FRAME] += vp10_cost_bit(ref_comp_p1, 0);
ref_costs_comp[LAST3_FRAME] += vp10_cost_bit(ref_comp_p2, 0);
ref_costs_comp[GOLDEN_FRAME] += vp10_cost_bit(ref_comp_p2, 1);
// NOTE(zoeliu): BWDREF and ALTREF each add an extra cost by coding 1
// more bit.
ref_costs_comp[BWDREF_FRAME] += vp10_cost_bit(bwdref_comp_p, 0);
ref_costs_comp[ALTREF_FRAME] += vp10_cost_bit(bwdref_comp_p, 1);
#else
ref_costs_comp[LAST_FRAME] += vp10_cost_bit(ref_comp_p, 0);
ref_costs_comp[GOLDEN_FRAME] += vp10_cost_bit(ref_comp_p, 1);
#endif // CONFIG_EXT_REFS
} else {
ref_costs_comp[LAST_FRAME] = 512;
#if CONFIG_EXT_REFS
ref_costs_comp[LAST2_FRAME] = 512;
ref_costs_comp[LAST3_FRAME] = 512;
ref_costs_comp[BWDREF_FRAME] = 512;
ref_costs_comp[ALTREF_FRAME] = 512;
#endif // CONFIG_EXT_REFS
ref_costs_comp[GOLDEN_FRAME] = 512;
}
}
}
static void store_coding_context(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx,
int mode_index,
int64_t comp_pred_diff[REFERENCE_MODES],
int skippable) {
MACROBLOCKD *const xd = &x->e_mbd;
// Take a snapshot of the coding context so it can be
// restored if we decide to encode this way
ctx->skip = x->skip;
ctx->skippable = skippable;
ctx->best_mode_index = mode_index;
ctx->mic = *xd->mi[0];
ctx->mbmi_ext = *x->mbmi_ext;
ctx->single_pred_diff = (int)comp_pred_diff[SINGLE_REFERENCE];
ctx->comp_pred_diff = (int)comp_pred_diff[COMPOUND_REFERENCE];
ctx->hybrid_pred_diff = (int)comp_pred_diff[REFERENCE_MODE_SELECT];
}
static void setup_buffer_inter(
VP10_COMP *cpi, MACROBLOCK *x,
MV_REFERENCE_FRAME ref_frame,
BLOCK_SIZE block_size,
int mi_row, int mi_col,
int_mv frame_nearest_mv[MAX_REF_FRAMES],
int_mv frame_near_mv[MAX_REF_FRAMES],
struct buf_2d yv12_mb[MAX_REF_FRAMES][MAX_MB_PLANE]) {
const VP10_COMMON *cm = &cpi->common;
const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, ref_frame);
MACROBLOCKD *const xd = &x->e_mbd;
MODE_INFO *const mi = xd->mi[0];
int_mv *const candidates = x->mbmi_ext->ref_mvs[ref_frame];
const struct scale_factors *const sf = &cm->frame_refs[ref_frame - 1].sf;
MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
assert(yv12 != NULL);
// TODO(jkoleszar): Is the UV buffer ever used here? If so, need to make this
// use the UV scaling factors.
vp10_setup_pred_block(xd, yv12_mb[ref_frame], yv12, mi_row, mi_col, sf, sf);
// Gets an initial list of candidate vectors from neighbours and orders them
vp10_find_mv_refs(cm, xd, mi, ref_frame,
#if CONFIG_REF_MV
&mbmi_ext->ref_mv_count[ref_frame],
mbmi_ext->ref_mv_stack[ref_frame],
#if CONFIG_EXT_INTER
mbmi_ext->compound_mode_context,
#endif // CONFIG_EXT_INTER
#endif
candidates, mi_row, mi_col,
NULL, NULL, mbmi_ext->mode_context);
// Candidate refinement carried out at encoder and decoder
vp10_find_best_ref_mvs(cm->allow_high_precision_mv, candidates,
&frame_nearest_mv[ref_frame],
&frame_near_mv[ref_frame]);
// Further refinement that is encode side only to test the top few candidates
// in full and choose the best as the centre point for subsequent searches.
// The current implementation doesn't support scaling.
if (!vp10_is_scaled(sf) && block_size >= BLOCK_8X8)
vp10_mv_pred(cpi, x, yv12_mb[ref_frame][0].buf, yv12->y_stride,
ref_frame, block_size);
}
static void single_motion_search(VP10_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE bsize,
int mi_row, int mi_col,
#if CONFIG_EXT_INTER
int ref_idx,
int mv_idx,
#endif // CONFIG_EXT_INTER
int *rate_mv) {
MACROBLOCKD *xd = &x->e_mbd;
const VP10_COMMON *cm = &cpi->common;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
struct buf_2d backup_yv12[MAX_MB_PLANE] = {{0, 0, 0, 0, 0}};
int bestsme = INT_MAX;
int step_param;
int sadpb = x->sadperbit16;
MV mvp_full;
#if CONFIG_EXT_INTER
int ref = mbmi->ref_frame[ref_idx];
MV ref_mv = x->mbmi_ext->ref_mvs[ref][mv_idx].as_mv;
#else
int ref = mbmi->ref_frame[0];
MV ref_mv = x->mbmi_ext->ref_mvs[ref][0].as_mv;
int ref_idx = 0;
#endif // CONFIG_EXT_INTER
int tmp_col_min = x->mv_col_min;
int tmp_col_max = x->mv_col_max;
int tmp_row_min = x->mv_row_min;
int tmp_row_max = x->mv_row_max;
int cost_list[5];
const YV12_BUFFER_CONFIG *scaled_ref_frame = vp10_get_scaled_ref_frame(cpi,
ref);
MV pred_mv[3];
pred_mv[0] = x->mbmi_ext->ref_mvs[ref][0].as_mv;
pred_mv[1] = x->mbmi_ext->ref_mvs[ref][1].as_mv;
pred_mv[2] = x->pred_mv[ref];
#if CONFIG_REF_MV
vp10_set_mvcost(x, ref);
#endif
if (scaled_ref_frame) {
int i;
// Swap out the reference frame for a version that's been scaled to
// match the resolution of the current frame, allowing the existing
// motion search code to be used without additional modifications.
for (i = 0; i < MAX_MB_PLANE; i++)
backup_yv12[i] = xd->plane[i].pre[ref_idx];
vp10_setup_pre_planes(xd, ref_idx, scaled_ref_frame, mi_row, mi_col, NULL);
}
vp10_set_mv_search_range(x, &ref_mv);
// Work out the size of the first step in the mv step search.
// 0 here is maximum length first step. 1 is VPXMAX >> 1 etc.
if (cpi->sf.mv.auto_mv_step_size && cm->show_frame) {
// Take wtd average of the step_params based on the last frame's
// max mv magnitude and that based on the best ref mvs of the current
// block for the given reference.
step_param = (vp10_init_search_range(x->max_mv_context[ref]) +
cpi->mv_step_param) / 2;
} else {
step_param = cpi->mv_step_param;
}
if (cpi->sf.adaptive_motion_search && bsize < cm->sb_size) {
int boffset = 2 * (b_width_log2_lookup[cm->sb_size] -
VPXMIN(b_height_log2_lookup[bsize], b_width_log2_lookup[bsize]));
step_param = VPXMAX(step_param, boffset);
}
if (cpi->sf.adaptive_motion_search) {
int bwl = b_width_log2_lookup[bsize];
int bhl = b_height_log2_lookup[bsize];
int tlevel = x->pred_mv_sad[ref] >> (bwl + bhl + 4);
if (tlevel < 5)
step_param += 2;
// prev_mv_sad is not setup for dynamically scaled frames.
if (cpi->oxcf.resize_mode != RESIZE_DYNAMIC) {
int i;
for (i = LAST_FRAME; i <= ALTREF_FRAME && cm->show_frame; ++i) {
if ((x->pred_mv_sad[ref] >> 3) > x->pred_mv_sad[i]) {
x->pred_mv[ref].row = 0;
x->pred_mv[ref].col = 0;
x->best_mv.as_int = INVALID_MV;
if (scaled_ref_frame) {
int i;
for (i = 0; i < MAX_MB_PLANE; ++i)
xd->plane[i].pre[ref_idx] = backup_yv12[i];
}
return;
}
}
}
}
mvp_full = pred_mv[x->mv_best_ref_index[ref]];
mvp_full.col >>= 3;
mvp_full.row >>= 3;
bestsme = vp10_full_pixel_search(cpi, x, bsize, &mvp_full, step_param, sadpb,
cond_cost_list(cpi, cost_list),
&ref_mv, INT_MAX, 1);
x->mv_col_min = tmp_col_min;
x->mv_col_max = tmp_col_max;
x->mv_row_min = tmp_row_min;
x->mv_row_max = tmp_row_max;
if (bestsme < INT_MAX) {
int dis; /* TODO: use dis in distortion calculation later. */
if (cpi->sf.use_upsampled_references) {
const int pw = 4 * num_4x4_blocks_wide_lookup[bsize];
const int ph = 4 * num_4x4_blocks_high_lookup[bsize];
// Use up-sampled reference frames.
struct macroblockd_plane *const pd = &xd->plane[0];
struct buf_2d backup_pred = pd->pre[ref_idx];
const YV12_BUFFER_CONFIG *upsampled_ref = get_upsampled_ref(cpi, ref);
// Set pred for Y plane
setup_pred_plane(&pd->pre[ref_idx], upsampled_ref->y_buffer,
upsampled_ref->y_crop_width,
upsampled_ref->y_crop_height,
upsampled_ref->y_stride, (mi_row << 3), (mi_col << 3),
NULL, pd->subsampling_x, pd->subsampling_y);
bestsme = cpi->find_fractional_mv_step(x, &ref_mv,
cm->allow_high_precision_mv,
x->errorperbit,
&cpi->fn_ptr[bsize],
cpi->sf.mv.subpel_force_stop,
cpi->sf.mv.subpel_iters_per_step,
cond_cost_list(cpi, cost_list),
x->nmvjointcost, x->mvcost,
&dis, &x->pred_sse[ref], NULL,
pw, ph, 1);
// Restore the reference frames.
pd->pre[ref_idx] = backup_pred;
} else {
cpi->find_fractional_mv_step(x, &ref_mv,
cm->allow_high_precision_mv,
x->errorperbit,
&cpi->fn_ptr[bsize],
cpi->sf.mv.subpel_force_stop,
cpi->sf.mv.subpel_iters_per_step,
cond_cost_list(cpi, cost_list),
x->nmvjointcost, x->mvcost,
&dis, &x->pred_sse[ref], NULL, 0, 0, 0);
}
}
*rate_mv = vp10_mv_bit_cost(&x->best_mv.as_mv, &ref_mv,
x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
if (cpi->sf.adaptive_motion_search)
x->pred_mv[ref] = x->best_mv.as_mv;
if (scaled_ref_frame) {
int i;
for (i = 0; i < MAX_MB_PLANE; i++)
xd->plane[i].pre[ref_idx] = backup_yv12[i];
}
}
static INLINE void restore_dst_buf(MACROBLOCKD *xd,
uint8_t *orig_dst[MAX_MB_PLANE],
int orig_dst_stride[MAX_MB_PLANE]) {
int i;
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = orig_dst[i];
xd->plane[i].dst.stride = orig_dst_stride[i];
}
}
#if CONFIG_OBMC
static void single_motion_search_obmc(VP10_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE bsize, int mi_row, int mi_col,
const int32_t* wsrc, const int32_t* mask,
#if CONFIG_EXT_INTER
int ref_idx,
int mv_idx,
#endif // CONFIG_EXT_INTER
int_mv *tmp_mv, int_mv pred_mv,
int *rate_mv) {
MACROBLOCKD *xd = &x->e_mbd;
const VP10_COMMON *cm = &cpi->common;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
struct buf_2d backup_yv12[MAX_MB_PLANE] = {{0, 0, 0, 0, 0}};
int bestsme = INT_MAX;
int step_param;
int sadpb = x->sadperbit16;
MV mvp_full;
#if CONFIG_EXT_INTER
int ref = mbmi->ref_frame[ref_idx];
MV ref_mv = x->mbmi_ext->ref_mvs[ref][mv_idx].as_mv;
#else
int ref = mbmi->ref_frame[0];
MV ref_mv = x->mbmi_ext->ref_mvs[ref][0].as_mv;
int ref_idx = 0;
#endif // CONFIG_EXT_INTER
int tmp_col_min = x->mv_col_min;
int tmp_col_max = x->mv_col_max;
int tmp_row_min = x->mv_row_min;
int tmp_row_max = x->mv_row_max;
const YV12_BUFFER_CONFIG *scaled_ref_frame = vp10_get_scaled_ref_frame(cpi,
ref);
#if CONFIG_REF_MV
vp10_set_mvcost(x, ref);
#endif
if (scaled_ref_frame) {
int i;
// Swap out the reference frame for a version that's been scaled to
// match the resolution of the current frame, allowing the existing
// motion search code to be used without additional modifications.
for (i = 0; i < MAX_MB_PLANE; i++)
backup_yv12[i] = xd->plane[i].pre[ref_idx];
vp10_setup_pre_planes(xd, ref_idx, scaled_ref_frame, mi_row, mi_col, NULL);
}
vp10_set_mv_search_range(x, &ref_mv);
// Work out the size of the first step in the mv step search.
// 0 here is maximum length first step. 1 is VPXMAX >> 1 etc.
if (cpi->sf.mv.auto_mv_step_size && cm->show_frame) {
// Take wtd average of the step_params based on the last frame's
// max mv magnitude and that based on the best ref mvs of the current
// block for the given reference.
step_param = (vp10_init_search_range(x->max_mv_context[ref]) +
cpi->mv_step_param) / 2;
} else {
step_param = cpi->mv_step_param;
}
if (cpi->sf.adaptive_motion_search && bsize < cm->sb_size) {
int boffset = 2 * (b_width_log2_lookup[cm->sb_size] -
VPXMIN(b_height_log2_lookup[bsize], b_width_log2_lookup[bsize]));
step_param = VPXMAX(step_param, boffset);
}
if (cpi->sf.adaptive_motion_search) {
int bwl = b_width_log2_lookup[bsize];
int bhl = b_height_log2_lookup[bsize];
int tlevel = x->pred_mv_sad[ref] >> (bwl + bhl + 4);
if (tlevel < 5)
step_param += 2;
// prev_mv_sad is not setup for dynamically scaled frames.
if (cpi->oxcf.resize_mode != RESIZE_DYNAMIC) {
int i;
for (i = LAST_FRAME; i <= ALTREF_FRAME && cm->show_frame; ++i) {
if ((x->pred_mv_sad[ref] >> 3) > x->pred_mv_sad[i]) {
x->pred_mv[ref].row = 0;
x->pred_mv[ref].col = 0;
tmp_mv->as_int = INVALID_MV;
if (scaled_ref_frame) {
int i;
for (i = 0; i < MAX_MB_PLANE; ++i)
xd->plane[i].pre[ref_idx] = backup_yv12[i];
}
return;
}
}
}
}
mvp_full = pred_mv.as_mv;
mvp_full.col >>= 3;
mvp_full.row >>= 3;
bestsme = vp10_obmc_full_pixel_diamond(cpi, x, wsrc, mask,
&mvp_full, step_param, sadpb,
MAX_MVSEARCH_STEPS - 1 - step_param,
1, &cpi->fn_ptr[bsize],
&ref_mv, &tmp_mv->as_mv, ref_idx);
x->mv_col_min = tmp_col_min;
x->mv_col_max = tmp_col_max;
x->mv_row_min = tmp_row_min;
x->mv_row_max = tmp_row_max;
if (bestsme < INT_MAX) {
int dis;
vp10_find_best_obmc_sub_pixel_tree_up(cpi, x,
wsrc, mask,
mi_row, mi_col,
&tmp_mv->as_mv, &ref_mv,
cm->allow_high_precision_mv,
x->errorperbit,
&cpi->fn_ptr[bsize],
cpi->sf.mv.subpel_force_stop,
cpi->sf.mv.subpel_iters_per_step,
x->nmvjointcost, x->mvcost,
&dis, &x->pred_sse[ref],
ref_idx,
cpi->sf.use_upsampled_references);
}
*rate_mv = vp10_mv_bit_cost(&tmp_mv->as_mv, &ref_mv,
x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
if (scaled_ref_frame) {
int i;
for (i = 0; i < MAX_MB_PLANE; i++)
xd->plane[i].pre[ref_idx] = backup_yv12[i];
}
}
#endif // CONFIG_OBMC
#if CONFIG_EXT_INTER
static void do_masked_motion_search(VP10_COMP *cpi, MACROBLOCK *x,
const uint8_t *mask, int mask_stride,
BLOCK_SIZE bsize,
int mi_row, int mi_col,
int_mv *tmp_mv, int *rate_mv,
int ref_idx,
int mv_idx) {
MACROBLOCKD *xd = &x->e_mbd;
const VP10_COMMON *cm = &cpi->common;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
struct buf_2d backup_yv12[MAX_MB_PLANE] = {{0, 0, 0, 0, 0}};
int bestsme = INT_MAX;
int step_param;
int sadpb = x->sadperbit16;
MV mvp_full;
int ref = mbmi->ref_frame[ref_idx];
MV ref_mv = x->mbmi_ext->ref_mvs[ref][mv_idx].as_mv;
int tmp_col_min = x->mv_col_min;
int tmp_col_max = x->mv_col_max;
int tmp_row_min = x->mv_row_min;
int tmp_row_max = x->mv_row_max;
const YV12_BUFFER_CONFIG *scaled_ref_frame =
vp10_get_scaled_ref_frame(cpi, ref);
MV pred_mv[3];
pred_mv[0] = x->mbmi_ext->ref_mvs[ref][0].as_mv;
pred_mv[1] = x->mbmi_ext->ref_mvs[ref][1].as_mv;
pred_mv[2] = x->pred_mv[ref];
#if CONFIG_REF_MV
vp10_set_mvcost(x, ref);
#endif
if (scaled_ref_frame) {
int i;
// Swap out the reference frame for a version that's been scaled to
// match the resolution of the current frame, allowing the existing
// motion search code to be used without additional modifications.
for (i = 0; i < MAX_MB_PLANE; i++)
backup_yv12[i] = xd->plane[i].pre[ref_idx];
vp10_setup_pre_planes(xd, ref_idx, scaled_ref_frame, mi_row, mi_col, NULL);
}
vp10_set_mv_search_range(x, &ref_mv);
// Work out the size of the first step in the mv step search.
// 0 here is maximum length first step. 1 is MAX >> 1 etc.
if (cpi->sf.mv.auto_mv_step_size && cm->show_frame) {
// Take wtd average of the step_params based on the last frame's
// max mv magnitude and that based on the best ref mvs of the current
// block for the given reference.
step_param = (vp10_init_search_range(x->max_mv_context[ref]) +
cpi->mv_step_param) / 2;
} else {
step_param = cpi->mv_step_param;
}
// TODO(debargha): is show_frame needed here?
if (cpi->sf.adaptive_motion_search && bsize < cm->sb_size &&
cm->show_frame) {
int boffset = 2 * (b_width_log2_lookup[cm->sb_size] -
VPXMIN(b_height_log2_lookup[bsize], b_width_log2_lookup[bsize]));
step_param = VPXMAX(step_param, boffset);
}
if (cpi->sf.adaptive_motion_search) {
int bwl = b_width_log2_lookup[bsize];
int bhl = b_height_log2_lookup[bsize];
int tlevel = x->pred_mv_sad[ref] >> (bwl + bhl + 4);
if (tlevel < 5)
step_param += 2;
// prev_mv_sad is not setup for dynamically scaled frames.
if (cpi->oxcf.resize_mode != RESIZE_DYNAMIC) {
int i;
for (i = LAST_FRAME; i <= ALTREF_FRAME && cm->show_frame; ++i) {
if ((x->pred_mv_sad[ref] >> 3) > x->pred_mv_sad[i]) {
x->pred_mv[ref].row = 0;
x->pred_mv[ref].col = 0;
tmp_mv->as_int = INVALID_MV;
if (scaled_ref_frame) {
int i;
for (i = 0; i < MAX_MB_PLANE; ++i)
xd->plane[i].pre[ref_idx] = backup_yv12[i];
}
return;
}
}
}
}
mvp_full = pred_mv[x->mv_best_ref_index[ref]];
mvp_full.col >>= 3;
mvp_full.row >>= 3;
bestsme = vp10_masked_full_pixel_diamond(cpi, x, mask, mask_stride,
&mvp_full, step_param, sadpb,
MAX_MVSEARCH_STEPS - 1 - step_param,
1, &cpi->fn_ptr[bsize],
&ref_mv, &tmp_mv->as_mv, ref_idx);
x->mv_col_min = tmp_col_min;
x->mv_col_max = tmp_col_max;
x->mv_row_min = tmp_row_min;
x->mv_row_max = tmp_row_max;
if (bestsme < INT_MAX) {
int dis; /* TODO: use dis in distortion calculation later. */
vp10_find_best_masked_sub_pixel_tree_up(cpi, x, mask, mask_stride,
mi_row, mi_col,
&tmp_mv->as_mv, &ref_mv,
cm->allow_high_precision_mv,
x->errorperbit,
&cpi->fn_ptr[bsize],
cpi->sf.mv.subpel_force_stop,
cpi->sf.mv.subpel_iters_per_step,
x->nmvjointcost, x->mvcost,
&dis, &x->pred_sse[ref],
ref_idx,
cpi->sf.use_upsampled_references);
}
*rate_mv = vp10_mv_bit_cost(&tmp_mv->as_mv, &ref_mv,
x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
if (cpi->sf.adaptive_motion_search && cm->show_frame)
x->pred_mv[ref] = tmp_mv->as_mv;
if (scaled_ref_frame) {
int i;
for (i = 0; i < MAX_MB_PLANE; i++)
xd->plane[i].pre[ref_idx] = backup_yv12[i];
}
}
static void do_masked_motion_search_indexed(VP10_COMP *cpi, MACROBLOCK *x,
int wedge_index,
int wedge_sign,
BLOCK_SIZE bsize,
int mi_row, int mi_col,
int_mv *tmp_mv, int *rate_mv,
int mv_idx[2],
int which) {
// NOTE: which values: 0 - 0 only, 1 - 1 only, 2 - both
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
BLOCK_SIZE sb_type = mbmi->sb_type;
const uint8_t *mask;
const int mask_stride = 4 * num_4x4_blocks_wide_lookup[bsize];
mask = vp10_get_contiguous_soft_mask(wedge_index, wedge_sign, sb_type);
if (which == 0 || which == 2)
do_masked_motion_search(cpi, x, mask, mask_stride, bsize,
mi_row, mi_col, &tmp_mv[0], &rate_mv[0],
0, mv_idx[0]);
if (which == 1 || which == 2) {
// get the negative mask
mask = vp10_get_contiguous_soft_mask(wedge_index, !wedge_sign, sb_type);
do_masked_motion_search(cpi, x, mask, mask_stride, bsize,
mi_row, mi_col, &tmp_mv[1], &rate_mv[1],
1, mv_idx[1]);
}
}
#endif // CONFIG_EXT_INTER
// In some situations we want to discount tha pparent cost of a new motion
// vector. Where there is a subtle motion field and especially where there is
// low spatial complexity then it can be hard to cover the cost of a new motion
// vector in a single block, even if that motion vector reduces distortion.
// However, once established that vector may be usable through the nearest and
// near mv modes to reduce distortion in subsequent blocks and also improve
// visual quality.
static int discount_newmv_test(const VP10_COMP *cpi,
int this_mode,
int_mv this_mv,
int_mv (*mode_mv)[MAX_REF_FRAMES],
int ref_frame) {
return (!cpi->rc.is_src_frame_alt_ref &&
(this_mode == NEWMV) &&
(this_mv.as_int != 0) &&
((mode_mv[NEARESTMV][ref_frame].as_int == 0) ||
(mode_mv[NEARESTMV][ref_frame].as_int == INVALID_MV)) &&
((mode_mv[NEARMV][ref_frame].as_int == 0) ||
(mode_mv[NEARMV][ref_frame].as_int == INVALID_MV)));
}
#define LEFT_TOP_MARGIN ((VP9_ENC_BORDER_IN_PIXELS - VP9_INTERP_EXTEND) << 3)
#define RIGHT_BOTTOM_MARGIN ((VP9_ENC_BORDER_IN_PIXELS -\
VP9_INTERP_EXTEND) << 3)
// TODO(jingning): this mv clamping function should be block size dependent.
static INLINE void clamp_mv2(MV *mv, const MACROBLOCKD *xd) {
clamp_mv(mv, xd->mb_to_left_edge - LEFT_TOP_MARGIN,
xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN,
xd->mb_to_top_edge - LEFT_TOP_MARGIN,
xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN);
}
#if CONFIG_EXT_INTER
static int estimate_wedge_sign(const VP10_COMP *cpi,
const MACROBLOCK *x,
const BLOCK_SIZE bsize,
const uint8_t *pred0, int stride0,
const uint8_t *pred1, int stride1) {
const struct macroblock_plane *const p = &x->plane[0];
const uint8_t *src = p->src.buf;
int src_stride = p->src.stride;
const int f_index = bsize - BLOCK_8X8;
const int bw = 4 << (b_width_log2_lookup[bsize]);
const int bh = 4 << (b_height_log2_lookup[bsize]);
uint32_t esq[2][4], var;
int64_t tl, br;
#if CONFIG_VP9_HIGHBITDEPTH
if (x->e_mbd.cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
pred0 = CONVERT_TO_BYTEPTR(pred0);
pred1 = CONVERT_TO_BYTEPTR(pred1);
}
#endif // CONFIG_VP9_HIGHBITDEPTH
var = cpi->fn_ptr[f_index].vf(
src, src_stride,
pred0, stride0, &esq[0][0]);
var = cpi->fn_ptr[f_index].vf(
src + bw / 2, src_stride,
pred0 + bw / 2, stride0, &esq[0][1]);
var = cpi->fn_ptr[f_index].vf(
src + bh / 2 * src_stride, src_stride,
pred0 + bh / 2 * stride0, stride0, &esq[0][2]);
var = cpi->fn_ptr[f_index].vf(
src + bh / 2 * src_stride + bw / 2, src_stride,
pred0 + bh / 2 * stride0 + bw / 2, stride0, &esq[0][3]);
var = cpi->fn_ptr[f_index].vf(
src, src_stride,
pred1, stride1, &esq[1][0]);
var = cpi->fn_ptr[f_index].vf(
src + bw / 2, src_stride,
pred1 + bw / 2, stride1, &esq[1][1]);
var = cpi->fn_ptr[f_index].vf(
src + bh / 2 * src_stride, src_stride,
pred1 + bh / 2 * stride1, stride0, &esq[1][2]);
var = cpi->fn_ptr[f_index].vf(
src + bh / 2 * src_stride + bw / 2, src_stride,
pred1 + bh / 2 * stride1 + bw / 2, stride0, &esq[1][3]);
(void) var;
tl = (int64_t)(esq[0][0] + esq[0][1] + esq[0][2]) -
(int64_t)(esq[1][0] + esq[1][1] + esq[1][2]);
br = (int64_t)(esq[1][3] + esq[1][1] + esq[1][2]) -
(int64_t)(esq[0][3] + esq[0][1] + esq[0][2]);
return (tl + br > 0);
}
#endif // CONFIG_EXT_INTER
#if !CONFIG_DUAL_FILTER
static INTERP_FILTER predict_interp_filter(const VP10_COMP *cpi,
const MACROBLOCK *x,
const BLOCK_SIZE bsize,
const int mi_row,
const int mi_col,
INTERP_FILTER
(*single_filter)[MAX_REF_FRAMES]
) {
INTERP_FILTER best_filter = SWITCHABLE;
const VP10_COMMON *cm = &cpi->common;
const MACROBLOCKD *xd = &x->e_mbd;
int bsl = mi_width_log2_lookup[bsize];
int pred_filter_search = cpi->sf.cb_pred_filter_search ?
(((mi_row + mi_col) >> bsl) +
get_chessboard_index(cm->current_video_frame)) & 0x1 : 0;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
const int is_comp_pred = has_second_ref(mbmi);
const int this_mode = mbmi->mode;
int refs[2] = { mbmi->ref_frame[0],
(mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1]) };
#if CONFIG_DUAL_FILTER
(void)pred_filter_search;
return SWITCHABLE;
#else
if (pred_filter_search) {
INTERP_FILTER af = SWITCHABLE, lf = SWITCHABLE;
if (xd->up_available)
af = xd->mi[-xd->mi_stride]->mbmi.interp_filter;
if (xd->left_available)
lf = xd->mi[-1]->mbmi.interp_filter;
#if CONFIG_EXT_INTER
if ((this_mode != NEWMV && this_mode != NEWFROMNEARMV &&
this_mode != NEW_NEWMV) || (af == lf))
#else
if ((this_mode != NEWMV) || (af == lf))
#endif // CONFIG_EXT_INTER
best_filter = af;
}
#endif
if (is_comp_pred) {
if (cpi->sf.adaptive_mode_search) {
#if CONFIG_EXT_INTER
switch (this_mode) {
case NEAREST_NEARESTMV:
if (single_filter[NEARESTMV][refs[0]] ==
single_filter[NEARESTMV][refs[1]])
best_filter = single_filter[NEARESTMV][refs[0]];
break;
case NEAREST_NEARMV:
if (single_filter[NEARESTMV][refs[0]] ==
single_filter[NEARMV][refs[1]])
best_filter = single_filter[NEARESTMV][refs[0]];
break;
case NEAR_NEARESTMV:
if (single_filter[NEARMV][refs[0]] ==
single_filter[NEARESTMV][refs[1]])
best_filter = single_filter[NEARMV][refs[0]];
break;
case NEAR_NEARMV:
if (single_filter[NEARMV][refs[0]] ==
single_filter[NEARMV][refs[1]])
best_filter = single_filter[NEARMV][refs[0]];
break;
case ZERO_ZEROMV:
if (single_filter[ZEROMV][refs[0]] ==
single_filter[ZEROMV][refs[1]])
best_filter = single_filter[ZEROMV][refs[0]];
break;
case NEW_NEWMV:
if (single_filter[NEWMV][refs[0]] ==
single_filter[NEWMV][refs[1]])
best_filter = single_filter[NEWMV][refs[0]];
break;
case NEAREST_NEWMV:
if (single_filter[NEARESTMV][refs[0]] ==
single_filter[NEWMV][refs[1]])
best_filter = single_filter[NEARESTMV][refs[0]];
break;
case NEAR_NEWMV:
if (single_filter[NEARMV][refs[0]] ==
single_filter[NEWMV][refs[1]])
best_filter = single_filter[NEARMV][refs[0]];
break;
case NEW_NEARESTMV:
if (single_filter[NEWMV][refs[0]] ==
single_filter[NEARESTMV][refs[1]])
best_filter = single_filter[NEWMV][refs[0]];
break;
case NEW_NEARMV:
if (single_filter[NEWMV][refs[0]] ==
single_filter[NEARMV][refs[1]])
best_filter = single_filter[NEWMV][refs[0]];
break;
default:
if (single_filter[this_mode][refs[0]] ==
single_filter[this_mode][refs[1]])
best_filter = single_filter[this_mode][refs[0]];
break;
}
#else
if (single_filter[this_mode][refs[0]] ==
single_filter[this_mode][refs[1]])
best_filter = single_filter[this_mode][refs[0]];
#endif // CONFIG_EXT_INTER
}
}
if (cm->interp_filter != BILINEAR) {
if (x->source_variance < cpi->sf.disable_filter_search_var_thresh) {
best_filter = EIGHTTAP_REGULAR;
}
#if CONFIG_EXT_INTERP
else if (!vp10_is_interp_needed(xd) && cm->interp_filter == SWITCHABLE) {
best_filter = EIGHTTAP_REGULAR;
}
#endif
}
return best_filter;
}
#endif
#if CONFIG_EXT_INTER
// Choose the best wedge index and sign
static int64_t pick_wedge(const VP10_COMP *const cpi,
const MACROBLOCK *const x,
const BLOCK_SIZE bsize,
const uint8_t *const p0,
const uint8_t *const p1,
int *const best_wedge_sign,
int *const best_wedge_index) {
const MACROBLOCKD *const xd = &x->e_mbd;
const struct buf_2d *const src = &x->plane[0].src;
const int bw = 4 * num_4x4_blocks_wide_lookup[bsize];
const int bh = 4 * num_4x4_blocks_high_lookup[bsize];
const int N = bw * bh;
int rate;
int64_t dist;
int64_t rd, best_rd = INT64_MAX;
int wedge_index;
int wedge_sign;
int wedge_types = (1 << get_wedge_bits_lookup(bsize));
const uint8_t *mask;
uint64_t sse;
#if CONFIG_VP9_HIGHBITDEPTH
const int hbd = xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH;
const int bd_round = hbd ? (xd->bd - 8) * 2 : 0;
#else
const int bd_round = 0;
#endif // CONFIG_VP9_HIGHBITDEPTH
DECLARE_ALIGNED(32, int16_t, r0[MAX_SB_SQUARE]);
DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]);
DECLARE_ALIGNED(32, int16_t, d10[MAX_SB_SQUARE]);
DECLARE_ALIGNED(32, int16_t, ds[MAX_SB_SQUARE]);
int64_t sign_limit;
#if CONFIG_VP9_HIGHBITDEPTH
if (hbd) {
vpx_highbd_subtract_block(bh, bw, r0, bw, src->buf, src->stride,
CONVERT_TO_BYTEPTR(p0), bw, xd->bd);
vpx_highbd_subtract_block(bh, bw, r1, bw, src->buf, src->stride,
CONVERT_TO_BYTEPTR(p1), bw, xd->bd);
vpx_highbd_subtract_block(bh, bw, d10, bw,
CONVERT_TO_BYTEPTR(p1), bw,
CONVERT_TO_BYTEPTR(p0), bw, xd->bd);
} else // NOLINT
#endif // CONFIG_VP9_HIGHBITDEPTH
{
vpx_subtract_block(bh, bw, r0, bw, src->buf, src->stride, p0, bw);
vpx_subtract_block(bh, bw, r1, bw, src->buf, src->stride, p1, bw);
vpx_subtract_block(bh, bw, d10, bw, p1, bw, p0, bw);
}
sign_limit = ((int64_t)vpx_sum_squares_i16(r0, N)
- (int64_t)vpx_sum_squares_i16(r1, N))
* (1 << WEDGE_WEIGHT_BITS) / 2;
vp10_wedge_compute_delta_squares(ds, r0, r1, N);
for (wedge_index = 0; wedge_index < wedge_types; ++wedge_index) {
mask = vp10_get_contiguous_soft_mask(wedge_index, 0, bsize);
wedge_sign = vp10_wedge_sign_from_residuals(ds, mask, N, sign_limit);
mask = vp10_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize);
sse = vp10_wedge_sse_from_residuals(r1, d10, mask, N);
sse = ROUND_POWER_OF_TWO(sse, bd_round);
model_rd_from_sse(cpi, xd, bsize, 0, sse, &rate, &dist);
rd = RDCOST(x->rdmult, x->rddiv, rate, dist);
if (rd < best_rd) {
*best_wedge_index = wedge_index;
*best_wedge_sign = wedge_sign;
best_rd = rd;
}
}
return best_rd;
}
// Choose the best wedge index the specified sign
static int64_t pick_wedge_fixed_sign(const VP10_COMP *const cpi,
const MACROBLOCK *const x,
const BLOCK_SIZE bsize,
const uint8_t *const p0,
const uint8_t *const p1,
const int wedge_sign,
int *const best_wedge_index) {
const MACROBLOCKD *const xd = &x->e_mbd;
const struct buf_2d *const src = &x->plane[0].src;
const int bw = 4 * num_4x4_blocks_wide_lookup[bsize];
const int bh = 4 * num_4x4_blocks_high_lookup[bsize];
const int N = bw * bh;
int rate;
int64_t dist;
int64_t rd, best_rd = INT64_MAX;
int wedge_index;
int wedge_types = (1 << get_wedge_bits_lookup(bsize));
const uint8_t *mask;
uint64_t sse;
#if CONFIG_VP9_HIGHBITDEPTH
const int hbd = xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH;
const int bd_round = hbd ? (xd->bd - 8) * 2 : 0;
#else
const int bd_round = 0;
#endif // CONFIG_VP9_HIGHBITDEPTH
DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]);
DECLARE_ALIGNED(32, int16_t, d10[MAX_SB_SQUARE]);
#if CONFIG_VP9_HIGHBITDEPTH
if (hbd) {
vpx_highbd_subtract_block(bh, bw, r1, bw, src->buf, src->stride,
CONVERT_TO_BYTEPTR(p1), bw, xd->bd);
vpx_highbd_subtract_block(bh, bw, d10, bw,
CONVERT_TO_BYTEPTR(p1), bw,
CONVERT_TO_BYTEPTR(p0), bw, xd->bd);
} else // NOLINT
#endif // CONFIG_VP9_HIGHBITDEPTH
{
vpx_subtract_block(bh, bw, r1, bw, src->buf, src->stride, p1, bw);
vpx_subtract_block(bh, bw, d10, bw, p1, bw, p0, bw);
}
for (wedge_index = 0; wedge_index < wedge_types; ++wedge_index) {
mask = vp10_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize);
sse = vp10_wedge_sse_from_residuals(r1, d10, mask, N);
sse = ROUND_POWER_OF_TWO(sse, bd_round);
model_rd_from_sse(cpi, xd, bsize, 0, sse, &rate, &dist);
rd = RDCOST(x->rdmult, x->rddiv, rate, dist);
if (rd < best_rd) {
*best_wedge_index = wedge_index;
best_rd = rd;
}
}
return best_rd;
}
static int64_t pick_interinter_wedge(const VP10_COMP *const cpi,
const MACROBLOCK *const x,
const BLOCK_SIZE bsize,
const uint8_t *const p0,
const uint8_t *const p1) {
const MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
const int bw = 4 * num_4x4_blocks_wide_lookup[bsize];
int64_t rd;
int wedge_index = -1;
int wedge_sign = 0;
assert(is_interinter_wedge_used(bsize));
if (cpi->sf.fast_wedge_sign_estimate) {
wedge_sign = estimate_wedge_sign(cpi, x, bsize, p0, bw, p1, bw);
rd = pick_wedge_fixed_sign(cpi, x, bsize, p0, p1, wedge_sign, &wedge_index);
} else {
rd = pick_wedge(cpi, x, bsize, p0, p1, &wedge_sign, &wedge_index);
}
mbmi->interinter_wedge_sign = wedge_sign;
mbmi->interinter_wedge_index = wedge_index;
return rd;
}
static int64_t pick_interintra_wedge(const VP10_COMP *const cpi,
const MACROBLOCK *const x,
const BLOCK_SIZE bsize,
const uint8_t *const p0,
const uint8_t *const p1) {
const MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
int64_t rd;
int wedge_index = -1;
assert(is_interintra_wedge_used(bsize));
rd = pick_wedge_fixed_sign(cpi, x, bsize, p0, p1, 0, &wedge_index);
mbmi->interintra_wedge_sign = 0;
mbmi->interintra_wedge_index = wedge_index;
return rd;
}
#endif // CONFIG_EXT_INTER
static int64_t handle_inter_mode(VP10_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE bsize,
int *rate2, int64_t *distortion,
int *skippable,
int *rate_y, int *rate_uv,
int *disable_skip,
int_mv (*mode_mv)[MAX_REF_FRAMES],
int mi_row, int mi_col,
#if CONFIG_OBMC
uint8_t *dst_buf1[3], int dst_stride1[3],
uint8_t *dst_buf2[3], int dst_stride2[3],
const int32_t *const wsrc,
const int32_t *const mask2d,
#endif // CONFIG_OBMC
#if CONFIG_EXT_INTER
int_mv single_newmvs[2][MAX_REF_FRAMES],
int single_newmvs_rate[2][MAX_REF_FRAMES],
int *compmode_interintra_cost,
int *compmode_wedge_cost,
int64_t (*const modelled_rd)[MAX_REF_FRAMES],
#else
int_mv single_newmv[MAX_REF_FRAMES],
#endif // CONFIG_EXT_INTER
INTERP_FILTER (*single_filter)[MAX_REF_FRAMES],
int (*single_skippable)[MAX_REF_FRAMES],
int64_t *psse,
const int64_t ref_best_rd) {
VP10_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
const int is_comp_pred = has_second_ref(mbmi);
const int this_mode = mbmi->mode;
int_mv *frame_mv = mode_mv[this_mode];
int i;
int refs[2] = { mbmi->ref_frame[0],
(mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1]) };
int_mv cur_mv[2];
int rate_mv = 0;
#if CONFIG_EXT_INTER
const int bw = 4 * num_4x4_blocks_wide_lookup[bsize];
int mv_idx = (this_mode == NEWFROMNEARMV) ? 1 : 0;
int_mv single_newmv[MAX_REF_FRAMES];
const unsigned int *const interintra_mode_cost =
cpi->interintra_mode_cost[size_group_lookup[bsize]];
const int is_comp_interintra_pred = (mbmi->ref_frame[1] == INTRA_FRAME);
#if CONFIG_REF_MV
uint8_t ref_frame_type = vp10_ref_frame_type(mbmi->ref_frame);
#endif
#endif // CONFIG_EXT_INTER
#if CONFIG_VP9_HIGHBITDEPTH
DECLARE_ALIGNED(16, uint8_t, tmp_buf_[2 * MAX_MB_PLANE * MAX_SB_SQUARE]);
#else
DECLARE_ALIGNED(16, uint8_t, tmp_buf_[MAX_MB_PLANE * MAX_SB_SQUARE]);
#endif // CONFIG_VP9_HIGHBITDEPTH
uint8_t *tmp_buf;
#if CONFIG_OBMC || CONFIG_WARPED_MOTION
int allow_motvar =
#if CONFIG_EXT_INTER
!is_comp_interintra_pred &&
#endif // CONFIG_EXT_INTER
is_motvar_allowed(mbmi);
int rate2_nocoeff, best_rate2 = INT_MAX,
best_skippable, best_xskip, best_disable_skip = 0;
int best_rate_y, best_rate_uv;
#if CONFIG_VAR_TX
uint8_t best_blk_skip[MAX_MB_PLANE][MAX_MIB_SIZE * MAX_MIB_SIZE * 4];
#endif // CONFIG_VAR_TX
int64_t best_distortion = INT64_MAX;
MB_MODE_INFO best_mbmi;
#if CONFIG_EXT_INTER
int rate2_bmc_nocoeff;
int rate_mv_bmc;
MB_MODE_INFO best_bmc_mbmi;
#endif // CONFIG_EXT_INTER
#endif // CONFIG_OBMC || CONFIG_WARPED_MOTION
int pred_exists = 0;
int intpel_mv;
int64_t rd, tmp_rd, best_rd = INT64_MAX;
int best_needs_copy = 0;
uint8_t *orig_dst[MAX_MB_PLANE];
int orig_dst_stride[MAX_MB_PLANE];
int rs = 0;
#if CONFIG_DUAL_FILTER
// Index use case:
// {0, 1} -> (vertical, horizontal) filter types for the first ref frame
// {2, 3} -> (vertical, horizontal) filter types for the second ref frame
INTERP_FILTER best_filter[4] = {SWITCHABLE, SWITCHABLE,
SWITCHABLE, SWITCHABLE,
};
#else
INTERP_FILTER best_filter = SWITCHABLE;
#endif
int skip_txfm_sb = 0;
int64_t skip_sse_sb = INT64_MAX;
int64_t distortion_y = 0, distortion_uv = 0;
int16_t mode_ctx = mbmi_ext->mode_context[refs[0]];
#if CONFIG_EXT_INTER
*compmode_interintra_cost = 0;
mbmi->use_wedge_interintra = 0;
*compmode_wedge_cost = 0;
mbmi->use_wedge_interinter = 0;
// is_comp_interintra_pred implies !is_comp_pred
assert(!is_comp_interintra_pred || (!is_comp_pred));
// is_comp_interintra_pred implies is_interintra_allowed(mbmi->sb_type)
assert(!is_comp_interintra_pred || is_interintra_allowed(mbmi));
#endif // CONFIG_EXT_INTER
#if CONFIG_REF_MV
#if CONFIG_EXT_INTER
if (is_comp_pred)
mode_ctx = mbmi_ext->compound_mode_context[refs[0]];
else
#endif // CONFIG_EXT_INTER
mode_ctx = vp10_mode_context_analyzer(mbmi_ext->mode_context,
mbmi->ref_frame, bsize, -1);
#endif
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
tmp_buf = CONVERT_TO_BYTEPTR(tmp_buf_);
else
#endif // CONFIG_VP9_HIGHBITDEPTH
tmp_buf = tmp_buf_;
if (is_comp_pred) {
if (frame_mv[refs[0]].as_int == INVALID_MV ||
frame_mv[refs[1]].as_int == INVALID_MV)
return INT64_MAX;
}
if (have_newmv_in_inter_mode(this_mode)) {
if (is_comp_pred) {
#if CONFIG_EXT_INTER
for (i = 0; i < 2; ++i) {
single_newmv[refs[i]].as_int =
single_newmvs[mv_idx][refs[i]].as_int;
}
if (this_mode == NEW_NEWMV) {
frame_mv[refs[0]].as_int = single_newmv[refs[0]].as_int;
frame_mv[refs[1]].as_int = single_newmv[refs[1]].as_int;
if (cpi->sf.comp_inter_joint_search_thresh <= bsize) {
joint_motion_search(cpi, x, bsize, frame_mv,
mi_row, mi_col, NULL, single_newmv, &rate_mv, 0);
} else {
#if CONFIG_REF_MV
vp10_set_mvcost(x, mbmi->ref_frame[0]);
#endif // CONFIG_REF_MV
rate_mv = vp10_mv_bit_cost(&frame_mv[refs[0]].as_mv,
&x->mbmi_ext->ref_mvs[refs[0]][0].as_mv,
x->nmvjointcost, x->mvcost,
MV_COST_WEIGHT);
#if CONFIG_REF_MV
vp10_set_mvcost(x, mbmi->ref_frame[1]);
#endif // CONFIG_REF_MV
rate_mv += vp10_mv_bit_cost(&frame_mv[refs[1]].as_mv,
&x->mbmi_ext->ref_mvs[refs[1]][0].as_mv,
x->nmvjointcost, x->mvcost,
MV_COST_WEIGHT);
}
} else if (this_mode == NEAREST_NEWMV || this_mode == NEAR_NEWMV) {
frame_mv[refs[1]].as_int = single_newmv[refs[1]].as_int;
rate_mv = vp10_mv_bit_cost(&frame_mv[refs[1]].as_mv,
&x->mbmi_ext->ref_mvs[refs[1]][0].as_mv,
x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
} else {
frame_mv[refs[0]].as_int = single_newmv[refs[0]].as_int;
rate_mv = vp10_mv_bit_cost(&frame_mv[refs[0]].as_mv,
&x->mbmi_ext->ref_mvs[refs[0]][0].as_mv,
x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
}
#else
// Initialize mv using single prediction mode result.
frame_mv[refs[0]].as_int = single_newmv[refs[0]].as_int;
frame_mv[refs[1]].as_int = single_newmv[refs[1]].as_int;
if (cpi->sf.comp_inter_joint_search_thresh <= bsize) {
joint_motion_search(cpi, x, bsize, frame_mv,
mi_row, mi_col,
single_newmv, &rate_mv, 0);
} else {
#if CONFIG_REF_MV
vp10_set_mvcost(x, mbmi->ref_frame[0]);
#endif // CONFIG_REF_MV
rate_mv = vp10_mv_bit_cost(&frame_mv[refs[0]].as_mv,
&x->mbmi_ext->ref_mvs[refs[0]][0].as_mv,
x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
#if CONFIG_REF_MV
vp10_set_mvcost(x, mbmi->ref_frame[1]);
#endif // CONFIG_REF_MV
rate_mv += vp10_mv_bit_cost(&frame_mv[refs[1]].as_mv,
&x->mbmi_ext->ref_mvs[refs[1]][0].as_mv,
x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
}
#endif // CONFIG_EXT_INTER
} else {
#if CONFIG_EXT_INTER
if (is_comp_interintra_pred) {
x->best_mv = single_newmvs[mv_idx][refs[0]];
rate_mv = single_newmvs_rate[mv_idx][refs[0]];
} else {
single_motion_search(cpi, x, bsize, mi_row, mi_col,
0, mv_idx, &rate_mv);
single_newmvs[mv_idx][refs[0]] = x->best_mv;
single_newmvs_rate[mv_idx][refs[0]] = rate_mv;
}
#else
single_motion_search(cpi, x, bsize, mi_row, mi_col, &rate_mv);
single_newmv[refs[0]] = x->best_mv;
#endif // CONFIG_EXT_INTER
if (x->best_mv.as_int == INVALID_MV)
return INT64_MAX;
frame_mv[refs[0]] = x->best_mv;
xd->mi[0]->bmi[0].as_mv[0] = x->best_mv;
// Estimate the rate implications of a new mv but discount this
// under certain circumstances where we want to help initiate a weak
// motion field, where the distortion gain for a single block may not
// be enough to overcome the cost of a new mv.
if (discount_newmv_test(cpi, this_mode, x->best_mv, mode_mv, refs[0])) {
rate_mv = VPXMAX((rate_mv / NEW_MV_DISCOUNT_FACTOR), 1);
}
}
*rate2 += rate_mv;
}
for (i = 0; i < is_comp_pred + 1; ++i) {
cur_mv[i] = frame_mv[refs[i]];
// Clip "next_nearest" so that it does not extend to far out of image
#if CONFIG_EXT_INTER
if (this_mode != NEWMV && this_mode != NEWFROMNEARMV)
#else
if (this_mode != NEWMV)
#endif // CONFIG_EXT_INTER
clamp_mv2(&cur_mv[i].as_mv, xd);
if (mv_check_bounds(x, &cur_mv[i].as_mv))
return INT64_MAX;
mbmi->mv[i].as_int = cur_mv[i].as_int;
}
#if CONFIG_REF_MV
#if CONFIG_EXT_INTER
if (this_mode == NEAREST_NEARESTMV) {
#else
if (this_mode == NEARESTMV && is_comp_pred) {
uint8_t ref_frame_type = vp10_ref_frame_type(mbmi->ref_frame);
#endif // CONFIG_EXT_INTER
if (mbmi_ext->ref_mv_count[ref_frame_type] > 0) {
cur_mv[0] = mbmi_ext->ref_mv_stack[ref_frame_type][0].this_mv;
cur_mv[1] = mbmi_ext->ref_mv_stack[ref_frame_type][0].comp_mv;
for (i = 0; i < 2; ++i) {
clamp_mv2(&cur_mv[i].as_mv, xd);
if (mv_check_bounds(x, &cur_mv[i].as_mv))
return INT64_MAX;
mbmi->mv[i].as_int = cur_mv[i].as_int;
}
}
}
#if CONFIG_EXT_INTER
if (mbmi_ext->ref_mv_count[ref_frame_type] > 0) {
if (this_mode == NEAREST_NEWMV || this_mode == NEAREST_NEARMV) {
cur_mv[0] = mbmi_ext->ref_mv_stack[ref_frame_type][0].this_mv;
lower_mv_precision(&cur_mv[0].as_mv, cm->allow_high_precision_mv);
clamp_mv2(&cur_mv[0].as_mv, xd);
if (mv_check_bounds(x, &cur_mv[0].as_mv))
return INT64_MAX;
mbmi->mv[0].as_int = cur_mv[0].as_int;
}
if (this_mode == NEW_NEARESTMV || this_mode == NEAR_NEARESTMV) {
cur_mv[1] = mbmi_ext->ref_mv_stack[ref_frame_type][0].comp_mv;
lower_mv_precision(&cur_mv[1].as_mv, cm->allow_high_precision_mv);
clamp_mv2(&cur_mv[1].as_mv, xd);
if (mv_check_bounds(x, &cur_mv[1].as_mv))
return INT64_MAX;
mbmi->mv[1].as_int = cur_mv[1].as_int;
}
}
if (mbmi_ext->ref_mv_count[ref_frame_type] > 1) {
if (this_mode == NEAR_NEWMV ||
this_mode == NEAR_NEARESTMV ||
this_mode == NEAR_NEARMV) {
cur_mv[0] = mbmi_ext->ref_mv_stack[ref_frame_type][1].this_mv;
lower_mv_precision(&cur_mv[0].as_mv, cm->allow_high_precision_mv);
clamp_mv2(&cur_mv[0].as_mv, xd);
if (mv_check_bounds(x, &cur_mv[0].as_mv))
return INT64_MAX;
mbmi->mv[0].as_int = cur_mv[0].as_int;
}
if (this_mode == NEW_NEARMV ||
this_mode == NEAREST_NEARMV ||
this_mode == NEAR_NEARMV) {
cur_mv[1] = mbmi_ext->ref_mv_stack[ref_frame_type][1].comp_mv;
lower_mv_precision(&cur_mv[1].as_mv, cm->allow_high_precision_mv);
clamp_mv2(&cur_mv[1].as_mv, xd);
if (mv_check_bounds(x, &cur_mv[1].as_mv))
return INT64_MAX;
mbmi->mv[1].as_int = cur_mv[1].as_int;
}
}
#else
if (this_mode == NEARMV && is_comp_pred) {
uint8_t ref_frame_type = vp10_ref_frame_type(mbmi->ref_frame);
if (mbmi_ext->ref_mv_count[ref_frame_type] > 1) {
int ref_mv_idx = mbmi->ref_mv_idx + 1;
cur_mv[0] = mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_idx].this_mv;
cur_mv[1] = mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_idx].comp_mv;
for (i = 0; i < 2; ++i) {
clamp_mv2(&cur_mv[i].as_mv, xd);
if (mv_check_bounds(x, &cur_mv[i].as_mv))
return INT64_MAX;
mbmi->mv[i].as_int = cur_mv[i].as_int;
}
}
}
#endif // CONFIG_EXT_INTER
#endif // CONFIG_REF_MV
// do first prediction into the destination buffer. Do the next
// prediction into a temporary buffer. Then keep track of which one
// of these currently holds the best predictor, and use the other
// one for future predictions. In the end, copy from tmp_buf to
// dst if necessary.
for (i = 0; i < MAX_MB_PLANE; i++) {
orig_dst[i] = xd->plane[i].dst.buf;
orig_dst_stride[i] = xd->plane[i].dst.stride;
}
// We don't include the cost of the second reference here, because there
// are only three options: Last/Golden, ARF/Last or Golden/ARF, or in other
// words if you present them in that order, the second one is always known
// if the first is known.
//
// Under some circumstances we discount the cost of new mv mode to encourage
// initiation of a motion field.
if (discount_newmv_test(cpi, this_mode, frame_mv[refs[0]],
mode_mv, refs[0])) {
#if CONFIG_REF_MV && CONFIG_EXT_INTER
*rate2 += VPXMIN(cost_mv_ref(cpi, this_mode, is_comp_pred, mode_ctx),
cost_mv_ref(cpi, NEARESTMV, is_comp_pred, mode_ctx));
#else
*rate2 += VPXMIN(cost_mv_ref(cpi, this_mode, mode_ctx),
cost_mv_ref(cpi, NEARESTMV, mode_ctx));
#endif // CONFIG_REF_MV && CONFIG_EXT_INTER
} else {
#if CONFIG_REF_MV && CONFIG_EXT_INTER
*rate2 += cost_mv_ref(cpi, this_mode, is_comp_pred, mode_ctx);
#else
*rate2 += cost_mv_ref(cpi, this_mode, mode_ctx);
#endif // CONFIG_REF_MV && CONFIG_EXT_INTER
}
if (RDCOST(x->rdmult, x->rddiv, *rate2, 0) > ref_best_rd &&
#if CONFIG_EXT_INTER
mbmi->mode != NEARESTMV && mbmi->mode != NEAREST_NEARESTMV
#else
mbmi->mode != NEARESTMV
#endif // CONFIG_EXT_INTER
)
return INT64_MAX;
pred_exists = 0;
// Are all MVs integer pel for Y and UV
intpel_mv = !mv_has_subpel(&mbmi->mv[0].as_mv);
if (is_comp_pred)
intpel_mv &= !mv_has_subpel(&mbmi->mv[1].as_mv);
#if !CONFIG_DUAL_FILTER
best_filter = predict_interp_filter(cpi, x, bsize, mi_row, mi_col,
single_filter);
#endif
if (cm->interp_filter != BILINEAR) {
int newbest;
int tmp_rate_sum = 0;
int64_t tmp_dist_sum = 0;
#if CONFIG_DUAL_FILTER
#if CONFIG_EXT_INTERP
for (i = 0; i < 25; ++i) {
#else
for (i = 0; i < 9; ++i) {
#endif
#else
for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
#endif
int j;
int64_t rs_rd;
int tmp_skip_sb = 0;
int64_t tmp_skip_sse = INT64_MAX;
#if CONFIG_DUAL_FILTER
mbmi->interp_filter[0] = filter_sets[i][0];
mbmi->interp_filter[1] = filter_sets[i][1];
mbmi->interp_filter[2] = filter_sets[i][0];
mbmi->interp_filter[3] = filter_sets[i][1];
#else
mbmi->interp_filter = i;
#endif
rs = vp10_get_switchable_rate(cpi, xd);
rs_rd = RDCOST(x->rdmult, x->rddiv, rs, 0);
if (i > 0 && intpel_mv && IsInterpolatingFilter(i)) {
rd = RDCOST(x->rdmult, x->rddiv, tmp_rate_sum, tmp_dist_sum);
if (cm->interp_filter == SWITCHABLE)
rd += rs_rd;
} else {
int rate_sum = 0;
int64_t dist_sum = 0;
if (i > 0 && cpi->sf.adaptive_interp_filter_search &&
(cpi->sf.interp_filter_search_mask & (1 << i))) {
rate_sum = INT_MAX;
dist_sum = INT64_MAX;
continue;
}
if ((cm->interp_filter == SWITCHABLE &&
(!i || best_needs_copy)) ||
#if CONFIG_EXT_INTER
is_comp_interintra_pred ||
#endif // CONFIG_EXT_INTER
(cm->interp_filter != SWITCHABLE &&
(
#if CONFIG_DUAL_FILTER
cm->interp_filter == mbmi->interp_filter[0]
#else
cm->interp_filter == mbmi->interp_filter
#endif
||
(i == 0 && intpel_mv && IsInterpolatingFilter(i))))) {
restore_dst_buf(xd, orig_dst, orig_dst_stride);
} else {
for (j = 0; j < MAX_MB_PLANE; j++) {
xd->plane[j].dst.buf = tmp_buf + j * MAX_SB_SQUARE;
xd->plane[j].dst.stride = MAX_SB_SIZE;
}
}
vp10_build_inter_predictors_sb(xd, mi_row, mi_col, bsize);
model_rd_for_sb(cpi, bsize, x, xd, 0, MAX_MB_PLANE - 1,
&rate_sum, &dist_sum, &tmp_skip_sb, &tmp_skip_sse);
rd = RDCOST(x->rdmult, x->rddiv, rate_sum, dist_sum);
if (cm->interp_filter == SWITCHABLE)
rd += rs_rd;
if (i == 0 && intpel_mv && IsInterpolatingFilter(i)) {
tmp_rate_sum = rate_sum;
tmp_dist_sum = dist_sum;
}
}
if (i == 0 && cpi->sf.use_rd_breakout && ref_best_rd < INT64_MAX) {
if (rd / 2 > ref_best_rd) {
restore_dst_buf(xd, orig_dst, orig_dst_stride);
return INT64_MAX;
}
}
newbest = i == 0 || rd < best_rd;
if (newbest) {
best_rd = rd;
#if CONFIG_DUAL_FILTER
best_filter[0] = mbmi->interp_filter[0];
best_filter[1] = mbmi->interp_filter[1];
best_filter[2] = mbmi->interp_filter[2];
best_filter[3] = mbmi->interp_filter[3];
#else
best_filter = mbmi->interp_filter;
#endif
if (cm->interp_filter == SWITCHABLE && i &&
!(intpel_mv && IsInterpolatingFilter(i)))
best_needs_copy = !best_needs_copy;
}
if ((cm->interp_filter == SWITCHABLE && newbest) ||
(cm->interp_filter != SWITCHABLE &&
#if CONFIG_DUAL_FILTER
cm->interp_filter == mbmi->interp_filter[0])) {
#else
cm->interp_filter == mbmi->interp_filter)) {
#endif
pred_exists = 1;
tmp_rd = best_rd;
skip_txfm_sb = tmp_skip_sb;
skip_sse_sb = tmp_skip_sse;
} else {
pred_exists = 0;
}
}
restore_dst_buf(xd, orig_dst, orig_dst_stride);
}
// Set the appropriate filter
#if CONFIG_DUAL_FILTER
mbmi->interp_filter[0] = cm->interp_filter != SWITCHABLE ?
cm->interp_filter : best_filter[0];
mbmi->interp_filter[1] = cm->interp_filter != SWITCHABLE ?
cm->interp_filter : best_filter[1];
if (mbmi->ref_frame[1] > INTRA_FRAME) {
mbmi->interp_filter[2] = cm->interp_filter != SWITCHABLE ?
cm->interp_filter : best_filter[2];
mbmi->interp_filter[3] = cm->interp_filter != SWITCHABLE ?
cm->interp_filter : best_filter[3];
}
#else
mbmi->interp_filter = cm->interp_filter != SWITCHABLE ?
cm->interp_filter : best_filter;
#endif
rs = cm->interp_filter == SWITCHABLE ? vp10_get_switchable_rate(cpi, xd) : 0;
#if CONFIG_EXT_INTER
#if CONFIG_OBMC
best_bmc_mbmi = *mbmi;
rate_mv_bmc = rate_mv;
rate2_bmc_nocoeff = *rate2;
if (cm->interp_filter == SWITCHABLE)
rate2_bmc_nocoeff += rs;
#endif // CONFIG_OBMC
if (is_comp_pred && is_interinter_wedge_used(bsize)) {
int rate_sum, rs;
int64_t dist_sum;
int64_t best_rd_nowedge = INT64_MAX;
int64_t best_rd_wedge = INT64_MAX;
int tmp_skip_txfm_sb;
int64_t tmp_skip_sse_sb;
rs = vp10_cost_bit(cm->fc->wedge_interinter_prob[bsize], 0);
mbmi->use_wedge_interinter = 0;
vp10_build_inter_predictors_sby(xd, mi_row, mi_col, bsize);
vp10_subtract_plane(x, bsize, 0);
rd = estimate_yrd_for_sb(cpi, bsize, x, &rate_sum, &dist_sum,
&tmp_skip_txfm_sb, &tmp_skip_sse_sb,
INT64_MAX);
if (rd != INT64_MAX)
rd = RDCOST(x->rdmult, x->rddiv, rs + rate_mv + rate_sum, dist_sum);
best_rd_nowedge = rd;
// Disbale wedge search if source variance is small
if (x->source_variance > cpi->sf.disable_wedge_search_var_thresh &&
best_rd_nowedge / 3 < ref_best_rd) {
uint8_t pred0[2 * MAX_SB_SQUARE];
uint8_t pred1[2 * MAX_SB_SQUARE];
uint8_t *preds0[1] = {pred0};
uint8_t *preds1[1] = {pred1};
int strides[1] = {bw};
mbmi->use_wedge_interinter = 1;
rs = vp10_cost_literal(get_interinter_wedge_bits(bsize)) +
vp10_cost_bit(cm->fc->wedge_interinter_prob[bsize], 1);
vp10_build_inter_predictors_for_planes_single_buf(
xd, bsize, 0, 0, mi_row, mi_col, 0, preds0, strides);
vp10_build_inter_predictors_for_planes_single_buf(
xd, bsize, 0, 0, mi_row, mi_col, 1, preds1, strides);
// Choose the best wedge
best_rd_wedge = pick_interinter_wedge(cpi, x, bsize, pred0, pred1);
best_rd_wedge += RDCOST(x->rdmult, x->rddiv, rs + rate_mv, 0);
if (have_newmv_in_inter_mode(this_mode)) {
int_mv tmp_mv[2];
int rate_mvs[2], tmp_rate_mv = 0;
if (this_mode == NEW_NEWMV) {
int mv_idxs[2] = {0, 0};
do_masked_motion_search_indexed(cpi, x,
mbmi->interinter_wedge_index,
mbmi->interinter_wedge_sign,
bsize, mi_row, mi_col, tmp_mv, rate_mvs,
mv_idxs, 2);
tmp_rate_mv = rate_mvs[0] + rate_mvs[1];
mbmi->mv[0].as_int = tmp_mv[0].as_int;
mbmi->mv[1].as_int = tmp_mv[1].as_int;
} else if (this_mode == NEW_NEARESTMV || this_mode == NEW_NEARMV) {
int mv_idxs[2] = {0, 0};
do_masked_motion_search_indexed(cpi, x,
mbmi->interinter_wedge_index,
mbmi->interinter_wedge_sign,
bsize, mi_row, mi_col, tmp_mv, rate_mvs,
mv_idxs, 0);
tmp_rate_mv = rate_mvs[0];
mbmi->mv[0].as_int = tmp_mv[0].as_int;
} else if (this_mode == NEAREST_NEWMV || this_mode == NEAR_NEWMV) {
int mv_idxs[2] = {0, 0};
do_masked_motion_search_indexed(cpi, x,
mbmi->interinter_wedge_index,
mbmi->interinter_wedge_sign,
bsize, mi_row, mi_col, tmp_mv, rate_mvs,
mv_idxs, 1);
tmp_rate_mv = rate_mvs[1];
mbmi->mv[1].as_int = tmp_mv[1].as_int;
}
vp10_build_inter_predictors_sby(xd, mi_row, mi_col, bsize);
model_rd_for_sb(cpi, bsize, x, xd, 0, 0, &rate_sum, &dist_sum,
&tmp_skip_txfm_sb, &tmp_skip_sse_sb);
rd = RDCOST(x->rdmult, x->rddiv, rs + tmp_rate_mv + rate_sum, dist_sum);
if (rd < best_rd_wedge) {
best_rd_wedge = rd;
} else {
mbmi->mv[0].as_int = cur_mv[0].as_int;
mbmi->mv[1].as_int = cur_mv[1].as_int;
tmp_rate_mv = rate_mv;
vp10_build_wedge_inter_predictor_from_buf(xd, bsize, 0, 0,
preds0, strides,
preds1, strides);
}
vp10_subtract_plane(x, bsize, 0);
rd = estimate_yrd_for_sb(cpi, bsize, x, &rate_sum, &dist_sum,
&tmp_skip_txfm_sb, &tmp_skip_sse_sb,
INT64_MAX);
if (rd != INT64_MAX)
rd = RDCOST(x->rdmult, x->rddiv,
rs + tmp_rate_mv + rate_sum, dist_sum);
best_rd_wedge = rd;
if (best_rd_wedge < best_rd_nowedge) {
mbmi->use_wedge_interinter = 1;
xd->mi[0]->bmi[0].as_mv[0].as_int = mbmi->mv[0].as_int;
xd->mi[0]->bmi[0].as_mv[1].as_int = mbmi->mv[1].as_int;
*rate2 += tmp_rate_mv - rate_mv;
rate_mv = tmp_rate_mv;
} else {
mbmi->use_wedge_interinter = 0;
mbmi->mv[0].as_int = cur_mv[0].as_int;
mbmi->mv[1].as_int = cur_mv[1].as_int;
xd->mi[0]->bmi[0].as_mv[0].as_int = mbmi->mv[0].as_int;
xd->mi[0]->bmi[0].as_mv[1].as_int = mbmi->mv[1].as_int;
}
} else {
vp10_build_wedge_inter_predictor_from_buf(xd, bsize,
0, 0,
preds0, strides,
preds1, strides);
vp10_subtract_plane(x, bsize, 0);
rd = estimate_yrd_for_sb(cpi, bsize, x, &rate_sum, &dist_sum,
&tmp_skip_txfm_sb, &tmp_skip_sse_sb,
INT64_MAX);
if (rd != INT64_MAX)
rd = RDCOST(x->rdmult, x->rddiv, rs + rate_mv + rate_sum, dist_sum);
best_rd_wedge = rd;
if (best_rd_wedge < best_rd_nowedge) {
mbmi->use_wedge_interinter = 1;
} else {
mbmi->use_wedge_interinter = 0;
}
}
}
if (ref_best_rd < INT64_MAX &&
VPXMIN(best_rd_wedge, best_rd_nowedge) / 3 > ref_best_rd)
return INT64_MAX;
pred_exists = 0;
tmp_rd = VPXMIN(best_rd_wedge, best_rd_nowedge);
if (mbmi->use_wedge_interinter)
*compmode_wedge_cost =
vp10_cost_literal(get_interinter_wedge_bits(bsize)) +
vp10_cost_bit(cm->fc->wedge_interinter_prob[bsize], 1);
else
*compmode_wedge_cost =
vp10_cost_bit(cm->fc->wedge_interinter_prob[bsize], 0);
}
if (is_comp_interintra_pred) {
INTERINTRA_MODE best_interintra_mode = II_DC_PRED;
int64_t best_interintra_rd = INT64_MAX;
int rmode, rate_sum;
int64_t dist_sum;
int j;
int64_t best_interintra_rd_nowedge = INT64_MAX;
int64_t best_interintra_rd_wedge = INT64_MAX;
int rwedge;
int_mv tmp_mv;
int tmp_rate_mv = 0;
int tmp_skip_txfm_sb;
int64_t tmp_skip_sse_sb;
DECLARE_ALIGNED(16, uint8_t, intrapred_[2 * MAX_SB_SQUARE]);
uint8_t *intrapred;
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
intrapred = CONVERT_TO_BYTEPTR(intrapred_);
else
#endif // CONFIG_VP9_HIGHBITDEPTH
intrapred = intrapred_;
mbmi->ref_frame[1] = NONE;
for (j = 0; j < MAX_MB_PLANE; j++) {
xd->plane[j].dst.buf = tmp_buf + j * MAX_SB_SQUARE;
xd->plane[j].dst.stride = bw;
}
vp10_build_inter_predictors_sby(xd, mi_row, mi_col, bsize);
restore_dst_buf(xd, orig_dst, orig_dst_stride);
mbmi->ref_frame[1] = INTRA_FRAME;
mbmi->use_wedge_interintra = 0;
for (j = 0; j < INTERINTRA_MODES; ++j) {
mbmi->interintra_mode = (INTERINTRA_MODE)j;
rmode = interintra_mode_cost[mbmi->interintra_mode];
vp10_build_intra_predictors_for_interintra(
xd, bsize, 0, intrapred, bw);
vp10_combine_interintra(xd, bsize, 0, tmp_buf, bw,
intrapred, bw);
model_rd_for_sb(cpi, bsize, x, xd, 0, 0, &rate_sum, &dist_sum,
&tmp_skip_txfm_sb, &tmp_skip_sse_sb);
rd = RDCOST(x->rdmult, x->rddiv, rs + tmp_rate_mv + rate_sum, dist_sum);
if (rd < best_interintra_rd) {
best_interintra_rd = rd;
best_interintra_mode = mbmi->interintra_mode;
}
}
mbmi->interintra_mode = best_interintra_mode;
rmode = interintra_mode_cost[mbmi->interintra_mode];
vp10_build_intra_predictors_for_interintra(
xd, bsize, 0, intrapred, bw);
vp10_combine_interintra(xd, bsize, 0, tmp_buf, bw,
intrapred, bw);
vp10_subtract_plane(x, bsize, 0);
rd = estimate_yrd_for_sb(cpi, bsize, x, &rate_sum, &dist_sum,
&tmp_skip_txfm_sb, &tmp_skip_sse_sb,
INT64_MAX);
if (rd != INT64_MAX)
rd = RDCOST(x->rdmult, x->rddiv, rate_mv + rmode + rate_sum, dist_sum);
best_interintra_rd = rd;
if (ref_best_rd < INT64_MAX &&
best_interintra_rd > 2 * ref_best_rd) {
return INT64_MAX;
}
if (is_interintra_wedge_used(bsize)) {
rwedge = vp10_cost_bit(cm->fc->wedge_interintra_prob[bsize], 0);
if (rd != INT64_MAX)
rd = RDCOST(x->rdmult, x->rddiv,
rmode + rate_mv + rwedge + rate_sum, dist_sum);
best_interintra_rd_nowedge = rd;
// Disbale wedge search if source variance is small
if (x->source_variance > cpi->sf.disable_wedge_search_var_thresh) {
mbmi->use_wedge_interintra = 1;
rwedge = vp10_cost_literal(get_interintra_wedge_bits(bsize)) +
vp10_cost_bit(cm->fc->wedge_interintra_prob[bsize], 1);
best_interintra_rd_wedge = pick_interintra_wedge(cpi, x, bsize,
intrapred_, tmp_buf_);
best_interintra_rd_wedge += RDCOST(x->rdmult, x->rddiv,
rmode + rate_mv + rwedge, 0);
// Refine motion vector.
if (have_newmv_in_inter_mode(this_mode)) {
// get negative of mask
const uint8_t* mask = vp10_get_contiguous_soft_mask(
mbmi->interintra_wedge_index, 1, bsize);
do_masked_motion_search(cpi, x, mask, bw, bsize,
mi_row, mi_col, &tmp_mv, &tmp_rate_mv,
0, mv_idx);
mbmi->mv[0].as_int = tmp_mv.as_int;
vp10_build_inter_predictors_sby(xd, mi_row, mi_col, bsize);
model_rd_for_sb(cpi, bsize, x, xd, 0, 0, &rate_sum, &dist_sum,
&tmp_skip_txfm_sb, &tmp_skip_sse_sb);
rd = RDCOST(x->rdmult, x->rddiv,
rmode + tmp_rate_mv + rwedge + rate_sum, dist_sum);
if (rd < best_interintra_rd_wedge) {
best_interintra_rd_wedge = rd;
} else {
tmp_mv.as_int = cur_mv[0].as_int;
tmp_rate_mv = rate_mv;
}
} else {
tmp_mv.as_int = cur_mv[0].as_int;
tmp_rate_mv = rate_mv;
vp10_combine_interintra(xd, bsize, 0,
tmp_buf, bw,
intrapred, bw);
}
// Evaluate closer to true rd
vp10_subtract_plane(x, bsize, 0);
rd = estimate_yrd_for_sb(cpi, bsize, x, &rate_sum, &dist_sum,
&tmp_skip_txfm_sb, &tmp_skip_sse_sb,
INT64_MAX);
if (rd != INT64_MAX)
rd = RDCOST(x->rdmult, x->rddiv,
rmode + tmp_rate_mv + rwedge + rate_sum, dist_sum);
best_interintra_rd_wedge = rd;
if (best_interintra_rd_wedge < best_interintra_rd_nowedge) {
mbmi->use_wedge_interintra = 1;
best_interintra_rd = best_interintra_rd_wedge;
mbmi->mv[0].as_int = tmp_mv.as_int;
*rate2 += tmp_rate_mv - rate_mv;
rate_mv = tmp_rate_mv;
} else {
mbmi->use_wedge_interintra = 0;
best_interintra_rd = best_interintra_rd_nowedge;
mbmi->mv[0].as_int = cur_mv[0].as_int;
}
} else {
mbmi->use_wedge_interintra = 0;
best_interintra_rd = best_interintra_rd_nowedge;
}
}
pred_exists = 0;
tmp_rd = best_interintra_rd;
*compmode_interintra_cost =
vp10_cost_bit(cm->fc->interintra_prob[size_group_lookup[bsize]], 1);
*compmode_interintra_cost += interintra_mode_cost[mbmi->interintra_mode];
if (is_interintra_wedge_used(bsize)) {
*compmode_interintra_cost += vp10_cost_bit(
cm->fc->wedge_interintra_prob[bsize], mbmi->use_wedge_interintra);
if (mbmi->use_wedge_interintra) {
*compmode_interintra_cost +=
vp10_cost_literal(get_interintra_wedge_bits(bsize));
}
}
} else if (is_interintra_allowed(mbmi)) {
*compmode_interintra_cost =
vp10_cost_bit(cm->fc->interintra_prob[size_group_lookup[bsize]], 0);
}
#if CONFIG_EXT_INTERP
if (!vp10_is_interp_needed(xd) && cm->interp_filter == SWITCHABLE) {
#if CONFIG_DUAL_FILTER
for (i = 0; i < 4; ++i)
mbmi->interp_filter[i] = EIGHTTAP_REGULAR;
#else
mbmi->interp_filter = EIGHTTAP_REGULAR;
#endif
pred_exists = 0;
}
#endif // CONFIG_EXT_INTERP
#endif // CONFIG_EXT_INTER
if (pred_exists) {
if (best_needs_copy) {
// again temporarily set the buffers to local memory to prevent a memcpy
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = tmp_buf + i * MAX_SB_SQUARE;
xd->plane[i].dst.stride = MAX_SB_SIZE;
}
}
rd = tmp_rd;
} else {
int tmp_rate;
int64_t tmp_dist;
// Handles the special case when a filter that is not in the
// switchable list (ex. bilinear) is indicated at the frame level, or
// skip condition holds.
vp10_build_inter_predictors_sb(xd, mi_row, mi_col, bsize);
model_rd_for_sb(cpi, bsize, x, xd, 0, MAX_MB_PLANE - 1,
&tmp_rate, &tmp_dist, &skip_txfm_sb, &skip_sse_sb);
rd = RDCOST(x->rdmult, x->rddiv, rs + tmp_rate, tmp_dist);
}
#if CONFIG_DUAL_FILTER
if (!is_comp_pred)
single_filter[this_mode][refs[0]] = mbmi->interp_filter[0];
#else
if (!is_comp_pred)
single_filter[this_mode][refs[0]] = mbmi->interp_filter;
#endif
#if CONFIG_EXT_INTER
if (modelled_rd != NULL) {
if (is_comp_pred) {
const int mode0 = compound_ref0_mode(this_mode);
const int mode1 = compound_ref1_mode(this_mode);
int64_t mrd = VPXMIN(modelled_rd[mode0][refs[0]],
modelled_rd[mode1][refs[1]]);
if (rd / 4 * 3 > mrd && ref_best_rd < INT64_MAX) {
restore_dst_buf(xd, orig_dst, orig_dst_stride);
return INT64_MAX;
}
} else if (!is_comp_interintra_pred) {
modelled_rd[this_mode][refs[0]] = rd;
}
}
#endif // CONFIG_EXT_INTER
if (cpi->sf.use_rd_breakout && ref_best_rd < INT64_MAX) {
// if current pred_error modeled rd is substantially more than the best
// so far, do not bother doing full rd
if (rd / 2 > ref_best_rd) {
restore_dst_buf(xd, orig_dst, orig_dst_stride);
return INT64_MAX;
}
}
if (cm->interp_filter == SWITCHABLE)
*rate2 += rs;
#if CONFIG_OBMC
rate2_nocoeff = *rate2;
#endif // CONFIG_OBMC
#if CONFIG_OBMC || CONFIG_WARPED_MOTION
best_rd = INT64_MAX;
for (mbmi->motion_variation = SIMPLE_TRANSLATION;
mbmi->motion_variation < (allow_motvar ? MOTION_VARIATIONS : 1);
mbmi->motion_variation++) {
int64_t tmp_rd, tmp_dist;
int tmp_rate;
#if CONFIG_EXT_INTER
int tmp_rate2 =
mbmi->motion_variation != SIMPLE_TRANSLATION ?
rate2_bmc_nocoeff : rate2_nocoeff;
#else
int tmp_rate2 = rate2_nocoeff;
#endif // CONFIG_EXT_INTER
#if CONFIG_EXT_INTERP
#if CONFIG_DUAL_FILTER
INTERP_FILTER obmc_interp_filter[2][2] = {
{mbmi->interp_filter[0], mbmi->interp_filter[1]}, // obmc == 0
{mbmi->interp_filter[0], mbmi->interp_filter[1]} // obmc == 1
};
#else
INTERP_FILTER obmc_interp_filter[2] = {
mbmi->interp_filter, // obmc == 0
mbmi->interp_filter // obmc == 1
};
#endif // CONFIG_DUAL_FILTER
#endif // CONFIG_EXT_INTERP
#if CONFIG_OBMC
if (mbmi->motion_variation == OBMC_CAUSAL) {
#if CONFIG_EXT_INTER
*mbmi = best_bmc_mbmi;
mbmi->motion_variation = OBMC_CAUSAL;
#endif // CONFIG_EXT_INTER
if (!is_comp_pred && have_newmv_in_inter_mode(this_mode)) {
int_mv tmp_mv;
int_mv pred_mv;
int tmp_rate_mv = 0;
pred_mv.as_int = mbmi->mv[0].as_int;
single_motion_search_obmc(cpi, x, bsize, mi_row, mi_col,
wsrc, mask2d,
#if CONFIG_EXT_INTER
0, mv_idx,
#endif // CONFIG_EXT_INTER
&tmp_mv, pred_mv, &tmp_rate_mv);
mbmi->mv[0].as_int = tmp_mv.as_int;
if (discount_newmv_test(cpi, this_mode, tmp_mv, mode_mv, refs[0])) {
tmp_rate_mv = VPXMAX((tmp_rate_mv / NEW_MV_DISCOUNT_FACTOR), 1);
}
#if CONFIG_EXT_INTER
tmp_rate2 = rate2_bmc_nocoeff - rate_mv_bmc + tmp_rate_mv;
#else
tmp_rate2 = rate2_nocoeff - rate_mv + tmp_rate_mv;
#endif // CONFIG_EXT_INTER
#if CONFIG_EXT_INTERP
#if CONFIG_DUAL_FILTER
if (!has_subpel_mv_component(xd->mi[0], xd, 0))
obmc_interp_filter[1][0] = mbmi->interp_filter[0] = EIGHTTAP_REGULAR;
if (!has_subpel_mv_component(xd->mi[0], xd, 1))
obmc_interp_filter[1][1] = mbmi->interp_filter[1] = EIGHTTAP_REGULAR;
#else
if (!vp10_is_interp_needed(xd))
obmc_interp_filter[1] = mbmi->interp_filter = EIGHTTAP_REGULAR;
#endif // CONFIG_DUAL_FILTER
// This is not quite correct with CONFIG_DUAL_FILTER when a filter
// is needed in only one direction
if (!vp10_is_interp_needed(xd))
tmp_rate2 -= rs;
#endif // CONFIG_EXT_INTERP
vp10_build_inter_predictors_sb(xd, mi_row, mi_col, bsize);
#if CONFIG_EXT_INTER
} else {
vp10_build_inter_predictors_sb(xd, mi_row, mi_col, bsize);
#endif // CONFIG_EXT_INTER
}
vp10_build_obmc_inter_prediction(cm, xd, mi_row, mi_col,
dst_buf1, dst_stride1,
dst_buf2, dst_stride2);
model_rd_for_sb(cpi, bsize, x, xd, 0, MAX_MB_PLANE - 1,
&tmp_rate, &tmp_dist, &skip_txfm_sb, &skip_sse_sb);
}
#endif // CONFIG_OBMC
#if CONFIG_WARPED_MOTION
if (mbmi->motion_variation == WARPED_CAUSAL) {
// TODO(yuec): Add code
}
#endif // CONFIG_WARPED_MOTION
x->skip = 0;
*rate2 = tmp_rate2;
if (allow_motvar)
*rate2 += cpi->motvar_cost[bsize][mbmi->motion_variation];
*distortion = 0;
#endif // CONFIG_OBMC || CONFIG_WARPED_MOTION
if (!skip_txfm_sb) {
int skippable_y, skippable_uv;
int64_t sseuv = INT64_MAX;
int64_t rdcosty = INT64_MAX;
// Y cost and distortion
vp10_subtract_plane(x, bsize, 0);
#if CONFIG_VAR_TX
if (cm->tx_mode == TX_MODE_SELECT || xd->lossless[mbmi->segment_id]) {
select_tx_type_yrd(cpi, x, rate_y, &distortion_y, &skippable_y, psse,
bsize, ref_best_rd);
} else {
int idx, idy;
super_block_yrd(cpi, x, rate_y, &distortion_y, &skippable_y, psse,
bsize, ref_best_rd);
for (idy = 0; idy < xd->n8_h; ++idy)
for (idx = 0; idx < xd->n8_w; ++idx)
mbmi->inter_tx_size[idy][idx] = mbmi->tx_size;
memset(x->blk_skip[0], skippable_y,
sizeof(uint8_t) * xd->n8_h * xd->n8_w * 4);
}
#else
super_block_yrd(cpi, x, rate_y, &distortion_y, &skippable_y, psse,
bsize, ref_best_rd);
#endif // CONFIG_VAR_TX
if (*rate_y == INT_MAX) {
*rate2 = INT_MAX;
*distortion = INT64_MAX;
#if CONFIG_OBMC || CONFIG_WARPED_MOTION
if (mbmi->motion_variation != SIMPLE_TRANSLATION) {
continue;
} else {
#endif // CONFIG_OBMC || CONFIG_WARPED_MOTION
restore_dst_buf(xd, orig_dst, orig_dst_stride);
return INT64_MAX;
#if CONFIG_OBMC || CONFIG_WARPED_MOTION
}
#endif // CONFIG_OBMC || CONFIG_WARPED_MOTION
}
*rate2 += *rate_y;
*distortion += distortion_y;
rdcosty = RDCOST(x->rdmult, x->rddiv, *rate2, *distortion);
rdcosty = VPXMIN(rdcosty, RDCOST(x->rdmult, x->rddiv, 0, *psse));
#if CONFIG_VAR_TX
if (!inter_block_uvrd(cpi, x, rate_uv, &distortion_uv, &skippable_uv,
&sseuv, bsize, ref_best_rd - rdcosty))
#else
if (!super_block_uvrd(cpi, x, rate_uv, &distortion_uv, &skippable_uv,
&sseuv, bsize, ref_best_rd - rdcosty))
#endif // CONFIG_VAR_TX
{
*rate2 = INT_MAX;
*distortion = INT64_MAX;
#if CONFIG_OBMC || CONFIG_WARPED_MOTION
continue;
#else
restore_dst_buf(xd, orig_dst, orig_dst_stride);
return INT64_MAX;
#endif // CONFIG_OBMC || CONFIG_WARPED_MOTION
}
*psse += sseuv;
*rate2 += *rate_uv;
*distortion += distortion_uv;
*skippable = skippable_y && skippable_uv;
#if CONFIG_OBMC || CONFIG_WARPED_MOTION
if (*skippable) {
*rate2 -= *rate_uv + *rate_y;
*rate_y = 0;
*rate_uv = 0;
*rate2 += vp10_cost_bit(vp10_get_skip_prob(cm, xd), 1);
mbmi->skip = 0;
// here mbmi->skip temporarily plays a role as what this_skip2 does
} else if (!xd->lossless[mbmi->segment_id] &&
(RDCOST(x->rdmult, x->rddiv, *rate_y + *rate_uv +
vp10_cost_bit(vp10_get_skip_prob(cm, xd), 0),
*distortion) >=
RDCOST(x->rdmult, x->rddiv,
vp10_cost_bit(vp10_get_skip_prob(cm, xd), 1),
*psse))) {
*rate2 -= *rate_uv + *rate_y;
*rate2 += vp10_cost_bit(vp10_get_skip_prob(cm, xd), 1);
*distortion = *psse;
*rate_y = 0;
*rate_uv = 0;
mbmi->skip = 1;
} else {
*rate2 += vp10_cost_bit(vp10_get_skip_prob(cm, xd), 0);
mbmi->skip = 0;
}
*disable_skip = 0;
#endif // CONFIG_OBMC || CONFIG_WARPED_MOTION
} else {
x->skip = 1;
*disable_skip = 1;
// The cost of skip bit needs to be added.
#if CONFIG_OBMC || CONFIG_WARPED_MOTION
mbmi->skip = 0;
#endif // CONFIG_OBMC || CONFIG_WARPED_MOTION
*rate2 += vp10_cost_bit(vp10_get_skip_prob(cm, xd), 1);
*distortion = skip_sse_sb;
*psse = skip_sse_sb;
*rate_y = 0;
*rate_uv = 0;
*skippable = 1;
}
#if CONFIG_OBMC || CONFIG_WARPED_MOTION
tmp_rd = RDCOST(x->rdmult, x->rddiv, *rate2, *distortion);
if (mbmi->motion_variation == SIMPLE_TRANSLATION || (tmp_rd < best_rd)) {
#if CONFIG_EXT_INTERP
#if CONFIG_DUAL_FILTER
mbmi->interp_filter[0] = obmc_interp_filter[mbmi->motion_variation][0];
mbmi->interp_filter[1] = obmc_interp_filter[mbmi->motion_variation][1];
#else
mbmi->interp_filter = obmc_interp_filter[mbmi->motion_variation];
#endif // CONFIG_DUAL_FILTER
#endif // CONFIG_EXT_INTERP
best_mbmi = *mbmi;
best_rd = tmp_rd;
best_rate2 = *rate2;
best_rate_y = *rate_y;
best_rate_uv = *rate_uv;
#if CONFIG_VAR_TX
for (i = 0; i < MAX_MB_PLANE; ++i)
memcpy(best_blk_skip[i], x->blk_skip[i],
sizeof(uint8_t) * xd->n8_h * xd->n8_w * 4);
#endif // CONFIG_VAR_TX
best_distortion = *distortion;
best_skippable = *skippable;
best_xskip = x->skip;
best_disable_skip = *disable_skip;
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
x->recon_variance =
vp10_high_get_sby_perpixel_variance(
cpi, &xd->plane[0].dst, bsize, xd->bd);
} else {
x->recon_variance =
vp10_get_sby_perpixel_variance(cpi, &xd->plane[0].dst, bsize);
}
#else
x->recon_variance =
vp10_get_sby_perpixel_variance(cpi, &xd->plane[0].dst, bsize);
#endif // CONFIG_VP9_HIGHBITDEPTH
}
}
if (best_rd == INT64_MAX) {
*rate2 = INT_MAX;
*distortion = INT64_MAX;
restore_dst_buf(xd, orig_dst, orig_dst_stride);
return INT64_MAX;
}
*mbmi = best_mbmi;
*rate2 = best_rate2;
*rate_y = best_rate_y;
*rate_uv = best_rate_uv;
#if CONFIG_VAR_TX
for (i = 0; i < MAX_MB_PLANE; ++i)
memcpy(x->blk_skip[i], best_blk_skip[i],
sizeof(uint8_t) * xd->n8_h * xd->n8_w * 4);
#endif // CONFIG_VAR_TX
*distortion = best_distortion;
*skippable = best_skippable;
x->skip = best_xskip;
*disable_skip = best_disable_skip;
#endif // CONFIG_OBMC || CONFIG_WARPED_MOTION
if (!is_comp_pred)
single_skippable[this_mode][refs[0]] = *skippable;
#if !(CONFIG_OBMC || CONFIG_WARPED_MOTION)
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
x->recon_variance =
vp10_high_get_sby_perpixel_variance(cpi, &xd->plane[0].dst,
bsize, xd->bd);
} else {
x->recon_variance =
vp10_get_sby_perpixel_variance(cpi, &xd->plane[0].dst, bsize);
}
#else
x->recon_variance =
vp10_get_sby_perpixel_variance(cpi, &xd->plane[0].dst, bsize);
#endif // CONFIG_VP9_HIGHBITDEPTH
#endif // !(CONFIG_OBMC || CONFIG_WARPED_MOTION)
restore_dst_buf(xd, orig_dst, orig_dst_stride);
return 0; // The rate-distortion cost will be re-calculated by caller.
}
void vp10_rd_pick_intra_mode_sb(VP10_COMP *cpi, MACROBLOCK *x,
RD_COST *rd_cost, BLOCK_SIZE bsize,
PICK_MODE_CONTEXT *ctx, int64_t best_rd) {
VP10_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblockd_plane *const pd = xd->plane;
int rate_y = 0, rate_uv = 0, rate_y_tokenonly = 0, rate_uv_tokenonly = 0;
int y_skip = 0, uv_skip = 0;
int64_t dist_y = 0, dist_uv = 0;
TX_SIZE max_uv_tx_size;
ctx->skip = 0;
xd->mi[0]->mbmi.ref_frame[0] = INTRA_FRAME;
xd->mi[0]->mbmi.ref_frame[1] = NONE;
if (bsize >= BLOCK_8X8) {
if (rd_pick_intra_sby_mode(cpi, x, &rate_y, &rate_y_tokenonly,
&dist_y, &y_skip, bsize,
best_rd) >= best_rd) {
rd_cost->rate = INT_MAX;
return;
}
} else {
y_skip = 0;
if (rd_pick_intra_sub_8x8_y_mode(cpi, x, &rate_y, &rate_y_tokenonly,
&dist_y, best_rd) >= best_rd) {
rd_cost->rate = INT_MAX;
return;
}
}
max_uv_tx_size = get_uv_tx_size_impl(xd->mi[0]->mbmi.tx_size, bsize,
pd[1].subsampling_x,
pd[1].subsampling_y);
rd_pick_intra_sbuv_mode(cpi, x, &rate_uv, &rate_uv_tokenonly,
&dist_uv, &uv_skip, VPXMAX(BLOCK_8X8, bsize),
max_uv_tx_size);
if (y_skip && uv_skip) {
rd_cost->rate = rate_y + rate_uv - rate_y_tokenonly - rate_uv_tokenonly +
vp10_cost_bit(vp10_get_skip_prob(cm, xd), 1);
rd_cost->dist = dist_y + dist_uv;
} else {
rd_cost->rate = rate_y + rate_uv +
vp10_cost_bit(vp10_get_skip_prob(cm, xd), 0);
rd_cost->dist = dist_y + dist_uv;
}
ctx->mic = *xd->mi[0];
ctx->mbmi_ext = *x->mbmi_ext;
rd_cost->rdcost = RDCOST(x->rdmult, x->rddiv, rd_cost->rate, rd_cost->dist);
}
// This function is designed to apply a bias or adjustment to an rd value based
// on the relative variance of the source and reconstruction.
#define LOW_VAR_THRESH 16
#define VLOW_ADJ_MAX 25
#define VHIGH_ADJ_MAX 8
static void rd_variance_adjustment(MACROBLOCK *x,
int64_t *this_rd,
MV_REFERENCE_FRAME ref_frame,
unsigned int source_variance) {
unsigned int recon_variance = x->recon_variance;
unsigned int absvar_diff = 0;
int64_t var_error = 0;
int64_t var_factor = 0;
if (*this_rd == INT64_MAX)
return;
if ((source_variance + recon_variance) > LOW_VAR_THRESH) {
absvar_diff = (source_variance > recon_variance)
? (source_variance - recon_variance)
: (recon_variance - source_variance);
var_error = ((int64_t)200 * source_variance * recon_variance) /
(((int64_t)source_variance * source_variance) +
((int64_t)recon_variance * recon_variance));
var_error = 100 - var_error;
}
// Source variance above a threshold and ref frame is intra.
// This case is targeted mainly at discouraging intra modes that give rise
// to a predictor with a low spatial complexity compared to the source.
if ((source_variance > LOW_VAR_THRESH) && (ref_frame == INTRA_FRAME) &&
(source_variance > recon_variance)) {
var_factor = VPXMIN(absvar_diff, VPXMIN(VLOW_ADJ_MAX, var_error));
// A second possible case of interest is where the source variance
// is very low and we wish to discourage false texture or motion trails.
} else if ((source_variance < (LOW_VAR_THRESH >> 1)) &&
(recon_variance > source_variance)) {
var_factor = VPXMIN(absvar_diff, VPXMIN(VHIGH_ADJ_MAX, var_error));
}
*this_rd += (*this_rd * var_factor) / 100;
}
// Do we have an internal image edge (e.g. formatting bars).
int vp10_internal_image_edge(VP10_COMP *cpi) {
return (cpi->oxcf.pass == 2) &&
((cpi->twopass.this_frame_stats.inactive_zone_rows > 0) ||
(cpi->twopass.this_frame_stats.inactive_zone_cols > 0));
}
// Checks to see if a super block is on a horizontal image edge.
// In most cases this is the "real" edge unless there are formatting
// bars embedded in the stream.
int vp10_active_h_edge(VP10_COMP *cpi, int mi_row, int mi_step) {
int top_edge = 0;
int bottom_edge = cpi->common.mi_rows;
int is_active_h_edge = 0;
// For two pass account for any formatting bars detected.
if (cpi->oxcf.pass == 2) {
TWO_PASS *twopass = &cpi->twopass;
// The inactive region is specified in MBs not mi units.
// The image edge is in the following MB row.
top_edge += (int)(twopass->this_frame_stats.inactive_zone_rows * 2);
bottom_edge -= (int)(twopass->this_frame_stats.inactive_zone_rows * 2);
bottom_edge = VPXMAX(top_edge, bottom_edge);
}
if (((top_edge >= mi_row) && (top_edge < (mi_row + mi_step))) ||
((bottom_edge >= mi_row) && (bottom_edge < (mi_row + mi_step)))) {
is_active_h_edge = 1;
}
return is_active_h_edge;
}
// Checks to see if a super block is on a vertical image edge.
// In most cases this is the "real" edge unless there are formatting
// bars embedded in the stream.
int vp10_active_v_edge(VP10_COMP *cpi, int mi_col, int mi_step) {
int left_edge = 0;
int right_edge = cpi->common.mi_cols;
int is_active_v_edge = 0;
// For two pass account for any formatting bars detected.
if (cpi->oxcf.pass == 2) {
TWO_PASS *twopass = &cpi->twopass;
// The inactive region is specified in MBs not mi units.
// The image edge is in the following MB row.
left_edge += (int)(twopass->this_frame_stats.inactive_zone_cols * 2);
right_edge -= (int)(twopass->this_frame_stats.inactive_zone_cols * 2);
right_edge = VPXMAX(left_edge, right_edge);
}
if (((left_edge >= mi_col) && (left_edge < (mi_col + mi_step))) ||
((right_edge >= mi_col) && (right_edge < (mi_col + mi_step)))) {
is_active_v_edge = 1;
}
return is_active_v_edge;
}
// Checks to see if a super block is at the edge of the active image.
// In most cases this is the "real" edge unless there are formatting
// bars embedded in the stream.
int vp10_active_edge_sb(VP10_COMP *cpi,
int mi_row, int mi_col) {
return vp10_active_h_edge(cpi, mi_row, cpi->common.mib_size) ||
vp10_active_v_edge(cpi, mi_col, cpi->common.mib_size);
}
static void restore_uv_color_map(VP10_COMP *cpi, MACROBLOCK *x) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
const BLOCK_SIZE bsize = mbmi->sb_type;
const int rows = (4 * num_4x4_blocks_high_lookup[bsize]) >>
(xd->plane[1].subsampling_y);
const int cols = (4 * num_4x4_blocks_wide_lookup[bsize]) >>
(xd->plane[1].subsampling_x);
int src_stride = x->plane[1].src.stride;
const uint8_t *const src_u = x->plane[1].src.buf;
const uint8_t *const src_v = x->plane[2].src.buf;
float *const data = x->palette_buffer->kmeans_data_buf;
uint8_t *const indices = x->palette_buffer->kmeans_indices_buf;
float centroids[2 * PALETTE_MAX_SIZE];
uint8_t *const color_map = xd->plane[1].color_index_map;
int r, c;
#if CONFIG_VP9_HIGHBITDEPTH
const uint16_t *const src_u16 = CONVERT_TO_SHORTPTR(src_u);
const uint16_t *const src_v16 = CONVERT_TO_SHORTPTR(src_v);
#endif // CONFIG_VP9_HIGHBITDEPTH
(void)cpi;
for (r = 0; r < rows; ++r) {
for (c = 0; c < cols; ++c) {
#if CONFIG_VP9_HIGHBITDEPTH
if (cpi->common.use_highbitdepth) {
data[(r * cols + c) * 2 ] =
src_u16[r * src_stride + c];
data[(r * cols + c) * 2 + 1] =
src_v16[r * src_stride + c];
} else {
#endif // CONFIG_VP9_HIGHBITDEPTH
data[(r * cols + c) * 2 ] =
src_u[r * src_stride + c];
data[(r * cols + c) * 2 + 1] =
src_v[r * src_stride + c];
#if CONFIG_VP9_HIGHBITDEPTH
}
#endif // CONFIG_VP9_HIGHBITDEPTH
}
}
for (r = 1; r < 3; ++r) {
for (c = 0; c < pmi->palette_size[1]; ++c) {
centroids[c * 2 + r - 1] = pmi->palette_colors[r * PALETTE_MAX_SIZE + c];
}
}
vp10_calc_indices(data, centroids, indices, rows * cols,
pmi->palette_size[1], 2);
for (r = 0; r < rows; ++r)
for (c = 0; c < cols; ++c)
color_map[r * cols + c] = indices[r * cols + c];
}
#if CONFIG_EXT_INTRA
static void pick_ext_intra_iframe(VP10_COMP *cpi, MACROBLOCK *x,
PICK_MODE_CONTEXT *ctx, BLOCK_SIZE bsize,
int *rate_uv_intra, int *rate_uv_tokenonly,
int64_t *dist_uv, int *skip_uv,
PREDICTION_MODE *mode_uv,
EXT_INTRA_MODE_INFO *ext_intra_mode_info_uv,
PALETTE_MODE_INFO *pmi_uv,
int8_t *uv_angle_delta,
int palette_ctx, int skip_mask,
unsigned int *ref_costs_single,
int64_t *best_rd, int64_t *best_intra_rd,
PREDICTION_MODE *best_intra_mode,
int *best_mode_index, int *best_skip2,
int *best_mode_skippable,
#if CONFIG_SUPERTX
int *returnrate_nocoef,
#endif // CONFIG_SUPERTX
int64_t *best_pred_rd,
MB_MODE_INFO *best_mbmode, RD_COST *rd_cost) {
VP10_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
const TX_SIZE max_tx_size = max_txsize_lookup[bsize];
int rate2 = 0, rate_y = INT_MAX, skippable = 0, rate_uv, rate_dummy, i;
int dc_mode_index;
const int * const intra_mode_cost =
cpi->mbmode_cost[size_group_lookup[bsize]];
int64_t distortion2 = 0, distortion_y = 0, this_rd = *best_rd, distortion_uv;
TX_SIZE uv_tx;
for (i = 0; i < MAX_MODES; ++i)
if (vp10_mode_order[i].mode == DC_PRED &&
vp10_mode_order[i].ref_frame[0] == INTRA_FRAME)
break;
dc_mode_index = i;
assert(i < MAX_MODES);
// TODO(huisu): use skip_mask for further speedup.
(void)skip_mask;
mbmi->mode = DC_PRED;
mbmi->uv_mode = DC_PRED;
mbmi->ref_frame[0] = INTRA_FRAME;
mbmi->ref_frame[1] = NONE;
if (!rd_pick_ext_intra_sby(cpi, x, &rate_dummy, &rate_y, &distortion_y,
&skippable, bsize,
intra_mode_cost[mbmi->mode], &this_rd, 0))
return;
if (rate_y == INT_MAX)
return;
uv_tx = get_uv_tx_size_impl(mbmi->tx_size, bsize,
xd->plane[1].subsampling_x,
xd->plane[1].subsampling_y);
if (rate_uv_intra[uv_tx] == INT_MAX) {
choose_intra_uv_mode(cpi, x, ctx, bsize, uv_tx,
&rate_uv_intra[uv_tx], &rate_uv_tokenonly[uv_tx],
&dist_uv[uv_tx], &skip_uv[uv_tx], &mode_uv[uv_tx]);
if (cm->allow_screen_content_tools)
pmi_uv[uv_tx] = *pmi;
ext_intra_mode_info_uv[uv_tx] = mbmi->ext_intra_mode_info;
uv_angle_delta[uv_tx] = mbmi->angle_delta[1];
}
rate_uv = rate_uv_tokenonly[uv_tx];
distortion_uv = dist_uv[uv_tx];
skippable = skippable && skip_uv[uv_tx];
mbmi->uv_mode = mode_uv[uv_tx];
if (cm->allow_screen_content_tools) {
pmi->palette_size[1] = pmi_uv[uv_tx].palette_size[1];
memcpy(pmi->palette_colors + PALETTE_MAX_SIZE,
pmi_uv[uv_tx].palette_colors + PALETTE_MAX_SIZE,
2 * PALETTE_MAX_SIZE * sizeof(pmi->palette_colors[0]));
}
mbmi->angle_delta[1] = uv_angle_delta[uv_tx];
mbmi->ext_intra_mode_info.use_ext_intra_mode[1] =
ext_intra_mode_info_uv[uv_tx].use_ext_intra_mode[1];
if (ext_intra_mode_info_uv[uv_tx].use_ext_intra_mode[1]) {
mbmi->ext_intra_mode_info.ext_intra_mode[1] =
ext_intra_mode_info_uv[uv_tx].ext_intra_mode[1];
}
rate2 = rate_y + intra_mode_cost[mbmi->mode] + rate_uv +
cpi->intra_uv_mode_cost[mbmi->mode][mbmi->uv_mode];
if (cpi->common.allow_screen_content_tools && mbmi->mode == DC_PRED)
rate2 +=
vp10_cost_bit(vp10_default_palette_y_mode_prob[bsize - BLOCK_8X8]
[palette_ctx], 0);
if (!xd->lossless[mbmi->segment_id]) {
// super_block_yrd above includes the cost of the tx_size in the
// tokenonly rate, but for intra blocks, tx_size is always coded
// (prediction granularity), so we account for it in the full rate,
// not the tokenonly rate.
rate_y -=
cpi->tx_size_cost[max_tx_size - TX_8X8][get_tx_size_context(xd)]
[mbmi->tx_size];
}
rate2 += vp10_cost_bit(cm->fc->ext_intra_probs[0],
mbmi->ext_intra_mode_info.use_ext_intra_mode[0]);
rate2 += write_uniform_cost(FILTER_INTRA_MODES,
mbmi->ext_intra_mode_info.ext_intra_mode[0]);
if (mbmi->uv_mode != DC_PRED && mbmi->uv_mode != TM_PRED) {
rate2 += write_uniform_cost(2 * MAX_ANGLE_DELTAS + 1,
MAX_ANGLE_DELTAS +
mbmi->angle_delta[1]);
}
if (ALLOW_FILTER_INTRA_MODES && mbmi->mode == DC_PRED) {
rate2 += vp10_cost_bit(cpi->common.fc->ext_intra_probs[1],
mbmi->ext_intra_mode_info.use_ext_intra_mode[1]);
if (mbmi->ext_intra_mode_info.use_ext_intra_mode[1])
rate2 +=
write_uniform_cost(FILTER_INTRA_MODES,
mbmi->ext_intra_mode_info.ext_intra_mode[1]);
}
distortion2 = distortion_y + distortion_uv;
vp10_encode_intra_block_plane(x, bsize, 0, 0);
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
x->recon_variance =
vp10_high_get_sby_perpixel_variance(cpi, &xd->plane[0].dst,
bsize, xd->bd);
} else {
x->recon_variance =
vp10_get_sby_perpixel_variance(cpi, &xd->plane[0].dst, bsize);
}
#else
x->recon_variance =
vp10_get_sby_perpixel_variance(cpi, &xd->plane[0].dst, bsize);
#endif // CONFIG_VP9_HIGHBITDEPTH
rate2 += ref_costs_single[INTRA_FRAME];
if (skippable) {
rate2 -= (rate_y + rate_uv);
rate_y = 0;
rate_uv = 0;
rate2 += vp10_cost_bit(vp10_get_skip_prob(cm, xd), 1);
} else {
rate2 += vp10_cost_bit(vp10_get_skip_prob(cm, xd), 0);
}
this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
rd_variance_adjustment(x, &this_rd, INTRA_FRAME, x->source_variance);
if (this_rd < *best_intra_rd) {
*best_intra_rd = this_rd;
*best_intra_mode = mbmi->mode;
}
for (i = 0; i < REFERENCE_MODES; ++i)
best_pred_rd[i] = VPXMIN(best_pred_rd[i], this_rd);
if (this_rd < *best_rd) {
*best_mode_index = dc_mode_index;
mbmi->mv[0].as_int = 0;
rd_cost->rate = rate2;
#if CONFIG_SUPERTX
if (x->skip)
*returnrate_nocoef = rate2;
else
*returnrate_nocoef = rate2 - rate_y - rate_uv;
*returnrate_nocoef -= vp10_cost_bit(vp10_get_skip_prob(cm, xd), skippable);
*returnrate_nocoef -= vp10_cost_bit(vp10_get_intra_inter_prob(cm, xd),
mbmi->ref_frame[0] != INTRA_FRAME);
#endif // CONFIG_SUPERTX
rd_cost->dist = distortion2;
rd_cost->rdcost = this_rd;
*best_rd = this_rd;
*best_mbmode = *mbmi;
*best_skip2 = 0;
*best_mode_skippable = skippable;
}
}
#endif // CONFIG_EXT_INTRA
#if CONFIG_OBMC
static void calc_target_weighted_pred(
const VP10_COMMON *cm,
const MACROBLOCK *x,
const MACROBLOCKD *xd,
int mi_row, int mi_col,
const uint8_t *above, int above_stride,
const uint8_t *left, int left_stride,
int32_t *mask_buf,
int32_t *wsrc_buf);
#endif // CONFIG_OBMC
void vp10_rd_pick_inter_mode_sb(VP10_COMP *cpi,
TileDataEnc *tile_data,
MACROBLOCK *x,
int mi_row, int mi_col,
RD_COST *rd_cost,
#if CONFIG_SUPERTX
int *returnrate_nocoef,
#endif // CONFIG_SUPERTX
BLOCK_SIZE bsize,
PICK_MODE_CONTEXT *ctx,
int64_t best_rd_so_far) {
VP10_COMMON *const cm = &cpi->common;
RD_OPT *const rd_opt = &cpi->rd;
SPEED_FEATURES *const sf = &cpi->sf;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
const struct segmentation *const seg = &cm->seg;
PREDICTION_MODE this_mode;
MV_REFERENCE_FRAME ref_frame, second_ref_frame;
unsigned char segment_id = mbmi->segment_id;
int comp_pred, i, k;
int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES];
struct buf_2d yv12_mb[MAX_REF_FRAMES][MAX_MB_PLANE];
#if CONFIG_EXT_INTER
int_mv single_newmvs[2][MAX_REF_FRAMES] = { { { 0 } }, { { 0 } } };
int single_newmvs_rate[2][MAX_REF_FRAMES] = { { 0 }, { 0 } };
int64_t modelled_rd[MB_MODE_COUNT][MAX_REF_FRAMES];
#else
int_mv single_newmv[MAX_REF_FRAMES] = { { 0 } };
#endif // CONFIG_EXT_INTER
INTERP_FILTER single_inter_filter[MB_MODE_COUNT][MAX_REF_FRAMES];
int single_skippable[MB_MODE_COUNT][MAX_REF_FRAMES];
static const int flag_list[REFS_PER_FRAME + 1] = {
0,
VP9_LAST_FLAG,
#if CONFIG_EXT_REFS
VP9_LAST2_FLAG,
VP9_LAST3_FLAG,
#endif // CONFIG_EXT_REFS
VP9_GOLD_FLAG,
#if CONFIG_EXT_REFS
VP9_BWD_FLAG,
#endif // CONFIG_EXT_REFS
VP9_ALT_FLAG
};
int64_t best_rd = best_rd_so_far;
int best_rate_y = INT_MAX, best_rate_uv = INT_MAX;
int64_t best_pred_diff[REFERENCE_MODES];
int64_t best_pred_rd[REFERENCE_MODES];
MB_MODE_INFO best_mbmode;
int best_mode_skippable = 0;
int midx, best_mode_index = -1;
unsigned int ref_costs_single[MAX_REF_FRAMES], ref_costs_comp[MAX_REF_FRAMES];
vpx_prob comp_mode_p;
int64_t best_intra_rd = INT64_MAX;
unsigned int best_pred_sse = UINT_MAX;
PREDICTION_MODE best_intra_mode = DC_PRED;
int rate_uv_intra[TX_SIZES], rate_uv_tokenonly[TX_SIZES];
int64_t dist_uv[TX_SIZES];
int skip_uv[TX_SIZES];
PREDICTION_MODE mode_uv[TX_SIZES];
PALETTE_MODE_INFO pmi_uv[TX_SIZES];
#if CONFIG_EXT_INTRA
EXT_INTRA_MODE_INFO ext_intra_mode_info_uv[TX_SIZES];
int8_t uv_angle_delta[TX_SIZES], dc_skipped = 1;
int is_directional_mode, angle_stats_ready = 0;
int rate_overhead, rate_dummy;
uint8_t directional_mode_skip_mask[INTRA_MODES];
#endif // CONFIG_EXT_INTRA
const int intra_cost_penalty = vp10_get_intra_cost_penalty(
cm->base_qindex, cm->y_dc_delta_q, cm->bit_depth);
const int * const intra_mode_cost =
cpi->mbmode_cost[size_group_lookup[bsize]];
int best_skip2 = 0;
uint8_t ref_frame_skip_mask[2] = { 0 };
#if CONFIG_EXT_INTER
uint32_t mode_skip_mask[MAX_REF_FRAMES] = { 0 };
MV_REFERENCE_FRAME best_single_inter_ref = LAST_FRAME;
int64_t best_single_inter_rd = INT64_MAX;
#else
uint16_t mode_skip_mask[MAX_REF_FRAMES] = { 0 };
#endif // CONFIG_EXT_INTER
int mode_skip_start = sf->mode_skip_start + 1;
const int *const rd_threshes = rd_opt->threshes[segment_id][bsize];
const int *const rd_thresh_freq_fact = tile_data->thresh_freq_fact[bsize];
int64_t mode_threshold[MAX_MODES];
int *mode_map = tile_data->mode_map[bsize];
const int mode_search_skip_flags = sf->mode_search_skip_flags;
const TX_SIZE max_tx_size = max_txsize_lookup[bsize];
int palette_ctx = 0;
const int rows = 4 * num_4x4_blocks_high_lookup[bsize];
const int cols = 4 * num_4x4_blocks_wide_lookup[bsize];
const MODE_INFO *above_mi = xd->above_mi;
const MODE_INFO *left_mi = xd->left_mi;
#if CONFIG_OBMC
#if CONFIG_VP9_HIGHBITDEPTH
DECLARE_ALIGNED(16, uint8_t, tmp_buf1[2 * MAX_MB_PLANE * MAX_SB_SQUARE]);
DECLARE_ALIGNED(16, uint8_t, tmp_buf2[2 * MAX_MB_PLANE * MAX_SB_SQUARE]);
#else
DECLARE_ALIGNED(16, uint8_t, tmp_buf1[MAX_MB_PLANE * MAX_SB_SQUARE]);
DECLARE_ALIGNED(16, uint8_t, tmp_buf2[MAX_MB_PLANE * MAX_SB_SQUARE]);
#endif // CONFIG_VP9_HIGHBITDEPTH
DECLARE_ALIGNED(16, int32_t, weighted_src_buf[MAX_SB_SQUARE]);
DECLARE_ALIGNED(16, int32_t, mask2d_buf[MAX_SB_SQUARE]);
uint8_t *dst_buf1[MAX_MB_PLANE], *dst_buf2[MAX_MB_PLANE];
int dst_width1[MAX_MB_PLANE] = {MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE};
int dst_width2[MAX_MB_PLANE] = {MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE};
int dst_height1[MAX_MB_PLANE] = {MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE};
int dst_height2[MAX_MB_PLANE] = {MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE};
int dst_stride1[MAX_MB_PLANE] = {MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE};
int dst_stride2[MAX_MB_PLANE] = {MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE};
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
int len = sizeof(uint16_t);
dst_buf1[0] = CONVERT_TO_BYTEPTR(tmp_buf1);
dst_buf1[1] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_SB_SQUARE * len);
dst_buf1[2] = CONVERT_TO_BYTEPTR(tmp_buf1 + 2 * MAX_SB_SQUARE * len);
dst_buf2[0] = CONVERT_TO_BYTEPTR(tmp_buf2);
dst_buf2[1] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_SB_SQUARE * len);
dst_buf2[2] = CONVERT_TO_BYTEPTR(tmp_buf2 + 2 * MAX_SB_SQUARE * len);
} else {
#endif // CONFIG_VP9_HIGHBITDEPTH
dst_buf1[0] = tmp_buf1;
dst_buf1[1] = tmp_buf1 + MAX_SB_SQUARE;
dst_buf1[2] = tmp_buf1 + 2 * MAX_SB_SQUARE;
dst_buf2[0] = tmp_buf2;
dst_buf2[1] = tmp_buf2 + MAX_SB_SQUARE;
dst_buf2[2] = tmp_buf2 + 2 * MAX_SB_SQUARE;
#if CONFIG_VP9_HIGHBITDEPTH
}
#endif // CONFIG_VP9_HIGHBITDEPTH
#endif // CONFIG_OBMC
vp10_zero(best_mbmode);
vp10_zero(pmi_uv);
if (cm->allow_screen_content_tools) {
if (above_mi)
palette_ctx += (above_mi->mbmi.palette_mode_info.palette_size[0] > 0);
if (left_mi)
palette_ctx += (left_mi->mbmi.palette_mode_info.palette_size[0] > 0);
}
#if CONFIG_EXT_INTRA
memset(directional_mode_skip_mask, 0,
sizeof(directional_mode_skip_mask[0]) * INTRA_MODES);
#endif // CONFIG_EXT_INTRA
estimate_ref_frame_costs(cm, xd, segment_id, ref_costs_single, ref_costs_comp,
&comp_mode_p);
for (i = 0; i < REFERENCE_MODES; ++i)
best_pred_rd[i] = INT64_MAX;
for (i = 0; i < TX_SIZES; i++)
rate_uv_intra[i] = INT_MAX;
for (i = 0; i < MAX_REF_FRAMES; ++i)
x->pred_sse[i] = INT_MAX;
for (i = 0; i < MB_MODE_COUNT; ++i) {
for (k = 0; k < MAX_REF_FRAMES; ++k) {
single_inter_filter[i][k] = SWITCHABLE;
single_skippable[i][k] = 0;
}
}
rd_cost->rate = INT_MAX;
#if CONFIG_SUPERTX
*returnrate_nocoef = INT_MAX;
#endif // CONFIG_SUPERTX
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
x->pred_mv_sad[ref_frame] = INT_MAX;
x->mbmi_ext->mode_context[ref_frame] = 0;
#if CONFIG_REF_MV && CONFIG_EXT_INTER
x->mbmi_ext->compound_mode_context[ref_frame] = 0;
#endif // CONFIG_REF_MV && CONFIG_EXT_INTER
if (cpi->ref_frame_flags & flag_list[ref_frame]) {
assert(get_ref_frame_buffer(cpi, ref_frame) != NULL);
setup_buffer_inter(cpi, x, ref_frame, bsize, mi_row, mi_col,
frame_mv[NEARESTMV], frame_mv[NEARMV], yv12_mb);
}
frame_mv[NEWMV][ref_frame].as_int = INVALID_MV;
frame_mv[ZEROMV][ref_frame].as_int = 0;
#if CONFIG_EXT_INTER
frame_mv[NEWFROMNEARMV][ref_frame].as_int = INVALID_MV;
frame_mv[NEW_NEWMV][ref_frame].as_int = INVALID_MV;
frame_mv[ZERO_ZEROMV][ref_frame].as_int = 0;
#endif // CONFIG_EXT_INTER
}
#if CONFIG_REF_MV
for (; ref_frame < MODE_CTX_REF_FRAMES; ++ref_frame) {
MODE_INFO *const mi = xd->mi[0];
int_mv *const candidates = x->mbmi_ext->ref_mvs[ref_frame];
x->mbmi_ext->mode_context[ref_frame] = 0;
vp10_find_mv_refs(cm, xd, mi, ref_frame,
&mbmi_ext->ref_mv_count[ref_frame],
mbmi_ext->ref_mv_stack[ref_frame],
#if CONFIG_EXT_INTER
mbmi_ext->compound_mode_context,
#endif // CONFIG_EXT_INTER
candidates, mi_row, mi_col,
NULL, NULL, mbmi_ext->mode_context);
}
#endif // CONFIG_REF_MV
#if CONFIG_OBMC
vp10_build_prediction_by_above_preds(cm, xd, mi_row, mi_col, dst_buf1,
dst_width1, dst_height1, dst_stride1);
vp10_build_prediction_by_left_preds(cm, xd, mi_row, mi_col, dst_buf2,
dst_width2, dst_height2, dst_stride2);
vp10_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
calc_target_weighted_pred(cm, x, xd, mi_row, mi_col,
dst_buf1[0], dst_stride1[0],
dst_buf2[0], dst_stride2[0],
mask2d_buf, weighted_src_buf);
#endif // CONFIG_OBMC
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
if (!(cpi->ref_frame_flags & flag_list[ref_frame])) {
// Skip checking missing references in both single and compound reference
// modes. Note that a mode will be skipped iff both reference frames
// are masked out.
#if CONFIG_EXT_REFS
if (ref_frame == BWDREF_FRAME || ref_frame == ALTREF_FRAME) {
ref_frame_skip_mask[0] |= (1 << ref_frame);
ref_frame_skip_mask[1] |= ((1 << ref_frame) | 0x01);
} else {
#endif // CONFIG_EXT_REFS
ref_frame_skip_mask[0] |= (1 << ref_frame);
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
#if CONFIG_EXT_REFS
}
#endif // CONFIG_EXT_REFS
} else {
for (i = LAST_FRAME; i <= ALTREF_FRAME; ++i) {
// Skip fixed mv modes for poor references
if ((x->pred_mv_sad[ref_frame] >> 2) > x->pred_mv_sad[i]) {
mode_skip_mask[ref_frame] |= INTER_NEAREST_NEAR_ZERO;
break;
}
}
}
// If the segment reference frame feature is enabled....
// then do nothing if the current ref frame is not allowed..
if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) &&
get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame) {
ref_frame_skip_mask[0] |= (1 << ref_frame);
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
}
}
// Disable this drop out case if the ref frame
// segment level feature is enabled for this segment. This is to
// prevent the possibility that we end up unable to pick any mode.
if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) {
// Only consider ZEROMV/ALTREF_FRAME for alt ref frame,
// unless ARNR filtering is enabled in which case we want
// an unfiltered alternative. We allow near/nearest as well
// because they may result in zero-zero MVs but be cheaper.
if (cpi->rc.is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0)) {
ref_frame_skip_mask[0] =
(1 << LAST_FRAME) |
#if CONFIG_EXT_REFS
(1 << LAST2_FRAME) |
(1 << LAST3_FRAME) |
(1 << BWDREF_FRAME) |
#endif // CONFIG_EXT_REFS
(1 << GOLDEN_FRAME);
ref_frame_skip_mask[1] = SECOND_REF_FRAME_MASK;
// TODO(zoeliu): To further explore whether following needs to be done for
// BWDREF_FRAME as well.
mode_skip_mask[ALTREF_FRAME] = ~INTER_NEAREST_NEAR_ZERO;
if (frame_mv[NEARMV][ALTREF_FRAME].as_int != 0)
mode_skip_mask[ALTREF_FRAME] |= (1 << NEARMV);
if (frame_mv[NEARESTMV][ALTREF_FRAME].as_int != 0)
mode_skip_mask[ALTREF_FRAME] |= (1 << NEARESTMV);
#if CONFIG_EXT_INTER
if (frame_mv[NEAREST_NEARESTMV][ALTREF_FRAME].as_int != 0)
mode_skip_mask[ALTREF_FRAME] |= (1 << NEAREST_NEARESTMV);
if (frame_mv[NEAREST_NEARMV][ALTREF_FRAME].as_int != 0)
mode_skip_mask[ALTREF_FRAME] |= (1 << NEAREST_NEARMV);
if (frame_mv[NEAR_NEARESTMV][ALTREF_FRAME].as_int != 0)
mode_skip_mask[ALTREF_FRAME] |= (1 << NEAR_NEARESTMV);
if (frame_mv[NEAR_NEARMV][ALTREF_FRAME].as_int != 0)
mode_skip_mask[ALTREF_FRAME] |= (1 << NEAR_NEARMV);
#endif // CONFIG_EXT_INTER
}
}
if (cpi->rc.is_src_frame_alt_ref) {
if (sf->alt_ref_search_fp) {
assert(cpi->ref_frame_flags & flag_list[ALTREF_FRAME]);
mode_skip_mask[ALTREF_FRAME] = 0;
ref_frame_skip_mask[0] = ~(1 << ALTREF_FRAME);
ref_frame_skip_mask[1] = SECOND_REF_FRAME_MASK;
}
}
if (sf->alt_ref_search_fp)
if (!cm->show_frame && x->pred_mv_sad[GOLDEN_FRAME] < INT_MAX)
if (x->pred_mv_sad[ALTREF_FRAME] > (x->pred_mv_sad[GOLDEN_FRAME] << 1))
mode_skip_mask[ALTREF_FRAME] |= INTER_ALL;
if (sf->adaptive_mode_search) {
if (cm->show_frame && !cpi->rc.is_src_frame_alt_ref &&
cpi->rc.frames_since_golden >= 3)
if (x->pred_mv_sad[GOLDEN_FRAME] > (x->pred_mv_sad[LAST_FRAME] << 1))
mode_skip_mask[GOLDEN_FRAME] |= INTER_ALL;
}
if (bsize > sf->max_intra_bsize) {
ref_frame_skip_mask[0] |= (1 << INTRA_FRAME);
ref_frame_skip_mask[1] |= (1 << INTRA_FRAME);
}
mode_skip_mask[INTRA_FRAME] |=
~(sf->intra_y_mode_mask[max_txsize_lookup[bsize]]);
for (i = 0; i <= LAST_NEW_MV_INDEX; ++i)
mode_threshold[i] = 0;
for (i = LAST_NEW_MV_INDEX + 1; i < MAX_MODES; ++i)
mode_threshold[i] = ((int64_t)rd_threshes[i] * rd_thresh_freq_fact[i]) >> 5;
midx = sf->schedule_mode_search ? mode_skip_start : 0;
while (midx > 4) {
uint8_t end_pos = 0;
for (i = 5; i < midx; ++i) {
if (mode_threshold[mode_map[i - 1]] > mode_threshold[mode_map[i]]) {
uint8_t tmp = mode_map[i];
mode_map[i] = mode_map[i - 1];
mode_map[i - 1] = tmp;
end_pos = i;
}
}
midx = end_pos;
}
if (cpi->sf.tx_type_search.fast_intra_tx_type_search)
x->use_default_intra_tx_type = 1;
else
x->use_default_intra_tx_type = 0;
if (cpi->sf.tx_type_search.fast_inter_tx_type_search)
x->use_default_inter_tx_type = 1;
else
x->use_default_inter_tx_type = 0;
#if CONFIG_EXT_INTER
for (i = 0 ; i < MB_MODE_COUNT ; ++i)
for (ref_frame = 0; ref_frame < MAX_REF_FRAMES; ++ref_frame)
modelled_rd[i][ref_frame] = INT64_MAX;
#endif // CONFIG_EXT_INTER
for (midx = 0; midx < MAX_MODES; ++midx) {
int mode_index;
int mode_excluded = 0;
int64_t this_rd = INT64_MAX;
int disable_skip = 0;
int compmode_cost = 0;
#if CONFIG_EXT_INTER
int compmode_interintra_cost = 0;
int compmode_wedge_cost = 0;
#endif // CONFIG_EXT_INTER
int rate2 = 0, rate_y = 0, rate_uv = 0;
int64_t distortion2 = 0, distortion_y = 0, distortion_uv = 0;
int skippable = 0;
int this_skip2 = 0;
int64_t total_sse = INT64_MAX;
int early_term = 0;
#if CONFIG_REF_MV
uint8_t ref_frame_type;
#endif
mode_index = mode_map[midx];
this_mode = vp10_mode_order[mode_index].mode;
ref_frame = vp10_mode_order[mode_index].ref_frame[0];
second_ref_frame = vp10_mode_order[mode_index].ref_frame[1];
#if CONFIG_EXT_INTER
if (ref_frame > INTRA_FRAME && second_ref_frame == INTRA_FRAME) {
// Mode must by compatible
assert(is_interintra_allowed_mode(this_mode));
if (!is_interintra_allowed_bsize(bsize))
continue;
}
if (is_inter_compound_mode(this_mode)) {
frame_mv[this_mode][ref_frame].as_int =
frame_mv[compound_ref0_mode(this_mode)][ref_frame].as_int;
frame_mv[this_mode][second_ref_frame].as_int =
frame_mv[compound_ref1_mode(this_mode)][second_ref_frame].as_int;
}
#endif // CONFIG_EXT_INTER
// Look at the reference frame of the best mode so far and set the
// skip mask to look at a subset of the remaining modes.
if (midx == mode_skip_start && best_mode_index >= 0) {
switch (best_mbmode.ref_frame[0]) {
case INTRA_FRAME:
break;
case LAST_FRAME:
ref_frame_skip_mask[0] |= LAST_FRAME_MODE_MASK;
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
break;
#if CONFIG_EXT_REFS
case LAST2_FRAME:
ref_frame_skip_mask[0] |= LAST2_FRAME_MODE_MASK;
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
break;
case LAST3_FRAME:
ref_frame_skip_mask[0] |= LAST3_FRAME_MODE_MASK;
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
break;
#endif // CONFIG_EXT_REFS
case GOLDEN_FRAME:
ref_frame_skip_mask[0] |= GOLDEN_FRAME_MODE_MASK;
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
break;
#if CONFIG_EXT_REFS
case BWDREF_FRAME:
ref_frame_skip_mask[0] |= BWDREF_FRAME_MODE_MASK;
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
break;
#endif // CONFIG_EXT_REFS
case ALTREF_FRAME:
ref_frame_skip_mask[0] |= ALTREF_FRAME_MODE_MASK;
#if CONFIG_EXT_REFS
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
#endif // CONFIG_EXT_REFS
break;
case NONE:
case MAX_REF_FRAMES:
assert(0 && "Invalid Reference frame");
break;
}
}
if ((ref_frame_skip_mask[0] & (1 << ref_frame)) &&
(ref_frame_skip_mask[1] & (1 << VPXMAX(0, second_ref_frame))))
continue;
if (mode_skip_mask[ref_frame] & (1 << this_mode))
continue;
// Test best rd so far against threshold for trying this mode.
if (best_mode_skippable && sf->schedule_mode_search)
mode_threshold[mode_index] <<= 1;
if (best_rd < mode_threshold[mode_index])
continue;
comp_pred = second_ref_frame > INTRA_FRAME;
if (comp_pred) {
if (!cpi->allow_comp_inter_inter)
continue;
// Skip compound inter modes if ARF is not available.
if (!(cpi->ref_frame_flags & flag_list[second_ref_frame]))
continue;
// Do not allow compound prediction if the segment level reference frame
// feature is in use as in this case there can only be one reference.
if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME))
continue;
if ((mode_search_skip_flags & FLAG_SKIP_COMP_BESTINTRA) &&
best_mode_index >= 0 && best_mbmode.ref_frame[0] == INTRA_FRAME)
continue;
mode_excluded = cm->reference_mode == SINGLE_REFERENCE;
} else {
if (ref_frame != INTRA_FRAME)
mode_excluded = cm->reference_mode == COMPOUND_REFERENCE;
}
if (ref_frame == INTRA_FRAME) {
if (sf->adaptive_mode_search)
if ((x->source_variance << num_pels_log2_lookup[bsize]) > best_pred_sse)
continue;
if (this_mode != DC_PRED) {
// Disable intra modes other than DC_PRED for blocks with low variance
// Threshold for intra skipping based on source variance
// TODO(debargha): Specialize the threshold for super block sizes
const unsigned int skip_intra_var_thresh = 64;
if ((mode_search_skip_flags & FLAG_SKIP_INTRA_LOWVAR) &&
x->source_variance < skip_intra_var_thresh)
continue;
// Only search the oblique modes if the best so far is
// one of the neighboring directional modes
if ((mode_search_skip_flags & FLAG_SKIP_INTRA_BESTINTER) &&
(this_mode >= D45_PRED && this_mode <= TM_PRED)) {
if (best_mode_index >= 0 &&
best_mbmode.ref_frame[0] > INTRA_FRAME)
continue;
}
if (mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) {
if (conditional_skipintra(this_mode, best_intra_mode))
continue;
}
}
} else {
const MV_REFERENCE_FRAME ref_frames[2] = {ref_frame, second_ref_frame};
if (!check_best_zero_mv(cpi, mbmi_ext->mode_context,
#if CONFIG_REF_MV && CONFIG_EXT_INTER
mbmi_ext->compound_mode_context,
#endif // CONFIG_REF_MV && CONFIG_EXT_INTER
frame_mv,
this_mode, ref_frames, bsize, -1))
continue;
}
mbmi->mode = this_mode;
mbmi->uv_mode = DC_PRED;
mbmi->ref_frame[0] = ref_frame;
mbmi->ref_frame[1] = second_ref_frame;
pmi->palette_size[0] = 0;
pmi->palette_size[1] = 0;
#if CONFIG_EXT_INTRA
mbmi->ext_intra_mode_info.use_ext_intra_mode[0] = 0;
mbmi->ext_intra_mode_info.use_ext_intra_mode[1] = 0;
#endif // CONFIG_EXT_INTRA
// Evaluate all sub-pel filters irrespective of whether we can use
// them for this frame.
#if CONFIG_DUAL_FILTER
for (i = 0; i < 4; ++i) {
mbmi->interp_filter[i] = cm->interp_filter == SWITCHABLE ?
EIGHTTAP_REGULAR : cm->interp_filter;
}
#else
mbmi->interp_filter = cm->interp_filter == SWITCHABLE ? EIGHTTAP_REGULAR
: cm->interp_filter;
#endif
mbmi->mv[0].as_int = mbmi->mv[1].as_int = 0;
mbmi->motion_variation = SIMPLE_TRANSLATION;
x->skip = 0;
set_ref_ptrs(cm, xd, ref_frame, second_ref_frame);
// Select prediction reference frames.
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].pre[0] = yv12_mb[ref_frame][i];
if (comp_pred)
xd->plane[i].pre[1] = yv12_mb[second_ref_frame][i];
}
#if CONFIG_EXT_INTER
mbmi->interintra_mode = (PREDICTION_MODE)(DC_PRED - 1);
#endif // CONFIG_EXT_INTER
if (ref_frame == INTRA_FRAME) {
TX_SIZE uv_tx;
struct macroblockd_plane *const pd = &xd->plane[1];
#if CONFIG_EXT_INTRA
is_directional_mode = (mbmi->mode != DC_PRED && mbmi->mode != TM_PRED);
if (is_directional_mode) {
if (!angle_stats_ready) {
const int src_stride = x->plane[0].src.stride;
const uint8_t *src = x->plane[0].src.buf;
const int rows = 4 * num_4x4_blocks_high_lookup[bsize];
const int cols = 4 * num_4x4_blocks_wide_lookup[bsize];
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
highbd_angle_estimation(src, src_stride, rows, cols,
directional_mode_skip_mask);
else
#endif
angle_estimation(src, src_stride, rows, cols,
directional_mode_skip_mask);
angle_stats_ready = 1;
}
if (directional_mode_skip_mask[mbmi->mode])
continue;
rate_overhead = write_uniform_cost(2 * MAX_ANGLE_DELTAS + 1, 0) +
intra_mode_cost[mbmi->mode];
rate_y = INT_MAX;
this_rd =
rd_pick_intra_angle_sby(cpi, x, &rate_dummy, &rate_y, &distortion_y,
&skippable, bsize, rate_overhead, best_rd);
} else {
mbmi->angle_delta[0] = 0;
super_block_yrd(cpi, x, &rate_y, &distortion_y, &skippable,
NULL, bsize, best_rd);
}
#else
super_block_yrd(cpi, x, &rate_y, &distortion_y, &skippable,
NULL, bsize, best_rd);
#endif // CONFIG_EXT_INTRA
if (rate_y == INT_MAX)
continue;
#if CONFIG_EXT_INTRA
if (mbmi->mode == DC_PRED)
dc_skipped = 0;
#endif // CONFIG_EXT_INTRA
uv_tx = get_uv_tx_size_impl(mbmi->tx_size, bsize, pd->subsampling_x,
pd->subsampling_y);
if (rate_uv_intra[uv_tx] == INT_MAX) {
choose_intra_uv_mode(cpi, x, ctx, bsize, uv_tx,
&rate_uv_intra[uv_tx], &rate_uv_tokenonly[uv_tx],
&dist_uv[uv_tx], &skip_uv[uv_tx], &mode_uv[uv_tx]);
if (cm->allow_screen_content_tools)
pmi_uv[uv_tx] = *pmi;
#if CONFIG_EXT_INTRA
ext_intra_mode_info_uv[uv_tx] = mbmi->ext_intra_mode_info;
uv_angle_delta[uv_tx] = mbmi->angle_delta[1];
#endif // CONFIG_EXT_INTRA
}
rate_uv = rate_uv_tokenonly[uv_tx];
distortion_uv = dist_uv[uv_tx];
skippable = skippable && skip_uv[uv_tx];
mbmi->uv_mode = mode_uv[uv_tx];
if (cm->allow_screen_content_tools) {
pmi->palette_size[1] = pmi_uv[uv_tx].palette_size[1];
memcpy(pmi->palette_colors + PALETTE_MAX_SIZE,
pmi_uv[uv_tx].palette_colors + PALETTE_MAX_SIZE,
2 * PALETTE_MAX_SIZE * sizeof(pmi->palette_colors[0]));
}
#if CONFIG_EXT_INTRA
mbmi->angle_delta[1] = uv_angle_delta[uv_tx];
mbmi->ext_intra_mode_info.use_ext_intra_mode[1] =
ext_intra_mode_info_uv[uv_tx].use_ext_intra_mode[1];
if (ext_intra_mode_info_uv[uv_tx].use_ext_intra_mode[1]) {
mbmi->ext_intra_mode_info.ext_intra_mode[1] =
ext_intra_mode_info_uv[uv_tx].ext_intra_mode[1];
}
#endif // CONFIG_EXT_INTRA
rate2 = rate_y + intra_mode_cost[mbmi->mode] +
rate_uv + cpi->intra_uv_mode_cost[mbmi->mode][mbmi->uv_mode];
if (cpi->common.allow_screen_content_tools && mbmi->mode == DC_PRED)
rate2 +=
vp10_cost_bit(vp10_default_palette_y_mode_prob[bsize - BLOCK_8X8]
[palette_ctx], 0);
if (!xd->lossless[mbmi->segment_id]) {
// super_block_yrd above includes the cost of the tx_size in the
// tokenonly rate, but for intra blocks, tx_size is always coded
// (prediction granularity), so we account for it in the full rate,
// not the tokenonly rate.
rate_y -=
cpi->tx_size_cost[max_tx_size - TX_8X8][get_tx_size_context(xd)]
[mbmi->tx_size];
}
#if CONFIG_EXT_INTRA
if (is_directional_mode) {
int p_angle;
const int intra_filter_ctx = vp10_get_pred_context_intra_interp(xd);
rate2 += write_uniform_cost(2 * MAX_ANGLE_DELTAS + 1,
MAX_ANGLE_DELTAS +
mbmi->angle_delta[0]);
p_angle = mode_to_angle_map[mbmi->mode] +
mbmi->angle_delta[0] * ANGLE_STEP;
if (vp10_is_intra_filter_switchable(p_angle))
rate2 += cpi->intra_filter_cost[intra_filter_ctx][mbmi->intra_filter];
}
if (mbmi->mode == DC_PRED && ALLOW_FILTER_INTRA_MODES) {
rate2 += vp10_cost_bit(cm->fc->ext_intra_probs[0],
mbmi->ext_intra_mode_info.use_ext_intra_mode[0]);
if (mbmi->ext_intra_mode_info.use_ext_intra_mode[0]) {
rate2 +=
write_uniform_cost(FILTER_INTRA_MODES,
mbmi->ext_intra_mode_info.ext_intra_mode[0]);
}
}
if (mbmi->uv_mode != DC_PRED && mbmi->uv_mode != TM_PRED) {
rate2 += write_uniform_cost(2 * MAX_ANGLE_DELTAS + 1,
MAX_ANGLE_DELTAS +
mbmi->angle_delta[1]);
}
if (ALLOW_FILTER_INTRA_MODES && mbmi->mode == DC_PRED) {
rate2 += vp10_cost_bit(cpi->common.fc->ext_intra_probs[1],
mbmi->ext_intra_mode_info.use_ext_intra_mode[1]);
if (mbmi->ext_intra_mode_info.use_ext_intra_mode[1])
rate2 +=
write_uniform_cost(FILTER_INTRA_MODES,
mbmi->ext_intra_mode_info.ext_intra_mode[1]);
}
#endif // CONFIG_EXT_INTRA
if (this_mode != DC_PRED && this_mode != TM_PRED)
rate2 += intra_cost_penalty;
distortion2 = distortion_y + distortion_uv;
vp10_encode_intra_block_plane(x, bsize, 0, 1);
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
x->recon_variance =
vp10_high_get_sby_perpixel_variance(cpi, &xd->plane[0].dst,
bsize, xd->bd);
} else {
x->recon_variance =
vp10_get_sby_perpixel_variance(cpi, &xd->plane[0].dst, bsize);
}
#else
x->recon_variance =
vp10_get_sby_perpixel_variance(cpi, &xd->plane[0].dst, bsize);
#endif // CONFIG_VP9_HIGHBITDEPTH
} else {
#if CONFIG_REF_MV
int_mv backup_ref_mv[2];
backup_ref_mv[0] = mbmi_ext->ref_mvs[ref_frame][0];
if (comp_pred)
backup_ref_mv[1] = mbmi_ext->ref_mvs[second_ref_frame][0];
#endif
#if CONFIG_EXT_INTER
if (second_ref_frame == INTRA_FRAME) {
if (best_single_inter_ref != ref_frame)
continue;
mbmi->interintra_mode = best_intra_mode;
#if CONFIG_EXT_INTRA
// TODO(debargha|geza.lore):
// Should we use ext_intra modes for interintra?
mbmi->ext_intra_mode_info.use_ext_intra_mode[0] = 0;
mbmi->ext_intra_mode_info.use_ext_intra_mode[1] = 0;
mbmi->angle_delta[0] = 0;
mbmi->angle_delta[1] = 0;
mbmi->intra_filter = INTRA_FILTER_LINEAR;
#endif // CONFIG_EXT_INTRA
}
#endif // CONFIG_EXT_INTER
#if CONFIG_REF_MV
mbmi->ref_mv_idx = 0;
ref_frame_type = vp10_ref_frame_type(mbmi->ref_frame);
if (this_mode == NEWMV &&
mbmi_ext->ref_mv_count[ref_frame_type] > 1) {
int ref;
for (ref = 0; ref < 1 + comp_pred; ++ref) {
int_mv this_mv = (ref == 0) ?
mbmi_ext->ref_mv_stack[ref_frame_type][0].this_mv :
mbmi_ext->ref_mv_stack[ref_frame_type][0].comp_mv;
clamp_mv_ref(&this_mv.as_mv, xd->n8_w << 3, xd->n8_h << 3, xd);
mbmi_ext->ref_mvs[mbmi->ref_frame[ref]][0] = this_mv;
}
}
#endif
this_rd = handle_inter_mode(cpi, x, bsize,
&rate2, &distortion2, &skippable,
&rate_y, &rate_uv,
&disable_skip, frame_mv,
mi_row, mi_col,
#if CONFIG_OBMC
dst_buf1, dst_stride1,
dst_buf2, dst_stride2,
weighted_src_buf,
mask2d_buf,
#endif // CONFIG_OBMC
#if CONFIG_EXT_INTER
single_newmvs,
single_newmvs_rate,
&compmode_interintra_cost,
&compmode_wedge_cost,
modelled_rd,
#else
single_newmv,
#endif // CONFIG_EXT_INTER
single_inter_filter,
single_skippable,
&total_sse, best_rd);
#if CONFIG_REF_MV
// TODO(jingning): This needs some refactoring to improve code quality
// and reduce redundant steps.
if ((mbmi->mode == NEARMV &&
mbmi_ext->ref_mv_count[ref_frame_type] > 2) ||
(mbmi->mode == NEWMV &&
mbmi_ext->ref_mv_count[ref_frame_type] > 1)) {
int_mv backup_mv = frame_mv[NEARMV][ref_frame];
MB_MODE_INFO backup_mbmi = *mbmi;
int backup_skip = x->skip;
int64_t tmp_ref_rd = this_rd;
int ref_idx;
// TODO(jingning): This should be deprecated shortly.
int idx_offset = (mbmi->mode == NEARMV) ? 1 : 0;
int ref_set =
VPXMIN(2, mbmi_ext->ref_mv_count[ref_frame_type] - 1 - idx_offset);
uint8_t drl_ctx = vp10_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type],
idx_offset);
// Dummy
int_mv backup_fmv[2];
backup_fmv[0] = frame_mv[NEWMV][ref_frame];
if (comp_pred)
backup_fmv[1] = frame_mv[NEWMV][second_ref_frame];
rate2 += cpi->drl_mode_cost0[drl_ctx][0];
if (this_rd < INT64_MAX) {
if (RDCOST(x->rdmult, x->rddiv, rate_y + rate_uv, distortion2) <
RDCOST(x->rdmult, x->rddiv, 0, total_sse))
tmp_ref_rd = RDCOST(x->rdmult, x->rddiv,
rate2 + vp10_cost_bit(vp10_get_skip_prob(cm, xd), 0),
distortion2);
else
tmp_ref_rd = RDCOST(x->rdmult, x->rddiv,
rate2 + vp10_cost_bit(vp10_get_skip_prob(cm, xd), 1) -
rate_y - rate_uv,
total_sse);
}
#if CONFIG_VAR_TX
for (i = 0; i < MAX_MB_PLANE; ++i)
memcpy(x->blk_skip_drl[i], x->blk_skip[i],
sizeof(uint8_t) * ctx->num_4x4_blk);
#endif
for (ref_idx = 0; ref_idx < ref_set; ++ref_idx) {
int64_t tmp_alt_rd = INT64_MAX;
int tmp_rate = 0, tmp_rate_y = 0, tmp_rate_uv = 0;
int tmp_skip = 1;
int64_t tmp_dist = 0, tmp_sse = 0;
int dummy_disable_skip = 0;
int ref;
int_mv cur_mv;
mbmi->ref_mv_idx = 1 + ref_idx;
for (ref = 0; ref < 1 + comp_pred; ++ref) {
int_mv this_mv = (ref == 0) ?
mbmi_ext->ref_mv_stack[ref_frame_type]
[mbmi->ref_mv_idx].this_mv :
mbmi_ext->ref_mv_stack[ref_frame_type]
[mbmi->ref_mv_idx].comp_mv;
clamp_mv_ref(&this_mv.as_mv, xd->n8_w << 3, xd->n8_h << 3, xd);
mbmi_ext->ref_mvs[mbmi->ref_frame[ref]][0] = this_mv;
}
cur_mv = mbmi_ext->ref_mv_stack[ref_frame]
[mbmi->ref_mv_idx + idx_offset].this_mv;
clamp_mv2(&cur_mv.as_mv, xd);
if (!mv_check_bounds(x, &cur_mv.as_mv)) {
INTERP_FILTER dummy_single_inter_filter[MB_MODE_COUNT]
[MAX_REF_FRAMES] =
{ { 0 } };
int dummy_single_skippable[MB_MODE_COUNT][MAX_REF_FRAMES] =
{ { 0 } };
int dummy_disable_skip = 0;
#if CONFIG_EXT_INTER
int_mv dummy_single_newmvs[2][MAX_REF_FRAMES] =
{ { { 0 } }, { { 0 } } };
int dummy_single_newmvs_rate[2][MAX_REF_FRAMES] =
{ { 0 }, { 0 } };
int dummy_compmode_interintra_cost = 0;
int dummy_compmode_wedge_cost = 0;
#else
int_mv dummy_single_newmv[MAX_REF_FRAMES] = { { 0 } };
#endif
frame_mv[NEARMV][ref_frame] = cur_mv;
tmp_alt_rd = handle_inter_mode(cpi, x, bsize,
&tmp_rate, &tmp_dist, &tmp_skip,
&tmp_rate_y, &tmp_rate_uv,
&dummy_disable_skip, frame_mv,
mi_row, mi_col,
#if CONFIG_OBMC
dst_buf1, dst_stride1,
dst_buf2, dst_stride2,
weighted_src_buf,
mask2d_buf,
#endif // CONFIG_OBMC
#if CONFIG_EXT_INTER
dummy_single_newmvs,
dummy_single_newmvs_rate,
&dummy_compmode_interintra_cost,
&dummy_compmode_wedge_cost,
NULL,
#else
dummy_single_newmv,
#endif
dummy_single_inter_filter,
dummy_single_skippable,
&tmp_sse, best_rd);
}
for (i = 0; i < mbmi->ref_mv_idx; ++i) {
uint8_t drl1_ctx = 0;
drl1_ctx = vp10_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type],
i + idx_offset);
tmp_rate += cpi->drl_mode_cost0[drl1_ctx][1];
}
if (mbmi_ext->ref_mv_count[ref_frame_type] >
mbmi->ref_mv_idx + idx_offset + 1 &&
ref_idx < ref_set - 1) {
uint8_t drl1_ctx =
vp10_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type],
mbmi->ref_mv_idx + idx_offset);
tmp_rate += cpi->drl_mode_cost0[drl1_ctx][0];
}
if (tmp_alt_rd < INT64_MAX) {
#if CONFIG_OBMC
tmp_alt_rd = RDCOST(x->rdmult, x->rddiv, tmp_rate, tmp_dist);
#else
if (RDCOST(x->rdmult, x->rddiv,
tmp_rate_y + tmp_rate_uv, tmp_dist) <
RDCOST(x->rdmult, x->rddiv, 0, tmp_sse))
tmp_alt_rd = RDCOST(x->rdmult, x->rddiv,
tmp_rate + vp10_cost_bit(vp10_get_skip_prob(cm, xd), 0),
tmp_dist);
else
tmp_alt_rd = RDCOST(x->rdmult, x->rddiv,
tmp_rate + vp10_cost_bit(vp10_get_skip_prob(cm, xd), 1) -
tmp_rate_y - tmp_rate_uv,
tmp_sse);
#endif // CONFIG_OBMC
}
if (tmp_ref_rd > tmp_alt_rd) {
rate2 = tmp_rate;
disable_skip = dummy_disable_skip;
distortion2 = tmp_dist;
skippable = tmp_skip;
rate_y = tmp_rate_y;
rate_uv = tmp_rate_uv;
total_sse = tmp_sse;
this_rd = tmp_alt_rd;
tmp_ref_rd = tmp_alt_rd;
backup_mbmi = *mbmi;
backup_skip = x->skip;
#if CONFIG_VAR_TX
for (i = 0; i < MAX_MB_PLANE; ++i)
memcpy(x->blk_skip_drl[i], x->blk_skip[i],
sizeof(uint8_t) * ctx->num_4x4_blk);
#endif
} else {
*mbmi = backup_mbmi;
x->skip = backup_skip;
}
}
frame_mv[NEARMV][ref_frame] = backup_mv;
frame_mv[NEWMV][ref_frame] = backup_fmv[0];
if (comp_pred)
frame_mv[NEWMV][second_ref_frame] = backup_fmv[1];
#if CONFIG_VAR_TX
for (i = 0; i < MAX_MB_PLANE; ++i)
memcpy(x->blk_skip[i], x->blk_skip_drl[i],
sizeof(uint8_t) * ctx->num_4x4_blk);
#endif
}
mbmi_ext->ref_mvs[ref_frame][0] = backup_ref_mv[0];
if (comp_pred)
mbmi_ext->ref_mvs[second_ref_frame][0] = backup_ref_mv[1];
#endif // CONFIG_REF_MV
if (this_rd == INT64_MAX)
continue;
compmode_cost = vp10_cost_bit(comp_mode_p, comp_pred);
if (cm->reference_mode == REFERENCE_MODE_SELECT)
rate2 += compmode_cost;
}
#if CONFIG_EXT_INTER
rate2 += compmode_interintra_cost;
if (cm->reference_mode != SINGLE_REFERENCE && comp_pred)
#if CONFIG_OBMC || CONFIG_WARPED_MOTION
if (mbmi->motion_variation == SIMPLE_TRANSLATION)
#endif // CONFIG_OBMC || CONFIG_WARPED_MOTION
rate2 += compmode_wedge_cost;
#endif // CONFIG_EXT_INTER
// Estimate the reference frame signaling cost and add it
// to the rolling cost variable.
if (comp_pred) {
rate2 += ref_costs_comp[ref_frame];
} else {
rate2 += ref_costs_single[ref_frame];
}
#if CONFIG_OBMC
if (ref_frame == INTRA_FRAME) {
#else
if (!disable_skip) {
#endif // CONFIG_OBMC
if (skippable) {
// Back out the coefficient coding costs
rate2 -= (rate_y + rate_uv);
rate_y = 0;
rate_uv = 0;
// Cost the skip mb case
rate2 += vp10_cost_bit(vp10_get_skip_prob(cm, xd), 1);
} else if (ref_frame != INTRA_FRAME && !xd->lossless[mbmi->segment_id]) {
if (RDCOST(x->rdmult, x->rddiv, rate_y + rate_uv, distortion2) <
RDCOST(x->rdmult, x->rddiv, 0, total_sse)) {
// Add in the cost of the no skip flag.
rate2 += vp10_cost_bit(vp10_get_skip_prob(cm, xd), 0);
} else {
// FIXME(rbultje) make this work for splitmv also
rate2 += vp10_cost_bit(vp10_get_skip_prob(cm, xd), 1);
distortion2 = total_sse;
assert(total_sse >= 0);
rate2 -= (rate_y + rate_uv);
this_skip2 = 1;
rate_y = 0;
rate_uv = 0;
}
} else {
// Add in the cost of the no skip flag.
rate2 += vp10_cost_bit(vp10_get_skip_prob(cm, xd), 0);
}
// Calculate the final RD estimate for this mode.
this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
#if CONFIG_OBMC
} else {
this_skip2 = mbmi->skip;
this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
if (this_skip2) {
rate_y = 0;
rate_uv = 0;
}
#endif // CONFIG_OBMC
}
// Apply an adjustment to the rd value based on the similarity of the
// source variance and reconstructed variance.
rd_variance_adjustment(x, &this_rd, ref_frame, x->source_variance);
if (ref_frame == INTRA_FRAME) {
// Keep record of best intra rd
if (this_rd < best_intra_rd) {
best_intra_rd = this_rd;
best_intra_mode = mbmi->mode;
}
#if CONFIG_EXT_INTER
} else if (second_ref_frame == NONE) {
if (this_rd < best_single_inter_rd) {
best_single_inter_rd = this_rd;
best_single_inter_ref = mbmi->ref_frame[0];
}
#endif // CONFIG_EXT_INTER
}
if (!disable_skip && ref_frame == INTRA_FRAME) {
for (i = 0; i < REFERENCE_MODES; ++i)
best_pred_rd[i] = VPXMIN(best_pred_rd[i], this_rd);
}
// Did this mode help.. i.e. is it the new best mode
if (this_rd < best_rd || x->skip) {
if (!mode_excluded) {
// Note index of best mode so far
best_mode_index = mode_index;
if (ref_frame == INTRA_FRAME) {
/* required for left and above block mv */
mbmi->mv[0].as_int = 0;
} else {
best_pred_sse = x->pred_sse[ref_frame];
}
rd_cost->rate = rate2;
#if CONFIG_SUPERTX
if (x->skip)
*returnrate_nocoef = rate2;
else
*returnrate_nocoef = rate2 - rate_y - rate_uv;
*returnrate_nocoef -= vp10_cost_bit(vp10_get_skip_prob(cm, xd),
disable_skip || skippable || this_skip2);
*returnrate_nocoef -= vp10_cost_bit(vp10_get_intra_inter_prob(cm, xd),
mbmi->ref_frame[0] != INTRA_FRAME);
#if CONFIG_OBMC || CONFIG_WARPED_MOTION
if (is_inter_block(mbmi) && is_motvar_allowed(mbmi))
*returnrate_nocoef -= cpi->motvar_cost[bsize][mbmi->motion_variation];
#endif // CONFIG_OBMC || CONFIG_WARPED_MOTION
#endif // CONFIG_SUPERTX
rd_cost->dist = distortion2;
rd_cost->rdcost = this_rd;
best_rd = this_rd;
best_mbmode = *mbmi;
best_skip2 = this_skip2;
best_mode_skippable = skippable;
best_rate_y = rate_y +
vp10_cost_bit(vp10_get_skip_prob(cm, xd), this_skip2 || skippable);
best_rate_uv = rate_uv;
#if CONFIG_VAR_TX
for (i = 0; i < MAX_MB_PLANE; ++i)
memcpy(ctx->blk_skip[i], x->blk_skip[i],
sizeof(uint8_t) * ctx->num_4x4_blk);
#endif
// TODO(debargha): enhance this test with a better distortion prediction
// based on qp, activity mask and history
if ((mode_search_skip_flags & FLAG_EARLY_TERMINATE) &&
(mode_index > MIN_EARLY_TERM_INDEX)) {
int qstep = xd->plane[0].dequant[1];
// TODO(debargha): Enhance this by specializing for each mode_index
int scale = 4;
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
qstep >>= (xd->bd - 8);
}
#endif // CONFIG_VP9_HIGHBITDEPTH
if (x->source_variance < UINT_MAX) {
const int var_adjust = (x->source_variance < 16);
scale -= var_adjust;
}
if (ref_frame > INTRA_FRAME &&
distortion2 * scale < qstep * qstep) {
early_term = 1;
}
}
}
}
/* keep record of best compound/single-only prediction */
if (!disable_skip && ref_frame != INTRA_FRAME) {
int64_t single_rd, hybrid_rd, single_rate, hybrid_rate;
if (cm->reference_mode == REFERENCE_MODE_SELECT) {
single_rate = rate2 - compmode_cost;
hybrid_rate = rate2;
} else {
single_rate = rate2;
hybrid_rate = rate2 + compmode_cost;
}
single_rd = RDCOST(x->rdmult, x->rddiv, single_rate, distortion2);
hybrid_rd = RDCOST(x->rdmult, x->rddiv, hybrid_rate, distortion2);
if (!comp_pred) {
if (single_rd < best_pred_rd[SINGLE_REFERENCE])
best_pred_rd[SINGLE_REFERENCE] = single_rd;
} else {
if (single_rd < best_pred_rd[COMPOUND_REFERENCE])
best_pred_rd[COMPOUND_REFERENCE] = single_rd;
}
if (hybrid_rd < best_pred_rd[REFERENCE_MODE_SELECT])
best_pred_rd[REFERENCE_MODE_SELECT] = hybrid_rd;
}
if (early_term)
break;
if (x->skip && !comp_pred)
break;
}
if (xd->lossless[mbmi->segment_id] == 0 && best_mode_index >= 0 &&
((sf->tx_type_search.fast_inter_tx_type_search == 1 &&
is_inter_mode(best_mbmode.mode)) ||
(sf->tx_type_search.fast_intra_tx_type_search == 1 &&
!is_inter_mode(best_mbmode.mode)))) {
int rate_y = 0, rate_uv = 0;
int64_t dist_y = 0, dist_uv = 0;
int skip_y = 0, skip_uv = 0, skip_blk = 0;
int64_t sse_y = 0, sse_uv = 0;
x->use_default_inter_tx_type = 0;
x->use_default_intra_tx_type = 0;
*mbmi = best_mbmode;
set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
// Select prediction reference frames.
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].pre[0] = yv12_mb[mbmi->ref_frame[0]][i];
if (has_second_ref(mbmi))
xd->plane[i].pre[1] = yv12_mb[mbmi->ref_frame[1]][i];
}
if (is_inter_mode(mbmi->mode)) {
vp10_build_inter_predictors_sb(xd, mi_row, mi_col, bsize);
#if CONFIG_OBMC
if (mbmi->motion_variation == OBMC_CAUSAL)
vp10_build_obmc_inter_prediction(cm, xd, mi_row, mi_col,
dst_buf1, dst_stride1,
dst_buf2, dst_stride2);
#endif // CONFIG_OBMC
vp10_subtract_plane(x, bsize, 0);
#if CONFIG_VAR_TX
if (cm->tx_mode == TX_MODE_SELECT || xd->lossless[mbmi->segment_id]) {
select_tx_type_yrd(cpi, x, &rate_y, &dist_y, &skip_y, &sse_y,
bsize, INT64_MAX);
} else {
int idx, idy;
super_block_yrd(cpi, x, &rate_y, &dist_y, &skip_y, &sse_y,
bsize, INT64_MAX);
for (idy = 0; idy < xd->n8_h; ++idy)
for (idx = 0; idx < xd->n8_w; ++idx)
mbmi->inter_tx_size[idy][idx] = mbmi->tx_size;
memset(x->blk_skip[0], skip_y,
sizeof(uint8_t) * xd->n8_h * xd->n8_w * 4);
}
inter_block_uvrd(cpi, x, &rate_uv, &dist_uv, &skip_uv,
&sse_uv, bsize, INT64_MAX);
#else
super_block_yrd(cpi, x, &rate_y, &dist_y, &skip_y, &sse_y,
bsize, INT64_MAX);
super_block_uvrd(cpi, x, &rate_uv, &dist_uv, &skip_uv,
&sse_uv, bsize, INT64_MAX);
#endif // CONFIG_VAR_TX
} else {
super_block_yrd(cpi, x, &rate_y, &dist_y, &skip_y, &sse_y,
bsize, INT64_MAX);
super_block_uvrd(cpi, x, &rate_uv, &dist_uv, &skip_uv,
&sse_uv, bsize, INT64_MAX);
}
if (RDCOST(x->rdmult, x->rddiv, rate_y + rate_uv, (dist_y + dist_uv)) >
RDCOST(x->rdmult, x->rddiv, 0, (sse_y + sse_uv))) {
skip_blk = 1;
rate_y = vp10_cost_bit(vp10_get_skip_prob(cm, xd), 1);
rate_uv = 0;
dist_y = sse_y;
dist_uv = sse_uv;
} else {
skip_blk = 0;
rate_y += vp10_cost_bit(vp10_get_skip_prob(cm, xd), 0);
}
if (RDCOST(x->rdmult, x->rddiv,
best_rate_y + best_rate_uv, rd_cost->dist) >
RDCOST(x->rdmult, x->rddiv,
rate_y + rate_uv, (dist_y + dist_uv))) {
#if CONFIG_VAR_TX
int idx, idy;
#endif
best_mbmode.tx_type = mbmi->tx_type;
best_mbmode.tx_size = mbmi->tx_size;
#if CONFIG_VAR_TX
for (idy = 0; idy < xd->n8_h; ++idy)
for (idx = 0; idx < xd->n8_w; ++idx)
best_mbmode.inter_tx_size[idy][idx] = mbmi->inter_tx_size[idy][idx];
for (i = 0; i < MAX_MB_PLANE; ++i)
memcpy(ctx->blk_skip[i], x->blk_skip[i],
sizeof(uint8_t) * ctx->num_4x4_blk);
#endif
rd_cost->rate += (rate_y + rate_uv - best_rate_y - best_rate_uv);
rd_cost->dist = dist_y + dist_uv;
rd_cost->rdcost = RDCOST(x->rdmult, x->rddiv,
rd_cost->rate, rd_cost->dist);
best_skip2 = skip_blk;
}
}
// Only try palette mode when the best mode so far is an intra mode.
if (cm->allow_screen_content_tools && !is_inter_mode(best_mbmode.mode)) {
PREDICTION_MODE mode_selected;
int rate2 = 0, rate_y = 0;
#if CONFIG_SUPERTX
int best_rate_nocoef;
#endif
int64_t distortion2 = 0, distortion_y = 0, dummy_rd = best_rd, this_rd;
int skippable = 0, rate_overhead = 0;
TX_SIZE best_tx_size, uv_tx;
TX_TYPE best_tx_type;
PALETTE_MODE_INFO palette_mode_info;
uint8_t *const best_palette_color_map =
x->palette_buffer->best_palette_color_map;
uint8_t *const color_map = xd->plane[0].color_index_map;
mbmi->mode = DC_PRED;
mbmi->uv_mode = DC_PRED;
mbmi->ref_frame[0] = INTRA_FRAME;
mbmi->ref_frame[1] = NONE;
palette_mode_info.palette_size[0] = 0;
rate_overhead =
rd_pick_palette_intra_sby(cpi, x, bsize, palette_ctx,
intra_mode_cost[DC_PRED],
&palette_mode_info, best_palette_color_map,
&best_tx_size, &best_tx_type, &mode_selected,
&dummy_rd);
if (palette_mode_info.palette_size[0] == 0)
goto PALETTE_EXIT;
pmi->palette_size[0] =
palette_mode_info.palette_size[0];
if (palette_mode_info.palette_size[0] > 0) {
memcpy(pmi->palette_colors, palette_mode_info.palette_colors,
PALETTE_MAX_SIZE * sizeof(palette_mode_info.palette_colors[0]));
memcpy(color_map, best_palette_color_map,
rows * cols * sizeof(best_palette_color_map[0]));
}
super_block_yrd(cpi, x, &rate_y, &distortion_y, &skippable,
NULL, bsize, best_rd);
if (rate_y == INT_MAX)
goto PALETTE_EXIT;
uv_tx = get_uv_tx_size_impl(mbmi->tx_size, bsize,
xd->plane[1].subsampling_x,
xd->plane[1].subsampling_y);
if (rate_uv_intra[uv_tx] == INT_MAX) {
choose_intra_uv_mode(cpi, x, ctx, bsize, uv_tx,
&rate_uv_intra[uv_tx], &rate_uv_tokenonly[uv_tx],
&dist_uv[uv_tx], &skip_uv[uv_tx], &mode_uv[uv_tx]);
pmi_uv[uv_tx] = *pmi;
#if CONFIG_EXT_INTRA
ext_intra_mode_info_uv[uv_tx] = mbmi->ext_intra_mode_info;
uv_angle_delta[uv_tx] = mbmi->angle_delta[1];
#endif // CONFIG_EXT_INTRA
}
mbmi->uv_mode = mode_uv[uv_tx];
pmi->palette_size[1] = pmi_uv[uv_tx].palette_size[1];
if (pmi->palette_size[1] > 0)
memcpy(pmi->palette_colors + PALETTE_MAX_SIZE,
pmi_uv[uv_tx].palette_colors + PALETTE_MAX_SIZE,
2 * PALETTE_MAX_SIZE * sizeof(pmi->palette_colors[0]));
#if CONFIG_EXT_INTRA
mbmi->angle_delta[1] = uv_angle_delta[uv_tx];
mbmi->ext_intra_mode_info.use_ext_intra_mode[1] =
ext_intra_mode_info_uv[uv_tx].use_ext_intra_mode[1];
if (ext_intra_mode_info_uv[uv_tx].use_ext_intra_mode[1]) {
mbmi->ext_intra_mode_info.ext_intra_mode[1] =
ext_intra_mode_info_uv[uv_tx].ext_intra_mode[1];
}
#endif // CONFIG_EXT_INTRA
skippable = skippable && skip_uv[uv_tx];
distortion2 = distortion_y + dist_uv[uv_tx];
rate2 = rate_y + rate_overhead + rate_uv_intra[uv_tx];
rate2 += ref_costs_single[INTRA_FRAME];
if (skippable) {
rate2 -= (rate_y + rate_uv_tokenonly[uv_tx]);
#if CONFIG_SUPERTX
best_rate_nocoef = rate2;
#endif
rate2 += vp10_cost_bit(vp10_get_skip_prob(cm, xd), 1);
} else {
#if CONFIG_SUPERTX
best_rate_nocoef = rate2 - (rate_y + rate_uv_tokenonly[uv_tx]);
#endif
rate2 += vp10_cost_bit(vp10_get_skip_prob(cm, xd), 0);
}
this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
if (this_rd < best_rd) {
best_mode_index = 3;
mbmi->mv[0].as_int = 0;
rd_cost->rate = rate2;
#if CONFIG_SUPERTX
*returnrate_nocoef = best_rate_nocoef;
#endif
rd_cost->dist = distortion2;
rd_cost->rdcost = this_rd;
best_rd = this_rd;
best_mbmode = *mbmi;
best_skip2 = 0;
best_mode_skippable = skippable;
}
}
PALETTE_EXIT:
#if CONFIG_EXT_INTRA
// TODO(huisu): ext-intra is turned off in lossless mode for now to
// avoid a unit test failure
if (!xd->lossless[mbmi->segment_id] &&
mbmi->palette_mode_info.palette_size[0] == 0 && !dc_skipped &&
best_mode_index >= 0 && (best_intra_rd >> 1) < best_rd) {
pick_ext_intra_iframe(cpi, x, ctx, bsize, rate_uv_intra,
rate_uv_tokenonly, dist_uv, skip_uv,
mode_uv, ext_intra_mode_info_uv,
pmi_uv, uv_angle_delta, palette_ctx, 0,
ref_costs_single, &best_rd, &best_intra_rd,
&best_intra_mode, &best_mode_index,
&best_skip2, &best_mode_skippable,
#if CONFIG_SUPERTX
returnrate_nocoef,
#endif // CONFIG_SUPERTX
best_pred_rd, &best_mbmode, rd_cost);
}
#endif // CONFIG_EXT_INTRA
// The inter modes' rate costs are not calculated precisely in some cases.
// Therefore, sometimes, NEWMV is chosen instead of NEARESTMV, NEARMV, and
// ZEROMV. Here, checks are added for those cases, and the mode decisions
// are corrected.
if (best_mbmode.mode == NEWMV
#if CONFIG_EXT_INTER
|| best_mbmode.mode == NEWFROMNEARMV
|| best_mbmode.mode == NEW_NEWMV
#endif // CONFIG_EXT_INTER
) {
const MV_REFERENCE_FRAME refs[2] = {best_mbmode.ref_frame[0],
best_mbmode.ref_frame[1]};
int comp_pred_mode = refs[1] > INTRA_FRAME;
#if CONFIG_REF_MV
const uint8_t rf_type = vp10_ref_frame_type(best_mbmode.ref_frame);
if (!comp_pred_mode) {
int i;
int ref_set = (mbmi_ext->ref_mv_count[rf_type] >= 2) ?
VPXMIN(2, mbmi_ext->ref_mv_count[rf_type] - 2) : INT_MAX;
for (i = 0; i <= ref_set && ref_set != INT_MAX; ++i) {
int_mv cur_mv = mbmi_ext->ref_mv_stack[rf_type][i + 1].this_mv;
if (cur_mv.as_int == best_mbmode.mv[0].as_int) {
best_mbmode.mode = NEARMV;
best_mbmode.ref_mv_idx = i;
}
}
if (frame_mv[NEARESTMV][refs[0]].as_int == best_mbmode.mv[0].as_int)
best_mbmode.mode = NEARESTMV;
else if (best_mbmode.mv[0].as_int == 0)
best_mbmode.mode = ZEROMV;
} else {
int_mv nearestmv[2];
int_mv nearmv[2];
#if CONFIG_EXT_INTER
if (mbmi_ext->ref_mv_count[rf_type] > 1) {
nearmv[0] = mbmi_ext->ref_mv_stack[rf_type][1].this_mv;
nearmv[1] = mbmi_ext->ref_mv_stack[rf_type][1].comp_mv;
} else {
nearmv[0] = frame_mv[NEARMV][refs[0]];
nearmv[1] = frame_mv[NEARMV][refs[1]];
}
#else
int i;
int ref_set = (mbmi_ext->ref_mv_count[rf_type] >= 2) ?
VPXMIN(2, mbmi_ext->ref_mv_count[rf_type] - 2) : INT_MAX;
for (i = 0; i <= ref_set && ref_set != INT_MAX; ++i) {
nearmv[0] = mbmi_ext->ref_mv_stack[rf_type][i + 1].this_mv;
nearmv[1] = mbmi_ext->ref_mv_stack[rf_type][i + 1].comp_mv;
if (nearmv[0].as_int == best_mbmode.mv[0].as_int &&
nearmv[1].as_int == best_mbmode.mv[1].as_int) {
best_mbmode.mode = NEARMV;
best_mbmode.ref_mv_idx = i;
}
}
#endif
if (mbmi_ext->ref_mv_count[rf_type] >= 1) {
nearestmv[0] = mbmi_ext->ref_mv_stack[rf_type][0].this_mv;
nearestmv[1] = mbmi_ext->ref_mv_stack[rf_type][0].comp_mv;
} else {
nearestmv[0] = frame_mv[NEARESTMV][refs[0]];
nearestmv[1] = frame_mv[NEARESTMV][refs[1]];
}
if (nearestmv[0].as_int == best_mbmode.mv[0].as_int &&
nearestmv[1].as_int == best_mbmode.mv[1].as_int)
#if CONFIG_EXT_INTER
best_mbmode.mode = NEAREST_NEARESTMV;
else if (nearestmv[0].as_int == best_mbmode.mv[0].as_int &&
nearmv[1].as_int == best_mbmode.mv[1].as_int)
best_mbmode.mode = NEAREST_NEARMV;
else if (nearmv[0].as_int == best_mbmode.mv[0].as_int &&
nearestmv[1].as_int == best_mbmode.mv[1].as_int)
best_mbmode.mode = NEAR_NEARESTMV;
else if (nearmv[0].as_int == best_mbmode.mv[0].as_int &&
nearmv[1].as_int == best_mbmode.mv[1].as_int)
best_mbmode.mode = NEAR_NEARMV;
else if (best_mbmode.mv[0].as_int == 0 && best_mbmode.mv[1].as_int == 0)
best_mbmode.mode = ZERO_ZEROMV;
#else
best_mbmode.mode = NEARESTMV;
else if (best_mbmode.mv[0].as_int == 0 && best_mbmode.mv[1].as_int == 0)
best_mbmode.mode = ZEROMV;
#endif // CONFIG_EXT_INTER
}
#else
#if CONFIG_EXT_INTER
if (!comp_pred_mode) {
#endif // CONFIG_EXT_INTER
if (frame_mv[NEARESTMV][refs[0]].as_int == best_mbmode.mv[0].as_int &&
((comp_pred_mode && frame_mv[NEARESTMV][refs[1]].as_int ==
best_mbmode.mv[1].as_int) || !comp_pred_mode))
best_mbmode.mode = NEARESTMV;
else if (frame_mv[NEARMV][refs[0]].as_int == best_mbmode.mv[0].as_int &&
((comp_pred_mode && frame_mv[NEARMV][refs[1]].as_int ==
best_mbmode.mv[1].as_int) || !comp_pred_mode))
best_mbmode.mode = NEARMV;
else if (best_mbmode.mv[0].as_int == 0 &&
((comp_pred_mode && best_mbmode.mv[1].as_int == 0) || !comp_pred_mode))
best_mbmode.mode = ZEROMV;
#if CONFIG_EXT_INTER
} else {
const MV_REFERENCE_FRAME refs[2] = {best_mbmode.ref_frame[0],
best_mbmode.ref_frame[1]};
if (frame_mv[NEAREST_NEARESTMV][refs[0]].as_int ==
best_mbmode.mv[0].as_int &&
frame_mv[NEAREST_NEARESTMV][refs[1]].as_int ==
best_mbmode.mv[1].as_int)
best_mbmode.mode = NEAREST_NEARESTMV;
else if (frame_mv[NEAREST_NEARMV][refs[0]].as_int ==
best_mbmode.mv[0].as_int &&
frame_mv[NEAREST_NEARMV][refs[1]].as_int ==
best_mbmode.mv[1].as_int)
best_mbmode.mode = NEAREST_NEARMV;
else if (frame_mv[NEAR_NEARESTMV][refs[0]].as_int ==
best_mbmode.mv[0].as_int &&
frame_mv[NEAR_NEARESTMV][refs[1]].as_int ==
best_mbmode.mv[1].as_int)
best_mbmode.mode = NEAR_NEARESTMV;
else if (frame_mv[NEAR_NEARMV][refs[0]].as_int ==
best_mbmode.mv[0].as_int &&
frame_mv[NEAR_NEARMV][refs[1]].as_int ==
best_mbmode.mv[1].as_int)
best_mbmode.mode = NEAR_NEARMV;
else if (best_mbmode.mv[0].as_int == 0 && best_mbmode.mv[1].as_int == 0)
best_mbmode.mode = ZERO_ZEROMV;
}
#endif // CONFIG_EXT_INTER
#endif
}
#if CONFIG_REF_MV
if (best_mbmode.ref_frame[0] > INTRA_FRAME &&
best_mbmode.mv[0].as_int == 0 &&
#if CONFIG_EXT_INTER
(best_mbmode.ref_frame[1] <= INTRA_FRAME)
#else
(best_mbmode.ref_frame[1] == NONE || best_mbmode.mv[1].as_int == 0)
#endif // CONFIG_EXT_INTER
) {
int16_t mode_ctx = mbmi_ext->mode_context[best_mbmode.ref_frame[0]];
#if !CONFIG_EXT_INTER
if (best_mbmode.ref_frame[1] > NONE)
mode_ctx &= (mbmi_ext->mode_context[best_mbmode.ref_frame[1]] | 0x00ff);
#endif // !CONFIG_EXT_INTER
if (mode_ctx & (1 << ALL_ZERO_FLAG_OFFSET))
best_mbmode.mode = ZEROMV;
}
#endif
if (best_mode_index < 0 || best_rd >= best_rd_so_far) {
rd_cost->rate = INT_MAX;
rd_cost->rdcost = INT64_MAX;
return;
}
// If we used an estimate for the uv intra rd in the loop above...
if (sf->use_uv_intra_rd_estimate) {
// Do Intra UV best rd mode selection if best mode choice above was intra.
if (best_mbmode.ref_frame[0] == INTRA_FRAME) {
TX_SIZE uv_tx_size;
*mbmi = best_mbmode;
uv_tx_size = get_uv_tx_size(mbmi, &xd->plane[1]);
rd_pick_intra_sbuv_mode(cpi, x, &rate_uv_intra[uv_tx_size],
&rate_uv_tokenonly[uv_tx_size],
&dist_uv[uv_tx_size],
&skip_uv[uv_tx_size],
bsize < BLOCK_8X8 ? BLOCK_8X8 : bsize,
uv_tx_size);
}
}
#if CONFIG_DUAL_FILTER
assert((cm->interp_filter == SWITCHABLE) ||
(cm->interp_filter == best_mbmode.interp_filter[0]) ||
!is_inter_block(&best_mbmode));
assert((cm->interp_filter == SWITCHABLE) ||
(cm->interp_filter == best_mbmode.interp_filter[1]) ||
!is_inter_block(&best_mbmode));
if (best_mbmode.ref_frame[1] > INTRA_FRAME) {
assert((cm->interp_filter == SWITCHABLE) ||
(cm->interp_filter == best_mbmode.interp_filter[2]) ||
!is_inter_block(&best_mbmode));
assert((cm->interp_filter == SWITCHABLE) ||
(cm->interp_filter == best_mbmode.interp_filter[3]) ||
!is_inter_block(&best_mbmode));
}
#else
assert((cm->interp_filter == SWITCHABLE) ||
(cm->interp_filter == best_mbmode.interp_filter) ||
!is_inter_block(&best_mbmode));
#endif
if (!cpi->rc.is_src_frame_alt_ref)
vp10_update_rd_thresh_fact(cm, tile_data->thresh_freq_fact,
sf->adaptive_rd_thresh, bsize, best_mode_index);
// macroblock modes
*mbmi = best_mbmode;
x->skip |= best_skip2;
#if CONFIG_REF_MV
for (i = 0; i < 1 + has_second_ref(mbmi); ++i) {
if (mbmi->mode != NEWMV)
mbmi->pred_mv[i].as_int = mbmi->mv[i].as_int;
else
mbmi->pred_mv[i].as_int = mbmi_ext->ref_mvs[mbmi->ref_frame[i]][0].as_int;
}
#endif
for (i = 0; i < REFERENCE_MODES; ++i) {
if (best_pred_rd[i] == INT64_MAX)
best_pred_diff[i] = INT_MIN;
else
best_pred_diff[i] = best_rd - best_pred_rd[i];
}
x->skip |= best_mode_skippable;
assert(best_mode_index >= 0);
store_coding_context(x, ctx, best_mode_index, best_pred_diff,
best_mode_skippable);
if (cm->allow_screen_content_tools && pmi->palette_size[1] > 0) {
restore_uv_color_map(cpi, x);
}
}
void vp10_rd_pick_inter_mode_sb_seg_skip(VP10_COMP *cpi,
TileDataEnc *tile_data,
MACROBLOCK *x,
RD_COST *rd_cost,
BLOCK_SIZE bsize,
PICK_MODE_CONTEXT *ctx,
int64_t best_rd_so_far) {
VP10_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
unsigned char segment_id = mbmi->segment_id;
const int comp_pred = 0;
int i;
int64_t best_pred_diff[REFERENCE_MODES];
unsigned int ref_costs_single[MAX_REF_FRAMES], ref_costs_comp[MAX_REF_FRAMES];
vpx_prob comp_mode_p;
INTERP_FILTER best_filter = SWITCHABLE;
int64_t this_rd = INT64_MAX;
int rate2 = 0;
const int64_t distortion2 = 0;
estimate_ref_frame_costs(cm, xd, segment_id, ref_costs_single, ref_costs_comp,
&comp_mode_p);
for (i = 0; i < MAX_REF_FRAMES; ++i)
x->pred_sse[i] = INT_MAX;
for (i = LAST_FRAME; i < MAX_REF_FRAMES; ++i)
x->pred_mv_sad[i] = INT_MAX;
rd_cost->rate = INT_MAX;
assert(segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP));
mbmi->palette_mode_info.palette_size[0] = 0;
mbmi->palette_mode_info.palette_size[1] = 0;
#if CONFIG_EXT_INTRA
mbmi->ext_intra_mode_info.use_ext_intra_mode[0] = 0;
mbmi->ext_intra_mode_info.use_ext_intra_mode[1] = 0;
#endif // CONFIG_EXT_INTRA
mbmi->mode = ZEROMV;
mbmi->motion_variation = SIMPLE_TRANSLATION;
mbmi->uv_mode = DC_PRED;
mbmi->ref_frame[0] = LAST_FRAME;
mbmi->ref_frame[1] = NONE;
mbmi->mv[0].as_int = 0;
#if CONFIG_REF_MV
mbmi->ref_mv_idx = 0;
mbmi->pred_mv[0].as_int = 0;
#endif
x->skip = 1;
if (cm->interp_filter != BILINEAR) {
best_filter = EIGHTTAP_REGULAR;
if (cm->interp_filter == SWITCHABLE &&
#if CONFIG_EXT_INTERP
vp10_is_interp_needed(xd) &&
#endif // CONFIG_EXT_INTERP
x->source_variance >= cpi->sf.disable_filter_search_var_thresh) {
int rs;
int best_rs = INT_MAX;
for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
#if CONFIG_DUAL_FILTER
int k;
for (k = 0; k < 4; ++k)
mbmi->interp_filter[k] = i;
#else
mbmi->interp_filter = i;
#endif
rs = vp10_get_switchable_rate(cpi, xd);
if (rs < best_rs) {
best_rs = rs;
#if CONFIG_DUAL_FILTER
best_filter = mbmi->interp_filter[0];
#else
best_filter = mbmi->interp_filter;
#endif
}
}
}
}
// Set the appropriate filter
if (cm->interp_filter == SWITCHABLE) {
#if CONFIG_DUAL_FILTER
for (i = 0; i < 4; ++i)
mbmi->interp_filter[i] = best_filter;
#else
mbmi->interp_filter = best_filter;
#endif
rate2 += vp10_get_switchable_rate(cpi, xd);
} else {
#if CONFIG_DUAL_FILTER
for (i = 0; i < 4; ++i)
mbmi->interp_filter[0] = cm->interp_filter;
#else
mbmi->interp_filter = cm->interp_filter;
#endif
}
if (cm->reference_mode == REFERENCE_MODE_SELECT)
rate2 += vp10_cost_bit(comp_mode_p, comp_pred);
// Estimate the reference frame signaling cost and add it
// to the rolling cost variable.
rate2 += ref_costs_single[LAST_FRAME];
this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
rd_cost->rate = rate2;
rd_cost->dist = distortion2;
rd_cost->rdcost = this_rd;
if (this_rd >= best_rd_so_far) {
rd_cost->rate = INT_MAX;
rd_cost->rdcost = INT64_MAX;
return;
}
#if CONFIG_DUAL_FILTER
assert((cm->interp_filter == SWITCHABLE) ||
(cm->interp_filter == mbmi->interp_filter[0]));
#else
assert((cm->interp_filter == SWITCHABLE) ||
(cm->interp_filter == mbmi->interp_filter));
#endif
vp10_update_rd_thresh_fact(cm, tile_data->thresh_freq_fact,
cpi->sf.adaptive_rd_thresh, bsize, THR_ZEROMV);
vp10_zero(best_pred_diff);
store_coding_context(x, ctx, THR_ZEROMV,
best_pred_diff, 0);
}
void vp10_rd_pick_inter_mode_sub8x8(struct VP10_COMP *cpi,
TileDataEnc *tile_data,
struct macroblock *x,
int mi_row, int mi_col,
struct RD_COST *rd_cost,
#if CONFIG_SUPERTX
int *returnrate_nocoef,
#endif // CONFIG_SUPERTX
BLOCK_SIZE bsize,
PICK_MODE_CONTEXT *ctx,
int64_t best_rd_so_far) {
VP10_COMMON *const cm = &cpi->common;
RD_OPT *const rd_opt = &cpi->rd;
SPEED_FEATURES *const sf = &cpi->sf;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
const struct segmentation *const seg = &cm->seg;
MV_REFERENCE_FRAME ref_frame, second_ref_frame;
unsigned char segment_id = mbmi->segment_id;
int comp_pred, i;
int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES];
struct buf_2d yv12_mb[MAX_REF_FRAMES][MAX_MB_PLANE];
static const int flag_list[REFS_PER_FRAME + 1] = {
0,
VP9_LAST_FLAG,
#if CONFIG_EXT_REFS
VP9_LAST2_FLAG,
VP9_LAST3_FLAG,
#endif // CONFIG_EXT_REFS
VP9_GOLD_FLAG,
#if CONFIG_EXT_REFS
VP9_BWD_FLAG,
#endif // CONFIG_EXT_REFS
VP9_ALT_FLAG
};
int64_t best_rd = best_rd_so_far;
int64_t best_yrd = best_rd_so_far; // FIXME(rbultje) more precise
int64_t best_pred_diff[REFERENCE_MODES];
int64_t best_pred_rd[REFERENCE_MODES];
MB_MODE_INFO best_mbmode;
int ref_index, best_ref_index = 0;
unsigned int ref_costs_single[MAX_REF_FRAMES], ref_costs_comp[MAX_REF_FRAMES];
vpx_prob comp_mode_p;
#if CONFIG_DUAL_FILTER
INTERP_FILTER tmp_best_filter[4] = { 0 };
#else
INTERP_FILTER tmp_best_filter = SWITCHABLE;
#endif
int rate_uv_intra, rate_uv_tokenonly;
int64_t dist_uv;
int skip_uv;
PREDICTION_MODE mode_uv = DC_PRED;
const int intra_cost_penalty = vp10_get_intra_cost_penalty(
cm->base_qindex, cm->y_dc_delta_q, cm->bit_depth);
#if CONFIG_EXT_INTER
int_mv seg_mvs[4][2][MAX_REF_FRAMES];
#else
int_mv seg_mvs[4][MAX_REF_FRAMES];
#endif // CONFIG_EXT_INTER
b_mode_info best_bmodes[4];
int best_skip2 = 0;
int ref_frame_skip_mask[2] = { 0 };
int internal_active_edge =
vp10_active_edge_sb(cpi, mi_row, mi_col) && vp10_internal_image_edge(cpi);
#if CONFIG_SUPERTX
best_rd_so_far = INT64_MAX;
best_rd = best_rd_so_far;
best_yrd = best_rd_so_far;
#endif // CONFIG_SUPERTX
vp10_zero(best_mbmode);
#if CONFIG_EXT_INTRA
mbmi->ext_intra_mode_info.use_ext_intra_mode[0] = 0;
mbmi->ext_intra_mode_info.use_ext_intra_mode[1] = 0;
#endif // CONFIG_EXT_INTRA
mbmi->motion_variation = SIMPLE_TRANSLATION;
#if CONFIG_EXT_INTER
mbmi->use_wedge_interinter = 0;
mbmi->use_wedge_interintra = 0;
#endif // CONFIG_EXT_INTER
for (i = 0; i < 4; i++) {
int j;
#if CONFIG_EXT_INTER
int k;
for (k = 0; k < 2; k++)
for (j = 0; j < MAX_REF_FRAMES; j++)
seg_mvs[i][k][j].as_int = INVALID_MV;
#else
for (j = 0; j < MAX_REF_FRAMES; j++)
seg_mvs[i][j].as_int = INVALID_MV;
#endif // CONFIG_EXT_INTER
}
estimate_ref_frame_costs(cm, xd, segment_id, ref_costs_single, ref_costs_comp,
&comp_mode_p);
for (i = 0; i < REFERENCE_MODES; ++i)
best_pred_rd[i] = INT64_MAX;
rate_uv_intra = INT_MAX;
rd_cost->rate = INT_MAX;
#if CONFIG_SUPERTX
*returnrate_nocoef = INT_MAX;
#endif
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ref_frame++) {
x->mbmi_ext->mode_context[ref_frame] = 0;
#if CONFIG_REF_MV && CONFIG_EXT_INTER
x->mbmi_ext->compound_mode_context[ref_frame] = 0;
#endif // CONFIG_REF_MV && CONFIG_EXT_INTER
if (cpi->ref_frame_flags & flag_list[ref_frame]) {
setup_buffer_inter(cpi, x, ref_frame, bsize, mi_row, mi_col,
frame_mv[NEARESTMV], frame_mv[NEARMV],
yv12_mb);
} else {
ref_frame_skip_mask[0] |= (1 << ref_frame);
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
}
frame_mv[NEWMV][ref_frame].as_int = INVALID_MV;
#if CONFIG_EXT_INTER
frame_mv[NEWFROMNEARMV][ref_frame].as_int = INVALID_MV;
#endif // CONFIG_EXT_INTER
frame_mv[ZEROMV][ref_frame].as_int = 0;
}
mbmi->palette_mode_info.palette_size[0] = 0;
mbmi->palette_mode_info.palette_size[1] = 0;
for (ref_index = 0; ref_index < MAX_REFS; ++ref_index) {
int mode_excluded = 0;
int64_t this_rd = INT64_MAX;
int disable_skip = 0;
int compmode_cost = 0;
int rate2 = 0, rate_y = 0, rate_uv = 0;
int64_t distortion2 = 0, distortion_y = 0, distortion_uv = 0;
int skippable = 0;
int i;
int this_skip2 = 0;
int64_t total_sse = INT_MAX;
int early_term = 0;
ref_frame = vp10_ref_order[ref_index].ref_frame[0];
second_ref_frame = vp10_ref_order[ref_index].ref_frame[1];
// Look at the reference frame of the best mode so far and set the
// skip mask to look at a subset of the remaining modes.
if (ref_index > 2 && sf->mode_skip_start < MAX_MODES) {
if (ref_index == 3) {
switch (best_mbmode.ref_frame[0]) {
case INTRA_FRAME:
break;
case LAST_FRAME:
ref_frame_skip_mask[0] |= (1 << GOLDEN_FRAME) |
#if CONFIG_EXT_REFS
(1 << LAST2_FRAME) |
(1 << LAST3_FRAME) |
(1 << BWDREF_FRAME) |
#endif // CONFIG_EXT_REFS
(1 << ALTREF_FRAME);
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
break;
#if CONFIG_EXT_REFS
case LAST2_FRAME:
ref_frame_skip_mask[0] |= (1 << LAST_FRAME) |
(1 << LAST3_FRAME) |
(1 << GOLDEN_FRAME) |
(1 << BWDREF_FRAME) |
(1 << ALTREF_FRAME);
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
break;
case LAST3_FRAME:
ref_frame_skip_mask[0] |= (1 << LAST_FRAME) |
(1 << LAST2_FRAME) |
(1 << GOLDEN_FRAME) |
(1 << BWDREF_FRAME) |
(1 << ALTREF_FRAME);
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
break;
#endif // CONFIG_EXT_REFS
case GOLDEN_FRAME:
ref_frame_skip_mask[0] |= (1 << LAST_FRAME) |
#if CONFIG_EXT_REFS
(1 << LAST2_FRAME) |
(1 << LAST3_FRAME) |
(1 << BWDREF_FRAME) |
#endif // CONFIG_EXT_REFS
(1 << ALTREF_FRAME);
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
break;
#if CONFIG_EXT_REFS
case BWDREF_FRAME:
ref_frame_skip_mask[0] |= (1 << LAST_FRAME) |
(1 << LAST2_FRAME) |
(1 << LAST3_FRAME) |
(1 << GOLDEN_FRAME) |
(1 << ALTREF_FRAME);
ref_frame_skip_mask[1] |= (1 << ALTREF_FRAME) | 0x01;
break;
#endif // CONFIG_EXT_REFS
case ALTREF_FRAME:
ref_frame_skip_mask[0] |= (1 << LAST_FRAME) |
#if CONFIG_EXT_REFS
(1 << LAST2_FRAME) |
(1 << LAST3_FRAME) |
(1 << BWDREF_FRAME) |
#endif // CONFIG_EXT_REFS
(1 << GOLDEN_FRAME);
#if CONFIG_EXT_REFS
ref_frame_skip_mask[1] |= (1 << BWDREF_FRAME) | 0x01;
#endif // CONFIG_EXT_REFS
break;
case NONE:
case MAX_REF_FRAMES:
assert(0 && "Invalid Reference frame");
break;
}
}
}
if ((ref_frame_skip_mask[0] & (1 << ref_frame)) &&
(ref_frame_skip_mask[1] & (1 << VPXMAX(0, second_ref_frame))))
continue;
// Test best rd so far against threshold for trying this mode.
if (!internal_active_edge &&
rd_less_than_thresh(best_rd,
rd_opt->threshes[segment_id][bsize][ref_index],
tile_data->thresh_freq_fact[bsize][ref_index]))
continue;
comp_pred = second_ref_frame > INTRA_FRAME;
if (comp_pred) {
if (!cpi->allow_comp_inter_inter)
continue;
if (!(cpi->ref_frame_flags & flag_list[second_ref_frame]))
continue;
// Do not allow compound prediction if the segment level reference frame
// feature is in use as in this case there can only be one reference.
if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME))
continue;
if ((sf->mode_search_skip_flags & FLAG_SKIP_COMP_BESTINTRA) &&
best_mbmode.ref_frame[0] == INTRA_FRAME)
continue;
}
// TODO(jingning, jkoleszar): scaling reference frame not supported for
// sub8x8 blocks.
if (ref_frame > INTRA_FRAME &&
vp10_is_scaled(&cm->frame_refs[ref_frame - 1].sf))
continue;
if (second_ref_frame > INTRA_FRAME &&
vp10_is_scaled(&cm->frame_refs[second_ref_frame - 1].sf))
continue;
if (comp_pred)
mode_excluded = cm->reference_mode == SINGLE_REFERENCE;
else if (ref_frame != INTRA_FRAME)
mode_excluded = cm->reference_mode == COMPOUND_REFERENCE;
// If the segment reference frame feature is enabled....
// then do nothing if the current ref frame is not allowed..
if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) &&
get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame) {
continue;
// Disable this drop out case if the ref frame
// segment level feature is enabled for this segment. This is to
// prevent the possibility that we end up unable to pick any mode.
} else if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) {
// Only consider ZEROMV/ALTREF_FRAME for alt ref frame,
// unless ARNR filtering is enabled in which case we want
// an unfiltered alternative. We allow near/nearest as well
// because they may result in zero-zero MVs but be cheaper.
if (cpi->rc.is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0))
continue;
}
mbmi->tx_size = TX_4X4;
mbmi->uv_mode = DC_PRED;
mbmi->ref_frame[0] = ref_frame;
mbmi->ref_frame[1] = second_ref_frame;
// Evaluate all sub-pel filters irrespective of whether we can use
// them for this frame.
#if CONFIG_DUAL_FILTER
for (i = 0; i < 4; ++i)
mbmi->interp_filter[i] = cm->interp_filter == SWITCHABLE ?
EIGHTTAP_REGULAR : cm->interp_filter;
#else
mbmi->interp_filter = cm->interp_filter == SWITCHABLE ? EIGHTTAP_REGULAR
: cm->interp_filter;
#endif
x->skip = 0;
set_ref_ptrs(cm, xd, ref_frame, second_ref_frame);
// Select prediction reference frames.
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].pre[0] = yv12_mb[ref_frame][i];
if (comp_pred)
xd->plane[i].pre[1] = yv12_mb[second_ref_frame][i];
}
#if CONFIG_VAR_TX
mbmi->inter_tx_size[0][0] = mbmi->tx_size;
#endif
if (ref_frame == INTRA_FRAME) {
int rate;
if (rd_pick_intra_sub_8x8_y_mode(cpi, x, &rate, &rate_y,
&distortion_y, best_rd) >= best_rd)
continue;
rate2 += rate;
rate2 += intra_cost_penalty;
distortion2 += distortion_y;
if (rate_uv_intra == INT_MAX) {
choose_intra_uv_mode(cpi, x, ctx, bsize, TX_4X4,
&rate_uv_intra,
&rate_uv_tokenonly,
&dist_uv, &skip_uv,
&mode_uv);
}
rate2 += rate_uv_intra;
rate_uv = rate_uv_tokenonly;
distortion2 += dist_uv;
distortion_uv = dist_uv;
mbmi->uv_mode = mode_uv;
} else {
int rate;
int64_t distortion;
int64_t this_rd_thresh;
int64_t tmp_rd, tmp_best_rd = INT64_MAX, tmp_best_rdu = INT64_MAX;
int tmp_best_rate = INT_MAX, tmp_best_ratey = INT_MAX;
int64_t tmp_best_distortion = INT_MAX, tmp_best_sse, uv_sse;
int tmp_best_skippable = 0;
int switchable_filter_index;
int_mv *second_ref = comp_pred ?
&x->mbmi_ext->ref_mvs[second_ref_frame][0] : NULL;
b_mode_info tmp_best_bmodes[16]; // Should this be 4 ?
MB_MODE_INFO tmp_best_mbmode;
#if CONFIG_DUAL_FILTER
#if CONFIG_EXT_INTERP
BEST_SEG_INFO bsi[25];
#else
BEST_SEG_INFO bsi[9];
#endif
#else
BEST_SEG_INFO bsi[SWITCHABLE_FILTERS];
#endif
int pred_exists = 0;
int uv_skippable;
#if CONFIG_EXT_INTER
int_mv compound_seg_newmvs[4][2];
for (i = 0; i < 4; i++) {
compound_seg_newmvs[i][0].as_int = INVALID_MV;
compound_seg_newmvs[i][1].as_int = INVALID_MV;
}
#endif // CONFIG_EXT_INTER
this_rd_thresh = (ref_frame == LAST_FRAME) ?
rd_opt->threshes[segment_id][bsize][THR_LAST] :
rd_opt->threshes[segment_id][bsize][THR_ALTR];
#if CONFIG_EXT_REFS
this_rd_thresh = (ref_frame == LAST2_FRAME) ?
rd_opt->threshes[segment_id][bsize][THR_LAST2] : this_rd_thresh;
this_rd_thresh = (ref_frame == LAST3_FRAME) ?
rd_opt->threshes[segment_id][bsize][THR_LAST3] : this_rd_thresh;
#endif // CONFIG_EXT_REFS
this_rd_thresh = (ref_frame == GOLDEN_FRAME) ?
rd_opt->threshes[segment_id][bsize][THR_GOLD] : this_rd_thresh;
#if CONFIG_EXT_REFS
// TODO(zoeliu): To explore whether this_rd_thresh should consider
// BWDREF_FRAME and ALTREF_FRAME
#endif // CONFIG_EXT_REFS
// TODO(any): Add search of the tx_type to improve rd performance at the
// expense of speed.
mbmi->tx_type = DCT_DCT;
if (cm->interp_filter != BILINEAR) {
#if CONFIG_DUAL_FILTER
tmp_best_filter[0] = EIGHTTAP_REGULAR;
tmp_best_filter[1] = EIGHTTAP_REGULAR;
tmp_best_filter[2] = EIGHTTAP_REGULAR;
tmp_best_filter[3] = EIGHTTAP_REGULAR;
#else
tmp_best_filter = EIGHTTAP_REGULAR;
#endif
if (x->source_variance < sf->disable_filter_search_var_thresh) {
#if CONFIG_DUAL_FILTER
tmp_best_filter[0] = EIGHTTAP_REGULAR;
#else
tmp_best_filter = EIGHTTAP_REGULAR;
#endif
} else if (sf->adaptive_pred_interp_filter == 1 &&
ctx->pred_interp_filter < SWITCHABLE) {
#if CONFIG_DUAL_FILTER
tmp_best_filter[0] = ctx->pred_interp_filter;
#else
tmp_best_filter = ctx->pred_interp_filter;
#endif
} else if (sf->adaptive_pred_interp_filter == 2) {
#if CONFIG_DUAL_FILTER
tmp_best_filter[0] = ctx->pred_interp_filter < SWITCHABLE ?
ctx->pred_interp_filter : 0;
#else
tmp_best_filter = ctx->pred_interp_filter < SWITCHABLE ?
ctx->pred_interp_filter : 0;
#endif
} else {
#if CONFIG_DUAL_FILTER
for (switchable_filter_index = 0;
#if CONFIG_EXT_INTERP
switchable_filter_index < 25;
#else
switchable_filter_index < 9;
#endif
++switchable_filter_index) {
#else
for (switchable_filter_index = 0;
switchable_filter_index < SWITCHABLE_FILTERS;
++switchable_filter_index) {
#endif
int newbest, rs;
int64_t rs_rd;
MB_MODE_INFO_EXT *mbmi_ext = x->mbmi_ext;
#if CONFIG_DUAL_FILTER
mbmi->interp_filter[0] = filter_sets[switchable_filter_index][0];
mbmi->interp_filter[1] = filter_sets[switchable_filter_index][1];
mbmi->interp_filter[2] = filter_sets[switchable_filter_index][0];
mbmi->interp_filter[3] = filter_sets[switchable_filter_index][1];
#else
mbmi->interp_filter = switchable_filter_index;
#endif
tmp_rd = rd_pick_best_sub8x8_mode(cpi, x,
&mbmi_ext->ref_mvs[ref_frame][0],
second_ref, best_yrd, &rate,
&rate_y, &distortion,
&skippable, &total_sse,
(int) this_rd_thresh, seg_mvs,
#if CONFIG_EXT_INTER
compound_seg_newmvs,
#endif // CONFIG_EXT_INTER
bsi, switchable_filter_index,
mi_row, mi_col);
#if CONFIG_EXT_INTERP
#if CONFIG_DUAL_FILTER
if (!vp10_is_interp_needed(xd) && cm->interp_filter == SWITCHABLE &&
(mbmi->interp_filter[0] != EIGHTTAP_REGULAR ||
mbmi->interp_filter[1] != EIGHTTAP_REGULAR)) // invalid config
continue;
#else
if (!vp10_is_interp_needed(xd) && cm->interp_filter == SWITCHABLE &&
mbmi->interp_filter != EIGHTTAP_REGULAR) // invalid config
continue;
#endif
#endif // CONFIG_EXT_INTERP
if (tmp_rd == INT64_MAX)
continue;
rs = vp10_get_switchable_rate(cpi, xd);
rs_rd = RDCOST(x->rdmult, x->rddiv, rs, 0);
if (cm->interp_filter == SWITCHABLE)
tmp_rd += rs_rd;
newbest = (tmp_rd < tmp_best_rd);
if (newbest) {
#if CONFIG_DUAL_FILTER
tmp_best_filter[0] = mbmi->interp_filter[0];
tmp_best_filter[1] = mbmi->interp_filter[1];
tmp_best_filter[2] = mbmi->interp_filter[2];
tmp_best_filter[3] = mbmi->interp_filter[3];
#else
tmp_best_filter = mbmi->interp_filter;
#endif
tmp_best_rd = tmp_rd;
}
if ((newbest && cm->interp_filter == SWITCHABLE) ||
(
#if CONFIG_DUAL_FILTER
mbmi->interp_filter[0] == cm->interp_filter
#else
mbmi->interp_filter == cm->interp_filter
#endif
&&
cm->interp_filter != SWITCHABLE)) {
tmp_best_rdu = tmp_rd;
tmp_best_rate = rate;
tmp_best_ratey = rate_y;
tmp_best_distortion = distortion;
tmp_best_sse = total_sse;
tmp_best_skippable = skippable;
tmp_best_mbmode = *mbmi;
for (i = 0; i < 4; i++) {
tmp_best_bmodes[i] = xd->mi[0]->bmi[i];
}
pred_exists = 1;
}
} // switchable_filter_index loop
}
}
if (tmp_best_rdu == INT64_MAX && pred_exists)
continue;
#if CONFIG_DUAL_FILTER
mbmi->interp_filter[0] = (cm->interp_filter == SWITCHABLE ?
tmp_best_filter[0] : cm->interp_filter);
mbmi->interp_filter[1] = (cm->interp_filter == SWITCHABLE ?
tmp_best_filter[1] : cm->interp_filter);
mbmi->interp_filter[2] = (cm->interp_filter == SWITCHABLE ?
tmp_best_filter[2] : cm->interp_filter);
mbmi->interp_filter[3] = (cm->interp_filter == SWITCHABLE ?
tmp_best_filter[3] : cm->interp_filter);
#else
mbmi->interp_filter = (cm->interp_filter == SWITCHABLE ?
tmp_best_filter : cm->interp_filter);
#endif
if (!pred_exists) {
// Handles the special case when a filter that is not in the
// switchable list (bilinear) is indicated at the frame level
tmp_rd = rd_pick_best_sub8x8_mode(cpi, x,
&x->mbmi_ext->ref_mvs[ref_frame][0],
second_ref, best_yrd, &rate, &rate_y,
&distortion, &skippable, &total_sse,
(int) this_rd_thresh, seg_mvs,
#if CONFIG_EXT_INTER
compound_seg_newmvs,
#endif // CONFIG_EXT_INTER
bsi, 0,
mi_row, mi_col);
#if CONFIG_EXT_INTERP
#if CONFIG_DUAL_FILTER
if (!vp10_is_interp_needed(xd) && cm->interp_filter == SWITCHABLE &&
(mbmi->interp_filter[0] != EIGHTTAP_REGULAR ||
mbmi->interp_filter[1] != EIGHTTAP_REGULAR)) {
mbmi->interp_filter[0] = EIGHTTAP_REGULAR;
mbmi->interp_filter[1] = EIGHTTAP_REGULAR;
}
#else
if (!vp10_is_interp_needed(xd) && cm->interp_filter == SWITCHABLE &&
mbmi->interp_filter != EIGHTTAP_REGULAR)
mbmi->interp_filter = EIGHTTAP_REGULAR;
#endif // CONFIG_DUAL_FILTER
#endif // CONFIG_EXT_INTERP
if (tmp_rd == INT64_MAX)
continue;
} else {
total_sse = tmp_best_sse;
rate = tmp_best_rate;
rate_y = tmp_best_ratey;
distortion = tmp_best_distortion;
skippable = tmp_best_skippable;
*mbmi = tmp_best_mbmode;
for (i = 0; i < 4; i++)
xd->mi[0]->bmi[i] = tmp_best_bmodes[i];
}
// Add in the cost of the transform type
if (!xd->lossless[mbmi->segment_id]) {
int rate_tx_type = 0;
#if CONFIG_EXT_TX
if (get_ext_tx_types(mbmi->tx_size, bsize, 1) > 1) {
const int eset = get_ext_tx_set(mbmi->tx_size, bsize, 1);
rate_tx_type =
cpi->inter_tx_type_costs[eset][mbmi->tx_size][mbmi->tx_type];
}
#else
if (mbmi->tx_size < TX_32X32) {
rate_tx_type = cpi->inter_tx_type_costs[mbmi->tx_size][mbmi->tx_type];
}
#endif
rate += rate_tx_type;
rate_y += rate_tx_type;
}
rate2 += rate;
distortion2 += distortion;
if (cm->interp_filter == SWITCHABLE)
rate2 += vp10_get_switchable_rate(cpi, xd);
if (!mode_excluded)
mode_excluded = comp_pred ? cm->reference_mode == SINGLE_REFERENCE
: cm->reference_mode == COMPOUND_REFERENCE;
compmode_cost = vp10_cost_bit(comp_mode_p, comp_pred);
tmp_best_rdu = best_rd -
VPXMIN(RDCOST(x->rdmult, x->rddiv, rate2, distortion2),
RDCOST(x->rdmult, x->rddiv, 0, total_sse));
if (tmp_best_rdu > 0) {
// If even the 'Y' rd value of split is higher than best so far
// then dont bother looking at UV
vp10_build_inter_predictors_sbuv(&x->e_mbd, mi_row, mi_col,
BLOCK_8X8);
#if CONFIG_VAR_TX
if (!inter_block_uvrd(cpi, x, &rate_uv, &distortion_uv, &uv_skippable,
&uv_sse, BLOCK_8X8, tmp_best_rdu))
continue;
#else
if (!super_block_uvrd(cpi, x, &rate_uv, &distortion_uv, &uv_skippable,
&uv_sse, BLOCK_8X8, tmp_best_rdu))
continue;
#endif
rate2 += rate_uv;
distortion2 += distortion_uv;
skippable = skippable && uv_skippable;
total_sse += uv_sse;
} else {
continue;
}
}
if (cm->reference_mode == REFERENCE_MODE_SELECT)
rate2 += compmode_cost;
// Estimate the reference frame signaling cost and add it
// to the rolling cost variable.
if (second_ref_frame > INTRA_FRAME) {
rate2 += ref_costs_comp[ref_frame];
} else {
rate2 += ref_costs_single[ref_frame];
}
if (!disable_skip) {
// Skip is never coded at the segment level for sub8x8 blocks and instead
// always coded in the bitstream at the mode info level.
if (ref_frame != INTRA_FRAME && !xd->lossless[mbmi->segment_id]) {
if (RDCOST(x->rdmult, x->rddiv, rate_y + rate_uv, distortion2) <
RDCOST(x->rdmult, x->rddiv, 0, total_sse)) {
// Add in the cost of the no skip flag.
rate2 += vp10_cost_bit(vp10_get_skip_prob(cm, xd), 0);
} else {
// FIXME(rbultje) make this work for splitmv also
rate2 += vp10_cost_bit(vp10_get_skip_prob(cm, xd), 1);
distortion2 = total_sse;
assert(total_sse >= 0);
rate2 -= (rate_y + rate_uv);
rate_y = 0;
rate_uv = 0;
this_skip2 = 1;
}
} else {
// Add in the cost of the no skip flag.
rate2 += vp10_cost_bit(vp10_get_skip_prob(cm, xd), 0);
}
// Calculate the final RD estimate for this mode.
this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
}
if (!disable_skip && ref_frame == INTRA_FRAME) {
for (i = 0; i < REFERENCE_MODES; ++i)
best_pred_rd[i] = VPXMIN(best_pred_rd[i], this_rd);
}
// Did this mode help.. i.e. is it the new best mode
if (this_rd < best_rd || x->skip) {
if (!mode_excluded) {
// Note index of best mode so far
best_ref_index = ref_index;
if (ref_frame == INTRA_FRAME) {
/* required for left and above block mv */
mbmi->mv[0].as_int = 0;
}
rd_cost->rate = rate2;
#if CONFIG_SUPERTX
*returnrate_nocoef = rate2 - rate_y - rate_uv;
if (!disable_skip)
*returnrate_nocoef -= vp10_cost_bit(vp10_get_skip_prob(cm, xd),
this_skip2);
*returnrate_nocoef -= vp10_cost_bit(vp10_get_intra_inter_prob(cm, xd),
mbmi->ref_frame[0] != INTRA_FRAME);
assert(*returnrate_nocoef > 0);
#endif // CONFIG_SUPERTX
rd_cost->dist = distortion2;
rd_cost->rdcost = this_rd;
best_rd = this_rd;
best_yrd = best_rd -
RDCOST(x->rdmult, x->rddiv, rate_uv, distortion_uv);
best_mbmode = *mbmi;
best_skip2 = this_skip2;
#if CONFIG_VAR_TX
for (i = 0; i < MAX_MB_PLANE; ++i)
memset(ctx->blk_skip[i], 0, sizeof(uint8_t) * ctx->num_4x4_blk);
#endif
for (i = 0; i < 4; i++)
best_bmodes[i] = xd->mi[0]->bmi[i];
// TODO(debargha): enhance this test with a better distortion prediction
// based on qp, activity mask and history
if ((sf->mode_search_skip_flags & FLAG_EARLY_TERMINATE) &&
(ref_index > MIN_EARLY_TERM_INDEX)) {
int qstep = xd->plane[0].dequant[1];
// TODO(debargha): Enhance this by specializing for each mode_index
int scale = 4;
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
qstep >>= (xd->bd - 8);
}
#endif // CONFIG_VP9_HIGHBITDEPTH
if (x->source_variance < UINT_MAX) {
const int var_adjust = (x->source_variance < 16);
scale -= var_adjust;
}
if (ref_frame > INTRA_FRAME &&
distortion2 * scale < qstep * qstep) {
early_term = 1;
}
}
}
}
/* keep record of best compound/single-only prediction */
if (!disable_skip && ref_frame != INTRA_FRAME) {
int64_t single_rd, hybrid_rd, single_rate, hybrid_rate;
if (cm->reference_mode == REFERENCE_MODE_SELECT) {
single_rate = rate2 - compmode_cost;
hybrid_rate = rate2;
} else {
single_rate = rate2;
hybrid_rate = rate2 + compmode_cost;
}
single_rd = RDCOST(x->rdmult, x->rddiv, single_rate, distortion2);
hybrid_rd = RDCOST(x->rdmult, x->rddiv, hybrid_rate, distortion2);
if (!comp_pred && single_rd < best_pred_rd[SINGLE_REFERENCE])
best_pred_rd[SINGLE_REFERENCE] = single_rd;
else if (comp_pred && single_rd < best_pred_rd[COMPOUND_REFERENCE])
best_pred_rd[COMPOUND_REFERENCE] = single_rd;
if (hybrid_rd < best_pred_rd[REFERENCE_MODE_SELECT])
best_pred_rd[REFERENCE_MODE_SELECT] = hybrid_rd;
}
if (early_term)
break;
if (x->skip && !comp_pred)
break;
}
if (best_rd >= best_rd_so_far) {
rd_cost->rate = INT_MAX;
rd_cost->rdcost = INT64_MAX;
#if CONFIG_SUPERTX
*returnrate_nocoef = INT_MAX;
#endif // CONFIG_SUPERTX
return;
}
// If we used an estimate for the uv intra rd in the loop above...
if (sf->use_uv_intra_rd_estimate) {
// Do Intra UV best rd mode selection if best mode choice above was intra.
if (best_mbmode.ref_frame[0] == INTRA_FRAME) {
*mbmi = best_mbmode;
rd_pick_intra_sbuv_mode(cpi, x, &rate_uv_intra,
&rate_uv_tokenonly,
&dist_uv,
&skip_uv,
BLOCK_8X8, TX_4X4);
}
}
if (best_rd == INT64_MAX) {
rd_cost->rate = INT_MAX;
rd_cost->dist = INT64_MAX;
rd_cost->rdcost = INT64_MAX;
#if CONFIG_SUPERTX
*returnrate_nocoef = INT_MAX;
#endif // CONFIG_SUPERTX
return;
}
#if CONFIG_DUAL_FILTER
assert((cm->interp_filter == SWITCHABLE) ||
(cm->interp_filter == best_mbmode.interp_filter[0]) ||
!is_inter_block(&best_mbmode));
#else
assert((cm->interp_filter == SWITCHABLE) ||
(cm->interp_filter == best_mbmode.interp_filter) ||
!is_inter_block(&best_mbmode));
#endif
vp10_update_rd_thresh_fact(cm, tile_data->thresh_freq_fact,
sf->adaptive_rd_thresh, bsize, best_ref_index);
// macroblock modes
*mbmi = best_mbmode;
x->skip |= best_skip2;
if (!is_inter_block(&best_mbmode)) {
for (i = 0; i < 4; i++)
xd->mi[0]->bmi[i].as_mode = best_bmodes[i].as_mode;
} else {
for (i = 0; i < 4; ++i)
memcpy(&xd->mi[0]->bmi[i], &best_bmodes[i], sizeof(b_mode_info));
mbmi->mv[0].as_int = xd->mi[0]->bmi[3].as_mv[0].as_int;
mbmi->mv[1].as_int = xd->mi[0]->bmi[3].as_mv[1].as_int;
#if CONFIG_REF_MV
mbmi->pred_mv[0].as_int = xd->mi[0]->bmi[3].pred_mv_s8[0].as_int;
mbmi->pred_mv[1].as_int = xd->mi[0]->bmi[3].pred_mv_s8[1].as_int;
#endif
}
for (i = 0; i < REFERENCE_MODES; ++i) {
if (best_pred_rd[i] == INT64_MAX)
best_pred_diff[i] = INT_MIN;
else
best_pred_diff[i] = best_rd - best_pred_rd[i];
}
store_coding_context(x, ctx, best_ref_index,
best_pred_diff, 0);
}
#if CONFIG_OBMC
// This function has a structure similar to vp10_build_obmc_inter_prediction
//
// The OBMC predictor is computed as:
//
// PObmc(x,y) =
// VPX_BLEND_A64(Mh(x),
// VPX_BLEND_A64(Mv(y), P(x,y), PAbove(x,y)),
// PLeft(x, y))
//
// Scaling up by VPX_BLEND_A64_MAX_ALPHA ** 2 and omitting the intermediate
// rounding, this can be written as:
//
// VPX_BLEND_A64_MAX_ALPHA * VPX_BLEND_A64_MAX_ALPHA * Pobmc(x,y) =
// Mh(x) * Mv(y) * P(x,y) +
// Mh(x) * Cv(y) * Pabove(x,y) +
// VPX_BLEND_A64_MAX_ALPHA * Ch(x) * PLeft(x, y)
//
// Where :
//
// Cv(y) = VPX_BLEND_A64_MAX_ALPHA - Mv(y)
// Ch(y) = VPX_BLEND_A64_MAX_ALPHA - Mh(y)
//
// This function computes 'wsrc' and 'mask' as:
//
// wsrc(x, y) =
// VPX_BLEND_A64_MAX_ALPHA * VPX_BLEND_A64_MAX_ALPHA * src(x, y) -
// Mh(x) * Cv(y) * Pabove(x,y) +
// VPX_BLEND_A64_MAX_ALPHA * Ch(x) * PLeft(x, y)
//
// mask(x, y) = Mh(x) * Mv(y)
//
// These can then be used to efficiently approximate the error for any
// predictor P in the context of the provided neighbouring predictors by
// computing:
//
// error(x, y) =
// wsrc(x, y) - mask(x, y) * P(x, y) / (VPX_BLEND_A64_MAX_ALPHA ** 2)
//
static void calc_target_weighted_pred(
const VP10_COMMON *cm,
const MACROBLOCK *x,
const MACROBLOCKD *xd,
int mi_row, int mi_col,
const uint8_t *above, int above_stride,
const uint8_t *left, int left_stride,
int32_t *mask_buf,
int32_t *wsrc_buf) {
const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
int row, col, i;
const int bw = 8 * xd->n8_w;
const int bh = 8 * xd->n8_h;
const int wsrc_stride = bw;
const int mask_stride = bw;
const int src_scale = VPX_BLEND_A64_MAX_ALPHA * VPX_BLEND_A64_MAX_ALPHA;
#if CONFIG_VP9_HIGHBITDEPTH
const int is_hbd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0;
#else
const int is_hbd = 0;
#endif // CONFIG_VP9_HIGHBITDEPTH
// plane 0 should not be subsampled
assert(xd->plane[0].subsampling_x == 0);
assert(xd->plane[0].subsampling_y == 0);
vp10_zero_array(wsrc_buf, bw * bh);
for (i = 0; i < bw * bh; ++i)
mask_buf[i] = VPX_BLEND_A64_MAX_ALPHA;
// handle above row
if (xd->up_available) {
const int overlap = num_4x4_blocks_high_lookup[bsize] * 2;
const int miw = VPXMIN(xd->n8_w, cm->mi_cols - mi_col);
const int mi_row_offset = -1;
const uint8_t *const mask1d = vp10_get_obmc_mask(overlap);
assert(miw > 0);
i = 0;
do { // for each mi in the above row
const int mi_col_offset = i;
const MB_MODE_INFO *const above_mbmi =
&xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]->mbmi;
const int mi_step =
VPXMIN(xd->n8_w, num_8x8_blocks_wide_lookup[above_mbmi->sb_type]);
const int neighbor_bw = mi_step * MI_SIZE;
if (is_neighbor_overlappable(above_mbmi)) {
const int tmp_stride = above_stride;
int32_t *wsrc = wsrc_buf + (i * MI_SIZE);
int32_t *mask = mask_buf + (i * MI_SIZE);
if (!is_hbd) {
const uint8_t *tmp = above;
for (row = 0; row < overlap; ++row) {
const uint8_t m0 = mask1d[row];
const uint8_t m1 = VPX_BLEND_A64_MAX_ALPHA - m0;
for (col = 0; col < neighbor_bw; ++col) {
wsrc[col] = m1 * tmp[col];
mask[col] = m0;
}
wsrc += wsrc_stride;
mask += mask_stride;
tmp += tmp_stride;
}
#if CONFIG_VP9_HIGHBITDEPTH
} else {
const uint16_t *tmp = CONVERT_TO_SHORTPTR(above);
for (row = 0; row < overlap; ++row) {
const uint8_t m0 = mask1d[row];
const uint8_t m1 = VPX_BLEND_A64_MAX_ALPHA - m0;
for (col = 0; col < neighbor_bw; ++col) {
wsrc[col] = m1 * tmp[col];
mask[col] = m0;
}
wsrc += wsrc_stride;
mask += mask_stride;
tmp += tmp_stride;
}
#endif // CONFIG_VP9_HIGHBITDEPTH
}
}
above += neighbor_bw;
i += mi_step;
} while (i < miw);
}
for (i = 0; i < bw * bh; ++i) {
wsrc_buf[i] *= VPX_BLEND_A64_MAX_ALPHA;
mask_buf[i] *= VPX_BLEND_A64_MAX_ALPHA;
}
// handle left column
if (xd->left_available) {
const int overlap = num_4x4_blocks_wide_lookup[bsize] * 2;
const int mih = VPXMIN(xd->n8_h, cm->mi_rows - mi_row);
const int mi_col_offset = -1;
const uint8_t *const mask1d = vp10_get_obmc_mask(overlap);
assert(mih > 0);
i = 0;
do { // for each mi in the left column
const int mi_row_offset = i;
const MB_MODE_INFO *const left_mbmi =
&xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]->mbmi;
const int mi_step =
VPXMIN(xd->n8_h, num_8x8_blocks_high_lookup[left_mbmi->sb_type]);
const int neighbor_bh = mi_step * MI_SIZE;
if (is_neighbor_overlappable(left_mbmi)) {
const int tmp_stride = left_stride;
int32_t *wsrc = wsrc_buf + (i * MI_SIZE * wsrc_stride);
int32_t *mask = mask_buf + (i * MI_SIZE * mask_stride);
if (!is_hbd) {
const uint8_t *tmp = left;
for (row = 0; row < neighbor_bh; ++row) {
for (col = 0; col < overlap; ++col) {
const uint8_t m0 = mask1d[col];
const uint8_t m1 = VPX_BLEND_A64_MAX_ALPHA - m0;
wsrc[col] = (wsrc[col] >> VPX_BLEND_A64_ROUND_BITS) * m0 +
(tmp[col] << VPX_BLEND_A64_ROUND_BITS) * m1;
mask[col] = (mask[col] >> VPX_BLEND_A64_ROUND_BITS) * m0;
}
wsrc += wsrc_stride;
mask += mask_stride;
tmp += tmp_stride;
}
#if CONFIG_VP9_HIGHBITDEPTH
} else {
const uint16_t *tmp = CONVERT_TO_SHORTPTR(left);
for (row = 0; row < neighbor_bh; ++row) {
for (col = 0; col < overlap; ++col) {
const uint8_t m0 = mask1d[col];
const uint8_t m1 = VPX_BLEND_A64_MAX_ALPHA - m0;
wsrc[col] = (wsrc[col] >> VPX_BLEND_A64_ROUND_BITS) * m0 +
(tmp[col] << VPX_BLEND_A64_ROUND_BITS) * m1;
mask[col] = (mask[col] >> VPX_BLEND_A64_ROUND_BITS) * m0;
}
wsrc += wsrc_stride;
mask += mask_stride;
tmp += tmp_stride;
}
#endif // CONFIG_VP9_HIGHBITDEPTH
}
}
left += neighbor_bh * left_stride;
i += mi_step;
} while (i < mih);
}
if (!is_hbd) {
const uint8_t *src = x->plane[0].src.buf;
for (row = 0; row < bh; ++row) {
for (col = 0; col < bw; ++col) {
wsrc_buf[col] = src[col] * src_scale - wsrc_buf[col];
}
wsrc_buf += wsrc_stride;
src += x->plane[0].src.stride;
}
#if CONFIG_VP9_HIGHBITDEPTH
} else {
const uint16_t *src = CONVERT_TO_SHORTPTR(x->plane[0].src.buf);
for (row = 0; row < bh; ++row) {
for (col = 0; col < bw; ++col) {
wsrc_buf[col] = src[col] * src_scale - wsrc_buf[col];
}
wsrc_buf += wsrc_stride;
src += x->plane[0].src.stride;
}
#endif // CONFIG_VP9_HIGHBITDEPTH
}
}
#endif // CONFIG_OBMC