blob: aa05d8dcf75bf3bd99f115e559f7c95017f1e4a2 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <limits.h>
#include <float.h>
#include <math.h>
#include <stdbool.h>
#include <stdio.h>
#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "config/av1_rtcd.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/binary_codes_writer.h"
#include "aom_ports/mem.h"
#include "aom_ports/aom_timer.h"
#include "aom_ports/system_state.h"
#if CONFIG_MISMATCH_DEBUG
#include "aom_util/debug_util.h"
#endif // CONFIG_MISMATCH_DEBUG
#include "av1/common/cfl.h"
#include "av1/common/common.h"
#include "av1/common/entropy.h"
#include "av1/common/entropymode.h"
#include "av1/common/idct.h"
#include "av1/common/mv.h"
#include "av1/common/mvref_common.h"
#include "av1/common/pred_common.h"
#include "av1/common/quant_common.h"
#include "av1/common/reconintra.h"
#include "av1/common/reconinter.h"
#include "av1/common/seg_common.h"
#include "av1/common/tile_common.h"
#include "av1/common/warped_motion.h"
#include "av1/encoder/aq_complexity.h"
#include "av1/encoder/aq_cyclicrefresh.h"
#include "av1/encoder/aq_variance.h"
#include "av1/encoder/corner_detect.h"
#include "av1/encoder/global_motion.h"
#include "av1/encoder/encodeframe.h"
#include "av1/encoder/encodemb.h"
#include "av1/encoder/encodemv.h"
#include "av1/encoder/encodetxb.h"
#include "av1/encoder/ethread.h"
#include "av1/encoder/extend.h"
#include "av1/encoder/ml.h"
#include "av1/encoder/partition_strategy.h"
#if !CONFIG_REALTIME_ONLY
#include "av1/encoder/partition_model_weights.h"
#endif
#include "av1/encoder/rd.h"
#include "av1/encoder/rdopt.h"
#include "av1/encoder/reconinter_enc.h"
#include "av1/encoder/segmentation.h"
#include "av1/encoder/tokenize.h"
#include "av1/encoder/tpl_model.h"
#include "av1/encoder/var_based_part.h"
static AOM_INLINE void encode_superblock(const AV1_COMP *const cpi,
TileDataEnc *tile_data, ThreadData *td,
TOKENEXTRA **t, RUN_TYPE dry_run,
BLOCK_SIZE bsize, int *rate);
// This is used as a reference when computing the source variance for the
// purposes of activity masking.
// Eventually this should be replaced by custom no-reference routines,
// which will be faster.
const uint8_t AV1_VAR_OFFS[MAX_SB_SIZE] = {
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128
};
static const uint16_t AV1_HIGH_VAR_OFFS_8[MAX_SB_SIZE] = {
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128
};
static const uint16_t AV1_HIGH_VAR_OFFS_10[MAX_SB_SIZE] = {
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4
};
static const uint16_t AV1_HIGH_VAR_OFFS_12[MAX_SB_SIZE] = {
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16
};
enum { PICK_MODE_RD = 0, PICK_MODE_NONRD };
unsigned int av1_get_sby_perpixel_variance(const AV1_COMP *cpi,
const struct buf_2d *ref,
BLOCK_SIZE bs) {
unsigned int sse;
const unsigned int var =
cpi->fn_ptr[bs].vf(ref->buf, ref->stride, AV1_VAR_OFFS, 0, &sse);
return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]);
}
unsigned int av1_high_get_sby_perpixel_variance(const AV1_COMP *cpi,
const struct buf_2d *ref,
BLOCK_SIZE bs, int bd) {
unsigned int var, sse;
assert(bd == 8 || bd == 10 || bd == 12);
const int off_index = (bd - 8) >> 1;
const uint16_t *high_var_offs[3] = { AV1_HIGH_VAR_OFFS_8,
AV1_HIGH_VAR_OFFS_10,
AV1_HIGH_VAR_OFFS_12 };
var =
cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
CONVERT_TO_BYTEPTR(high_var_offs[off_index]), 0, &sse);
return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]);
}
static unsigned int get_sby_perpixel_diff_variance(const AV1_COMP *const cpi,
const struct buf_2d *ref,
int mi_row, int mi_col,
BLOCK_SIZE bs) {
unsigned int sse, var;
uint8_t *last_y;
const YV12_BUFFER_CONFIG *last =
get_ref_frame_yv12_buf(&cpi->common, LAST_FRAME);
assert(last != NULL);
last_y =
&last->y_buffer[mi_row * MI_SIZE * last->y_stride + mi_col * MI_SIZE];
var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride, last_y, last->y_stride, &sse);
return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]);
}
static BLOCK_SIZE get_rd_var_based_fixed_partition(AV1_COMP *cpi, MACROBLOCK *x,
int mi_row, int mi_col) {
unsigned int var = get_sby_perpixel_diff_variance(
cpi, &x->plane[0].src, mi_row, mi_col, BLOCK_64X64);
if (var < 8)
return BLOCK_64X64;
else if (var < 128)
return BLOCK_32X32;
else if (var < 2048)
return BLOCK_16X16;
else
return BLOCK_8X8;
}
static int set_deltaq_rdmult(const AV1_COMP *const cpi, MACROBLOCKD *const xd) {
const AV1_COMMON *const cm = &cpi->common;
return av1_compute_rd_mult(
cpi, cm->base_qindex + xd->delta_qindex + cm->y_dc_delta_q);
}
static AOM_INLINE void set_ssim_rdmult(const AV1_COMP *const cpi,
MACROBLOCK *const x,
const BLOCK_SIZE bsize, const int mi_row,
const int mi_col, int *const rdmult) {
const AV1_COMMON *const cm = &cpi->common;
const int bsize_base = BLOCK_16X16;
const int num_mi_w = mi_size_wide[bsize_base];
const int num_mi_h = mi_size_high[bsize_base];
const int num_cols = (cm->mi_cols + num_mi_w - 1) / num_mi_w;
const int num_rows = (cm->mi_rows + num_mi_h - 1) / num_mi_h;
const int num_bcols = (mi_size_wide[bsize] + num_mi_w - 1) / num_mi_w;
const int num_brows = (mi_size_high[bsize] + num_mi_h - 1) / num_mi_h;
int row, col;
double num_of_mi = 0.0;
double geom_mean_of_scale = 0.0;
assert(cpi->oxcf.tuning == AOM_TUNE_SSIM);
aom_clear_system_state();
for (row = mi_row / num_mi_w;
row < num_rows && row < mi_row / num_mi_w + num_brows; ++row) {
for (col = mi_col / num_mi_h;
col < num_cols && col < mi_col / num_mi_h + num_bcols; ++col) {
const int index = row * num_cols + col;
geom_mean_of_scale += log(cpi->ssim_rdmult_scaling_factors[index]);
num_of_mi += 1.0;
}
}
geom_mean_of_scale = exp(geom_mean_of_scale / num_of_mi);
*rdmult = (int)((double)(*rdmult) * geom_mean_of_scale + 0.5);
*rdmult = AOMMAX(*rdmult, 0);
set_error_per_bit(x, *rdmult);
aom_clear_system_state();
}
static int get_hier_tpl_rdmult(const AV1_COMP *const cpi, MACROBLOCK *const x,
const BLOCK_SIZE bsize, const int mi_row,
const int mi_col, int orig_rdmult) {
const AV1_COMMON *const cm = &cpi->common;
assert(IMPLIES(cpi->gf_group.size > 0,
cpi->gf_group.index < cpi->gf_group.size));
const int tpl_idx = cpi->gf_group.index;
const TplDepFrame *tpl_frame = &cpi->tpl_frame[tpl_idx];
MACROBLOCKD *const xd = &x->e_mbd;
const int deltaq_rdmult = set_deltaq_rdmult(cpi, xd);
if (cpi->tpl_model_pass == 1) {
assert(cpi->oxcf.enable_tpl_model == 2);
return deltaq_rdmult;
}
if (tpl_frame->is_valid == 0) return deltaq_rdmult;
if (!is_frame_tpl_eligible((AV1_COMP *)cpi)) return deltaq_rdmult;
if (tpl_idx >= MAX_LAG_BUFFERS) return deltaq_rdmult;
if (cpi->oxcf.superres_mode != SUPERRES_NONE) return deltaq_rdmult;
if (cpi->oxcf.aq_mode != NO_AQ) return deltaq_rdmult;
const int bsize_base = BLOCK_16X16;
const int num_mi_w = mi_size_wide[bsize_base];
const int num_mi_h = mi_size_high[bsize_base];
const int num_cols = (cm->mi_cols + num_mi_w - 1) / num_mi_w;
const int num_rows = (cm->mi_rows + num_mi_h - 1) / num_mi_h;
const int num_bcols = (mi_size_wide[bsize] + num_mi_w - 1) / num_mi_w;
const int num_brows = (mi_size_high[bsize] + num_mi_h - 1) / num_mi_h;
int row, col;
double base_block_count = 0.0;
double geom_mean_of_scale = 0.0;
aom_clear_system_state();
for (row = mi_row / num_mi_w;
row < num_rows && row < mi_row / num_mi_w + num_brows; ++row) {
for (col = mi_col / num_mi_h;
col < num_cols && col < mi_col / num_mi_h + num_bcols; ++col) {
const int index = row * num_cols + col;
geom_mean_of_scale += log(cpi->tpl_sb_rdmult_scaling_factors[index]);
base_block_count += 1.0;
}
}
geom_mean_of_scale = exp(geom_mean_of_scale / base_block_count);
int rdmult = (int)((double)orig_rdmult * geom_mean_of_scale + 0.5);
rdmult = AOMMAX(rdmult, 0);
set_error_per_bit(x, rdmult);
aom_clear_system_state();
if (bsize == cm->seq_params.sb_size) {
const int rdmult_sb = set_deltaq_rdmult(cpi, xd);
assert(rdmult_sb == rdmult);
(void)rdmult_sb;
}
return rdmult;
}
static int set_segment_rdmult(const AV1_COMP *const cpi, MACROBLOCK *const x,
int8_t segment_id) {
const AV1_COMMON *const cm = &cpi->common;
av1_init_plane_quantizers(cpi, x, segment_id);
aom_clear_system_state();
int segment_qindex = av1_get_qindex(&cm->seg, segment_id, cm->base_qindex);
return av1_compute_rd_mult(cpi, segment_qindex + cm->y_dc_delta_q);
}
static AOM_INLINE void setup_block_rdmult(const AV1_COMP *const cpi,
MACROBLOCK *const x, int mi_row,
int mi_col, BLOCK_SIZE bsize,
AQ_MODE aq_mode, MB_MODE_INFO *mbmi) {
x->rdmult = cpi->rd.RDMULT;
if (aq_mode != NO_AQ) {
assert(mbmi != NULL);
if (aq_mode == VARIANCE_AQ) {
if (cpi->vaq_refresh) {
const int energy = bsize <= BLOCK_16X16
? x->mb_energy
: av1_log_block_var(cpi, x, bsize);
mbmi->segment_id = energy;
}
x->rdmult = set_segment_rdmult(cpi, x, mbmi->segment_id);
} else if (aq_mode == COMPLEXITY_AQ) {
x->rdmult = set_segment_rdmult(cpi, x, mbmi->segment_id);
} else if (aq_mode == CYCLIC_REFRESH_AQ) {
// If segment is boosted, use rdmult for that segment.
if (cyclic_refresh_segment_id_boosted(mbmi->segment_id))
x->rdmult = av1_cyclic_refresh_get_rdmult(cpi->cyclic_refresh);
}
}
const AV1_COMMON *const cm = &cpi->common;
if (cm->delta_q_info.delta_q_present_flag) {
x->rdmult = get_hier_tpl_rdmult(cpi, x, bsize, mi_row, mi_col, x->rdmult);
}
if (cpi->oxcf.tuning == AOM_TUNE_SSIM) {
set_ssim_rdmult(cpi, x, bsize, mi_row, mi_col, &x->rdmult);
}
}
static AOM_INLINE void set_offsets_without_segment_id(
const AV1_COMP *const cpi, const TileInfo *const tile, MACROBLOCK *const x,
int mi_row, int mi_col, BLOCK_SIZE bsize) {
const AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
MACROBLOCKD *const xd = &x->e_mbd;
assert(bsize < BLOCK_SIZES_ALL);
const int mi_width = mi_size_wide[bsize];
const int mi_height = mi_size_high[bsize];
set_mode_info_offsets(cpi, x, xd, mi_row, mi_col);
set_skip_context(xd, mi_row, mi_col, num_planes);
xd->above_txfm_context = cm->above_txfm_context[tile->tile_row] + mi_col;
xd->left_txfm_context =
xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
// Set up destination pointers.
av1_setup_dst_planes(xd->plane, bsize, &cm->cur_frame->buf, mi_row, mi_col, 0,
num_planes);
// Set up limit values for MV components.
// Mv beyond the range do not produce new/different prediction block.
x->mv_limits.row_min =
-(((mi_row + mi_height) * MI_SIZE) + AOM_INTERP_EXTEND);
x->mv_limits.col_min = -(((mi_col + mi_width) * MI_SIZE) + AOM_INTERP_EXTEND);
x->mv_limits.row_max = (cm->mi_rows - mi_row) * MI_SIZE + AOM_INTERP_EXTEND;
x->mv_limits.col_max = (cm->mi_cols - mi_col) * MI_SIZE + AOM_INTERP_EXTEND;
set_plane_n4(xd, mi_width, mi_height, num_planes);
// Set up distance of MB to edge of frame in 1/8th pel units.
assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1)));
set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width, cm->mi_rows,
cm->mi_cols);
// Set up source buffers.
av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes, bsize);
// required by av1_append_sub8x8_mvs_for_idx() and av1_find_best_ref_mvs()
xd->tile = *tile;
xd->cfl.mi_row = mi_row;
xd->cfl.mi_col = mi_col;
}
static AOM_INLINE void set_offsets(const AV1_COMP *const cpi,
const TileInfo *const tile,
MACROBLOCK *const x, int mi_row, int mi_col,
BLOCK_SIZE bsize) {
const AV1_COMMON *const cm = &cpi->common;
const struct segmentation *const seg = &cm->seg;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi;
set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize);
// Setup segment ID.
mbmi = xd->mi[0];
mbmi->segment_id = 0;
if (seg->enabled) {
if (seg->enabled && !cpi->vaq_refresh) {
const uint8_t *const map =
seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
mbmi->segment_id =
map ? get_segment_id(cm, map, bsize, mi_row, mi_col) : 0;
}
av1_init_plane_quantizers(cpi, x, mbmi->segment_id);
}
}
static AOM_INLINE void update_filter_type_count(FRAME_COUNTS *counts,
const MACROBLOCKD *xd,
const MB_MODE_INFO *mbmi) {
int dir;
for (dir = 0; dir < 2; ++dir) {
const int ctx = av1_get_pred_context_switchable_interp(xd, dir);
InterpFilter filter = av1_extract_interp_filter(mbmi->interp_filters, dir);
++counts->switchable_interp[ctx][filter];
}
}
static AOM_INLINE void update_filter_type_cdf(const MACROBLOCKD *xd,
const MB_MODE_INFO *mbmi) {
int dir;
for (dir = 0; dir < 2; ++dir) {
const int ctx = av1_get_pred_context_switchable_interp(xd, dir);
InterpFilter filter = av1_extract_interp_filter(mbmi->interp_filters, dir);
update_cdf(xd->tile_ctx->switchable_interp_cdf[ctx], filter,
SWITCHABLE_FILTERS);
}
}
static AOM_INLINE void update_global_motion_used(PREDICTION_MODE mode,
BLOCK_SIZE bsize,
const MB_MODE_INFO *mbmi,
RD_COUNTS *rdc) {
if (mode == GLOBALMV || mode == GLOBAL_GLOBALMV) {
const int num_4x4s = mi_size_wide[bsize] * mi_size_high[bsize];
int ref;
for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) {
rdc->global_motion_used[mbmi->ref_frame[ref]] += num_4x4s;
}
}
}
static AOM_INLINE void reset_tx_size(MACROBLOCK *x, MB_MODE_INFO *mbmi,
const TX_MODE tx_mode) {
MACROBLOCKD *const xd = &x->e_mbd;
if (xd->lossless[mbmi->segment_id]) {
mbmi->tx_size = TX_4X4;
} else if (tx_mode != TX_MODE_SELECT) {
mbmi->tx_size = tx_size_from_tx_mode(mbmi->sb_type, tx_mode);
} else {
BLOCK_SIZE bsize = mbmi->sb_type;
TX_SIZE min_tx_size = depth_to_tx_size(MAX_TX_DEPTH, bsize);
mbmi->tx_size = (TX_SIZE)TXSIZEMAX(mbmi->tx_size, min_tx_size);
}
if (is_inter_block(mbmi)) {
memset(mbmi->inter_tx_size, mbmi->tx_size, sizeof(mbmi->inter_tx_size));
}
const int stride = xd->tx_type_map_stride;
const int bw = mi_size_wide[mbmi->sb_type];
for (int row = 0; row < mi_size_high[mbmi->sb_type]; ++row) {
memset(xd->tx_type_map + row * stride, DCT_DCT,
bw * sizeof(xd->tx_type_map[0]));
}
av1_zero(x->blk_skip);
x->skip = 0;
}
static AOM_INLINE void update_state(const AV1_COMP *const cpi, ThreadData *td,
const PICK_MODE_CONTEXT *const ctx,
int mi_row, int mi_col, BLOCK_SIZE bsize,
RUN_TYPE dry_run) {
int i, x_idx, y;
const AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
RD_COUNTS *const rdc = &td->rd_counts;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = x->plane;
struct macroblockd_plane *const pd = xd->plane;
const MB_MODE_INFO *const mi = &ctx->mic;
MB_MODE_INFO *const mi_addr = xd->mi[0];
const struct segmentation *const seg = &cm->seg;
const int bw = mi_size_wide[mi->sb_type];
const int bh = mi_size_high[mi->sb_type];
const int mis = cm->mi_stride;
const int mi_width = mi_size_wide[bsize];
const int mi_height = mi_size_high[bsize];
assert(mi->sb_type == bsize);
*mi_addr = *mi;
*x->mbmi_ext = ctx->mbmi_ext;
memcpy(x->blk_skip, ctx->blk_skip, sizeof(x->blk_skip[0]) * ctx->num_4x4_blk);
x->skip = ctx->rd_stats.skip;
xd->tx_type_map = ctx->tx_type_map;
xd->tx_type_map_stride = mi_size_wide[bsize];
// If not dry_run, copy the transform type data into the frame level buffer.
// Encoder will fetch tx types when writing bitstream.
if (!dry_run) {
const int grid_idx = get_mi_grid_idx(cm, mi_row, mi_col);
uint8_t *const tx_type_map = cm->tx_type_map + grid_idx;
const int mi_stride = cm->mi_stride;
for (int blk_row = 0; blk_row < bh; ++blk_row) {
av1_copy_array(tx_type_map + blk_row * mi_stride,
xd->tx_type_map + blk_row * xd->tx_type_map_stride, bw);
}
xd->tx_type_map = tx_type_map;
xd->tx_type_map_stride = mi_stride;
}
// If segmentation in use
if (seg->enabled) {
// For in frame complexity AQ copy the segment id from the segment map.
if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) {
const uint8_t *const map =
seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
mi_addr->segment_id =
map ? get_segment_id(cm, map, bsize, mi_row, mi_col) : 0;
reset_tx_size(x, mi_addr, x->tx_mode_search_type);
}
// Else for cyclic refresh mode update the segment map, set the segment id
// and then update the quantizer.
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) {
av1_cyclic_refresh_update_segment(cpi, mi_addr, mi_row, mi_col, bsize,
ctx->rd_stats.rate, ctx->rd_stats.dist,
x->skip);
}
if (mi_addr->uv_mode == UV_CFL_PRED && !is_cfl_allowed(xd))
mi_addr->uv_mode = UV_DC_PRED;
}
for (i = 0; i < num_planes; ++i) {
p[i].coeff = ctx->coeff[i];
p[i].qcoeff = ctx->qcoeff[i];
pd[i].dqcoeff = ctx->dqcoeff[i];
p[i].eobs = ctx->eobs[i];
p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i];
}
for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i];
// Restore the coding context of the MB to that that was in place
// when the mode was picked for it
for (y = 0; y < mi_height; y++) {
for (x_idx = 0; x_idx < mi_width; x_idx++) {
if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx &&
(xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y) {
xd->mi[x_idx + y * mis] = mi_addr;
}
}
}
if (cpi->oxcf.aq_mode) av1_init_plane_quantizers(cpi, x, mi_addr->segment_id);
if (dry_run) return;
#if CONFIG_INTERNAL_STATS
{
unsigned int *const mode_chosen_counts =
(unsigned int *)cpi->mode_chosen_counts; // Cast const away.
if (frame_is_intra_only(cm)) {
static const int kf_mode_index[] = {
THR_DC /*DC_PRED*/,
THR_V_PRED /*V_PRED*/,
THR_H_PRED /*H_PRED*/,
THR_D45_PRED /*D45_PRED*/,
THR_D135_PRED /*D135_PRED*/,
THR_D113_PRED /*D113_PRED*/,
THR_D157_PRED /*D157_PRED*/,
THR_D203_PRED /*D203_PRED*/,
THR_D67_PRED /*D67_PRED*/,
THR_SMOOTH, /*SMOOTH_PRED*/
THR_SMOOTH_V, /*SMOOTH_V_PRED*/
THR_SMOOTH_H, /*SMOOTH_H_PRED*/
THR_PAETH /*PAETH_PRED*/,
};
++mode_chosen_counts[kf_mode_index[mi_addr->mode]];
} else {
// Note how often each mode chosen as best
++mode_chosen_counts[ctx->best_mode_index];
}
}
#endif
if (!frame_is_intra_only(cm)) {
if (is_inter_block(mi_addr)) {
// TODO(sarahparker): global motion stats need to be handled per-tile
// to be compatible with tile-based threading.
update_global_motion_used(mi_addr->mode, bsize, mi_addr, rdc);
}
if (cm->interp_filter == SWITCHABLE &&
mi_addr->motion_mode != WARPED_CAUSAL &&
!is_nontrans_global_motion(xd, xd->mi[0])) {
update_filter_type_count(td->counts, xd, mi_addr);
}
rdc->comp_pred_diff[SINGLE_REFERENCE] += ctx->single_pred_diff;
rdc->comp_pred_diff[COMPOUND_REFERENCE] += ctx->comp_pred_diff;
rdc->comp_pred_diff[REFERENCE_MODE_SELECT] += ctx->hybrid_pred_diff;
}
const int x_mis = AOMMIN(bw, cm->mi_cols - mi_col);
const int y_mis = AOMMIN(bh, cm->mi_rows - mi_row);
if (cm->seq_params.order_hint_info.enable_ref_frame_mvs)
av1_copy_frame_mvs(cm, mi, mi_row, mi_col, x_mis, y_mis);
}
void av1_setup_src_planes(MACROBLOCK *x, const YV12_BUFFER_CONFIG *src,
int mi_row, int mi_col, const int num_planes,
BLOCK_SIZE bsize) {
// Set current frame pointer.
x->e_mbd.cur_buf = src;
// We use AOMMIN(num_planes, MAX_MB_PLANE) instead of num_planes to quiet
// the static analysis warnings.
for (int i = 0; i < AOMMIN(num_planes, MAX_MB_PLANE); i++) {
const int is_uv = i > 0;
setup_pred_plane(
&x->plane[i].src, bsize, src->buffers[i], src->crop_widths[is_uv],
src->crop_heights[is_uv], src->strides[is_uv], mi_row, mi_col, NULL,
x->e_mbd.plane[i].subsampling_x, x->e_mbd.plane[i].subsampling_y);
}
}
static EdgeInfo edge_info(const struct buf_2d *ref, const BLOCK_SIZE bsize,
const bool high_bd, const int bd) {
const int width = block_size_wide[bsize];
const int height = block_size_high[bsize];
// Implementation requires width to be a multiple of 8. It also requires
// height to be a multiple of 4, but this is always the case.
assert(height % 4 == 0);
if (width % 8 != 0) {
EdgeInfo ei = { .magnitude = 0, .x = 0, .y = 0 };
return ei;
}
return av1_edge_exists(ref->buf, ref->stride, width, height, high_bd, bd);
}
static int use_pb_simple_motion_pred_sse(const AV1_COMP *const cpi) {
// TODO(debargha, yuec): Not in use, need to implement a speed feature
// utilizing this data point, and replace '0' by the corresponding speed
// feature flag.
return 0 && !frame_is_intra_only(&cpi->common);
}
// This function will copy the winner reference mode information from block
// level (x->mbmi_ext) to frame level (cpi->mbmi_ext_frame_base). This frame
// level buffer (cpi->mbmi_ext_frame_base) will be used during bitstream
// preparation.
static INLINE void copy_winner_ref_mode_from_mbmi_ext(MACROBLOCK *const x) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi = xd->mi[0];
uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
memcpy(x->mbmi_ext_frame->ref_mv_stack,
x->mbmi_ext->ref_mv_stack[ref_frame_type],
sizeof(x->mbmi_ext->ref_mv_stack[USABLE_REF_MV_STACK_SIZE]));
memcpy(x->mbmi_ext_frame->weight, x->mbmi_ext->weight[ref_frame_type],
sizeof(x->mbmi_ext->weight[USABLE_REF_MV_STACK_SIZE]));
x->mbmi_ext_frame->mode_context = x->mbmi_ext->mode_context[ref_frame_type];
x->mbmi_ext_frame->ref_mv_count = x->mbmi_ext->ref_mv_count[ref_frame_type];
memcpy(x->mbmi_ext_frame->global_mvs, x->mbmi_ext->global_mvs,
sizeof(x->mbmi_ext->global_mvs));
}
static void hybrid_intra_mode_search(AV1_COMP *cpi, MACROBLOCK *const x,
RD_STATS *rd_cost, BLOCK_SIZE bsize,
PICK_MODE_CONTEXT *ctx) {
if (!cpi->sf.hybrid_intra_pickmode || bsize < BLOCK_16X16)
av1_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, INT64_MAX);
else
av1_pick_intra_mode(cpi, x, rd_cost, bsize, ctx);
}
static AOM_INLINE void pick_sb_modes(AV1_COMP *const cpi,
TileDataEnc *tile_data,
MACROBLOCK *const x, int mi_row,
int mi_col, RD_STATS *rd_cost,
PARTITION_TYPE partition, BLOCK_SIZE bsize,
PICK_MODE_CONTEXT *ctx, RD_STATS best_rd,
int pick_mode_type) {
if (best_rd.rdcost < 0) {
ctx->rd_stats.rdcost = INT64_MAX;
ctx->rd_stats.skip = 0;
av1_invalid_rd_stats(rd_cost);
return;
}
set_offsets(cpi, &tile_data->tile_info, x, mi_row, mi_col, bsize);
if (ctx->rd_mode_is_ready) {
assert(ctx->mic.sb_type == bsize);
assert(ctx->mic.partition == partition);
rd_cost->rate = ctx->rd_stats.rate;
rd_cost->dist = ctx->rd_stats.dist;
rd_cost->rdcost = ctx->rd_stats.rdcost;
return;
}
AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi;
struct macroblock_plane *const p = x->plane;
struct macroblockd_plane *const pd = xd->plane;
const AQ_MODE aq_mode = cpi->oxcf.aq_mode;
int i;
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, rd_pick_sb_modes_time);
#endif
aom_clear_system_state();
mbmi = xd->mi[0];
mbmi->sb_type = bsize;
mbmi->partition = partition;
#if CONFIG_RD_DEBUG
mbmi->mi_row = mi_row;
mbmi->mi_col = mi_col;
#endif
xd->tx_type_map = x->tx_type_map;
xd->tx_type_map_stride = mi_size_wide[bsize];
for (i = 0; i < num_planes; ++i) {
p[i].coeff = ctx->coeff[i];
p[i].qcoeff = ctx->qcoeff[i];
pd[i].dqcoeff = ctx->dqcoeff[i];
p[i].eobs = ctx->eobs[i];
p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i];
}
for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i];
ctx->skippable = 0;
// Set to zero to make sure we do not use the previous encoded frame stats
mbmi->skip = 0;
// Reset skip mode flag.
mbmi->skip_mode = 0;
x->skip_chroma_rd =
!is_chroma_reference(mi_row, mi_col, bsize, xd->plane[1].subsampling_x,
xd->plane[1].subsampling_y);
if (is_cur_buf_hbd(xd)) {
x->source_variance = av1_high_get_sby_perpixel_variance(
cpi, &x->plane[0].src, bsize, xd->bd);
} else {
x->source_variance =
av1_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
}
if (use_pb_simple_motion_pred_sse(cpi)) {
const MV ref_mv_full = { .row = 0, .col = 0 };
unsigned int var = 0;
av1_simple_motion_sse_var(cpi, x, mi_row, mi_col, bsize, ref_mv_full, 0,
&x->simple_motion_pred_sse, &var);
}
// If the threshold for disabling wedge search is zero, it means the feature
// should not be used. Use a value that will always succeed in the check.
if (cpi->sf.disable_wedge_search_edge_thresh == 0) {
x->edge_strength = UINT16_MAX;
x->edge_strength_x = UINT16_MAX;
x->edge_strength_y = UINT16_MAX;
} else {
EdgeInfo ei =
edge_info(&x->plane[0].src, bsize, is_cur_buf_hbd(xd), xd->bd);
x->edge_strength = ei.magnitude;
x->edge_strength_x = ei.x;
x->edge_strength_y = ei.y;
}
// Initialize default mode evaluation params
set_mode_eval_params(cpi, x, DEFAULT_EVAL);
// Save rdmult before it might be changed, so it can be restored later.
const int orig_rdmult = x->rdmult;
setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, aq_mode, mbmi);
// Set error per bit for current rdmult
set_error_per_bit(x, x->rdmult);
av1_rd_cost_update(x->rdmult, &best_rd);
// Find best coding mode & reconstruct the MB so it is available
// as a predictor for MBs that follow in the SB
if (frame_is_intra_only(cm)) {
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, av1_rd_pick_intra_mode_sb_time);
#endif
switch (pick_mode_type) {
case PICK_MODE_RD:
av1_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, best_rd.rdcost);
break;
case PICK_MODE_NONRD:
hybrid_intra_mode_search(cpi, x, rd_cost, bsize, ctx);
break;
default: assert(0 && "Unknown pick mode type.");
}
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, av1_rd_pick_intra_mode_sb_time);
#endif
} else {
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, av1_rd_pick_inter_mode_sb_time);
#endif
if (segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
av1_rd_pick_inter_mode_sb_seg_skip(cpi, tile_data, x, mi_row, mi_col,
rd_cost, bsize, ctx, best_rd.rdcost);
} else {
// TODO(kyslov): do the same for pick_inter_mode_sb_seg_skip
switch (pick_mode_type) {
case PICK_MODE_RD:
av1_rd_pick_inter_mode_sb(cpi, tile_data, x, rd_cost, bsize, ctx,
best_rd.rdcost);
break;
case PICK_MODE_NONRD:
av1_nonrd_pick_inter_mode_sb(cpi, tile_data, x, rd_cost, bsize, ctx,
best_rd.rdcost);
break;
default: assert(0 && "Unknown pick mode type.");
}
}
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, av1_rd_pick_inter_mode_sb_time);
#endif
}
// Examine the resulting rate and for AQ mode 2 make a segment choice.
if ((rd_cost->rate != INT_MAX) && (aq_mode == COMPLEXITY_AQ) &&
(bsize >= BLOCK_16X16) &&
(cm->current_frame.frame_type == KEY_FRAME ||
cpi->refresh_alt_ref_frame || cpi->refresh_bwd_ref_frame ||
(cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref))) {
av1_caq_select_segment(cpi, x, bsize, mi_row, mi_col, rd_cost->rate);
}
x->rdmult = orig_rdmult;
// TODO(jingning) The rate-distortion optimization flow needs to be
// refactored to provide proper exit/return handle.
if (rd_cost->rate == INT_MAX) rd_cost->rdcost = INT64_MAX;
ctx->rd_stats.rate = rd_cost->rate;
ctx->rd_stats.dist = rd_cost->dist;
ctx->rd_stats.rdcost = rd_cost->rdcost;
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, rd_pick_sb_modes_time);
#endif
}
static AOM_INLINE void update_inter_mode_stats(FRAME_CONTEXT *fc,
FRAME_COUNTS *counts,
PREDICTION_MODE mode,
int16_t mode_context) {
(void)counts;
int16_t mode_ctx = mode_context & NEWMV_CTX_MASK;
if (mode == NEWMV) {
#if CONFIG_ENTROPY_STATS
++counts->newmv_mode[mode_ctx][0];
#endif
update_cdf(fc->newmv_cdf[mode_ctx], 0, 2);
return;
}
#if CONFIG_ENTROPY_STATS
++counts->newmv_mode[mode_ctx][1];
#endif
update_cdf(fc->newmv_cdf[mode_ctx], 1, 2);
mode_ctx = (mode_context >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
if (mode == GLOBALMV) {
#if CONFIG_ENTROPY_STATS
++counts->zeromv_mode[mode_ctx][0];
#endif
update_cdf(fc->zeromv_cdf[mode_ctx], 0, 2);
return;
}
#if CONFIG_ENTROPY_STATS
++counts->zeromv_mode[mode_ctx][1];
#endif
update_cdf(fc->zeromv_cdf[mode_ctx], 1, 2);
mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK;
#if CONFIG_ENTROPY_STATS
++counts->refmv_mode[mode_ctx][mode != NEARESTMV];
#endif
update_cdf(fc->refmv_cdf[mode_ctx], mode != NEARESTMV, 2);
}
static AOM_INLINE void update_palette_cdf(MACROBLOCKD *xd,
const MB_MODE_INFO *const mbmi,
FRAME_COUNTS *counts) {
FRAME_CONTEXT *fc = xd->tile_ctx;
const BLOCK_SIZE bsize = mbmi->sb_type;
const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
const int palette_bsize_ctx = av1_get_palette_bsize_ctx(bsize);
(void)counts;
if (mbmi->mode == DC_PRED) {
const int n = pmi->palette_size[0];
const int palette_mode_ctx = av1_get_palette_mode_ctx(xd);
#if CONFIG_ENTROPY_STATS
++counts->palette_y_mode[palette_bsize_ctx][palette_mode_ctx][n > 0];
#endif
update_cdf(fc->palette_y_mode_cdf[palette_bsize_ctx][palette_mode_ctx],
n > 0, 2);
if (n > 0) {
#if CONFIG_ENTROPY_STATS
++counts->palette_y_size[palette_bsize_ctx][n - PALETTE_MIN_SIZE];
#endif
update_cdf(fc->palette_y_size_cdf[palette_bsize_ctx],
n - PALETTE_MIN_SIZE, PALETTE_SIZES);
}
}
if (mbmi->uv_mode == UV_DC_PRED) {
const int n = pmi->palette_size[1];
const int palette_uv_mode_ctx = (pmi->palette_size[0] > 0);
#if CONFIG_ENTROPY_STATS
++counts->palette_uv_mode[palette_uv_mode_ctx][n > 0];
#endif
update_cdf(fc->palette_uv_mode_cdf[palette_uv_mode_ctx], n > 0, 2);
if (n > 0) {
#if CONFIG_ENTROPY_STATS
++counts->palette_uv_size[palette_bsize_ctx][n - PALETTE_MIN_SIZE];
#endif
update_cdf(fc->palette_uv_size_cdf[palette_bsize_ctx],
n - PALETTE_MIN_SIZE, PALETTE_SIZES);
}
}
}
static AOM_INLINE void sum_intra_stats(const AV1_COMMON *const cm,
FRAME_COUNTS *counts, MACROBLOCKD *xd,
const MB_MODE_INFO *const mbmi,
const MB_MODE_INFO *above_mi,
const MB_MODE_INFO *left_mi,
const int intraonly, const int mi_row,
const int mi_col) {
FRAME_CONTEXT *fc = xd->tile_ctx;
const PREDICTION_MODE y_mode = mbmi->mode;
(void)counts;
const BLOCK_SIZE bsize = mbmi->sb_type;
if (intraonly) {
#if CONFIG_ENTROPY_STATS
const PREDICTION_MODE above = av1_above_block_mode(above_mi);
const PREDICTION_MODE left = av1_left_block_mode(left_mi);
const int above_ctx = intra_mode_context[above];
const int left_ctx = intra_mode_context[left];
++counts->kf_y_mode[above_ctx][left_ctx][y_mode];
#endif // CONFIG_ENTROPY_STATS
update_cdf(get_y_mode_cdf(fc, above_mi, left_mi), y_mode, INTRA_MODES);
} else {
#if CONFIG_ENTROPY_STATS
++counts->y_mode[size_group_lookup[bsize]][y_mode];
#endif // CONFIG_ENTROPY_STATS
update_cdf(fc->y_mode_cdf[size_group_lookup[bsize]], y_mode, INTRA_MODES);
}
if (av1_filter_intra_allowed(cm, mbmi)) {
const int use_filter_intra_mode =
mbmi->filter_intra_mode_info.use_filter_intra;
#if CONFIG_ENTROPY_STATS
++counts->filter_intra[mbmi->sb_type][use_filter_intra_mode];
if (use_filter_intra_mode) {
++counts
->filter_intra_mode[mbmi->filter_intra_mode_info.filter_intra_mode];
}
#endif // CONFIG_ENTROPY_STATS
update_cdf(fc->filter_intra_cdfs[mbmi->sb_type], use_filter_intra_mode, 2);
if (use_filter_intra_mode) {
update_cdf(fc->filter_intra_mode_cdf,
mbmi->filter_intra_mode_info.filter_intra_mode,
FILTER_INTRA_MODES);
}
}
if (av1_is_directional_mode(mbmi->mode) && av1_use_angle_delta(bsize)) {
#if CONFIG_ENTROPY_STATS
++counts->angle_delta[mbmi->mode - V_PRED]
[mbmi->angle_delta[PLANE_TYPE_Y] + MAX_ANGLE_DELTA];
#endif
update_cdf(fc->angle_delta_cdf[mbmi->mode - V_PRED],
mbmi->angle_delta[PLANE_TYPE_Y] + MAX_ANGLE_DELTA,
2 * MAX_ANGLE_DELTA + 1);
}
if (!is_chroma_reference(mi_row, mi_col, bsize,
xd->plane[AOM_PLANE_U].subsampling_x,
xd->plane[AOM_PLANE_U].subsampling_y))
return;
const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode;
const CFL_ALLOWED_TYPE cfl_allowed = is_cfl_allowed(xd);
#if CONFIG_ENTROPY_STATS
++counts->uv_mode[cfl_allowed][y_mode][uv_mode];
#endif // CONFIG_ENTROPY_STATS
update_cdf(fc->uv_mode_cdf[cfl_allowed][y_mode], uv_mode,
UV_INTRA_MODES - !cfl_allowed);
if (uv_mode == UV_CFL_PRED) {
const int8_t joint_sign = mbmi->cfl_alpha_signs;
const uint8_t idx = mbmi->cfl_alpha_idx;
#if CONFIG_ENTROPY_STATS
++counts->cfl_sign[joint_sign];
#endif
update_cdf(fc->cfl_sign_cdf, joint_sign, CFL_JOINT_SIGNS);
if (CFL_SIGN_U(joint_sign) != CFL_SIGN_ZERO) {
aom_cdf_prob *cdf_u = fc->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)];
#if CONFIG_ENTROPY_STATS
++counts->cfl_alpha[CFL_CONTEXT_U(joint_sign)][CFL_IDX_U(idx)];
#endif
update_cdf(cdf_u, CFL_IDX_U(idx), CFL_ALPHABET_SIZE);
}
if (CFL_SIGN_V(joint_sign) != CFL_SIGN_ZERO) {
aom_cdf_prob *cdf_v = fc->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)];
#if CONFIG_ENTROPY_STATS
++counts->cfl_alpha[CFL_CONTEXT_V(joint_sign)][CFL_IDX_V(idx)];
#endif
update_cdf(cdf_v, CFL_IDX_V(idx), CFL_ALPHABET_SIZE);
}
}
if (av1_is_directional_mode(get_uv_mode(uv_mode)) &&
av1_use_angle_delta(bsize)) {
#if CONFIG_ENTROPY_STATS
++counts->angle_delta[uv_mode - UV_V_PRED]
[mbmi->angle_delta[PLANE_TYPE_UV] + MAX_ANGLE_DELTA];
#endif
update_cdf(fc->angle_delta_cdf[uv_mode - UV_V_PRED],
mbmi->angle_delta[PLANE_TYPE_UV] + MAX_ANGLE_DELTA,
2 * MAX_ANGLE_DELTA + 1);
}
if (av1_allow_palette(cm->allow_screen_content_tools, bsize)) {
update_palette_cdf(xd, mbmi, counts);
}
}
static AOM_INLINE void update_stats(const AV1_COMMON *const cm, ThreadData *td,
int mi_row, int mi_col) {
MACROBLOCK *x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const MB_MODE_INFO *const mbmi = xd->mi[0];
const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
const CurrentFrame *const current_frame = &cm->current_frame;
const BLOCK_SIZE bsize = mbmi->sb_type;
FRAME_CONTEXT *fc = xd->tile_ctx;
const int seg_ref_active =
segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_REF_FRAME);
if (current_frame->skip_mode_info.skip_mode_flag && !seg_ref_active &&
is_comp_ref_allowed(bsize)) {
const int skip_mode_ctx = av1_get_skip_mode_context(xd);
#if CONFIG_ENTROPY_STATS
td->counts->skip_mode[skip_mode_ctx][mbmi->skip_mode]++;
#endif
update_cdf(fc->skip_mode_cdfs[skip_mode_ctx], mbmi->skip_mode, 2);
}
if (!mbmi->skip_mode && !seg_ref_active) {
const int skip_ctx = av1_get_skip_context(xd);
#if CONFIG_ENTROPY_STATS
td->counts->skip[skip_ctx][mbmi->skip]++;
#endif
update_cdf(fc->skip_cdfs[skip_ctx], mbmi->skip, 2);
}
#if CONFIG_ENTROPY_STATS
// delta quant applies to both intra and inter
const int super_block_upper_left =
((mi_row & (cm->seq_params.mib_size - 1)) == 0) &&
((mi_col & (cm->seq_params.mib_size - 1)) == 0);
const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
if (delta_q_info->delta_q_present_flag &&
(bsize != cm->seq_params.sb_size || !mbmi->skip) &&
super_block_upper_left) {
const int dq =
(mbmi->current_qindex - xd->current_qindex) / delta_q_info->delta_q_res;
const int absdq = abs(dq);
for (int i = 0; i < AOMMIN(absdq, DELTA_Q_SMALL); ++i) {
td->counts->delta_q[i][1]++;
}
if (absdq < DELTA_Q_SMALL) td->counts->delta_q[absdq][0]++;
if (delta_q_info->delta_lf_present_flag) {
if (delta_q_info->delta_lf_multi) {
const int frame_lf_count =
av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) {
const int delta_lf = (mbmi->delta_lf[lf_id] - xd->delta_lf[lf_id]) /
delta_q_info->delta_lf_res;
const int abs_delta_lf = abs(delta_lf);
for (int i = 0; i < AOMMIN(abs_delta_lf, DELTA_LF_SMALL); ++i) {
td->counts->delta_lf_multi[lf_id][i][1]++;
}
if (abs_delta_lf < DELTA_LF_SMALL)
td->counts->delta_lf_multi[lf_id][abs_delta_lf][0]++;
}
} else {
const int delta_lf =
(mbmi->delta_lf_from_base - xd->delta_lf_from_base) /
delta_q_info->delta_lf_res;
const int abs_delta_lf = abs(delta_lf);
for (int i = 0; i < AOMMIN(abs_delta_lf, DELTA_LF_SMALL); ++i) {
td->counts->delta_lf[i][1]++;
}
if (abs_delta_lf < DELTA_LF_SMALL)
td->counts->delta_lf[abs_delta_lf][0]++;
}
}
}
#endif
if (!is_inter_block(mbmi)) {
sum_intra_stats(cm, td->counts, xd, mbmi, xd->above_mbmi, xd->left_mbmi,
frame_is_intra_only(cm), mi_row, mi_col);
}
if (av1_allow_intrabc(cm)) {
update_cdf(fc->intrabc_cdf, is_intrabc_block(mbmi), 2);
#if CONFIG_ENTROPY_STATS
++td->counts->intrabc[is_intrabc_block(mbmi)];
#endif // CONFIG_ENTROPY_STATS
}
if (frame_is_intra_only(cm) || mbmi->skip_mode) return;
FRAME_COUNTS *const counts = td->counts;
const int inter_block = is_inter_block(mbmi);
if (!seg_ref_active) {
#if CONFIG_ENTROPY_STATS
counts->intra_inter[av1_get_intra_inter_context(xd)][inter_block]++;
#endif
update_cdf(fc->intra_inter_cdf[av1_get_intra_inter_context(xd)],
inter_block, 2);
// If the segment reference feature is enabled we have only a single
// reference frame allowed for the segment so exclude it from
// the reference frame counts used to work out probabilities.
if (inter_block) {
const MV_REFERENCE_FRAME ref0 = mbmi->ref_frame[0];
const MV_REFERENCE_FRAME ref1 = mbmi->ref_frame[1];
if (current_frame->reference_mode == REFERENCE_MODE_SELECT) {
if (is_comp_ref_allowed(bsize)) {
#if CONFIG_ENTROPY_STATS
counts->comp_inter[av1_get_reference_mode_context(xd)]
[has_second_ref(mbmi)]++;
#endif // CONFIG_ENTROPY_STATS
update_cdf(av1_get_reference_mode_cdf(xd), has_second_ref(mbmi), 2);
}
}
if (has_second_ref(mbmi)) {
const COMP_REFERENCE_TYPE comp_ref_type = has_uni_comp_refs(mbmi)
? UNIDIR_COMP_REFERENCE
: BIDIR_COMP_REFERENCE;
update_cdf(av1_get_comp_reference_type_cdf(xd), comp_ref_type,
COMP_REFERENCE_TYPES);
#if CONFIG_ENTROPY_STATS
counts->comp_ref_type[av1_get_comp_reference_type_context(xd)]
[comp_ref_type]++;
#endif // CONFIG_ENTROPY_STATS
if (comp_ref_type == UNIDIR_COMP_REFERENCE) {
const int bit = (ref0 == BWDREF_FRAME);
update_cdf(av1_get_pred_cdf_uni_comp_ref_p(xd), bit, 2);
#if CONFIG_ENTROPY_STATS
counts
->uni_comp_ref[av1_get_pred_context_uni_comp_ref_p(xd)][0][bit]++;
#endif // CONFIG_ENTROPY_STATS
if (!bit) {
const int bit1 = (ref1 == LAST3_FRAME || ref1 == GOLDEN_FRAME);
update_cdf(av1_get_pred_cdf_uni_comp_ref_p1(xd), bit1, 2);
#if CONFIG_ENTROPY_STATS
counts->uni_comp_ref[av1_get_pred_context_uni_comp_ref_p1(xd)][1]
[bit1]++;
#endif // CONFIG_ENTROPY_STATS
if (bit1) {
update_cdf(av1_get_pred_cdf_uni_comp_ref_p2(xd),
ref1 == GOLDEN_FRAME, 2);
#if CONFIG_ENTROPY_STATS
counts->uni_comp_ref[av1_get_pred_context_uni_comp_ref_p2(xd)][2]
[ref1 == GOLDEN_FRAME]++;
#endif // CONFIG_ENTROPY_STATS
}
}
} else {
const int bit = (ref0 == GOLDEN_FRAME || ref0 == LAST3_FRAME);
update_cdf(av1_get_pred_cdf_comp_ref_p(xd), bit, 2);
#if CONFIG_ENTROPY_STATS
counts->comp_ref[av1_get_pred_context_comp_ref_p(xd)][0][bit]++;
#endif // CONFIG_ENTROPY_STATS
if (!bit) {
update_cdf(av1_get_pred_cdf_comp_ref_p1(xd), ref0 == LAST2_FRAME,
2);
#if CONFIG_ENTROPY_STATS
counts->comp_ref[av1_get_pred_context_comp_ref_p1(xd)][1]
[ref0 == LAST2_FRAME]++;
#endif // CONFIG_ENTROPY_STATS
} else {
update_cdf(av1_get_pred_cdf_comp_ref_p2(xd), ref0 == GOLDEN_FRAME,
2);
#if CONFIG_ENTROPY_STATS
counts->comp_ref[av1_get_pred_context_comp_ref_p2(xd)][2]
[ref0 == GOLDEN_FRAME]++;
#endif // CONFIG_ENTROPY_STATS
}
update_cdf(av1_get_pred_cdf_comp_bwdref_p(xd), ref1 == ALTREF_FRAME,
2);
#if CONFIG_ENTROPY_STATS
counts->comp_bwdref[av1_get_pred_context_comp_bwdref_p(xd)][0]
[ref1 == ALTREF_FRAME]++;
#endif // CONFIG_ENTROPY_STATS
if (ref1 != ALTREF_FRAME) {
update_cdf(av1_get_pred_cdf_comp_bwdref_p1(xd),
ref1 == ALTREF2_FRAME, 2);
#if CONFIG_ENTROPY_STATS
counts->comp_bwdref[av1_get_pred_context_comp_bwdref_p1(xd)][1]
[ref1 == ALTREF2_FRAME]++;
#endif // CONFIG_ENTROPY_STATS
}
}
} else {
const int bit = (ref0 >= BWDREF_FRAME);
update_cdf(av1_get_pred_cdf_single_ref_p1(xd), bit, 2);
#if CONFIG_ENTROPY_STATS
counts->single_ref[av1_get_pred_context_single_ref_p1(xd)][0][bit]++;
#endif // CONFIG_ENTROPY_STATS
if (bit) {
assert(ref0 <= ALTREF_FRAME);
update_cdf(av1_get_pred_cdf_single_ref_p2(xd), ref0 == ALTREF_FRAME,
2);
#if CONFIG_ENTROPY_STATS
counts->single_ref[av1_get_pred_context_single_ref_p2(xd)][1]
[ref0 == ALTREF_FRAME]++;
#endif // CONFIG_ENTROPY_STATS
if (ref0 != ALTREF_FRAME) {
update_cdf(av1_get_pred_cdf_single_ref_p6(xd),
ref0 == ALTREF2_FRAME, 2);
#if CONFIG_ENTROPY_STATS
counts->single_ref[av1_get_pred_context_single_ref_p6(xd)][5]
[ref0 == ALTREF2_FRAME]++;
#endif // CONFIG_ENTROPY_STATS
}
} else {
const int bit1 = !(ref0 == LAST2_FRAME || ref0 == LAST_FRAME);
update_cdf(av1_get_pred_cdf_single_ref_p3(xd), bit1, 2);
#if CONFIG_ENTROPY_STATS
counts->single_ref[av1_get_pred_context_single_ref_p3(xd)][2][bit1]++;
#endif // CONFIG_ENTROPY_STATS
if (!bit1) {
update_cdf(av1_get_pred_cdf_single_ref_p4(xd), ref0 != LAST_FRAME,
2);
#if CONFIG_ENTROPY_STATS
counts->single_ref[av1_get_pred_context_single_ref_p4(xd)][3]
[ref0 != LAST_FRAME]++;
#endif // CONFIG_ENTROPY_STATS
} else {
update_cdf(av1_get_pred_cdf_single_ref_p5(xd), ref0 != LAST3_FRAME,
2);
#if CONFIG_ENTROPY_STATS
counts->single_ref[av1_get_pred_context_single_ref_p5(xd)][4]
[ref0 != LAST3_FRAME]++;
#endif // CONFIG_ENTROPY_STATS
}
}
}
if (cm->seq_params.enable_interintra_compound &&
is_interintra_allowed(mbmi)) {
const int bsize_group = size_group_lookup[bsize];
if (mbmi->ref_frame[1] == INTRA_FRAME) {
#if CONFIG_ENTROPY_STATS
counts->interintra[bsize_group][1]++;
#endif
update_cdf(fc->interintra_cdf[bsize_group], 1, 2);
#if CONFIG_ENTROPY_STATS
counts->interintra_mode[bsize_group][mbmi->interintra_mode]++;
#endif
update_cdf(fc->interintra_mode_cdf[bsize_group],
mbmi->interintra_mode, INTERINTRA_MODES);
if (is_interintra_wedge_used(bsize)) {
#if CONFIG_ENTROPY_STATS
counts->wedge_interintra[bsize][mbmi->use_wedge_interintra]++;
#endif
update_cdf(fc->wedge_interintra_cdf[bsize],
mbmi->use_wedge_interintra, 2);
if (mbmi->use_wedge_interintra) {
#if CONFIG_ENTROPY_STATS
counts->wedge_idx[bsize][mbmi->interintra_wedge_index]++;
#endif
update_cdf(fc->wedge_idx_cdf[bsize], mbmi->interintra_wedge_index,
16);
}
}
} else {
#if CONFIG_ENTROPY_STATS
counts->interintra[bsize_group][0]++;
#endif
update_cdf(fc->interintra_cdf[bsize_group], 0, 2);
}
}
const MOTION_MODE motion_allowed =
cm->switchable_motion_mode
? motion_mode_allowed(xd->global_motion, xd, mbmi,
cm->allow_warped_motion)
: SIMPLE_TRANSLATION;
if (mbmi->ref_frame[1] != INTRA_FRAME) {
if (motion_allowed == WARPED_CAUSAL) {
#if CONFIG_ENTROPY_STATS
counts->motion_mode[bsize][mbmi->motion_mode]++;
#endif
update_cdf(fc->motion_mode_cdf[bsize], mbmi->motion_mode,
MOTION_MODES);
} else if (motion_allowed == OBMC_CAUSAL) {
#if CONFIG_ENTROPY_STATS
counts->obmc[bsize][mbmi->motion_mode == OBMC_CAUSAL]++;
#endif
update_cdf(fc->obmc_cdf[bsize], mbmi->motion_mode == OBMC_CAUSAL, 2);
}
}
if (has_second_ref(mbmi)) {
assert(current_frame->reference_mode != SINGLE_REFERENCE &&
is_inter_compound_mode(mbmi->mode) &&
mbmi->motion_mode == SIMPLE_TRANSLATION);
const int masked_compound_used = is_any_masked_compound_used(bsize) &&
cm->seq_params.enable_masked_compound;
if (masked_compound_used) {
const int comp_group_idx_ctx = get_comp_group_idx_context(xd);
#if CONFIG_ENTROPY_STATS
++counts->comp_group_idx[comp_group_idx_ctx][mbmi->comp_group_idx];
#endif
update_cdf(fc->comp_group_idx_cdf[comp_group_idx_ctx],
mbmi->comp_group_idx, 2);
}
if (mbmi->comp_group_idx == 0) {
const int comp_index_ctx = get_comp_index_context(cm, xd);
#if CONFIG_ENTROPY_STATS
++counts->compound_index[comp_index_ctx][mbmi->compound_idx];
#endif
update_cdf(fc->compound_index_cdf[comp_index_ctx], mbmi->compound_idx,
2);
} else {
assert(masked_compound_used);
if (is_interinter_compound_used(COMPOUND_WEDGE, bsize)) {
#if CONFIG_ENTROPY_STATS
++counts->compound_type[bsize][mbmi->interinter_comp.type -
COMPOUND_WEDGE];
#endif
update_cdf(fc->compound_type_cdf[bsize],
mbmi->interinter_comp.type - COMPOUND_WEDGE,
MASKED_COMPOUND_TYPES);
}
}
}
if (mbmi->interinter_comp.type == COMPOUND_WEDGE) {
if (is_interinter_compound_used(COMPOUND_WEDGE, bsize)) {
#if CONFIG_ENTROPY_STATS
counts->wedge_idx[bsize][mbmi->interinter_comp.wedge_index]++;
#endif
update_cdf(fc->wedge_idx_cdf[bsize],
mbmi->interinter_comp.wedge_index, 16);
}
}
}
}
if (inter_block && cm->interp_filter == SWITCHABLE &&
mbmi->motion_mode != WARPED_CAUSAL &&
!is_nontrans_global_motion(xd, mbmi)) {
update_filter_type_cdf(xd, mbmi);
}
if (inter_block &&
!segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
const PREDICTION_MODE mode = mbmi->mode;
const int16_t mode_ctx =
av1_mode_context_analyzer(mbmi_ext->mode_context, mbmi->ref_frame);
if (has_second_ref(mbmi)) {
#if CONFIG_ENTROPY_STATS
++counts->inter_compound_mode[mode_ctx][INTER_COMPOUND_OFFSET(mode)];
#endif
update_cdf(fc->inter_compound_mode_cdf[mode_ctx],
INTER_COMPOUND_OFFSET(mode), INTER_COMPOUND_MODES);
} else {
update_inter_mode_stats(fc, counts, mode, mode_ctx);
}
const int new_mv = mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV;
if (new_mv) {
const uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
for (int idx = 0; idx < 2; ++idx) {
if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) {
const uint8_t drl_ctx =
av1_drl_ctx(mbmi_ext->weight[ref_frame_type], idx);
update_cdf(fc->drl_cdf[drl_ctx], mbmi->ref_mv_idx != idx, 2);
#if CONFIG_ENTROPY_STATS
++counts->drl_mode[drl_ctx][mbmi->ref_mv_idx != idx];
#endif
if (mbmi->ref_mv_idx == idx) break;
}
}
}
if (have_nearmv_in_inter_mode(mbmi->mode)) {
const uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
for (int idx = 1; idx < 3; ++idx) {
if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) {
const uint8_t drl_ctx =
av1_drl_ctx(mbmi_ext->weight[ref_frame_type], idx);
update_cdf(fc->drl_cdf[drl_ctx], mbmi->ref_mv_idx != idx - 1, 2);
#if CONFIG_ENTROPY_STATS
++counts->drl_mode[drl_ctx][mbmi->ref_mv_idx != idx - 1];
#endif
if (mbmi->ref_mv_idx == idx - 1) break;
}
}
}
if (have_newmv_in_inter_mode(mbmi->mode)) {
const int allow_hp = cm->cur_frame_force_integer_mv
? MV_SUBPEL_NONE
: cm->allow_high_precision_mv;
if (new_mv) {
for (int ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) {
const int_mv ref_mv = av1_get_ref_mv(x, ref);
av1_update_mv_stats(&mbmi->mv[ref].as_mv, &ref_mv.as_mv, &fc->nmvc,
allow_hp);
}
} else if (mbmi->mode == NEAREST_NEWMV || mbmi->mode == NEAR_NEWMV) {
const int ref = 1;
const int_mv ref_mv = av1_get_ref_mv(x, ref);
av1_update_mv_stats(&mbmi->mv[ref].as_mv, &ref_mv.as_mv, &fc->nmvc,
allow_hp);
} else if (mbmi->mode == NEW_NEARESTMV || mbmi->mode == NEW_NEARMV) {
const int ref = 0;
const int_mv ref_mv = av1_get_ref_mv(x, ref);
av1_update_mv_stats(&mbmi->mv[ref].as_mv, &ref_mv.as_mv, &fc->nmvc,
allow_hp);
}
}
}
}
typedef struct {
ENTROPY_CONTEXT a[MAX_MIB_SIZE * MAX_MB_PLANE];
ENTROPY_CONTEXT l[MAX_MIB_SIZE * MAX_MB_PLANE];
PARTITION_CONTEXT sa[MAX_MIB_SIZE];
PARTITION_CONTEXT sl[MAX_MIB_SIZE];
TXFM_CONTEXT *p_ta;
TXFM_CONTEXT *p_tl;
TXFM_CONTEXT ta[MAX_MIB_SIZE];
TXFM_CONTEXT tl[MAX_MIB_SIZE];
} RD_SEARCH_MACROBLOCK_CONTEXT;
static AOM_INLINE void restore_context(MACROBLOCK *x,
const RD_SEARCH_MACROBLOCK_CONTEXT *ctx,
int mi_row, int mi_col, BLOCK_SIZE bsize,
const int num_planes) {
MACROBLOCKD *xd = &x->e_mbd;
int p;
const int num_4x4_blocks_wide = mi_size_wide[bsize];
const int num_4x4_blocks_high = mi_size_high[bsize];
int mi_width = mi_size_wide[bsize];
int mi_height = mi_size_high[bsize];
for (p = 0; p < num_planes; p++) {
int tx_col = mi_col;
int tx_row = mi_row & MAX_MIB_MASK;
memcpy(xd->above_context[p] + (tx_col >> xd->plane[p].subsampling_x),
ctx->a + num_4x4_blocks_wide * p,
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
xd->plane[p].subsampling_x);
memcpy(xd->left_context[p] + (tx_row >> xd->plane[p].subsampling_y),
ctx->l + num_4x4_blocks_high * p,
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
xd->plane[p].subsampling_y);
}
memcpy(xd->above_seg_context + mi_col, ctx->sa,
sizeof(*xd->above_seg_context) * mi_width);
memcpy(xd->left_seg_context + (mi_row & MAX_MIB_MASK), ctx->sl,
sizeof(xd->left_seg_context[0]) * mi_height);
xd->above_txfm_context = ctx->p_ta;
xd->left_txfm_context = ctx->p_tl;
memcpy(xd->above_txfm_context, ctx->ta,
sizeof(*xd->above_txfm_context) * mi_width);
memcpy(xd->left_txfm_context, ctx->tl,
sizeof(*xd->left_txfm_context) * mi_height);
}
static AOM_INLINE void save_context(const MACROBLOCK *x,
RD_SEARCH_MACROBLOCK_CONTEXT *ctx,
int mi_row, int mi_col, BLOCK_SIZE bsize,
const int num_planes) {
const MACROBLOCKD *xd = &x->e_mbd;
int p;
int mi_width = mi_size_wide[bsize];
int mi_height = mi_size_high[bsize];
// buffer the above/left context information of the block in search.
for (p = 0; p < num_planes; ++p) {
int tx_col = mi_col;
int tx_row = mi_row & MAX_MIB_MASK;
memcpy(ctx->a + mi_width * p,
xd->above_context[p] + (tx_col >> xd->plane[p].subsampling_x),
(sizeof(ENTROPY_CONTEXT) * mi_width) >> xd->plane[p].subsampling_x);
memcpy(ctx->l + mi_height * p,
xd->left_context[p] + (tx_row >> xd->plane[p].subsampling_y),
(sizeof(ENTROPY_CONTEXT) * mi_height) >> xd->plane[p].subsampling_y);
}
memcpy(ctx->sa, xd->above_seg_context + mi_col,
sizeof(*xd->above_seg_context) * mi_width);
memcpy(ctx->sl, xd->left_seg_context + (mi_row & MAX_MIB_MASK),
sizeof(xd->left_seg_context[0]) * mi_height);
memcpy(ctx->ta, xd->above_txfm_context,
sizeof(*xd->above_txfm_context) * mi_width);
memcpy(ctx->tl, xd->left_txfm_context,
sizeof(*xd->left_txfm_context) * mi_height);
ctx->p_ta = xd->above_txfm_context;
ctx->p_tl = xd->left_txfm_context;
}
static AOM_INLINE void encode_b(const AV1_COMP *const cpi,
TileDataEnc *tile_data, ThreadData *td,
TOKENEXTRA **tp, int mi_row, int mi_col,
RUN_TYPE dry_run, BLOCK_SIZE bsize,
PARTITION_TYPE partition,
PICK_MODE_CONTEXT *const ctx, int *rate) {
TileInfo *const tile = &tile_data->tile_info;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *xd = &x->e_mbd;
set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize);
const int origin_mult = x->rdmult;
setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL);
MB_MODE_INFO *mbmi = xd->mi[0];
mbmi->partition = partition;
update_state(cpi, td, ctx, mi_row, mi_col, bsize, dry_run);
if (!dry_run) {
x->mbmi_ext_frame->cb_offset = x->cb_offset;
assert(x->cb_offset <
(1 << num_pels_log2_lookup[cpi->common.seq_params.sb_size]));
}
encode_superblock(cpi, tile_data, td, tp, dry_run, bsize, rate);
if (!dry_run) {
const AV1_COMMON *const cm = &cpi->common;
x->cb_offset += block_size_wide[bsize] * block_size_high[bsize];
if (bsize == cpi->common.seq_params.sb_size && mbmi->skip == 1 &&
cm->delta_q_info.delta_lf_present_flag) {
const int frame_lf_count =
av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id)
mbmi->delta_lf[lf_id] = xd->delta_lf[lf_id];
mbmi->delta_lf_from_base = xd->delta_lf_from_base;
}
if (has_second_ref(mbmi)) {
if (mbmi->compound_idx == 0 ||
mbmi->interinter_comp.type == COMPOUND_AVERAGE)
mbmi->comp_group_idx = 0;
else
mbmi->comp_group_idx = 1;
}
// delta quant applies to both intra and inter
const int super_block_upper_left =
((mi_row & (cm->seq_params.mib_size - 1)) == 0) &&
((mi_col & (cm->seq_params.mib_size - 1)) == 0);
const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
if (delta_q_info->delta_q_present_flag &&
(bsize != cm->seq_params.sb_size || !mbmi->skip) &&
super_block_upper_left) {
xd->current_qindex = mbmi->current_qindex;
if (delta_q_info->delta_lf_present_flag) {
if (delta_q_info->delta_lf_multi) {
const int frame_lf_count =
av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) {
xd->delta_lf[lf_id] = mbmi->delta_lf[lf_id];
}
} else {
xd->delta_lf_from_base = mbmi->delta_lf_from_base;
}
}
}
RD_COUNTS *rdc = &td->rd_counts;
if (mbmi->skip_mode) {
assert(!frame_is_intra_only(cm));
rdc->skip_mode_used_flag = 1;
if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT) {
assert(has_second_ref(mbmi));
rdc->compound_ref_used_flag = 1;
}
set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
} else {
const int seg_ref_active =
segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_REF_FRAME);
if (!seg_ref_active) {
// If the segment reference feature is enabled we have only a single
// reference frame allowed for the segment so exclude it from
// the reference frame counts used to work out probabilities.
if (is_inter_block(mbmi)) {
av1_collect_neighbors_ref_counts(xd);
if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT) {
if (has_second_ref(mbmi)) {
// This flag is also updated for 4x4 blocks
rdc->compound_ref_used_flag = 1;
}
}
set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
}
}
}
if (tile_data->allow_update_cdf) {
update_stats(&cpi->common, td, mi_row, mi_col);
}
// Gather obmc count to update the probability.
if (!cpi->sf.disable_obmc && cpi->sf.prune_obmc_prob_thresh > 0) {
const int inter_block = is_inter_block(mbmi);
const int seg_ref_active =
segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_REF_FRAME);
if (!seg_ref_active && inter_block) {
const MOTION_MODE motion_allowed =
cm->switchable_motion_mode
? motion_mode_allowed(xd->global_motion, xd, mbmi,
cm->allow_warped_motion)
: SIMPLE_TRANSLATION;
if (mbmi->ref_frame[1] != INTRA_FRAME &&
motion_allowed >= OBMC_CAUSAL) {
td->rd_counts.obmc_used[bsize][mbmi->motion_mode == OBMC_CAUSAL]++;
}
}
}
}
// TODO(Ravi/Remya): Move this copy function to a better logical place
copy_winner_ref_mode_from_mbmi_ext(x);
x->rdmult = origin_mult;
}
static AOM_INLINE void encode_sb(const AV1_COMP *const cpi, ThreadData *td,
TileDataEnc *tile_data, TOKENEXTRA **tp,
int mi_row, int mi_col, RUN_TYPE dry_run,
BLOCK_SIZE bsize, PC_TREE *pc_tree,
int *rate) {
assert(bsize < BLOCK_SIZES_ALL);
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
assert(bsize < BLOCK_SIZES_ALL);
const int hbs = mi_size_wide[bsize] / 2;
const int is_partition_root = bsize >= BLOCK_8X8;
const int ctx = is_partition_root
? partition_plane_context(xd, mi_row, mi_col, bsize)
: -1;
const PARTITION_TYPE partition = pc_tree->partitioning;
const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition);
int quarter_step = mi_size_wide[bsize] / 4;
int i;
BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT);
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
if (!dry_run && ctx >= 0) {
const int has_rows = (mi_row + hbs) < cm->mi_rows;
const int has_cols = (mi_col + hbs) < cm->mi_cols;
if (has_rows && has_cols) {
#if CONFIG_ENTROPY_STATS
td->counts->partition[ctx][partition]++;
#endif
if (tile_data->allow_update_cdf) {
FRAME_CONTEXT *fc = xd->tile_ctx;
update_cdf(fc->partition_cdf[ctx], partition,
partition_cdf_length(bsize));
}
}
}
switch (partition) {
case PARTITION_NONE:
encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize,
partition, &pc_tree->none, rate);
break;
case PARTITION_VERT:
encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize,
partition, &pc_tree->vertical[0], rate);
if (mi_col + hbs < cm->mi_cols) {
encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, subsize,
partition, &pc_tree->vertical[1], rate);
}
break;
case PARTITION_HORZ:
encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize,
partition, &pc_tree->horizontal[0], rate);
if (mi_row + hbs < cm->mi_rows) {
encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, subsize,
partition, &pc_tree->horizontal[1], rate);
}
break;
case PARTITION_SPLIT:
encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, dry_run, subsize,
pc_tree->split[0], rate);
encode_sb(cpi, td, tile_data, tp, mi_row, mi_col + hbs, dry_run, subsize,
pc_tree->split[1], rate);
encode_sb(cpi, td, tile_data, tp, mi_row + hbs, mi_col, dry_run, subsize,
pc_tree->split[2], rate);
encode_sb(cpi, td, tile_data, tp, mi_row + hbs, mi_col + hbs, dry_run,
subsize, pc_tree->split[3], rate);
break;
case PARTITION_HORZ_A:
encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, bsize2,
partition, &pc_tree->horizontala[0], rate);
encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, bsize2,
partition, &pc_tree->horizontala[1], rate);
encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, subsize,
partition, &pc_tree->horizontala[2], rate);
break;
case PARTITION_HORZ_B:
encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize,
partition, &pc_tree->horizontalb[0], rate);
encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, bsize2,
partition, &pc_tree->horizontalb[1], rate);
encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col + hbs, dry_run,
bsize2, partition, &pc_tree->horizontalb[2], rate);
break;
case PARTITION_VERT_A:
encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, bsize2,
partition, &pc_tree->verticala[0], rate);
encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, bsize2,
partition, &pc_tree->verticala[1], rate);
encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, subsize,
partition, &pc_tree->verticala[2], rate);
break;
case PARTITION_VERT_B:
encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize,
partition, &pc_tree->verticalb[0], rate);
encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, bsize2,
partition, &pc_tree->verticalb[1], rate);
encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col + hbs, dry_run,
bsize2, partition, &pc_tree->verticalb[2], rate);
break;
case PARTITION_HORZ_4:
for (i = 0; i < 4; ++i) {
int this_mi_row = mi_row + i * quarter_step;
if (i > 0 && this_mi_row >= cm->mi_rows) break;
encode_b(cpi, tile_data, td, tp, this_mi_row, mi_col, dry_run, subsize,
partition, &pc_tree->horizontal4[i], rate);
}
break;
case PARTITION_VERT_4:
for (i = 0; i < 4; ++i) {
int this_mi_col = mi_col + i * quarter_step;
if (i > 0 && this_mi_col >= cm->mi_cols) break;
encode_b(cpi, tile_data, td, tp, mi_row, this_mi_col, dry_run, subsize,
partition, &pc_tree->vertical4[i], rate);
}
break;
default: assert(0 && "Invalid partition type."); break;
}
update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition);
}
static AOM_INLINE void set_partial_sb_partition(
const AV1_COMMON *const cm, MB_MODE_INFO *mi, int bh_in, int bw_in,
int mi_rows_remaining, int mi_cols_remaining, BLOCK_SIZE bsize,
MB_MODE_INFO **mib) {
int bh = bh_in;
int r, c;
for (r = 0; r < cm->seq_params.mib_size; r += bh) {
int bw = bw_in;
for (c = 0; c < cm->seq_params.mib_size; c += bw) {
const int grid_index = get_mi_grid_idx(cm, r, c);
const int mi_index = get_alloc_mi_idx(cm, r, c);
mib[grid_index] = mi + mi_index;
mib[grid_index]->sb_type = find_partition_size(
bsize, mi_rows_remaining - r, mi_cols_remaining - c, &bh, &bw);
}
}
}
// This function attempts to set all mode info entries in a given superblock
// to the same block partition size.
// However, at the bottom and right borders of the image the requested size
// may not be allowed in which case this code attempts to choose the largest
// allowable partition.
static AOM_INLINE void set_fixed_partitioning(AV1_COMP *cpi,
const TileInfo *const tile,
MB_MODE_INFO **mib, int mi_row,
int mi_col, BLOCK_SIZE bsize) {
AV1_COMMON *const cm = &cpi->common;
const int mi_rows_remaining = tile->mi_row_end - mi_row;
const int mi_cols_remaining = tile->mi_col_end - mi_col;
int block_row, block_col;
MB_MODE_INFO *const mi_upper_left =
cm->mi + get_alloc_mi_idx(cm, mi_row, mi_col);
int bh = mi_size_high[bsize];
int bw = mi_size_wide[bsize];
assert(bsize >= cm->mi_alloc_bsize &&
"Attempted to use bsize < cm->mi_alloc_bsize");
assert((mi_rows_remaining > 0) && (mi_cols_remaining > 0));
// Apply the requested partition size to the SB if it is all "in image"
if ((mi_cols_remaining >= cm->seq_params.mib_size) &&
(mi_rows_remaining >= cm->seq_params.mib_size)) {
for (block_row = 0; block_row < cm->seq_params.mib_size; block_row += bh) {
for (block_col = 0; block_col < cm->seq_params.mib_size;
block_col += bw) {
const int grid_index = get_mi_grid_idx(cm, block_row, block_col);
const int mi_index = get_alloc_mi_idx(cm, block_row, block_col);
mib[grid_index] = mi_upper_left + mi_index;
mib[grid_index]->sb_type = bsize;
}
}
} else {
// Else this is a partial SB.
set_partial_sb_partition(cm, mi_upper_left, bh, bw, mi_rows_remaining,
mi_cols_remaining, bsize, mib);
}
}
static AOM_INLINE void rd_use_partition(
AV1_COMP *cpi, ThreadData *td, TileDataEnc *tile_data, MB_MODE_INFO **mib,
TOKENEXTRA **tp, int mi_row, int mi_col, BLOCK_SIZE bsize, int *rate,
int64_t *dist, int do_recon, PC_TREE *pc_tree) {
AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
TileInfo *const tile_info = &tile_data->tile_info;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const int bs = mi_size_wide[bsize];
const int hbs = bs / 2;
int i;
const int pl = (bsize >= BLOCK_8X8)
? partition_plane_context(xd, mi_row, mi_col, bsize)
: 0;
const PARTITION_TYPE partition =
(bsize >= BLOCK_8X8) ? get_partition(cm, mi_row, mi_col, bsize)
: PARTITION_NONE;
const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition);
RD_SEARCH_MACROBLOCK_CONTEXT x_ctx;
RD_STATS last_part_rdc, none_rdc, chosen_rdc, invalid_rdc;
BLOCK_SIZE sub_subsize = BLOCK_4X4;
int splits_below = 0;
BLOCK_SIZE bs_type = mib[0]->sb_type;
int do_partition_search = 1;
PICK_MODE_CONTEXT *ctx_none = &pc_tree->none;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
assert(mi_size_wide[bsize] == mi_size_high[bsize]);
av1_invalid_rd_stats(&last_part_rdc);
av1_invalid_rd_stats(&none_rdc);
av1_invalid_rd_stats(&chosen_rdc);
av1_invalid_rd_stats(&invalid_rdc);
pc_tree->partitioning = partition;
xd->above_txfm_context = cm->above_txfm_context[tile_info->tile_row] + mi_col;
xd->left_txfm_context =
xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
if (bsize == BLOCK_16X16 && cpi->vaq_refresh) {
set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
x->mb_energy = av1_log_block_var(cpi, x, bsize);
}
// Save rdmult before it might be changed, so it can be restored later.
const int orig_rdmult = x->rdmult;
setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL);
if (do_partition_search &&
cpi->sf.partition_search_type == SEARCH_PARTITION &&
cpi->sf.adjust_partitioning_from_last_frame) {
// Check if any of the sub blocks are further split.
if (partition == PARTITION_SPLIT && subsize > BLOCK_8X8) {
sub_subsize = get_partition_subsize(subsize, PARTITION_SPLIT);
splits_below = 1;
for (i = 0; i < 4; i++) {
int jj = i >> 1, ii = i & 0x01;
MB_MODE_INFO *this_mi = mib[jj * hbs * cm->mi_stride + ii * hbs];
if (this_mi && this_mi->sb_type >= sub_subsize) {
splits_below = 0;
}
}
}
// If partition is not none try none unless each of the 4 splits are split
// even further..
if (partition != PARTITION_NONE && !splits_below &&
mi_row + hbs < cm->mi_rows && mi_col + hbs < cm->mi_cols) {
pc_tree->partitioning = PARTITION_NONE;
pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &none_rdc,
PARTITION_NONE, bsize, ctx_none, invalid_rdc, PICK_MODE_RD);
if (none_rdc.rate < INT_MAX) {
none_rdc.rate += x->partition_cost[pl][PARTITION_NONE];
none_rdc.rdcost = RDCOST(x->rdmult, none_rdc.rate, none_rdc.dist);
}
restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
mib[0]->sb_type = bs_type;
pc_tree->partitioning = partition;
}
}
switch (partition) {
case PARTITION_NONE:
pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
PARTITION_NONE, bsize, ctx_none, invalid_rdc, PICK_MODE_RD);
break;
case PARTITION_HORZ:
pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
PARTITION_HORZ, subsize, &pc_tree->horizontal[0],
invalid_rdc, PICK_MODE_RD);
if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 &&
mi_row + hbs < cm->mi_rows) {
RD_STATS tmp_rdc;
const PICK_MODE_CONTEXT *const ctx_h = &pc_tree->horizontal[0];
av1_init_rd_stats(&tmp_rdc);
update_state(cpi, td, ctx_h, mi_row, mi_col, subsize, 1);
encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, subsize,
NULL);
pick_sb_modes(cpi, tile_data, x, mi_row + hbs, mi_col, &tmp_rdc,
PARTITION_HORZ, subsize, &pc_tree->horizontal[1],
invalid_rdc, PICK_MODE_RD);
if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
av1_invalid_rd_stats(&last_part_rdc);
break;
}
last_part_rdc.rate += tmp_rdc.rate;
last_part_rdc.dist += tmp_rdc.dist;
last_part_rdc.rdcost += tmp_rdc.rdcost;
}
break;
case PARTITION_VERT:
pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
PARTITION_VERT, subsize, &pc_tree->vertical[0], invalid_rdc,
PICK_MODE_RD);
if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 &&
mi_col + hbs < cm->mi_cols) {
RD_STATS tmp_rdc;
const PICK_MODE_CONTEXT *const ctx_v = &pc_tree->vertical[0];
av1_init_rd_stats(&tmp_rdc);
update_state(cpi, td, ctx_v, mi_row, mi_col, subsize, 1);
encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, subsize,
NULL);
pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + hbs, &tmp_rdc,
PARTITION_VERT, subsize,
&pc_tree->vertical[bsize > BLOCK_8X8], invalid_rdc,
PICK_MODE_RD);
if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
av1_invalid_rd_stats(&last_part_rdc);
break;
}
last_part_rdc.rate += tmp_rdc.rate;
last_part_rdc.dist += tmp_rdc.dist;
last_part_rdc.rdcost += tmp_rdc.rdcost;
}
break;
case PARTITION_SPLIT:
last_part_rdc.rate = 0;
last_part_rdc.dist = 0;
last_part_rdc.rdcost = 0;
for (i = 0; i < 4; i++) {
int x_idx = (i & 1) * hbs;
int y_idx = (i >> 1) * hbs;
int jj = i >> 1, ii = i & 0x01;
RD_STATS tmp_rdc;
if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols))
continue;
av1_init_rd_stats(&tmp_rdc);
rd_use_partition(cpi, td, tile_data,
mib + jj * hbs * cm->mi_stride + ii * hbs, tp,
mi_row + y_idx, mi_col + x_idx, subsize, &tmp_rdc.rate,
&tmp_rdc.dist, i != 3, pc_tree->split[i]);
if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
av1_invalid_rd_stats(&last_part_rdc);
break;
}
last_part_rdc.rate += tmp_rdc.rate;
last_part_rdc.dist += tmp_rdc.dist;
}
break;
case PARTITION_VERT_A:
case PARTITION_VERT_B:
case PARTITION_HORZ_A:
case PARTITION_HORZ_B:
case PARTITION_HORZ_4:
case PARTITION_VERT_4:
assert(0 && "Cannot handle extended partition types");
default: assert(0); break;
}
if (last_part_rdc.rate < INT_MAX) {
last_part_rdc.rate += x->partition_cost[pl][partition];
last_part_rdc.rdcost =
RDCOST(x->rdmult, last_part_rdc.rate, last_part_rdc.dist);
}
if (do_partition_search && cpi->sf.adjust_partitioning_from_last_frame &&
cpi->sf.partition_search_type == SEARCH_PARTITION &&
partition != PARTITION_SPLIT && bsize > BLOCK_8X8 &&
(mi_row + bs < cm->mi_rows || mi_row + hbs == cm->mi_rows) &&
(mi_col + bs < cm->mi_cols || mi_col + hbs == cm->mi_cols)) {
BLOCK_SIZE split_subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
chosen_rdc.rate = 0;
chosen_rdc.dist = 0;
restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
pc_tree->partitioning = PARTITION_SPLIT;
// Split partition.
for (i = 0; i < 4; i++) {
int x_idx = (i & 1) * hbs;
int y_idx = (i >> 1) * hbs;
RD_STATS tmp_rdc;
if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols))
continue;
save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
pc_tree->split[i]->partitioning = PARTITION_NONE;
pick_sb_modes(cpi, tile_data, x, mi_row + y_idx, mi_col + x_idx, &tmp_rdc,
PARTITION_SPLIT, split_subsize, &pc_tree->split[i]->none,
invalid_rdc, PICK_MODE_RD);
restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
av1_invalid_rd_stats(&chosen_rdc);
break;
}
chosen_rdc.rate += tmp_rdc.rate;
chosen_rdc.dist += tmp_rdc.dist;
if (i != 3)
encode_sb(cpi, td, tile_data, tp, mi_row + y_idx, mi_col + x_idx,
OUTPUT_ENABLED, split_subsize, pc_tree->split[i], NULL);
chosen_rdc.rate += x->partition_cost[pl][PARTITION_NONE];
}
if (chosen_rdc.rate < INT_MAX) {
chosen_rdc.rate += x->partition_cost[pl][PARTITION_SPLIT];
chosen_rdc.rdcost = RDCOST(x->rdmult, chosen_rdc.rate, chosen_rdc.dist);
}
}
// If last_part is better set the partitioning to that.
if (last_part_rdc.rdcost < chosen_rdc.rdcost) {
mib[0]->sb_type = bsize;
if (bsize >= BLOCK_8X8) pc_tree->partitioning = partition;
chosen_rdc = last_part_rdc;
}
// If none was better set the partitioning to that.
if (none_rdc.rdcost < chosen_rdc.rdcost) {
if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE;
chosen_rdc = none_rdc;
}
restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
// We must have chosen a partitioning and encoding or we'll fail later on.
// No other opportunities for success.
if (bsize == cm->seq_params.sb_size)
assert(chosen_rdc.rate < INT_MAX && chosen_rdc.dist < INT64_MAX);
if (do_recon) {
if (bsize == cm->seq_params.sb_size) {
// NOTE: To get estimate for rate due to the tokens, use:
// int rate_coeffs = 0;
// encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_COSTCOEFFS,
// bsize, pc_tree, &rate_coeffs);
x->cb_offset = 0;
encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize,
pc_tree, NULL);
} else {
encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize,
pc_tree, NULL);
}
}
*rate = chosen_rdc.rate;
*dist = chosen_rdc.dist;
x->rdmult = orig_rdmult;
}
static int is_leaf_split_partition(AV1_COMMON *cm, int mi_row, int mi_col,
BLOCK_SIZE bsize) {
const int bs = mi_size_wide[bsize];
const int hbs = bs / 2;
assert(bsize >= BLOCK_8X8);
const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
for (int i = 0; i < 4; i++) {
int x_idx = (i & 1) * hbs;
int y_idx = (i >> 1) * hbs;
if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols))
return 0;
if (get_partition(cm, mi_row + y_idx, mi_col + x_idx, subsize) !=
PARTITION_NONE)
return 0;
}
return 1;
}
static AOM_INLINE void nonrd_use_partition(AV1_COMP *cpi, ThreadData *td,
TileDataEnc *tile_data,
MB_MODE_INFO **mib, TOKENEXTRA **tp,
int mi_row, int mi_col,
BLOCK_SIZE bsize, PC_TREE *pc_tree) {
AV1_COMMON *const cm = &cpi->common;
TileInfo *const tile_info = &tile_data->tile_info;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
// Only square blocks from 8x8 to 128x128 are supported
assert(bsize >= BLOCK_8X8 && bsize <= BLOCK_128X128);
const int bs = mi_size_wide[bsize];
const int hbs = bs / 2;
const PARTITION_TYPE partition =
(bsize >= BLOCK_8X8) ? get_partition(cm, mi_row, mi_col, bsize)
: PARTITION_NONE;
const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition);
assert(subsize <= BLOCK_LARGEST);
const int pl = (bsize >= BLOCK_8X8)
? partition_plane_context(xd, mi_row, mi_col, bsize)
: 0;
RD_STATS dummy_cost;
av1_invalid_rd_stats(&dummy_cost);
RD_STATS invalid_rd;
av1_invalid_rd_stats(&invalid_rd);
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
assert(mi_size_wide[bsize] == mi_size_high[bsize]);
pc_tree->partitioning = partition;
xd->above_txfm_context = cm->above_txfm_context[tile_info->tile_row] + mi_col;
xd->left_txfm_context =
xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
switch (partition) {
case PARTITION_NONE:
pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &dummy_cost,
PARTITION_NONE, bsize, &pc_tree->none, invalid_rd,
PICK_MODE_NONRD);
encode_b(cpi, tile_data, td, tp, mi_row, mi_col, 0, bsize, partition,
&pc_tree->none, NULL);
break;
case PARTITION_VERT:
pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &dummy_cost,
PARTITION_VERT, subsize, &pc_tree->vertical[0], invalid_rd,
PICK_MODE_NONRD);
encode_b(cpi, tile_data, td, tp, mi_row, mi_col, 0, subsize,
PARTITION_VERT, &pc_tree->vertical[0], NULL);
if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) {
pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + hbs, &dummy_cost,
PARTITION_VERT, subsize, &pc_tree->vertical[1],
invalid_rd, PICK_MODE_NONRD);
encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, 0, subsize,
PARTITION_VERT, &pc_tree->vertical[1], NULL);
}
break;
case PARTITION_HORZ:
pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &dummy_cost,
PARTITION_HORZ, subsize, &pc_tree->horizontal[0],
invalid_rd, PICK_MODE_NONRD);
encode_b(cpi, tile_data, td, tp, mi_row, mi_col, 0, subsize,
PARTITION_HORZ, &pc_tree->horizontal[0], NULL);
if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) {
pick_sb_modes(cpi, tile_data, x, mi_row + hbs, mi_col, &dummy_cost,
PARTITION_HORZ, subsize, &pc_tree->horizontal[1],
invalid_rd, PICK_MODE_NONRD);
encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, 0, subsize,
PARTITION_HORZ, &pc_tree->horizontal[1], NULL);
}
break;
case PARTITION_SPLIT:
if (cpi->sf.nonrd_merge_partition &&
is_leaf_split_partition(cm, mi_row, mi_col, bsize) &&
!frame_is_intra_only(cm)) {
RD_SEARCH_MACROBLOCK_CONTEXT x_ctx;
RD_STATS split_rdc, none_rdc;
av1_init_rd_stats(&split_rdc);
av1_invalid_rd_stats(&none_rdc);
save_context(x, &x_ctx, mi_row, mi_col, bsize, 3);
xd->above_txfm_context =
cm->above_txfm_context[tile_info->tile_row] + mi_col;
xd->left_txfm_context =
xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
pc_tree->partitioning = PARTITION_NONE;
pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &none_rdc,
PARTITION_NONE, bsize, &pc_tree->none, invalid_rd,
PICK_MODE_NONRD);
none_rdc.rate += x->partition_cost[pl][PARTITION_NONE];
none_rdc.rdcost = RDCOST(x->rdmult, none_rdc.rate, none_rdc.dist);
restore_context(x, &x_ctx, mi_row, mi_col, bsize, 3);
for (int i = 0; i < 4; i++) {
RD_STATS block_rdc;
av1_invalid_rd_stats(&block_rdc);
int x_idx = (i & 1) * hbs;
int y_idx = (i >> 1) * hbs;
if ((mi_row + y_idx >= cm->mi_rows) ||
(mi_col + x_idx >= cm->mi_cols))
continue;
xd->above_txfm_context =
cm->above_txfm_context[tile_info->tile_row] + mi_col + x_idx;
xd->left_txfm_context =
xd->left_txfm_context_buffer + ((mi_row + y_idx) & MAX_MIB_MASK);
pc_tree->split[i]->partitioning = PARTITION_NONE;
pick_sb_modes(cpi, tile_data, x, mi_row + y_idx, mi_col + x_idx,
&block_rdc, PARTITION_NONE, subsize,
&pc_tree->split[i]->none, invalid_rd, PICK_MODE_NONRD);
split_rdc.rate += block_rdc.rate;
split_rdc.dist += block_rdc.dist;
encode_b(cpi, tile_data, td, tp, mi_row + y_idx, mi_col + x_idx, 1,
subsize, PARTITION_NONE, &pc_tree->split[i]->none, NULL);
}
restore_context(x, &x_ctx, mi_row, mi_col, bsize, 3);
split_rdc.rate += x->partition_cost[pl][PARTITION_SPLIT];
split_rdc.rdcost = RDCOST(x->rdmult, split_rdc.rate, split_rdc.dist);
if (none_rdc.rdcost < split_rdc.rdcost) {
set_offsets_without_segment_id(cpi, &tile_data->tile_info, x, mi_row,
mi_col, bsize);
mib[0]->sb_type = bsize;
pc_tree->partitioning = PARTITION_NONE;
encode_b(cpi, tile_data, td, tp, mi_row, mi_col, 0, bsize, partition,
&pc_tree->none, NULL);
} else {
set_offsets_without_segment_id(cpi, &tile_data->tile_info, x, mi_row,
mi_col, bsize);
mib[0]->sb_type = subsize;
pc_tree->partitioning = PARTITION_SPLIT;
for (int i = 0; i < 4; i++) {
int x_idx = (i & 1) * hbs;
int y_idx = (i >> 1) * hbs;
if ((mi_row + y_idx >= cm->mi_rows) ||
(mi_col + x_idx >= cm->mi_cols))
continue;
set_offsets_without_segment_id(cpi, &tile_data->tile_info, x,
mi_row + y_idx, mi_col + x_idx,
subsize);
encode_b(cpi, tile_data, td, tp, mi_row + y_idx, mi_col + x_idx, 0,
subsize, PARTITION_NONE, &pc_tree->split[i]->none, NULL);
}
}
} else {
for (int i = 0; i < 4; i++) {
int x_idx = (i & 1) * hbs;
int y_idx = (i >> 1) * hbs;
int jj = i >> 1, ii = i & 0x01;
if ((mi_row + y_idx >= cm->mi_rows) ||
(mi_col + x_idx >= cm->mi_cols))
continue;
nonrd_use_partition(
cpi, td, tile_data, mib + jj * hbs * cm->mi_stride + ii * hbs, tp,
mi_row + y_idx, mi_col + x_idx, subsize, pc_tree->split[i]);
}
}
break;
case PARTITION_VERT_A:
case PARTITION_VERT_B:
case PARTITION_HORZ_A:
case PARTITION_HORZ_B:
case PARTITION_HORZ_4:
case PARTITION_VERT_4:
assert(0 && "Cannot handle extended partition types");
default: assert(0); break;
}
}
#if !CONFIG_REALTIME_ONLY
static const FIRSTPASS_STATS *read_one_frame_stats(const TWO_PASS *p, int frm) {
assert(frm >= 0);
if (frm < 0 || p->stats_in_start + frm > p->stats_in_end) {
return NULL;
}
return &p->stats_in_start[frm];
}
// Checks to see if a super block is on a horizontal image edge.
// In most cases this is the "real" edge unless there are formatting
// bars embedded in the stream.
static int active_h_edge(const AV1_COMP *cpi, int mi_row, int mi_step) {
int top_edge = 0;
int bottom_edge = cpi->common.mi_rows;
int is_active_h_edge = 0;
// For two pass account for any formatting bars detected.
if (cpi->oxcf.pass == 2) {
const AV1_COMMON *const cm = &cpi->common;
const FIRSTPASS_STATS *const this_frame_stats = read_one_frame_stats(
&cpi->twopass, cm->current_frame.display_order_hint);
if (this_frame_stats == NULL) return AOM_CODEC_ERROR;
// The inactive region is specified in MBs not mi units.
// The image edge is in the following MB row.
top_edge += (int)(this_frame_stats->inactive_zone_rows * 4);
bottom_edge -= (int)(this_frame_stats->inactive_zone_rows * 4);
bottom_edge = AOMMAX(top_edge, bottom_edge);
}
if (((top_edge >= mi_row) && (top_edge < (mi_row + mi_step))) ||
((bottom_edge >= mi_row) && (bottom_edge < (mi_row + mi_step)))) {
is_active_h_edge = 1;
}
return is_active_h_edge;
}
// Checks to see if a super block is on a vertical image edge.
// In most cases this is the "real" edge unless there are formatting
// bars embedded in the stream.
static int active_v_edge(const AV1_COMP *cpi, int mi_col, int mi_step) {
int left_edge = 0;
int right_edge = cpi->common.mi_cols;
int is_active_v_edge = 0;
// For two pass account for any formatting bars detected.
if (cpi->oxcf.pass == 2) {
const AV1_COMMON *const cm = &cpi->common;
const FIRSTPASS_STATS *const this_frame_stats = read_one_frame_stats(
&cpi->twopass, cm->current_frame.display_order_hint);
if (this_frame_stats == NULL) return AOM_CODEC_ERROR;
// The inactive region is specified in MBs not mi units.
// The image edge is in the following MB row.
left_edge += (int)(this_frame_stats->inactive_zone_cols * 4);
right_edge -= (int)(this_frame_stats->inactive_zone_cols * 4);
right_edge = AOMMAX(left_edge, right_edge);
}
if (((left_edge >= mi_col) && (left_edge < (mi_col + mi_step))) ||
((right_edge >= mi_col) && (right_edge < (mi_col + mi_step)))) {
is_active_v_edge = 1;
}
return is_active_v_edge;
}
#endif // !CONFIG_REALTIME_ONLY
static INLINE void store_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
memcpy(ctx->pred_mv, x->pred_mv, sizeof(x->pred_mv));
}
static INLINE void load_pred_mv(MACROBLOCK *x,
const PICK_MODE_CONTEXT *const ctx) {
memcpy(x->pred_mv, ctx->pred_mv, sizeof(x->pred_mv));
}
#if !CONFIG_REALTIME_ONLY
// Try searching for an encoding for the given subblock. Returns zero if the
// rdcost is already too high (to tell the caller not to bother searching for
// encodings of further subblocks)
static int rd_try_subblock(AV1_COMP *const cpi, ThreadData *td,
TileDataEnc *tile_data, TOKENEXTRA **tp, int is_last,
int mi_row, int mi_col, BLOCK_SIZE subsize,
RD_STATS best_rdcost, RD_STATS *sum_rdc,
PARTITION_TYPE partition,
PICK_MODE_CONTEXT *prev_ctx,
PICK_MODE_CONTEXT *this_ctx) {
MACROBLOCK *const x = &td->mb;
const int orig_mult = x->rdmult;
setup_block_rdmult(cpi, x, mi_row, mi_col, subsize, NO_AQ, NULL);
av1_rd_cost_update(x->rdmult, &best_rdcost);
if (cpi->sf.adaptive_motion_search) load_pred_mv(x, prev_ctx);
RD_STATS rdcost_remaining;
av1_rd_stats_subtraction(x->rdmult, &best_rdcost, sum_rdc, &rdcost_remaining);
RD_STATS this_rdc;
pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, partition,
subsize, this_ctx, rdcost_remaining, PICK_MODE_RD);
if (this_rdc.rate == INT_MAX) {
sum_rdc->rdcost = INT64_MAX;
} else {
sum_rdc->rate += this_rdc.rate;
sum_rdc->dist += this_rdc.dist;
av1_rd_cost_update(x->rdmult, sum_rdc);
}
if (sum_rdc->rdcost >= best_rdcost.rdcost) {
x->rdmult = orig_mult;
return 0;
}
if (!is_last) {
update_state(cpi, td, this_ctx, mi_row, mi_col, subsize, 1);
encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, subsize, NULL);
}
x->rdmult = orig_mult;
return 1;
}
static bool rd_test_partition3(AV1_COMP *const cpi, ThreadData *td,
TileDataEnc *tile_data, TOKENEXTRA **tp,
PC_TREE *pc_tree, RD_STATS *best_rdc,
PICK_MODE_CONTEXT ctxs[3],
PICK_MODE_CONTEXT *ctx, int mi_row, int mi_col,
BLOCK_SIZE bsize, PARTITION_TYPE partition,
int mi_row0, int mi_col0, BLOCK_SIZE subsize0,
int mi_row1, int mi_col1, BLOCK_SIZE subsize1,
int mi_row2, int mi_col2, BLOCK_SIZE subsize2) {
const MACROBLOCK *const x = &td->mb;
const MACROBLOCKD *const xd = &x->e_mbd;
const int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
RD_STATS sum_rdc;
av1_init_rd_stats(&sum_rdc);
sum_rdc.rate = x->partition_cost[pl][partition];
sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0);
if (!rd_try_subblock(cpi, td, tile_data, tp, 0, mi_row0, mi_col0, subsize0,
*best_rdc, &sum_rdc, partition, ctx, &ctxs[0]))
return false;
if (!rd_try_subblock(cpi, td, tile_data, tp, 0, mi_row1, mi_col1, subsize1,
*best_rdc, &sum_rdc, partition, &ctxs[0], &ctxs[1]))
return false;
if (!rd_try_subblock(cpi, td, tile_data, tp, 1, mi_row2, mi_col2, subsize2,
*best_rdc, &sum_rdc, partition, &ctxs[1], &ctxs[2]))
return false;
av1_rd_cost_update(x->rdmult, &sum_rdc);
if (sum_rdc.rdcost >= best_rdc->rdcost) return false;
sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist);
if (sum_rdc.rdcost >= best_rdc->rdcost) return false;
*best_rdc = sum_rdc;
pc_tree->partitioning = partition;
return true;
}
static AOM_INLINE void reset_partition(PC_TREE *pc_tree, BLOCK_SIZE bsize) {
pc_tree->partitioning = PARTITION_NONE;
pc_tree->none.rd_stats.skip = 0;
if (bsize >= BLOCK_8X8) {
BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
for (int idx = 0; idx < 4; ++idx)
reset_partition(pc_tree->split[idx], subsize);
}
}
// Record the ref frames that have been selected by square partition blocks.
static AOM_INLINE void update_picked_ref_frames_mask(MACROBLOCK *const x,
int ref_type,
BLOCK_SIZE bsize,
int mib_size, int mi_row,
int mi_col) {
assert(mi_size_wide[bsize] == mi_size_high[bsize]);
const int sb_size_mask = mib_size - 1;
const int mi_row_in_sb = mi_row & sb_size_mask;
const int mi_col_in_sb = mi_col & sb_size_mask;
const int mi_size = mi_size_wide[bsize];
for (int i = mi_row_in_sb; i < mi_row_in_sb + mi_size; ++i) {
for (int j = mi_col_in_sb; j < mi_col_in_sb + mi_size; ++j) {
x->picked_ref_frames_mask[i * 32 + j] |= 1 << ref_type;
}
}
}
// TODO(jinging,jimbankoski,rbultje): properly skip partition types that are
// unlikely to be selected depending on previous rate-distortion optimization
// results, for encoding speed-up.
static bool rd_pick_partition(AV1_COMP *const cpi, ThreadData *td,
TileDataEnc *tile_data, TOKENEXTRA **tp,
int mi_row, int mi_col, BLOCK_SIZE bsize,
BLOCK_SIZE max_sq_part, BLOCK_SIZE min_sq_part,
RD_STATS *rd_cost, RD_STATS best_rdc,
PC_TREE *pc_tree, int64_t *none_rd) {
const AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
TileInfo *const tile_info = &tile_data->tile_info;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const int mi_step = mi_size_wide[bsize] / 2;
RD_SEARCH_MACROBLOCK_CONTEXT x_ctx;
const TOKENEXTRA *const tp_orig = *tp;
PICK_MODE_CONTEXT *ctx_none = &pc_tree->none;
int tmp_partition_cost[PARTITION_TYPES];
BLOCK_SIZE subsize;
RD_STATS this_rdc, sum_rdc;
const int bsize_at_least_8x8 = (bsize >= BLOCK_8X8);
int do_square_split = bsize_at_least_8x8;
const int pl = bsize_at_least_8x8
? partition_plane_context(xd, mi_row, mi_col, bsize)
: 0;
const int *partition_cost = x->partition_cost[pl];
int do_rectangular_split = cpi->oxcf.enable_rect_partitions;
int64_t cur_none_rd = 0;
int64_t split_rd[4] = { 0, 0, 0, 0 };
int64_t horz_rd[2] = { 0, 0 };
int64_t vert_rd[2] = { 0, 0 };
int prune_horz = 0;
int prune_vert = 0;
int terminate_partition_search = 0;
int split_ctx_is_ready[2] = { 0, 0 };
int horz_ctx_is_ready = 0;
int vert_ctx_is_ready = 0;
BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT);
bool found_best_partition = false;
if (best_rdc.rdcost < 0) {
av1_invalid_rd_stats(rd_cost);
return found_best_partition;
}
if (frame_is_intra_only(cm) && bsize == BLOCK_64X64) {
x->quad_tree_idx = 0;
x->cnn_output_valid = 0;
}
if (bsize == cm->seq_params.sb_size) x->must_find_valid_partition = 0;
// Override skipping rectangular partition operations for edge blocks
const int has_rows = (mi_row + mi_step < cm->mi_rows);
const int has_cols = (mi_col + mi_step < cm->mi_cols);
const int xss = x->e_mbd.plane[1].subsampling_x;
const int yss = x->e_mbd.plane[1].subsampling_y;
if (none_rd) *none_rd = 0;
int partition_none_allowed = has_rows && has_cols;
int partition_horz_allowed =
has_cols && bsize_at_least_8x8 && cpi->oxcf.enable_rect_partitions &&
get_plane_block_size(get_partition_subsize(bsize, PARTITION_HORZ), xss,
yss) != BLOCK_INVALID;
int partition_vert_allowed =
has_rows && bsize_at_least_8x8 && cpi->oxcf.enable_rect_partitions &&
get_plane_block_size(get_partition_subsize(bsize, PARTITION_VERT), xss,
yss) != BLOCK_INVALID;
(void)*tp_orig;
#if CONFIG_COLLECT_PARTITION_STATS
int partition_decisions[EXT_PARTITION_TYPES] = { 0 };
int partition_attempts[EXT_PARTITION_TYPES] = { 0 };
int64_t partition_times[EXT_PARTITION_TYPES] = { 0 };
struct aom_usec_timer partition_timer = { 0 };
int partition_timer_on = 0;
#if CONFIG_COLLECT_PARTITION_STATS == 2
PartitionStats *part_stats = &cpi->partition_stats;
#endif
#endif
// Override partition costs at the edges of the frame in the same
// way as in read_partition (see decodeframe.c)
if (!(has_rows && has_cols)) {
assert(bsize_at_least_8x8 && pl >= 0);
const aom_cdf_prob *partition_cdf = cm->fc->partition_cdf[pl];
const int max_cost = av1_cost_symbol(0);
for (int i = 0; i < PARTITION_TYPES; ++i) tmp_partition_cost[i] = max_cost;
if (has_cols) {
// At the bottom, the two possibilities are HORZ and SPLIT
aom_cdf_prob bot_cdf[2];
partition_gather_vert_alike(bot_cdf, partition_cdf, bsize);
static const int bot_inv_map[2] = { PARTITION_HORZ, PARTITION_SPLIT };
av1_cost_tokens_from_cdf(tmp_partition_cost, bot_cdf, bot_inv_map);
} else if (has_rows) {
// At the right, the two possibilities are VERT and SPLIT
aom_cdf_prob rhs_cdf[2];
partition_gather_horz_alike(rhs_cdf, partition_cdf, bsize);
static const int rhs_inv_map[2] = { PARTITION_VERT, PARTITION_SPLIT };
av1_cost_tokens_from_cdf(tmp_partition_cost, rhs_cdf, rhs_inv_map);
} else {
// At the bottom right, we always split
tmp_partition_cost[PARTITION_SPLIT] = 0;
}
partition_cost = tmp_partition_cost;
}
#ifndef NDEBUG
// Nothing should rely on the default value of this array (which is just
// leftover from encoding the previous block. Setting it to fixed pattern
// when debugging.
// bit 0, 1, 2 are blk_skip of each plane
// bit 4, 5, 6 are initialization checking of each plane
memset(x->blk_skip, 0x77, sizeof(x->blk_skip));
#endif // NDEBUG
assert(mi_size_wide[bsize] == mi_size_high[bsize]);
av1_init_rd_stats(&this_rdc);
set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
// Save rdmult before it might be changed, so it can be restored later.
const int orig_rdmult = x->rdmult;
setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL);
av1_rd_cost_update(x->rdmult, &best_rdc);
if (bsize == BLOCK_16X16 && cpi->vaq_refresh)
x->mb_energy = av1_log_block_var(cpi, x, bsize);
if (bsize > cpi->sf.use_square_partition_only_threshold) {
partition_horz_allowed &= !has_rows;
partition_vert_allowed &= !has_cols;
}
xd->above_txfm_context = cm->above_txfm_context[tile_info->tile_row] + mi_col;
xd->left_txfm_context =
xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
const int try_intra_cnn_split =
frame_is_intra_only(cm) && cpi->sf.intra_cnn_split &&
cm->seq_params.sb_size >= BLOCK_64X64 && bsize <= BLOCK_64X64 &&
bsize >= BLOCK_8X8 && mi_row + mi_size_high[bsize] <= cm->mi_rows &&
mi_col + mi_size_wide[bsize] <= cm->mi_cols;
if (try_intra_cnn_split) {
av1_intra_mode_cnn_partition(
&cpi->common, x, bsize, x->quad_tree_idx, &partition_none_allowed,
&partition_horz_allowed, &partition_vert_allowed, &do_rectangular_split,
&do_square_split);
}
// Use simple_motion_search to prune partitions. This must be done prior to
// PARTITION_SPLIT to propagate the initial mvs to a smaller blocksize.
const int try_split_only =
cpi->sf.simple_motion_search_split && do_square_split &&
bsize >= BLOCK_8X8 && mi_row + mi_size_high[bsize] <= cm->mi_rows &&
mi_col + mi_size_wide[bsize] <= cm->mi_cols && !frame_is_intra_only(cm) &&
!av1_superres_scaled(cm);
if (try_split_only) {
av1_simple_motion_search_based_split(
cpi, x, pc_tree, mi_row, mi_col, bsize, &partition_none_allowed,
&partition_horz_allowed, &partition_vert_allowed, &do_rectangular_split,
&do_square_split);
}
const int try_prune_rect =
cpi->sf.simple_motion_search_prune_rect && !frame_is_intra_only(cm) &&
do_rectangular_split &&
(do_square_split || partition_none_allowed ||
(prune_horz && prune_vert)) &&
(partition_horz_allowed || partition_vert_allowed) && bsize >= BLOCK_8X8;
if (try_prune_rect) {
av1_simple_motion_search_prune_rect(
cpi, x, pc_tree, mi_row, mi_col, bsize, &partition_horz_allowed,
&partition_vert_allowed, &prune_horz, &prune_vert);
}
// Max and min square partition levels are defined as the partition nodes that
// the recursive function rd_pick_partition() can reach. To implement this:
// only PARTITION_NONE is allowed if the current node equals min_sq_part,
// only PARTITION_SPLIT is allowed if the current node exceeds max_sq_part.
assert(block_size_wide[min_sq_part] == block_size_high[min_sq_part]);
assert(block_size_wide[max_sq_part] == block_size_high[max_sq_part]);
assert(min_sq_part <= max_sq_part);
assert(block_size_wide[bsize] == block_size_high[bsize]);
const int max_partition_size = block_size_wide[max_sq_part];
const int min_partition_size = block_size_wide[min_sq_part];
const int blksize = block_size_wide[bsize];
assert(min_partition_size <= max_partition_size);
const int is_le_min_sq_part = blksize <= min_partition_size;
const int is_gt_max_sq_part = blksize > max_partition_size;
if (is_gt_max_sq_part) {
// If current block size is larger than max, only allow split.
partition_none_allowed = 0;
partition_horz_allowed = 0;
partition_vert_allowed = 0;
do_square_split = 1;
} else if (is_le_min_sq_part) {
// If current block size is less or equal to min, only allow none if valid
// block large enough; only allow split otherwise.
partition_horz_allowed = 0;
partition_vert_allowed = 0;
// only disable square split when current block is not at the picture
// boundary. otherwise, inherit the square split flag from previous logic
if (has_rows && has_cols) do_square_split = 0;
partition_none_allowed = !do_square_split;
}
BEGIN_PARTITION_SEARCH:
if (x->must_find_valid_partition) {
do_square_split = bsize_at_least_8x8;
partition_none_allowed = has_rows && has_cols;
partition_horz_allowed =
has_cols && bsize_at_least_8x8 && cpi->oxcf.enable_rect_partitions &&
get_plane_block_size(get_partition_subsize(bsize, PARTITION_HORZ), xss,
yss) != BLOCK_INVALID;
partition_vert_allowed =
has_rows && bsize_at_least_8x8 && cpi->oxcf.enable_rect_partitions &&
get_plane_block_size(get_partition_subsize(bsize, PARTITION_VERT), xss,
yss) != BLOCK_INVALID;
terminate_partition_search = 0;
}
// Partition block source pixel variance.
unsigned int pb_source_variance = UINT_MAX;
// Partition block sse after simple motion compensation, not in use now,
// but will be used for upcoming speed features
unsigned int pb_simple_motion_pred_sse = UINT_MAX;
(void)pb_simple_motion_pred_sse;
#if CONFIG_DIST_8X8
if (x->using_dist_8x8) {
if (block_size_high[bsize] <= 8) partition_horz_allowed = 0;
if (block_size_wide[bsize] <= 8) partition_vert_allowed = 0;
if (block_size_high[bsize] <= 8 || block_size_wide[bsize] <= 8)
do_square_split = 0;
}
#endif
// PARTITION_NONE
if (is_le_min_sq_part && has_rows && has_cols) partition_none_allowed = 1;
int64_t part_none_rd = INT64_MAX;
if (!terminate_partition_search && partition_none_allowed &&
!is_gt_max_sq_part) {
int pt_cost = 0;
if (bsize_at_least_8x8) {
pt_cost = partition_cost[PARTITION_NONE] < INT_MAX
? partition_cost[PARTITION_NONE]
: 0;
}
RD_STATS partition_rdcost;
av1_init_rd_stats(&partition_rdcost);
partition_rdcost.rate = pt_cost;
av1_rd_cost_update(x->rdmult, &partition_rdcost);
RD_STATS best_remain_rdcost;
av1_rd_stats_subtraction(x->rdmult, &best_rdc, &partition_rdcost,
&best_remain_rdcost);
#if CONFIG_COLLECT_PARTITION_STATS
if (best_remain_rdcost >= 0) {
partition_attempts[PARTITION_NONE] += 1;
aom_usec_timer_start(&partition_timer);
partition_timer_on = 1;
}
#endif
pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, PARTITION_NONE,
bsize, ctx_none, best_remain_rdcost, PICK_MODE_RD);
av1_rd_cost_update(x->rdmult, &this_rdc);
#if CONFIG_COLLECT_PARTITION_STATS
if (partition_timer_on) {
aom_usec_timer_mark(&partition_timer);
int64_t time = aom_usec_timer_elapsed(&partition_timer);
partition_times[PARTITION_NONE] += time;
partition_timer_on = 0;
}
#endif
pb_source_variance = x->source_variance;
pb_simple_motion_pred_sse = x->simple_motion_pred_sse;
if (none_rd) *none_rd = this_rdc.rdcost;
cur_none_rd = this_rdc.rdcost;
if (this_rdc.rate != INT_MAX) {
if (cpi->sf.prune_ref_frame_for_rect_partitions) {
const int ref_type = av1_ref_frame_type(ctx_none->mic.ref_frame);
update_picked_ref_frames_mask(x, ref_type, bsize,
cm->seq_params.mib_size, mi_row, mi_col);
}
if (bsize_at_least_8x8) {
this_rdc.rate += pt_cost;
this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist);
}
part_none_rd = this_rdc.rdcost;
if (this_rdc.rdcost < best_rdc.rdcost) {
// Adjust dist breakout threshold according to the partition size.
const int64_t dist_breakout_thr =
cpi->sf.partition_search_breakout_dist_thr >>
((2 * (MAX_SB_SIZE_LOG2 - 2)) -
(mi_size_wide_log2[bsize] + mi_size_high_log2[bsize]));
const int rate_breakout_thr =
cpi->sf.partition_search_breakout_rate_thr *
num_pels_log2_lookup[bsize];
best_rdc = this_rdc;
found_best_partition = true;
if (bsize_at_least_8x8) pc_tree->partitioning = PARTITION_NONE;
if (!frame_is_intra_only(cm) &&
(do_square_split || do_rectangular_split) &&
!x->e_mbd.lossless[xd->mi[0]->segment_id] && ctx_none->skippable) {
const int use_ml_based_breakout =
bsize <= cpi->sf.use_square_partition_only_threshold &&
bsize > BLOCK_4X4 && xd->bd == 8;
if (use_ml_based_breakout) {
if (av1_ml_predict_breakout(cpi, bsize, x, &this_rdc,
pb_source_variance)) {
do_square_split = 0;
do_rectangular_split = 0;
}
}
// If all y, u, v transform blocks in this partition are skippable,
// and the dist & rate are within the thresholds, the partition
// search is terminated for current branch of the partition search
// tree. The dist & rate thresholds are set to 0 at speed 0 to
// disable the early termination at that speed.
if (best_rdc.dist < dist_breakout_thr &&
best_rdc.rate < rate_breakout_thr) {
do_square_split = 0;
do_rectangular_split = 0;
}
}
if (cpi->sf.simple_motion_search_early_term_none && cm->show_frame &&
!frame_is_intra_only(cm) && bsize >= BLOCK_16X16 &&
mi_row + mi_step < cm->mi_rows && mi_col + mi_step < cm->mi_cols &&
this_rdc.rdcost < INT64_MAX && this_rdc.rdcost >= 0 &&
this_rdc.rate < INT_MAX && this_rdc.rate >= 0 &&
(do_square_split || do_rectangular_split)) {
av1_simple_motion_search_early_term_none(cpi, x, pc_tree, mi_row,
mi_col, bsize, &this_rdc,
&terminate_partition_search);
}
}
}
restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
}
// store estimated motion vector
if (cpi->sf.adaptive_motion_search) store_pred_mv(x, ctx_none);
// PARTITION_SPLIT
int64_t part_split_rd = INT64_MAX;
if ((!terminate_partition_search && do_square_split) || is_gt_max_sq_part) {
av1_init_rd_stats(&sum_rdc);
subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
sum_rdc.rate = partition_cost[PARTITION_SPLIT];
sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0);
int idx;
#if CONFIG_COLLECT_PARTITION_STATS
if (best_rdc.rdcost - sum_rdc.rdcost >= 0) {
partition_attempts[PARTITION_SPLIT] += 1;
aom_usec_timer_start(&partition_timer);
partition_timer_on = 1;
}
#endif
for (idx = 0; idx < 4 && sum_rdc.rdcost < best_rdc.rdcost; ++idx) {
const int x_idx = (idx & 1) * mi_step;
const int y_idx = (idx >> 1) * mi_step;
if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols)
continue;
if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_none);
pc_tree->split[idx]->index = idx;
int64_t *p_split_rd = &split_rd[idx];
RD_STATS best_remain_rdcost;
av1_rd_stats_subtraction(x->rdmult, &best_rdc, &sum_rdc,
&best_remain_rdcost);
int curr_quad_tree_idx = 0;
if (frame_is_intra_only(cm) && bsize <= BLOCK_64X64) {
curr_quad_tree_idx = x->quad_tree_idx;
x->quad_tree_idx = 4 * curr_quad_tree_idx + idx + 1;
}
if (!rd_pick_partition(cpi, td, tile_data, tp, mi_row + y_idx,
mi_col + x_idx, subsize, max_sq_part, min_sq_part,
&this_rdc, best_remain_rdcost, pc_tree->split[idx],
p_split_rd)) {
av1_invalid_rd_stats(&sum_rdc);
break;
}
if (frame_is_intra_only(cm) && bsize <= BLOCK_64X64) {
x->quad_tree_idx = curr_quad_tree_idx;
}
sum_rdc.rate += this_rdc.rate;
sum_rdc.dist += this_rdc.dist;
av1_rd_cost_update(x->rdmult, &sum_rdc);
if (idx <= 1 && (bsize <= BLOCK_8X8 ||
pc_tree->split[idx]->partitioning == PARTITION_NONE)) {
const MB_MODE_INFO *const mbmi = &pc_tree->split[idx]->none.mic;
const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
// Neither palette mode nor cfl predicted
if (pmi->palette_size[0] == 0 && pmi->palette_size[1] == 0) {
if (mbmi->uv_mode != UV_CFL_PRED) split_ctx_is_ready[idx] = 1;
}
}
}
#if CONFIG_COLLECT_PARTITION_STATS
if (partition_timer_on) {
aom_usec_timer_mark(&partition_timer);
int64_t time = aom_usec_timer_elapsed(&partition_timer);
partition_times[PARTITION_SPLIT] += time;
partition_timer_on = 0;
}
#endif
const int reached_last_index = (idx == 4);
part_split_rd = sum_rdc.rdcost;
if (reached_last_index && sum_rdc.rdcost < best_rdc.rdcost) {
sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist);
if (sum_rdc.rdcost < best_rdc.rdcost) {
best_rdc = sum_rdc;
found_best_partition = true;
pc_tree->partitioning = PARTITION_SPLIT;
}
} else if (cpi->sf.less_rectangular_check_level > 0) {
// Skip rectangular partition test when partition type none gives better
// rd than partition type split.
if (cpi->sf.less_rectangular_check_level == 2 || idx <= 2) {
const int partition_none_valid = cur_none_rd > 0;
const int partition_none_better = cur_none_rd < sum_rdc.rdcost;
do_rectangular_split &=
!(partition_none_valid && partition_none_better);
}
}
restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
} // if (do_split)
if (cpi->sf.ml_early_term_after_part_split_level &&
!frame_is_intra_only(cm) && !terminate_partition_search &&
do_rectangular_split &&
(partition_horz_allowed || partition_vert_allowed)) {
av1_ml_early_term_after_split(cpi, x, pc_tree, bsize, best_rdc.rdcost,
part_none_rd, part_split_rd, split_rd, mi_row,
mi_col, &terminate_partition_search);
}
if (!cpi->sf.ml_early_term_after_part_split_level &&
cpi->sf.ml_prune_rect_partition && !frame_is_intra_only(cm) &&
(partition_horz_allowed || partition_vert_allowed) &&
!(prune_horz || prune_vert) && !terminate_partition_search) {
av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes, bsize);
av1_ml_prune_rect_partition(cpi, x, bsize, best_rdc.rdcost, cur_none_rd,
split_rd, &prune_horz, &prune_vert);
}
// PARTITION_HORZ
assert(IMPLIES(!cpi->oxcf.enable_rect_partitions, !partition_horz_allowed));
if (!terminate_partition_search && partition_horz_allowed && !prune_horz &&
(do_rectangular_split || active_h_edge(cpi, mi_row, mi_step)) &&
!is_gt_max_sq_part) {
av1_init_rd_stats(&sum_rdc);
subsize = get_partition_subsize(bsize, PARTITION_HORZ);
if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_none);
sum_rdc.rate = partition_cost[PARTITION_HORZ];
sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0);
RD_STATS best_remain_rdcost;
av1_rd_stats_subtraction(x->rdmult, &best_rdc, &sum_rdc,
&best_remain_rdcost);
#if CONFIG_COLLECT_PARTITION_STATS
if (best_remain_rdcost >= 0) {
partition_attempts[PARTITION_HORZ] += 1;
aom_usec_timer_start(&partition_timer);
partition_timer_on = 1;
}
#endif
pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, PARTITION_HORZ,
subsize, &pc_tree->horizontal[0], best_remain_rdcost,
PICK_MODE_RD);
av1_rd_cost_update(x->rdmult, &this_rdc);
if (this_rdc.rate == INT_MAX) {
sum_rdc.rdcost = INT64_MAX;
} else {
sum_rdc.rate += this_rdc.rate;
sum_rdc.dist += this_rdc.dist;
av1_rd_cost_update(x->rdmult, &sum_rdc);
}
horz_rd[0] = this_rdc.rdcost;
if (sum_rdc.rdcost < best_rdc.rdcost && has_rows) {
const PICK_MODE_CONTEXT *const ctx_h = &pc_tree->horizontal[0];
const MB_MODE_INFO *const mbmi = &pc_tree->horizontal[0].mic;
const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
// Neither palette mode nor cfl predicted
if (pmi->palette_size[0] == 0 && pmi->palette_size[1] == 0) {
if (mbmi->uv_mode != UV_CFL_PRED) horz_ctx_is_ready = 1;
}
update_state(cpi, td, ctx_h, mi_row, mi_col, subsize, 1);
encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, subsize, NULL);
if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_h);
av1_rd_stats_subtraction(x->rdmult, &best_rdc, &sum_rdc,
&best_remain_rdcost);
pick_sb_modes(cpi, tile_data, x, mi_row + mi_step, mi_col, &this_rdc,
PARTITION_HORZ, subsize, &pc_tree->horizontal[1],
best_remain_rdcost, PICK_MODE_RD);
av1_rd_cost_update(x->rdmult, &this_rdc);
horz_rd[1] = this_rdc.rdcost;
if (this_rdc.rate == INT_MAX) {
sum_rdc.rdcost = INT64_MAX;
} else {
sum_rdc.rate += this_rdc.rate;
sum_rdc.dist += this_rdc.dist;
av1_rd_cost_update(x->rdmult, &sum_rdc);
}
}
#if CONFIG_COLLECT_PARTITION_STATS
if (partition_timer_on) {
aom_usec_timer_mark(&partition_timer);
int64_t time = aom_usec_timer_elapsed(&partition_timer);
partition_times[PARTITION_HORZ] += time;
partition_timer_on = 0;
}
#endif
if (sum_rdc.rdcost < best_rdc.rdcost) {
sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist);
if (sum_rdc.rdcost < best_rdc.rdcost) {
best_rdc = sum_rdc;
found_best_partition = true;
pc_tree->partitioning = PARTITION_HORZ;
}
}
restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
}
// PARTITION_VERT
assert(IMPLIES(!cpi->oxcf.enable_rect_partitions, !partition_vert_allowed));
if (!terminate_partition_search && partition_vert_allowed && !prune_vert &&
(do_rectangular_split || active_v_edge(cpi, mi_col, mi_step)) &&
!is_gt_max_sq_part) {
av1_init_rd_stats(&sum_rdc);
subsize = get_partition_subsize(bsize, PARTITION_VERT);
if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_none);
sum_rdc.rate = partition_cost[PARTITION_VERT];
sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0);
RD_STATS best_remain_rdcost;
av1_rd_stats_subtraction(x->rdmult, &best_rdc, &sum_rdc,
&best_remain_rdcost);
#if CONFIG_COLLECT_PARTITION_STATS
if (best_remain_rdcost >= 0) {
partition_attempts[PARTITION_VERT] += 1;
aom_usec_timer_start(&partition_timer);
partition_timer_on = 1;
}
#endif
pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, PARTITION_VERT,
subsize, &pc_tree->vertical[0], best_remain_rdcost,
PICK_MODE_RD);
av1_rd_cost_update(x->rdmult, &this_rdc);
if (this_rdc.rate == INT_MAX) {
sum_rdc.rdcost = INT64_MAX;
} else {
sum_rdc.rate += this_rdc.rate;
sum_rdc.dist += this_rdc.dist;
av1_rd_cost_update(x->rdmult, &sum_rdc);
}
vert_rd[0] = this_rdc.rdcost;
if (sum_rdc.rdcost < best_rdc.rdcost && has_cols) {
const MB_MODE_INFO *const mbmi = &pc_tree->vertical[0].mic;
const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
// Neither palette mode nor cfl predicted
if (pmi->palette_size[0] == 0 && pmi->palette_size[1] == 0) {
if (mbmi->uv_mode != UV_CFL_PRED) vert_ctx_is_ready = 1;
}
update_state(cpi, td, &pc_tree->vertical[0], mi_row, mi_col, subsize, 1);
encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, subsize, NULL);
if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_none);
av1_rd_stats_subtraction(x->rdmult, &best_rdc, &sum_rdc,
&best_remain_rdcost);
pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + mi_step, &this_rdc,
PARTITION_VERT, subsize, &pc_tree->vertical[1],
best_remain_rdcost, PICK_MODE_RD);
av1_rd_cost_update(x->rdmult, &this_rdc);
vert_rd[1] = this_rdc.rdcost;
if (this_rdc.rate == INT_MAX) {
sum_rdc.rdcost = INT64_MAX;
} else {
sum_rdc.rate += this_rdc.rate;
sum_rdc.dist += this_rdc.dist;
av1_rd_cost_update(x->rdmult, &sum_rdc);
}
}
#if CONFIG_COLLECT_PARTITION_STATS
if (partition_timer_on) {
aom_usec_timer_mark(&partition_timer);
int64_t time = aom_usec_timer_elapsed(&partition_timer);
partition_times[PARTITION_VERT] += time;
partition_timer_on = 0;
}
#endif
av1_rd_cost_update(x->rdmult, &sum_rdc);
if (sum_rdc.rdcost < best_rdc.rdcost) {
best_rdc = sum_rdc;
found_best_partition = true;
pc_tree->partitioning = PARTITION_VERT;
}
restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
}
if (pb_source_variance == UINT_MAX) {
av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes, bsize);
if (is_cur_buf_hbd(xd)) {
pb_source_variance = av1_high_get_sby_perpixel_variance(
cpi, &x->plane[0].src, bsize, xd->bd);
} else {
pb_source_variance =
av1_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
}
}
if (use_pb_simple_motion_pred_sse(cpi) &&
pb_simple_motion_pred_sse == UINT_MAX) {
const MV ref_mv_full = { .row = 0, .col = 0 };
unsigned int var = 0;
av1_simple_motion_sse_var(cpi, x, mi_row, mi_col, bsize, ref_mv_full, 0,
&pb_simple_motion_pred_sse, &var);
}
assert(IMPLIES(!cpi->oxcf.enable_rect_partitions, !do_rectangular_split));
const int ext_partition_allowed =
do_rectangular_split && bsize > BLOCK_8X8 && has_rows && has_cols;
// The standard AB partitions are allowed whenever ext-partition-types are
// allowed
int horzab_partition_allowed =
ext_partition_allowed & cpi->oxcf.enable_ab_partitions;
int vertab_partition_allowed =
ext_partition_allowed & cpi->oxcf.enable_ab_partitions;
#if CONFIG_DIST_8X8
if (x->using_dist_8x8) {
if (block_size_high[bsize] <= 8 || block_size_wide[bsize] <= 8) {
horzab_partition_allowed = 0;
vertab_partition_allowed = 0;
}
}
#endif
if (cpi->sf.prune_ext_partition_types_search_level) {
if (cpi->sf.prune_ext_partition_types_search_level == 1) {
// TODO(debargha,huisu@google.com): may need to tune the threshold for
// pb_source_variance.
horzab_partition_allowed &= (pc_tree->partitioning == PARTITION_HORZ ||
(pc_tree->partitioning == PARTITION_NONE &&
pb_source_variance < 32) ||
pc_tree->partitioning == PARTITION_SPLIT);
vertab_partition_allowed &= (pc_tree->partitioning == PARTITION_VERT ||
(pc_tree->partitioning == PARTITION_NONE &&
pb_source_variance < 32) ||
pc_tree->partitioning == PARTITION_SPLIT);
} else {
horzab_partition_allowed &= (pc_tree->partitioning == PARTITION_HORZ ||
pc_tree->partitioning == PARTITION_SPLIT);
vertab_partition_allowed &= (pc_tree->partitioning == PARTITION_VERT ||
pc_tree->partitioning == PARTITION_SPLIT);
}
horz_rd[0] = (horz_rd[0] < INT64_MAX ? horz_rd[0] : 0);
horz_rd[1] = (horz_rd[1] < INT64_MAX ? horz_rd[1] : 0);
vert_rd[0] = (vert_rd[0] < INT64_MAX ? vert_rd[0] : 0);
vert_rd[1] = (vert_rd[1] < INT64_MAX ? vert_rd[1] : 0);
split_rd[0] = (split_rd[0] < INT64_MAX ? split_rd[0] : 0);
split_rd[1] = (split_rd[1] < INT64_MAX ? split_rd[1] : 0);
split_rd[2] = (split_rd[2] < INT64_MAX ? split_rd[2] : 0);
split_rd[3] = (split_rd[3] < INT64_MAX ? split_rd[3] : 0);
}
int horza_partition_allowed = horzab_partition_allowed;
int horzb_partition_allowed = horzab_partition_allowed;
if (cpi->sf.prune_ext_partition_types_search_level) {
const int64_t horz_a_rd = horz_rd[1] + split_rd[0] + split_rd[1];
const int64_t horz_b_rd = horz_rd[0] + split_rd[2] + split_rd[3];
switch (cpi->sf.prune_ext_partition_types_search_level) {
case 1:
horza_partition_allowed &= (horz_a_rd / 16 * 14 < best_rdc.rdcost);
horzb_partition_allowed &= (horz_b_rd / 16 * 14 < best_rdc.rdcost);
break;
case 2:
default:
horza_partition_allowed &= (horz_a_rd / 16 * 15 < best_rdc.rdcost);
horzb_partition_allowed &= (horz_b_rd / 16 * 15 < best_rdc.rdcost);
break;
}
}
int verta_partition_allowed = vertab_partition_allowed;
int vertb_partition_allowed = vertab_partition_allowed;
if (cpi->sf.prune_ext_partition_types_search_level) {
const int64_t vert_a_rd = vert_rd[1] + split_rd[0] + split_rd[2];
const int64_t vert_b_rd = vert_rd[0] + split_rd[1] + split_rd[3];
switch (cpi->sf.prune_ext_partition_types_search_level) {
case 1:
verta_partition_allowed &= (vert_a_rd / 16 * 14 < best_rdc.rdcost);
vertb_partition_allowed &= (vert_b_rd / 16 * 14 < best_rdc.rdcost);
break;
case 2:
default:
verta_partition_allowed &= (vert_a_rd / 16 * 15 < best_rdc.rdcost);
vertb_partition_allowed &= (vert_b_rd / 16 * 15 < best_rdc.rdcost);
break;
}
}
if (cpi->sf.ml_prune_ab_partition && ext_partition_allowed &&
partition_horz_allowed && partition_vert_allowed) {
// TODO(huisu@google.com): x->source_variance may not be the current
// block's variance. The correct one to use is pb_source_variance. Need to
// re-train the model to fix it.
av1_ml_prune_ab_partition(
bsize, pc_tree->partitioning, get_unsigned_bits(x->source_variance),
best_rdc.rdcost, horz_rd, vert_rd, split_rd, &horza_partition_allowed,
&horzb_partition_allowed, &verta_partition_allowed,
&vertb_partition_allowed);
}
horza_partition_allowed &= cpi->oxcf.enable_ab_partitions;
horzb_partition_allowed &= cpi->oxcf.enable_ab_partitions;
verta_partition_allowed &= cpi->oxcf.enable_ab_partitions;
vertb_partition_allowed &= cpi->oxcf.enable_ab_partitions;
// PARTITION_HORZ_A
if (!terminate_partition_search && partition_horz_allowed &&
horza_partition_allowed && !is_gt_max_sq_part) {
subsize = get_partition_subsize(bsize, PARTITION_HORZ_A);
pc_tree->horizontala[0].rd_mode_is_ready = 0;
pc_tree->horizontala[1].rd_mode_is_ready = 0;
pc_tree->horizontala[2].rd_mode_is_ready = 0;
if (split_ctx_is_ready[0]) {
av1_copy_tree_context(&pc_tree->horizontala[0], &pc_tree->split[0]->none);
pc_tree->horizontala[0].mic.partition = PARTITION_HORZ_A;
pc_tree->horizontala[0].rd_mode_is_ready = 1;
if (split_ctx_is_ready[1]) {
av1_copy_tree_context(&pc_tree->horizontala[1],
&pc_tree->split[1]->none);
pc_tree->horizontala[1].mic.partition = PARTITION_HORZ_A;
pc_tree->horizontala[1].rd_mode_is_ready = 1;
}
}
#if CONFIG_COLLECT_PARTITION_STATS
{
RD_STATS tmp_sum_rdc;
av1_init_rd_stats(&tmp_sum_rdc);
tmp_sum_rdc.rate = x->partition_cost[pl][PARTITION_HORZ_A];
tmp_sum_rdc.rdcost = RDCOST(x->rdmult, tmp_sum_rdc.rate, 0);
if (best_rdc.rdcost - tmp_sum_rdc.rdcost >= 0) {
partition_attempts[PARTITION_HORZ_A] += 1;
aom_usec_timer_start(&partition_timer);
partition_timer_on = 1;
}
}
#endif
found_best_partition |= rd_test_partition3(
cpi, td, tile_data, tp, pc_tree, &best_rdc, pc_tree->horizontala,
ctx_none, mi_row, mi_col, bsize, PARTITION_HORZ_A, mi_row, mi_col,
bsize2, mi_row, mi_col + mi_step, bsize2, mi_row + mi_step, mi_col,
subsize);
#if CONFIG_COLLECT_PARTITION_STATS
if (partition_timer_on) {
aom_usec_timer_mark(&partition_timer);
int64_t time = aom_usec_timer_elapsed(&partition_timer);
partition_times[PARTITION_HORZ_A] += time;
partition_timer_on = 0;
}
#endif
restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
}
// PARTITION_HORZ_B
if (!terminate_partition_search && partition_horz_allowed &&
horzb_partition_allowed && !is_gt_max_sq_part) {
subsize = get_partition_subsize(bsize, PARTITION_HORZ_B);
pc_tree->horizontalb[0].rd_mode_is_ready = 0;
pc_tree->horizontalb[1].rd_mode_is_ready = 0;
pc_tree->horizontalb[2].rd_mode_is_ready = 0;
if (horz_ctx_is_ready) {
av1_copy_tree_context(&pc_tree->horizontalb[0], &pc_tree->horizontal[0]);
pc_tree->horizontalb[0].mic.partition = PARTITION_HORZ_B;
pc_tree->horizontalb[0].rd_mode_is_ready = 1;
}
#if CONFIG_COLLECT_PARTITION_STATS
{
RD_STATS tmp_sum_rdc;
av1_init_rd_stats(&tmp_sum_rdc);
tmp_sum_rdc.rate = x->partition_cost[pl][PARTITION_HORZ_B];
tmp_sum_rdc.rdcost = RDCOST(x->rdmult, tmp_sum_rdc.rate, 0);
if (best_rdc.rdcost - tmp_sum_rdc.rdcost >= 0) {
partition_attempts[PARTITION_HORZ_B] += 1;
aom_usec_timer_start(&partition_timer);
partition_timer_on = 1;
}
}
#endif
found_best_partition |= rd_test_partition3(
cpi, td, tile_data, tp, pc_tree, &best_rdc, pc_tree->horizontalb,
ctx_none, mi_row, mi_col, bsize, PARTITION_HORZ_B, mi_row, mi_col,
subsize, mi_row + mi_step, mi_col, bsize2, mi_row + mi_step,
mi_col + mi_step, bsize2);
#if CONFIG_COLLECT_PARTITION_STATS
if (partition_timer_on) {
aom_usec_timer_mark(&partition_timer);
int64_t time = aom_usec_timer_elapsed(&partition_timer);
partition_times[PARTITION_HORZ_B] += time;
partition_timer_on = 0;
}
#endif
restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
}
// PARTITION_VERT_A
if (!terminate_partition_search && partition_vert_allowed &&
verta_partition_allowed && !is_gt_max_sq_part) {
subsize = get_partition_subsize(bsize, PARTITION_VERT_A);
pc_tree->verticala[0].rd_mode_is_ready = 0;
pc_tree->verticala[1].rd_mode_is_ready = 0;
pc_tree->verticala[2].rd_mode_is_ready = 0;
if (split_ctx_is_ready[0]) {
av1_copy_tree_context(&pc_tree->verticala[0], &pc_tree->split[0]->none);
pc_tree->verticala[0].mic.partition = PARTITION_VERT_A;
pc_tree->verticala[0].rd_mode_is_ready = 1;
}
#if CONFIG_COLLECT_PARTITION_STATS
{
RD_STATS tmp_sum_rdc;
av1_init_rd_stats(&tmp_sum_rdc);
tmp_sum_rdc.rate = x->partition_cost[pl][PARTITION_VERT_A];
tmp_sum_rdc.rdcost = RDCOST(x->rdmult, tmp_sum_rdc.rate, 0);
if (best_rdc.rdcost - tmp_sum_rdc.rdcost >= 0) {
partition_attempts[PARTITION_VERT_A] += 1;
aom_usec_timer_start(&partition_timer);
partition_timer_on = 1;
}
}
#endif
found_best_partition |= rd_test_partition3(
cpi, td, tile_data, tp, pc_tree, &best_rdc, pc_tree->verticala,
ctx_none, mi_row, mi_col, bsize, PARTITION_VERT_A, mi_row, mi_col,
bsize2, mi_row + mi_step, mi_col, bsize2, mi_row, mi_col + mi_step,
subsize);
#if CONFIG_COLLECT_PARTITION_STATS
if (partition_timer_on) {
aom_usec_timer_mark(&partition_timer);
int64_t time = aom_usec_timer_elapsed(&partition_timer);
partition_times[PARTITION_VERT_A] += time;
partition_timer_on = 0;
}
#endif
restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
}
// PARTITION_VERT_B
if (!terminate_partition_search && partition_vert_allowed &&
vertb_partition_allowed && !is_gt_max_sq_part) {
subsize = get_partition_subsize(bsize, PARTITION_VERT_B);
pc_tree->verticalb[0].rd_mode_is_ready = 0;
pc_tree->verticalb[1].rd_mode_is_ready = 0;
pc_tree->verticalb[2].rd_mode_is_ready = 0;
if (vert_ctx_is_ready) {
av1_copy_tree_context(&pc_tree->verticalb[0], &pc_tree->vertical[0]);
pc_tree->verticalb[0].mic.partition = PARTITION_VERT_B;
pc_tree->verticalb[0].rd_mode_is_ready = 1;
}
#if CONFIG_COLLECT_PARTITION_STATS
{
RD_STATS tmp_sum_rdc;
av1_init_rd_stats(&tmp_sum_rdc);
tmp_sum_rdc.rate = x->partition_cost[pl][PARTITION_VERT_B];
tmp_sum_rdc.rdcost = RDCOST(x->rdmult, tmp_sum_rdc.rate, 0);
if (!frame_is_intra_only(cm) &&
best_rdc.rdcost - tmp_sum_rdc.rdcost >= 0) {
partition_attempts[PARTITION_VERT_B] += 1;
aom_usec_timer_start(&partition_timer);
partition_timer_on = 1;
}
}
#endif
found_best_partition |= rd_test_partition3(
cpi, td, tile_data, tp, pc_tree, &best_rdc, pc_tree->verticalb,
ctx_none, mi_row, mi_col, bsize, PARTITION_VERT_B, mi_row, mi_col,
subsize, mi_row, mi_col + mi_step, bsize2, mi_row + mi_step,
mi_col + mi_step, bsize2);
#if CONFIG_COLLECT_PARTITION_STATS
if (partition_timer_on) {
aom_usec_timer_mark(&partition_timer);
int64_t time = aom_usec_timer_elapsed(&partition_timer);
partition_times[PARTITION_VERT_B] += time;
partition_timer_on = 0;
}
#endif
restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
}
// partition4_allowed is 1 if we can use a PARTITION_HORZ_4 or
// PARTITION_VERT_4 for this block. This is almost the same as
// ext_partition_allowed, except that we don't allow 128x32 or 32x128
// blocks, so we require that bsize is not BLOCK_128X128.
const int partition4_allowed = cpi->oxcf.enable_1to4_partitions &&
ext_partition_allowed &&
bsize != BLOCK_128X128;
int partition_horz4_allowed =
partition4_allowed && partition_horz_allowed &&
get_plane_block_size(get_partition_subsize(bsize, PARTITION_HORZ_4), xss,
yss) != BLOCK_INVALID;
int partition_vert4_allowed =
partition4_allowed && partition_vert_allowed &&
get_plane_block_size(get_partition_subsize(bsize, PARTITION_VERT_4), xss,
yss) != BLOCK_INVALID;
if (cpi->sf.prune_ext_partition_types_search_level == 2) {
partition_horz4_allowed &= (pc_tree->partitioning == PARTITION_HORZ ||
pc_tree->partitioning == PARTITION_HORZ_A ||
pc_tree->partitioning == PARTITION_HORZ_B ||
pc_tree->partitioning == PARTITION_SPLIT ||
pc_tree->partitioning == PARTITION_NONE);
partition_vert4_allowed &= (pc_tree->partitioning == PARTITION_VERT ||
pc_tree->partitioning == PARTITION_VERT_A ||
pc_tree->partitioning == PARTITION_VERT_B ||
pc_tree->partitioning == PARTITION_SPLIT ||
pc_tree->partitioning == PARTITION_NONE);
}
if (cpi->sf.ml_prune_4_partition && partition4_allowed &&
partition_horz_allowed && partition_vert_allowed) {
av1_ml_prune_4_partition(cpi, x, bsize, pc_tree->partitioning,
best_rdc.rdcost, horz_rd, vert_rd, split_rd,
&partition_horz4_allowed, &partition_vert4_allowed,
pb_source_variance, mi_row, mi_col);
}
#if CONFIG_DIST_8X8
if (x->using_dist_8x8) {
if (block_size_high[bsize] <= 16 || block_size_wide[bsize] <= 16) {
partition_horz4_allowed = 0;
partition_vert4_allowed = 0;
}
}
#endif
if (blksize < (min_partition_size << 2)) {
partition_horz4_allowed = 0;
partition_vert4_allowed = 0;
}
// PARTITION_HORZ_4
assert(IMPLIES(!cpi->oxcf.enable_rect_partitions, !partition_horz4_allowed));
if (!terminate_partition_search && partition_horz4_allowed && has_rows &&
(do_rectangular_split || active_h_edge(cpi, mi_row, mi_step)) &&
!is_gt_max_sq_part) {
av1_init_rd_stats(&sum_rdc);
const int quarter_step = mi_size_high[bsize] / 4;
PICK_MODE_CONTEXT *ctx_prev = ctx_none;
subsize = get_partition_subsize(bsize, PARTITION_HORZ_4);
sum_rdc.rate = partition_cost[PARTITION_HORZ_4];
sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0);
#if CONFIG_COLLECT_PARTITION_STATS
if (best_rdc.rdcost - sum_rdc.rdcost >= 0) {
partition_attempts[PARTITION_HORZ_4] += 1;
aom_usec_timer_start(&partition_timer);
partition_timer_on = 1;
}
#endif
for (int i = 0; i < 4; ++i) {
const int this_mi_row = mi_row + i * quarter_step;
if (i > 0 && this_mi_row >= cm->mi_rows) break;
PICK_MODE_CONTEXT *ctx_this = &pc_tree->horizontal4[i];
ctx_this->rd_mode_is_ready = 0;
if (!rd_try_subblock(cpi, td, tile_data, tp, (i == 3), this_mi_row,
mi_col, subsize, best_rdc, &sum_rdc,
PARTITION_HORZ_4, ctx_prev, ctx_this)) {
av1_invalid_rd_stats(&sum_rdc);
break;
}
ctx_prev = ctx_this;
}
av1_rd_cost_update(x->rdmult, &sum_rdc);
if (sum_rdc.rdcost < best_rdc.rdcost) {
best_rdc = sum_rdc;
found_best_partition = true;
pc_tree->partitioning = PARTITION_HORZ_4;
}
#if CONFIG_COLLECT_PARTITION_STATS
if (partition_timer_on) {
aom_usec_timer_mark(&partition_timer);
int64_t time = aom_usec_timer_elapsed(&partition_timer);
partition_times[PARTITION_HORZ_4] += time;
partition_timer_on = 0;
}
#endif
restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
}
// PARTITION_VERT_4
assert(IMPLIES(!cpi->oxcf.enable_rect_partitions, !partition_vert4_allowed));
if (!terminate_partition_search && partition_vert4_allowed && has_cols &&
(do_rectangular_split || active_v_edge(cpi, mi_row, mi_step)) &&
!is_gt_max_sq_part) {
av1_init_rd_stats(&sum_rdc);
const int quarter_step = mi_size_wide[bsize] / 4;
PICK_MODE_CONTEXT *ctx_prev = ctx_none;
subsize = get_partition_subsize(bsize, PARTITION_VERT_4);
sum_rdc.rate = partition_cost[PARTITION_VERT_4];
sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0);
#if CONFIG_COLLECT_PARTITION_STATS
if (best_rdc.rdcost - sum_rdc.rdcost >= 0) {
partition_attempts[PARTITION_VERT_4] += 1;
aom_usec_timer_start(&partition_timer);
partition_timer_on = 1;
}
#endif
for (int i = 0; i < 4; ++i) {
const int this_mi_col = mi_col + i * quarter_step;
if (i > 0 && this_mi_col >= cm->mi_cols) break;
PICK_MODE_CONTEXT *ctx_this = &pc_tree->vertical4[i];
ctx_this->rd_mode_is_ready = 0;
if (!rd_try_subblock(cpi, td, tile_data, tp, (i == 3), mi_row,
this_mi_col, subsize, best_rdc, &sum_rdc,
PARTITION_VERT_4, ctx_prev, ctx_this)) {
av1_invalid_rd_stats(&sum_rdc);
break;
}
ctx_prev = ctx_this;
}
av1_rd_cost_update(x->rdmult, &sum_rdc);
if (sum_rdc.rdcost < best_rdc.rdcost) {
best_rdc = sum_rdc;
found_best_partition = true;
pc_tree->partitioning = PARTITION_VERT_4;
}
#if CONFIG_COLLECT_PARTITION_STATS
if (partition_timer_on) {
aom_usec_timer_mark(&partition_timer);
int64_t time = aom_usec_timer_elapsed(&partition_timer);
partition_times[PARTITION_VERT_4] += time;
partition_timer_on = 0;
}
#endif
restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
}
if (bsize == cm->seq_params.sb_size && !found_best_partition) {
// Did not find a valid partition, go back and search again, with less
// constraint on which partition types to search.
x->must_find_valid_partition = 1;
#if CONFIG_COLLECT_PARTITION_STATS == 2
part_stats->partition_redo += 1;
#endif
goto BEGIN_PARTITION_SEARCH;
}
*rd_cost = best_rdc;
#if CONFIG_COLLECT_PARTITION_STATS
if (best_rdc.rate < INT_MAX && best_rdc.dist < INT64_MAX) {
partition_decisions[pc_tree->partitioning] += 1;
}
#endif
#if CONFIG_COLLECT_PARTITION_STATS == 1
// If CONFIG_COLLECT_PARTITION_STATS is 1, then print out the stats for each
// prediction block
FILE *f = fopen("data.csv", "a");
fprintf(f, "%d,%d,%d,", bsize, cm->show_frame, frame_is_intra_only(cm));
for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) {
fprintf(f, "%d,", partition_decisions[idx]);
}
for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) {
fprintf(f, "%d,", partition_attempts[idx]);
}
for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) {
fprintf(f, "%ld,", partition_times[idx]);
}
fprintf(f, "\n");
fclose(f);
#endif
#if CONFIG_COLLECT_PARTITION_STATS == 2
// If CONFIG_COLLECTION_PARTITION_STATS is 2, then we print out the stats for
// the whole clip. So we need to pass the information upstream to the encoder
const int bsize_idx = av1_get_bsize_idx_for_part_stats(bsize);
int *agg_attempts = part_stats->partition_attempts[bsize_idx];
int *agg_decisions = part_stats->partition_decisions[bsize_idx];
int64_t *agg_times = part_stats->partition_times[bsize_idx];
for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) {
agg_attempts[idx] += partition_attempts[idx];
agg_decisions[idx] += partition_decisions[idx];
agg_times[idx] += partition_times[idx];
}
#endif
if (found_best_partition && pc_tree->index != 3) {
if (bsize == cm->seq_params.sb_size) {
x->cb_offset = 0;
encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize,
pc_tree, NULL);
} else {
encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize,
pc_tree, NULL);
}
}
if (bsize == cm->seq_params.sb_size) {
assert(best_rdc.rate < INT_MAX);
assert(best_rdc.dist < INT64_MAX);
} else {
assert(tp_orig == *tp);
}
x->rdmult = orig_rdmult;
return found_best_partition;
}
#endif // !CONFIG_REALTIME_ONLY
#undef NUM_SIMPLE_MOTION_FEATURES
#if !CONFIG_REALTIME_ONLY
static INLINE int coded_to_superres_mi(int mi_col, int denom) {
return (mi_col * denom + SCALE_NUMERATOR / 2) / SCALE_NUMERATOR;
}
static int get_rdmult_delta(AV1_COMP *cpi, BLOCK_SIZE bsize, int analysis_type,
int mi_row, int mi_col, int orig_rdmult) {
AV1_COMMON *const cm = &cpi->common;
assert(IMPLIES(cpi->gf_group.size > 0,
cpi->gf_group.index < cpi->gf_group.size));
const int tpl_idx = cpi->gf_group.index;
TplDepFrame *tpl_frame = &cpi->tpl_frame[tpl_idx];
TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
int tpl_stride = tpl_frame->stride;
int64_t intra_cost = 0;
int64_t mc_dep_cost = 0;
const int mi_wide = mi_size_wide[bsize];
const int mi_high = mi_size_high[bsize];
if (tpl_frame->is_valid == 0) return orig_rdmult;
if (!is_frame_tpl_eligible(cpi)) return orig_rdmult;
if (cpi->gf_group.index >= MAX_LAG_BUFFERS) return orig_rdmult;
#if !USE_TPL_CLASSIC_MODEL
int64_t mc_count = 0, mc_saved = 0;
#endif // !USE_TPL_CLASSIC_MODEL
int mi_count = 0;
const int mi_col_sr =
coded_to_superres_mi(mi_col, cm->superres_scale_denominator);
const int mi_col_end_sr =
coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator);
const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
const int step = 1 << cpi->tpl_stats_block_mis_log2;
for (int row = mi_row; row < mi_row + mi_high; row += step) {
for (int col = mi_col_sr; col < mi_col_end_sr; col += step) {
if (row >= cm->mi_rows || col >= mi_cols_sr) continue;
TplDepStats *this_stats =
&tpl_stats[av1_tpl_ptr_pos(cpi, row, col, tpl_stride)];
int64_t mc_dep_delta =
RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
this_stats->mc_dep_dist);
intra_cost += this_stats->recrf_dist << RDDIV_BITS;
mc_dep_cost += (this_stats->recrf_dist << RDDIV_BITS) + mc_dep_delta;
#if !USE_TPL_CLASSIC_MODEL
mc_count += this_stats->mc_count;
mc_saved += this_stats->mc_saved;
#endif // !USE_TPL_CLASSIC_MODEL
mi_count++;
}
}
aom_clear_system_state();
double beta = 1.0;
if (analysis_type == 0) {
if (mc_dep_cost > 0 && intra_cost > 0) {
const double r0 = cpi->rd.r0;
const double rk = (double)intra_cost / mc_dep_cost;
beta = (r0 / rk);
}
#if !USE_TPL_CLASSIC_MODEL
} else if (analysis_type == 1) {
const double mc_count_base = (mi_count * cpi->rd.mc_count_base);
beta = (mc_count + 1.0) / (mc_count_base + 1.0);
beta = pow(beta, 0.5);
} else if (analysis_type == 2) {
const double mc_saved_base = (mi_count * cpi->rd.mc_saved_base);
beta = (mc_saved + 1.0) / (mc_saved_base + 1.0);
beta = pow(beta, 0.5);
#endif // !USE_TPL_CLASSIC_MODEL
}
int rdmult = av1_get_adaptive_rdmult(cpi, beta);
aom_clear_system_state();
rdmult = AOMMIN(rdmult, orig_rdmult * 3 / 2);
rdmult = AOMMAX(rdmult, orig_rdmult * 1 / 2);
rdmult = AOMMAX(1, rdmult);
return rdmult;
}
static int get_tpl_stats_b(AV1_COMP *cpi, BLOCK_SIZE bsize, int mi_row,
int mi_col, int64_t *intra_cost_b,
int64_t *inter_cost_b, int *stride) {
if (!cpi->oxcf.enable_tpl_model) return 0;
if (cpi->tpl_model_pass == 1) {
assert(cpi->oxcf.enable_tpl_model == 2);
return 0;
}
if (cpi->oxcf.superres_mode != SUPERRES_NONE) return 0;
if (cpi->common.current_frame.frame_type == KEY_FRAME) return 0;
const FRAME_UPDATE_TYPE update_type = get_frame_update_type(&cpi->gf_group);
if (update_type == INTNL_OVERLAY_UPDATE || update_type == OVERLAY_UPDATE)
return 0;
assert(IMPLIES(cpi->gf_group.size > 0,
cpi->gf_group.index < cpi->gf_group.size));
AV1_COMMON *const cm = &cpi->common;
const int gf_group_index = cpi->gf_group.index;
TplDepFrame *tpl_frame = &cpi->tpl_frame[gf_group_index];
TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
int tpl_stride = tpl_frame->stride;
const int mi_wide = mi_size_wide[bsize];
const int mi_high = mi_size_high[bsize];
if (tpl_frame->is_valid == 0) return 0;
if (gf_group_index >= MAX_LAG_BUFFERS) return 0;
int mi_count = 0;
const int mi_col_sr =
coded_to_superres_mi(mi_col, cm->superres_scale_denominator);
const int mi_col_end_sr =
coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator);
const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
// TPL store unit size is not the same as the motion estimation unit size.
// Here always use motion estimation size to avoid getting repetitive inter/
// intra cost.
const BLOCK_SIZE tpl_bsize = convert_length_to_bsize(MC_FLOW_BSIZE_1D);
const int step = mi_size_wide[tpl_bsize];
assert(mi_size_wide[tpl_bsize] == mi_size_high[tpl_bsize]);
*stride = (mi_col_end_sr - mi_col_sr) / step;
for (int row = mi_row; row < mi_row + mi_high; row += step) {
for (int col = mi_col_sr; col < mi_col_end_sr; col += step) {
if (row >= cm->mi_rows || col >= mi_cols_sr) continue;
TplDepStats *this_stats =
&tpl_stats[av1_tpl_ptr_pos(cpi, row, col, tpl_stride)];
inter_cost_b[mi_count] = this_stats->inter_cost;
intra_cost_b[mi_count] = this_stats->intra_cost;
mi_count++;
}
}
return mi_count;
}
// analysis_type 0: Use mc_dep_cost and intra_cost
// analysis_type 1: Use count of best inter predictor chosen
// analysis_type 2: Use cost reduction from intra to inter for best inter
// predictor chosen
static int get_q_for_deltaq_objective(AV1_COMP *const cpi, BLOCK_SIZE bsize,
int mi_row, int mi_col) {
AV1_COMMON *const cm = &cpi->common;
assert(IMPLIES(cpi->gf_group.size > 0,
cpi->gf_group.index < cpi->gf_group.size));
const int tpl_idx = cpi->gf_group.index;
TplDepFrame *tpl_frame = &cpi->tpl_frame[tpl_idx];
TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
int tpl_stride = tpl_frame->stride;
int64_t intra_cost = 0;
int64_t mc_dep_cost = 0;
const int mi_wide = mi_size_wide[bsize];
const int mi_high = mi_size_high[bsize];
if (cpi->tpl_model_pass == 1) {
assert(cpi->oxcf.enable_tpl_model == 2);
return cm->base_qindex;
}
if (tpl_frame->is_valid == 0) return cm->base_qindex;
if (!is_frame_tpl_eligible(cpi)) return cm->base_qindex;
if (cpi->gf_group.index >= MAX_LAG_BUFFERS) return cm->base_qindex;
#if !USE_TPL_CLASSIC_MODEL
int64_t mc_count = 0, mc_saved = 0;
#endif // !USE_TPL_CLASSIC_MODEL
int mi_count = 0;
const int mi_col_sr =
coded_to_superres_mi(mi_col, cm->superres_scale_denominator);
const int mi_col_end_sr =
coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator);
const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
const int step = 1 << cpi->tpl_stats_block_mis_log2;
for (int row = mi_row; row < mi_row + mi_high; row += step) {
for (int col = mi_col_sr; col < mi_col_end_sr; col += step) {
if (row >= cm->mi_rows || col >= mi_cols_sr) continue;
TplDepStats *this_stats =
&tpl_stats[av1_tpl_ptr_pos(cpi, row, col, tpl_stride)];
int64_t mc_dep_delta =
RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
this_stats->mc_dep_dist);
intra_cost += this_stats->recrf_dist << RDDIV_BITS;
mc_dep_cost += (this_stats->recrf_dist << RDDIV_BITS) + mc_dep_delta;
#if !USE_TPL_CLASSIC_MODEL
mc_count += this_stats->mc_count;
mc_saved += this_stats->mc_saved;
#endif // !USE_TPL_CLASSIC_MODEL
mi_count++;
}
}
aom_clear_system_state();
int offset = 0;
double beta = 1.0;
if (mc_dep_cost > 0 && intra_cost > 0) {
const double r0 = cpi->rd.r0;
const double rk = (double)intra_cost / mc_dep_cost;
beta = (r0 / rk);
assert(beta > 0.0);
}
offset = av1_get_deltaq_offset(cpi, cm->base_qindex, beta);
aom_clear_system_state();
const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
offset = AOMMIN(offset, delta_q_info->delta_q_res * 9 - 1);
offset = AOMMAX(offset, -delta_q_info->delta_q_res * 9 + 1);
int qindex = cm->base_qindex + offset;
qindex = AOMMIN(qindex, MAXQ);
qindex = AOMMAX(qindex, MINQ);
return qindex;
}
static AOM_INLINE void setup_delta_q(AV1_COMP *const cpi, ThreadData *td,
MACROBLOCK *const x,
const TileInfo *const tile_info,
int mi_row, int mi_col, int num_planes) {
AV1_COMMON *const cm = &cpi->common;
const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
assert(delta_q_info->delta_q_present_flag);
const BLOCK_SIZE sb_size = cm->seq_params.sb_size;
// Delta-q modulation based on variance
av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes, sb_size);
int current_qindex = cm->base_qindex;
if (cpi->oxcf.deltaq_mode == DELTA_Q_PERCEPTUAL) {
if (DELTA_Q_PERCEPTUAL_MODULATION == 1) {
const int block_wavelet_energy_level =
av1_block_wavelet_energy_level(cpi, x, sb_size);
x->sb_energy_level = block_wavelet_energy_level;
current_qindex = av1_compute_q_from_energy_level_deltaq_mode(
cpi, block_wavelet_energy_level);
} else {
const int block_var_level = av1_log_block_var(cpi, x, sb_size);
x->sb_energy_level = block_var_level;
current_qindex =
av1_compute_q_from_energy_level_deltaq_mode(cpi, block_var_level);
}
} else if (cpi->oxcf.deltaq_mode == DELTA_Q_OBJECTIVE &&
cpi->oxcf.enable_tpl_model) {
// Setup deltaq based on tpl stats
current_qindex = get_q_for_deltaq_objective(cpi, sb_size, mi_row, mi_col);
}
const int delta_q_res = delta_q_info->delta_q_res;
// Right now aq only works with tpl model. So if tpl is disabled, we set the
// current_qindex to base_qindex.
if (cpi->oxcf.enable_tpl_model && cpi->oxcf.deltaq_mode != NO_DELTA_Q) {
current_qindex =
clamp(current_qindex, delta_q_res, 256 - delta_q_info->delta_q_res);
} else {
current_qindex = cm->base_qindex;
}
MACROBLOCKD *const xd = &x->e_mbd;
const int sign_deltaq_index =
current_qindex - xd->current_qindex >= 0 ? 1 : -1;
const int deltaq_deadzone = delta_q_res / 4;
const int qmask = ~(delta_q_res - 1);
int abs_deltaq_index = abs(current_qindex - xd->current_qindex);
abs_deltaq_index = (abs_deltaq_index + deltaq_deadzone) & qmask;
current_qindex = xd->current_qindex + sign_deltaq_index * abs_deltaq_index;
current_qindex = AOMMAX(current_qindex, MINQ + 1);
assert(current_qindex > 0);
xd->delta_qindex = current_qindex - cm->base_qindex;
set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size);
xd->mi[0]->current_qindex = current_qindex;
av1_init_plane_quantizers(cpi, x, xd->mi[0]->segment_id);
// keep track of any non-zero delta-q used
td->deltaq_used |= (xd->delta_qindex != 0);
if (cpi->oxcf.deltalf_mode) {
const int delta_lf_res = delta_q_info->delta_lf_res;
const int lfmask = ~(delta_lf_res - 1);
const int delta_lf_from_base =
((xd->delta_qindex / 2 + delta_lf_res / 2) & lfmask);
const int8_t delta_lf =
(int8_t)clamp(delta_lf_from_base, -MAX_LOOP_FILTER, MAX_LOOP_FILTER);
const int frame_lf_count =
av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
const int mib_size = cm->seq_params.mib_size;
// pre-set the delta lf for loop filter. Note that this value is set
// before mi is assigned for each block in current superblock
for (int j = 0; j < AOMMIN(mib_size, cm->mi_rows - mi_row); j++) {
for (int k = 0; k < AOMMIN(mib_size, cm->mi_cols - mi_col); k++) {
const int mi_idx = get_alloc_mi_idx(cm, mi_row + j, mi_col + k);
cm->mi[mi_idx].delta_lf_from_base = delta_lf;
for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) {
cm->mi[mi_idx].delta_lf[lf_id] = delta_lf;
}
}
}
}
}
#endif // !CONFIG_REALTIME_ONLY
#define AVG_CDF_WEIGHT_LEFT 3
#define AVG_CDF_WEIGHT_TOP_RIGHT 1
static AOM_INLINE void avg_cdf_symbol(aom_cdf_prob *cdf_ptr_left,
aom_cdf_prob *cdf_ptr_tr, int num_cdfs,
int cdf_stride, int nsymbs, int wt_left,
int wt_tr) {
for (int i = 0; i < num_cdfs; i++) {
for (int j = 0; j <= nsymbs; j++) {
cdf_ptr_left[i * cdf_stride + j] =
(aom_cdf_prob)(((int)cdf_ptr_left[i * cdf_stride + j] * wt_left +
(int)cdf_ptr_tr[i * cdf_stride + j] * wt_tr +
((wt_left + wt_tr) / 2)) /
(wt_left + wt_tr));
assert(cdf_ptr_left[i * cdf_stride + j] >= 0 &&
cdf_ptr_left[i * cdf_stride + j] < CDF_PROB_TOP);
}
}
}
#define AVERAGE_CDF(cname_left, cname_tr, nsymbs) \
AVG_CDF_STRIDE(cname_left, cname_tr, nsymbs, CDF_SIZE(nsymbs))
#define AVG_CDF_STRIDE(cname_left, cname_tr, nsymbs, cdf_stride) \
do { \
aom_cdf_prob *cdf_ptr_left = (aom_cdf_prob *)cname_left; \
aom_cdf_prob *cdf_ptr_tr = (aom_cdf_prob *)cname_tr; \
int array_size = (int)sizeof(cname_left) / sizeof(aom_cdf_prob); \
int num_cdfs = array_size / cdf_stride; \
avg_cdf_symbol(cdf_ptr_left, cdf_ptr_tr, num_cdfs, cdf_stride, nsymbs, \
wt_left, wt_tr); \
} while (0)
static AOM_INLINE void avg_nmv(nmv_context *nmv_left, nmv_context *nmv_tr,
int wt_left, int wt_tr) {
AVERAGE_CDF(nmv_left->joints_cdf, nmv_tr->joints_cdf, 4);
for (int i = 0; i < 2; i++) {
AVERAGE_CDF(nmv_left->comps[i].classes_cdf, nmv_tr->comps[i].classes_cdf,
MV_CLASSES);
AVERAGE_CDF(nmv_left->comps[i].class0_fp_cdf,
nmv_tr->comps[i].class0_fp_cdf, MV_FP_SIZE);
AVERAGE_CDF(nmv_left->comps[i].fp_cdf, nmv_tr->comps[i].fp_cdf, MV_FP_SIZE);
AVERAGE_CDF(nmv_left->comps[i].sign_cdf, nmv_tr->comps[i].sign_cdf, 2);
AVERAGE_CDF(nmv_left->comps[i].class0_hp_cdf,
nmv_tr->comps[i].class0_hp_cdf, 2);
AVERAGE_CDF(nmv_left->comps[i].hp_cdf, nmv_tr->comps[i].hp_cdf, 2);
AVERAGE_CDF(nmv_left->comps[i].class0_cdf, nmv_tr->comps[i].class0_cdf,
CLASS0_SIZE);
AVERAGE_CDF(nmv_left->comps[i].bits_cdf, nmv_tr->comps[i].bits_cdf, 2);
}
}
// In case of row-based multi-threading of encoder, since we always
// keep a top - right sync, we can average the top - right SB's CDFs and
// the left SB's CDFs and use the same for current SB's encoding to
// improve the performance. This function facilitates the averaging
// of CDF and used only when row-mt is enabled in encoder.
static AOM_INLINE void avg_cdf_symbols(FRAME_CONTEXT *ctx_left,
FRAME_CONTEXT *ctx_tr, int wt_left,
int wt_tr) {
AVERAGE_CDF(ctx_left->txb_skip_cdf, ctx_tr->txb_skip_cdf, 2);
AVERAGE_CDF(ctx_left->eob_extra_cdf, ctx_tr->eob_extra_cdf, 2);
AVERAGE_CDF(ctx_left->dc_sign_cdf, ctx_tr->dc_sign_cdf, 2);
AVERAGE_CDF(ctx_left->eob_flag_cdf16, ctx_tr->eob_flag_cdf16, 5);
AVERAGE_CDF(ctx_left->eob_flag_cdf32, ctx_tr->eob_flag_cdf32, 6);
AVERAGE_CDF(ctx_left->eob_flag_cdf64, ctx_tr->eob_flag_cdf64, 7);
AVERAGE_CDF(ctx_left->eob_flag_cdf128, ctx_tr->eob_flag_cdf128, 8);
AVERAGE_CDF(ctx_left->eob_flag_cdf256, ctx_tr->eob_flag_cdf256, 9);
AVERAGE_CDF(ctx_left->eob_flag_cdf512, ctx_tr->eob_flag_cdf512, 10);
AVERAGE_CDF(ctx_left->eob_flag_cdf1024, ctx_tr->eob_flag_cdf1024, 11);
AVERAGE_CDF(ctx_left->coeff_base_eob_cdf, ctx_tr->coeff_base_eob_cdf, 3);
AVERAGE_CDF(ctx_left->coeff_base_cdf, ctx_tr->coeff_base_cdf, 4);
AVERAGE_CDF(ctx_left->coeff_br_cdf, ctx_tr->coeff_br_cdf, BR_CDF_SIZE);
AVERAGE_CDF(ctx_left->newmv_cdf, ctx_tr->newmv_cdf, 2);
AVERAGE_CDF(ctx_left->zeromv_cdf, ctx_tr->zeromv_cdf, 2);
AVERAGE_CDF(ctx_left->refmv_cdf, ctx_tr->refmv_cdf, 2);
AVERAGE_CDF(ctx_left->drl_cdf, ctx_tr->drl_cdf, 2);
AVERAGE_CDF(ctx_left->inter_compound_mode_cdf,
ctx_tr->inter_compound_mode_cdf, INTER_COMPOUND_MODES);
AVERAGE_CDF(ctx_left->compound_type_cdf, ctx_tr->compound_type_cdf,
MASKED_COMPOUND_TYPES);
AVERAGE_CDF(ctx_left->wedge_idx_cdf, ctx_tr->wedge_idx_cdf, 16);
AVERAGE_CDF(ctx_left->interintra_cdf, ctx_tr->interintra_cdf, 2);
AVERAGE_CDF(ctx_left->wedge_interintra_cdf, ctx_tr->wedge_interintra_cdf, 2);
AVERAGE_CDF(ctx_left->interintra_mode_cdf, ctx_tr->interintra_mode_cdf,
INTERINTRA_MODES);
AVERAGE_CDF(ctx_left->motion_mode_cdf, ctx_tr->motion_mode_cdf, MOTION_MODES);
AVERAGE_CDF(ctx_left->obmc_cdf, ctx_tr->obmc_cdf, 2);
AVERAGE_CDF(ctx_left->palette_y_size_cdf, ctx_tr->palette_y_size_cdf,
PALETTE_SIZES);
AVERAGE_CDF(ctx_left->palette_uv_size_cdf, ctx_tr->palette_uv_size_cdf,
PALETTE_SIZES);
for (int j = 0; j < PALETTE_SIZES; j++) {
int nsymbs = j + PALETTE_MIN_SIZE;
AVG_CDF_STRIDE(ctx_left->palette_y_color_index_cdf[j],
ctx_tr->palette_y_color_index_cdf[j], nsymbs,
CDF_SIZE(PALETTE_COLORS));
AVG_CDF_STRIDE(ctx_left->palette_uv_color_index_cdf[j],
ctx_tr->palette_uv_color_index_cdf[j], nsymbs,
CDF_SIZE(PALETTE_COLORS));
}
AVERAGE_CDF(ctx_left->palette_y_mode_cdf, ctx_tr->palette_y_mode_cdf, 2);
AVERAGE_CDF(ctx_left->palette_uv_mode_cdf, ctx_tr->palette_uv_mode_cdf, 2);
AVERAGE_CDF(ctx_left->comp_inter_cdf, ctx_tr->comp_inter_cdf, 2);
AVERAGE_CDF(ctx_left->single_ref_cdf, ctx_tr->single_ref_cdf, 2);
AVERAGE_CDF(ctx_left->comp_ref_type_cdf, ctx_tr->comp_ref_type_cdf, 2);
AVERAGE_CDF(ctx_left->uni_comp_ref_cdf, ctx_tr->uni_comp_ref_cdf, 2);
AVERAGE_CDF(ctx_left->comp_ref_cdf, ctx_tr->comp_ref_cdf, 2);
AVERAGE_CDF(ctx_left->comp_bwdref_cdf, ctx_tr->comp_bwdref_cdf, 2);
AVERAGE_CDF(ctx_left->txfm_partition_cdf, ctx_tr->txfm_partition_cdf, 2);
AVERAGE_CDF(ctx_left->compound_index_cdf, ctx_tr->compound_index_cdf, 2);
AVERAGE_CDF(ctx_left->comp_group_idx_cdf, ctx_tr->comp_group_idx_cdf, 2);
AVERAGE_CDF(ctx_left->skip_mode_cdfs, ctx_tr->skip_mode_cdfs, 2);
AVERAGE_CDF(ctx_left->skip_cdfs, ctx_tr->skip_cdfs, 2);
AVERAGE_CDF(ctx_left->intra_inter_cdf, ctx_tr->intra_inter_cdf, 2);
avg_nmv(&ctx_left->nmvc, &ctx_tr->nmvc, wt_left, wt_tr);
avg_nmv(&ctx_left->ndvc, &ctx_tr->ndvc, wt_left, wt_tr);
AVERAGE_CDF(ctx_left->intrabc_cdf, ctx_tr->intrabc_cdf, 2);
AVERAGE_CDF(ctx_left->seg.tree_cdf, ctx_tr->seg.tree_cdf, MAX_SEGMENTS);
AVERAGE_CDF(ctx_left->seg.pred_cdf, ctx_tr->seg.pred_cdf, 2);
AVERAGE_CDF(ctx_left->seg.spatial_pred_seg_cdf,
ctx_tr->seg.spatial_pred_seg_cdf, MAX_SEGMENTS);
AVERAGE_CDF(ctx_left->filter_intra_cdfs, ctx_tr->filter_intra_cdfs, 2);
AVERAGE_CDF(ctx_left->filter_intra_mode_cdf, ctx_tr->filter_intra_mode_cdf,
FILTER_INTRA_MODES);
AVERAGE_CDF(ctx_left->switchable_restore_cdf, ctx_tr->switchable_restore_cdf,
RESTORE_SWITCHABLE_TYPES);
AVERAGE_CDF(ctx_left->wiener_restore_cdf, ctx_tr->wiener_restore_cdf, 2);
AVERAGE_CDF(ctx_left->sgrproj_restore_cdf, ctx_tr->sgrproj_restore_cdf, 2);
AVERAGE_CDF(ctx_left->y_mode_cdf, ctx_tr->y_mode_cdf, INTRA_MODES);
AVG_CDF_STRIDE(ctx_left->uv_mode_cdf[0], ctx_tr->uv_mode_cdf[0],
UV_INTRA_MODES - 1, CDF_SIZE(UV_INTRA_MODES));
AVERAGE_CDF(ctx_left->uv_mode_cdf[1], ctx_tr->uv_mode_cdf[1], UV_INTRA_MODES);
for (int i = 0; i < PARTITION_CONTEXTS; i++) {
if (i < 4) {
AVG_CDF_STRIDE(ctx_left->partition_cdf[i], ctx_tr->partition_cdf[i], 4,
CDF_SIZE(10));
} else if (i < 16) {
AVERAGE_CDF(ctx_left->partition_cdf[i], ctx_tr->partition_cdf[i], 10);
} else {
AVG_CDF_STRIDE(ctx_left->partition_cdf[i], ctx_tr->partition_cdf[i], 8,
CDF_SIZE(10));
}
}
AVERAGE_CDF(ctx_left->switchable_interp_cdf, ctx_tr->switchable_interp_cdf,
SWITCHABLE_FILTERS);
AVERAGE_CDF(ctx_left->kf_y_cdf, ctx_tr->kf_y_cdf, INTRA_MODES);
AVERAGE_CDF(ctx_left->angle_delta_cdf, ctx_tr->angle_delta_cdf,
2 * MAX_ANGLE_DELTA + 1);
AVG_CDF_STRIDE(ctx_left->tx_size_cdf[0], ctx_tr->tx_size_cdf[0], MAX_TX_DEPTH,
CDF_SIZE(MAX_TX_DEPTH + 1));
AVERAGE_CDF(ctx_left->tx_size_cdf[1], ctx_tr->tx_size_cdf[1],
MAX_TX_DEPTH + 1);
AVERAGE_CDF(ctx_left->tx_size_cdf[2], ctx_tr->tx_size_cdf[2],
MAX_TX_DEPTH + 1);
AVERAGE_CDF(ctx_left->tx_size_cdf[3], ctx_tr->tx_size_cdf[3],
MAX_TX_DEPTH + 1);
AVERAGE_CDF(ctx_left->delta_q_cdf, ctx_tr->delta_q_cdf, DELTA_Q_PROBS + 1);
AVERAGE_CDF(ctx_left->delta_lf_cdf, ctx_tr->delta_lf_cdf, DELTA_LF_PROBS + 1);
for (int i = 0; i < FRAME_LF_COUNT; i++) {
AVERAGE_CDF(ctx_left->delta_lf_multi_cdf[i], ctx_tr->delta_lf_multi_cdf[i],
DELTA_LF_PROBS + 1);
}
AVG_CDF_STRIDE(ctx_left->intra_ext_tx_cdf[1], ctx_tr->intra_ext_tx_cdf[1], 7,
CDF_SIZE(TX_TYPES));
AVG_CDF_STRIDE(ctx_left->intra_ext_tx_cdf[2], ctx_tr->intra_ext_tx_cdf[2], 5,
CDF_SIZE(TX_TYPES));
AVG_CDF_STRIDE(ctx_left->inter_ext_tx_cdf[1], ctx_tr->inter_ext_tx_cdf[1], 16,
CDF_SIZE(TX_TYPES));
AVG_CDF_STRIDE(ctx_left->inter_ext_tx_cdf[2], ctx_tr->inter_ext_tx_cdf[2], 12,
CDF_SIZE(TX_TYPES));
AVG_CDF_STRIDE(ctx_left->inter_ext_tx_cdf[3], ctx_tr->inter_ext_tx_cdf[3], 2,
CDF_SIZE(TX_TYPES));
AVERAGE_CDF(ctx_left->cfl_sign_cdf, ctx_tr->cfl_sign_cdf, CFL_JOINT_SIGNS);
AVERAGE_CDF(ctx_left->cfl_alpha_cdf, ctx_tr->cfl_alpha_cdf,
CFL_ALPHABET_SIZE);
}
#if !CONFIG_REALTIME_ONLY
static AOM_INLINE void adjust_rdmult_tpl_model(AV1_COMP *cpi, MACROBLOCK *x,
int mi_row, int mi_col) {
const BLOCK_SIZE sb_size = cpi->common.seq_params.sb_size;
const int orig_rdmult = cpi->rd.RDMULT;
if (cpi->tpl_model_pass == 1) {
assert(cpi->oxcf.enable_tpl_model == 2);
x->rdmult = orig_rdmult;
return;
}
assert(IMPLIES(cpi->gf_group.size > 0,
cpi->gf_group.index < cpi->gf_group.size));
const int gf_group_index = cpi->gf_group.index;
if (cpi->oxcf.enable_tpl_model && cpi->oxcf.aq_mode == NO_AQ &&
cpi->oxcf.deltaq_mode == NO_DELTA_Q && gf_group_index > 0 &&
cpi->gf_group.update_type[gf_group_index] == ARF_UPDATE) {
const int dr =
get_rdmult_delta(cpi, sb_size, 0, mi_row, mi_col, orig_rdmult);
x->rdmult = dr;
}
}
#endif
static INLINE void reset_thresh_freq_fact(MACROBLOCK *const x) {
int i, j;
for (i = 0; i < BLOCK_SIZES_ALL; ++i) {
for (j = 0; j < MAX_MODES; ++j) {
x->thresh_freq_fact[i][j] = 32;
}
}
}
static AOM_INLINE void encode_sb_row(AV1_COMP *cpi, ThreadData *td,
TileDataEnc *tile_data, int mi_row,
TOKENEXTRA **tp, int use_nonrd_mode) {
AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
const TileInfo *const tile_info = &tile_data->tile_info;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const SPEED_FEATURES *const sf = &cpi->sf;
const int sb_cols_in_tile = av1_get_sb_cols_in_tile(cm, tile_data->tile_info);
const BLOCK_SIZE sb_size = cm->seq_params.sb_size;
const int mib_size = cm->seq_params.mib_size;
const int mib_size_log2 = cm->seq_params.mib_size_log2;
const int sb_row = (mi_row - tile_info->mi_row_start) >> mib_size_log2;
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, encode_sb_time);
#endif
// Initialize the left context for the new SB row
av1_zero_left_context(xd);
// Reset delta for every tile
if (mi_row == tile_info->mi_row_start || cpi->row_mt) {
if (cm->delta_q_info.delta_q_present_flag)
xd->current_qindex = cm->base_qindex;
if (cm->delta_q_info.delta_lf_present_flag) {
av1_reset_loop_filter_delta(xd, av1_num_planes(cm));
}
}
reset_thresh_freq_fact(x);
// Code each SB in the row
for (int mi_col = tile_info->mi_col_start, sb_col_in_tile = 0;
mi_col < tile_info->mi_col_end; mi_col += mib_size, sb_col_in_tile++) {
(*(cpi->row_mt_sync_read_ptr))(&tile_data->row_mt_sync, sb_row,
sb_col_in_tile);
if (tile_data->allow_update_cdf && (cpi->row_mt == 1) &&
(tile_info->mi_row_start != mi_row)) {
if ((tile_info->mi_col_start == mi_col)) {
// restore frame context of 1st column sb
memcpy(xd->tile_ctx, x->row_ctx, sizeof(*xd->tile_ctx));
} else {
int wt_left = AVG_CDF_WEIGHT_LEFT;
int wt_tr = AVG_CDF_WEIGHT_TOP_RIGHT;
if (tile_info->mi_col_end > (mi_col + mib_size))
avg_cdf_symbols(xd->tile_ctx, x->row_ctx + sb_col_in_tile, wt_left,
wt_tr);
else
avg_cdf_symbols(xd->tile_ctx, x->row_ctx + sb_col_in_tile - 1,
wt_left, wt_tr);
}
}
switch (cpi->oxcf.coeff_cost_upd_freq) {
case COST_UPD_TILE: // Tile level
if (mi_row != tile_info->mi_row_start) break;
AOM_FALLTHROUGH_INTENDED;
case COST_UPD_SBROW: // SB row level in tile
if (mi_col != tile_info->mi_col_start) break;
AOM_FALLTHROUGH_INTENDED;
case COST_UPD_SB: // SB level
if (cpi->sf.disable_sb_level_coeff_cost_upd &&
mi_col != tile_info->mi_col_start)
break;
av1_fill_coeff_costs(&td->mb, xd->tile_ctx, num_planes);
break;
default: assert(0);
}
switch (cpi->oxcf.mode_cost_upd_freq) {
case COST_UPD_TILE: // Tile level
if (mi_row != tile_info->mi_row_start) break;
AOM_FALLTHROUGH_INTENDED;
case COST_UPD_SBROW: // SB row level in tile
if (mi_col != tile_info->mi_col_start) break;
AOM_FALLTHROUGH_INTENDED;
case COST_UPD_SB: // SB level
av1_fill_mode_rates(cm, x, xd->tile_ctx);
break;
default: assert(0);
}
switch (cpi->oxcf.mv_cost_upd_freq) {
case COST_UPD_OFF: break;
case COST_UPD_TILE: // Tile level
if (mi_row != tile_info->mi_row_start) break;
AOM_FALLTHROUGH_INTENDED;
case COST_UPD_SBROW: // SB row level in tile
if (mi_col != tile_info->mi_col_start) break;
AOM_FALLTHROUGH_INTENDED;
case COST_UPD_SB: // SB level
if (cpi->sf.disable_sb_level_mv_cost_upd &&
mi_col != tile_info->mi_col_start)
break;
av1_fill_mv_costs(xd->tile_ctx, cm->cur_frame_force_integer_mv,
cm->allow_high_precision_mv, x);
break;
default: assert(0);
}
x->color_sensitivity[0] = 0;
x->color_sensitivity[1] = 0;
// Reset hash state for transform/mode rd hash information
reset_hash_records(x, cpi->sf.use_inter_txb_hash);
if (!use_nonrd_mode) {
av1_zero(x->picked_ref_frames_mask);
av1_zero(x->pred_mv);
}
PC_TREE *const pc_root = td->pc_root[mib_size_log2 - MIN_MIB_SIZE_LOG2];
pc_root->index = 0;
if ((sf->simple_motion_search_split ||
sf->simple_motion_search_prune_rect ||
sf->simple_motion_search_early_term_none ||
sf->ml_early_term_after_part_split_level) &&
!frame_is_intra_only(cm) && !use_nonrd_mode) {
init_simple_motion_search_mvs(pc_root);
}
#if !CONFIG_REALTIME_ONLY
td->mb.cnn_output_valid = 0;
#endif
xd->cur_frame_force_integer_mv = cm->cur_frame_force_integer_mv;
x->sb_energy_level = 0;
#if !CONFIG_REALTIME_ONLY
if (cm->delta_q_info.delta_q_present_flag) {
setup_delta_q(cpi, td, x, tile_info, mi_row, mi_col, num_planes);
av1_tpl_rdmult_setup_sb(cpi, x, sb_size, mi_row, mi_col);
}
#endif
td->mb.cb_coef_buff = av1_get_cb_coeff_buffer(cpi, mi_row, mi_col);
MB_MODE_INFO **mi = cm->mi_grid_base + get_mi_grid_idx(cm, mi_row, mi_col);
x->source_variance = UINT_MAX;
x->simple_motion_pred_sse = UINT_MAX;
const struct segmentation *const seg = &cm->seg;
int seg_skip = 0;
if (seg->enabled) {
const uint8_t *const map =
seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
const int segment_id =
map ? get_segment_id(cm, map, sb_size, mi_row, mi_col) : 0;
seg_skip = segfeature_active(seg, segment_id, SEG_LVL_SKIP);
}
// Realtime path.
if (cpi->oxcf.mode == REALTIME && cpi->oxcf.speed >= 6) {
if (sf->partition_search_type == FIXED_PARTITION || seg_skip) {
set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size);
const BLOCK_SIZE bsize =
seg_skip ? sb_size : sf->always_this_block_size;
set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize);
} else if (cpi->partition_search_skippable_frame) {
set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size);
const BLOCK_SIZE bsize =
get_rd_var_based_fixed_partition(cpi, x, mi_row, mi_col);
set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize);
} else if (sf->partition_search_type == VAR_BASED_PARTITION) {
set_offsets_without_segment_id(cpi, tile_info, x, mi_row, mi_col,
sb_size);
av1_choose_var_based_partitioning(cpi, tile_info, x, mi_row, mi_col);
}
assert(sf->partition_search_type == FIXED_PARTITION || seg_skip ||
cpi->partition_search_skippable_frame ||
sf->partition_search_type == VAR_BASED_PARTITION);
td->mb.cb_offset = 0;
if (use_nonrd_mode) {
nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, sb_size,
pc_root);
} else {
int dummy_rate;
int64_t dummy_dist;
rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, sb_size,
&dummy_rate, &dummy_dist, 1, pc_root);
}
} else {
#if !CONFIG_REALTIME_ONLY
int dummy_rate;
int64_t dummy_dist;
RD_STATS dummy_rdc;
av1_invalid_rd_stats(&dummy_rdc);
adjust_rdmult_tpl_model(cpi, x, mi_row, mi_col);
if (sf->partition_search_type == FIXED_PARTITION || seg_skip) {
set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size);
const BLOCK_SIZE bsize =
seg_skip ? sb_size : sf->always_this_block_size;
set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize);
rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, sb_size,
&dummy_rate, &dummy_dist, 1, pc_root);
} else if (cpi->partition_search_skippable_frame) {
set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size);
const BLOCK_SIZE bsize =
get_rd_var_based_fixed_partition(cpi, x, mi_row, mi_col);
set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize);
rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, sb_size,
&dummy_rate, &dummy_dist, 1, pc_root);
} else {
x->valid_cost_b = 0;
// No stats for overlay frames. Exclude key frame.
x->valid_cost_b =
get_tpl_stats_b(cpi, cm->seq_params.sb_size, mi_row, mi_col,
x->intra_cost_b, x->inter_cost_b, &x->cost_stride);
reset_partition(pc_root, sb_size);
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, rd_pick_partition_time);
#endif
BLOCK_SIZE max_sq_size = x->max_partition_size;
BLOCK_SIZE min_sq_size = x->min_partition_size;
if (use_auto_max_partition(cpi, sb_size, mi_row, mi_col)) {
float features[FEATURE_SIZE_MAX_MIN_PART_PRED] = { 0.0f };
av1_get_max_min_partition_features(cpi, x, mi_row, mi_col, features);
max_sq_size =
AOMMIN(av1_predict_max_partition(cpi, x, features), max_sq_size);
}
min_sq_size = AOMMIN(min_sq_size, max_sq_size);
rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, sb_size,
max_sq_size, min_sq_size, &dummy_rdc, dummy_rdc,
pc_root, NULL);
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, rd_pick_partition_time);
#endif
}
#endif // !CONFIG_REALTIME_ONLY
}
// TODO(angiebird): Let inter_mode_rd_model_estimation support multi-tile.
if (!use_nonrd_mode && cpi->sf.inter_mode_rd_model_estimation == 1 &&
cm->tile_cols == 1 && cm->tile_rows == 1) {
av1_inter_mode_data_fit(tile_data, x->rdmult);
}
if (tile_data->allow_update_cdf && (cpi->row_mt == 1) &&
(tile_info->mi_row_end > (mi_row + mib_size))) {
if (sb_cols_in_tile == 1)
memcpy(x->row_ctx, xd->tile_ctx, sizeof(*xd->tile_ctx));
else if (sb_col_in_tile >= 1)
memcpy(x->row_ctx + sb_col_in_tile - 1, xd->tile_ctx,
sizeof(*xd->tile_ctx));
}
(*(cpi->row_mt_sync_write_ptr))(&tile_data->row_mt_sync, sb_row,
sb_col_in_tile, sb_cols_in_tile);
}
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, encode_sb_time);
#endif
}
static AOM_INLINE void init_encode_frame_mb_context(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
MACROBLOCK *const x = &cpi->td.mb;
MACROBLOCKD *const xd = &x->e_mbd;
// Copy data over into macro block data structures.
av1_setup_src_planes(x, cpi->source, 0, 0, num_planes,
cm->seq_params.sb_size);
av1_setup_block_planes(xd, cm->seq_params.subsampling_x,
cm->seq_params.subsampling_y, num_planes);
}
void av1_alloc_tile_data(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
const int tile_cols = cm->tile_cols;
const int tile_rows = cm->tile_rows;
if (cpi->tile_data != NULL) aom_free(cpi->tile_data);
CHECK_MEM_ERROR(
cm, cpi->tile_data,
aom_memalign(32, tile_cols * tile_rows * sizeof(*cpi->tile_data)));
cpi->allocated_tiles = tile_cols * tile_rows;
}
void av1_init_tile_data(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
const int tile_cols = cm->tile_cols;
const int tile_rows = cm->tile_rows;
int tile_col, tile_row;
TOKENEXTRA *pre_tok = cpi->tile_tok[0][0];
TOKENLIST *tplist = cpi->tplist[0][0];
unsigned int tile_tok = 0;
int tplist_count = 0;
for (tile_row = 0; tile_row < tile_rows; ++tile_row) {
for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
TileDataEnc *const tile_data =
&cpi->tile_data[tile_row * tile_cols + tile_col];
TileInfo *const tile_info = &tile_data->tile_info;
av1_tile_init(tile_info, cm, tile_row, tile_col);
cpi->tile_tok[tile_row][tile_col] = pre_tok + tile_tok;
pre_tok = cpi->tile_tok[tile_row][tile_col];
tile_tok = allocated_tokens(
*tile_info, cm->seq_params.mib_size_log2 + MI_SIZE_LOG2, num_planes);
cpi->tplist[tile_row][tile_col] = tplist + tplist_count;
tplist = cpi->tplist[tile_row][tile_col];
tplist_count = av1_get_sb_rows_in_tile(cm, tile_data->tile_info);
tile_data->allow_update_cdf = !cm->large_scale_tile;
tile_data->allow_update_cdf =
tile_data->allow_update_cdf && !cm->disable_cdf_update;
tile_data->tctx = *cm->fc;
}
}
}
void av1_encode_sb_row(AV1_COMP *cpi, ThreadData *td, int tile_row,
int tile_col, int mi_row) {
AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
const int tile_cols = cm->tile_cols;
TileDataEnc *this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col];
const TileInfo *const tile_info = &this_tile->tile_info;
TOKENEXTRA *tok = NULL;
const int sb_row_in_tile =
(mi_row - tile_info->mi_row_start) >> cm->seq_params.mib_size_log2;
const int tile_mb_cols =
(tile_info->mi_col_end - tile_info->mi_col_start + 2) >> 2;
const int num_mb_rows_in_sb =
((1 << (cm->seq_params.mib_size_log2 + MI_SIZE_LOG2)) + 8) >> 4;
get_start_tok(cpi, tile_row, tile_col, mi_row, &tok,
cm->seq_params.mib_size_log2 + MI_SIZE_LOG2, num_planes);
cpi->tplist[tile_row][tile_col][sb_row_in_tile].start = tok;
encode_sb_row(cpi, td, this_tile, mi_row, &tok, cpi->sf.use_nonrd_pick_mode);
cpi->tplist[tile_row][tile_col][sb_row_in_tile].stop = tok;
cpi->tplist[tile_row][tile_col][sb_row_in_tile].count =
(unsigned int)(cpi->tplist[tile_row][tile_col][sb_row_in_tile].stop -
cpi->tplist[tile_row][tile_col][sb_row_in_tile].start);
assert(
(unsigned int)(tok -
cpi->tplist[tile_row][tile_col][sb_row_in_tile].start) <=
get_token_alloc(num_mb_rows_in_sb, tile_mb_cols,
cm->seq_params.mib_size_log2 + MI_SIZE_LOG2, num_planes));
(void)tile_mb_cols;
(void)num_mb_rows_in_sb;
}
void av1_encode_tile(AV1_COMP *cpi, ThreadData *td, int tile_row,
int tile_col) {
AV1_COMMON *const cm = &cpi->common;
TileDataEnc *const this_tile =
&cpi->tile_data[tile_row * cm->tile_cols + tile_col];
const TileInfo *const tile_info = &this_tile->tile_info;
int mi_row;
if (!cpi->sf.use_nonrd_pick_mode) av1_inter_mode_data_init(this_tile);
av1_zero_above_context(cm, &td->mb.e_mbd, tile_info->mi_col_start,
tile_info->mi_col_end, tile_row);
av1_init_above_context(cm, &td->mb.e_mbd, tile_row);
// Set up pointers to per thread motion search counters.
this_tile->m_search_count = 0; // Count of motion search hits.
this_tile->ex_search_count = 0; // Exhaustive mesh search hits.
td->mb.m_search_count_ptr = &this_tile->m_search_count;
td->mb.ex_search_count_ptr = &this_tile->ex_search_count;
if (cpi->oxcf.enable_cfl_intra) cfl_init(&td->mb.e_mbd.cfl, &cm->seq_params);
av1_crc32c_calculator_init(&td->mb.mb_rd_record.crc_calculator);
for (mi_row = tile_info->mi_row_start; mi_row < tile_info->mi_row_end;
mi_row += cm->seq_params.mib_size) {
av1_encode_sb_row(cpi, td, tile_row, tile_col, mi_row);
}
}
static AOM_INLINE void encode_tiles(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
const int tile_cols = cm->tile_cols;
const int tile_rows = cm->tile_rows;
int tile_col, tile_row;
if (cpi->tile_data == NULL || cpi->allocated_tiles < tile_cols * tile_rows)
av1_alloc_tile_data(cpi);
av1_init_tile_data(cpi);
for (tile_row = 0; tile_row < tile_rows; ++tile_row) {
for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
TileDataEnc *const this_tile =
&cpi->tile_data[tile_row * cm->tile_cols + tile_col];
cpi->td.intrabc_used = 0;
cpi->td.deltaq_used = 0;
cpi->td.mb.e_mbd.tile_ctx = &this_tile->tctx;
cpi->td.mb.tile_pb_ctx = &this_tile->tctx;
av1_encode_tile(cpi, &cpi->td, tile_row, tile_col);
cpi->intrabc_used |= cpi->td.intrabc_used;
cpi->deltaq_used |= cpi->td.deltaq_used;
}
}
}
#define GLOBAL_TRANS_TYPES_ENC 3 // highest motion model to search
static int gm_get_params_cost(const WarpedMotionParams *gm,
const WarpedMotionParams *ref_gm, int allow_hp) {
int params_cost = 0;
int trans_bits, trans_prec_diff;
switch (gm->wmtype) {
case AFFINE:
case ROTZOOM:
params_cost += aom_count_signed_primitive_refsubexpfin(
GM_ALPHA_MAX + 1, SUBEXPFIN_K,
(ref_gm->wmmat[2] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS),
(gm->wmmat[2] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS));
params_cost += aom_count_signed_primitive_refsubexpfin(
GM_ALPHA_MAX + 1, SUBEXPFIN_K,
(ref_gm->wmmat[3] >> GM_ALPHA_PREC_DIFF),
(gm->wmmat[3] >> GM_ALPHA_PREC_DIFF));
if (gm->wmtype >= AFFINE) {
params_cost += aom_count_signed_primitive_refsubexpfin(
GM_ALPHA_MAX + 1, SUBEXPFIN_K,
(ref_gm->wmmat[4] >> GM_ALPHA_PREC_DIFF),
(gm->wmmat[4] >> GM_ALPHA_PREC_DIFF));
params_cost += aom_count_signed_primitive_refsubexpfin(
GM_ALPHA_MAX + 1, SUBEXPFIN_K,
(ref_gm->wmmat[5] >> GM_ALPHA_PREC_DIFF) -
(1 << GM_ALPHA_PREC_BITS),
(gm->wmmat[5] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS));
}
AOM_FALLTHROUGH_INTENDED;
case TRANSLATION:
trans_bits = (gm->wmtype == TRANSLATION)
? GM_ABS_TRANS_ONLY_BITS - !allow_hp
: GM_ABS_TRANS_BITS;
trans_prec_diff = (gm->wmtype == TRANSLATION)
? GM_TRANS_ONLY_PREC_DIFF + !allow_hp
: GM_TRANS_PREC_DIFF;
params_cost += aom_count_signed_primitive_refsubexpfin(
(1 << trans_bits) + 1, SUBEXPFIN_K,
(ref_gm->wmmat[0] >> trans_prec_diff),
(gm->wmmat[0] >> trans_prec_diff));
params_cost += aom_count_signed_primitive_refsubexpfin(
(1 << trans_bits) + 1, SUBEXPFIN_K,
(ref_gm->wmmat[1] >> trans_prec_diff),
(gm->wmmat[1] >> trans_prec_diff));
AOM_FALLTHROUGH_INTENDED;
case IDENTITY: break;
default: assert(0);
}
return (params_cost << AV1_PROB_COST_SHIFT);
}
static int do_gm_search_logic(SPEED_FEATURES *const sf, int frame) {
(void)frame;
switch (sf->gm_search_type) {
case GM_FULL_SEARCH: return 1;
case GM_REDUCED_REF_SEARCH_SKIP_L2_L3:
return !(frame == LAST2_FRAME || frame == LAST3_FRAME);
case GM_REDUCED_REF_SEARCH_SKIP_L2_L3_ARF2:
return !(frame == LAST2_FRAME || frame == LAST3_FRAME ||
(frame == ALTREF2_FRAME));
case GM_DISABLE_SEARCH: return 0;
default: assert(0);
}
return 1;
}
// Set the relative distance of a reference frame w.r.t. current frame
static AOM_INLINE void set_rel_frame_dist(AV1_COMP *cpi) {
const AV1_COMMON *const cm = &cpi->common;
const OrderHintInfo *const order_hint_info = &cm->seq_params.order_hint_info;
MV_REFERENCE_FRAME ref_frame;
int min_past_dist = INT32_MAX, min_future_dist = INT32_MAX;
cpi->nearest_past_ref = NONE_FRAME;
cpi->nearest_future_ref = NONE_FRAME;
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
cpi->ref_relative_dist[ref_frame - LAST_FRAME] = 0;
if (cpi->ref_frame_flags & av1_ref_frame_flag_list[ref_frame]) {
int dist = av1_encoder_get_relative_dist(
order_hint_info,
cm->cur_frame->ref_display_order_hint[ref_frame - LAST_FRAME],
cm->current_frame.display_order_hint);
cpi->ref_relative_dist[ref_frame - LAST_FRAME] = dist;
// Get the nearest ref_frame in the past
if (abs(dist) < min_past_dist && dist < 0) {
cpi->nearest_past_ref = ref_frame;
min_past_dist = abs(dist);
}
// Get the nearest ref_frame in the future
if (dist < min_future_dist && dist > 0) {
cpi->nearest_future_ref = ref_frame;
min_future_dist = dist;
}
}
}
}
// Enforce the number of references for each arbitrary frame based on user
// options and speed.
static AOM_INLINE void enforce_max_ref_frames(AV1_COMP *cpi) {
MV_REFERENCE_FRAME ref_frame;
int total_valid_refs = 0;
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
if (cpi->ref_frame_flags & av1_ref_frame_flag_list[ref_frame]) {
total_valid_refs++;
}
}
const int max_allowed_refs = get_max_allowed_ref_frames(cpi);
for (int i = 0; i < 4 && total_valid_refs > max_allowed_refs; ++i) {
const MV_REFERENCE_FRAME ref_frame_to_disable = disable_order[i];
if (!(cpi->ref_frame_flags &
av1_ref_frame_flag_list[ref_frame_to_disable])) {
continue;
}
switch (ref_frame_to_disable) {
case LAST3_FRAME: cpi->ref_frame_flags &= ~AOM_LAST3_FLAG; break;
case LAST2_FRAME: cpi->ref_frame_flags &= ~AOM_LAST2_FLAG; break;
case ALTREF2_FRAME: cpi->ref_frame_flags &= ~AOM_ALT2_FLAG; break;
case GOLDEN_FRAME: cpi->ref_frame_flags &= ~AOM_GOLD_FLAG; break;
default: assert(0);
}
--total_valid_refs;
}
assert(total_valid_refs <= max_allowed_refs);
}
static INLINE int av1_refs_are_one_sided(const AV1_COMMON *cm) {
assert(!frame_is_intra_only(cm));
int one_sided_refs = 1;
for (int ref = LAST_FRAME; ref <= ALTREF_FRAME; ++ref) {
const RefCntBuffer *const buf = get_ref_frame_buf(cm, ref);
if (buf == NULL) continue;
const int ref_display_order_hint = buf->display_order_hint;
if (av1_encoder_get_relative_dist(
&cm->seq_params.order_hint_info, ref_display_order_hint,
(int)cm->current_frame.display_order_hint) > 0) {
one_sided_refs = 0; // bwd reference
break;
}
}
return one_sided_refs;
}
static INLINE void get_skip_mode_ref_offsets(const AV1_COMMON *cm,
int ref_order_hint[2]) {
const SkipModeInfo *const skip_mode_info = &cm->current_frame.skip_mode_info;
ref_order_hint[0] = ref_order_hint[1] = 0;
if (!skip_mode_info->skip_mode_allowed) return;
const RefCntBuffer *const buf_0 =
get_ref_frame_buf(cm, LAST_FRAME + skip_mode_info->ref_frame_idx_0);
const RefCntBuffer *const buf_1 =
get_ref_frame_buf(cm, LAST_FRAME + skip_mode_info->ref_frame_idx_1);
assert(buf_0 != NULL && buf_1 != NULL);
ref_order_hint[0] = buf_0->order_hint;
ref_order_hint[1] = buf_1->order_hint;
}
static int check_skip_mode_enabled(AV1_COMP *const cpi) {
AV1_COMMON *const cm = &cpi->common;
av1_setup_skip_mode_allowed(cm);
if (!cm->current_frame.skip_mode_info.skip_mode_allowed) return 0;
// Turn off skip mode if the temporal distances of the reference pair to the
// current frame are different by more than 1 frame.
const int cur_offset = (int)cm->current_frame.order_hint;
int ref_offset[2];
get_skip_mode_ref_offsets(cm, ref_offset);
const int cur_to_ref0 = get_relative_dist(&cm->seq_params.order_hint_info,
cur_offset, ref_offset[0]);
const int cur_to_ref1 = abs(get_relative_dist(&cm->seq_params.order_hint_info,
cur_offset, ref_offset[1]));
if (abs(cur_to_ref0 - cur_to_ref1) > 1) return 0;
// High Latency: Turn off skip mode if all refs are fwd.
if (cpi->all_one_sided_refs && cpi->oxcf.lag_in_frames > 0) return 0;
static const int flag_list[REF_FRAMES] = { 0,
AOM_LAST_FLAG,
AOM_LAST2_FLAG,
AOM_LAST3_FLAG,
AOM_GOLD_FLAG,
AOM_BWD_FLAG,
AOM_ALT2_FLAG,
AOM_ALT_FLAG };
const int ref_frame[2] = {
cm->current_frame.skip_mode_info.ref_frame_idx_0 + LAST_FRAME,
cm->current_frame.skip_mode_info.ref_frame_idx_1 + LAST_FRAME
};
if (!(cpi->ref_frame_flags & flag_list[ref_frame[0]]) ||
!(cpi->ref_frame_flags & flag_list[ref_frame[1]]))
return 0;
return 1;
}
// Function to decide if we can skip the global motion parameter computation
// for a particular ref frame
static INLINE int skip_gm_frame(AV1_COMMON *const cm, int ref_frame) {
if ((ref_frame == LAST3_FRAME || ref_frame == LAST2_FRAME) &&
cm->global_motion[GOLDEN_FRAME].wmtype != IDENTITY) {
return get_relative_dist(
&cm->seq_params.order_hint_info,
cm->cur_frame->ref_order_hints[ref_frame - LAST_FRAME],
cm->cur_frame->ref_order_hints[GOLDEN_FRAME - LAST_FRAME]) <= 0;
}
return 0;
}
static AOM_INLINE void set_default_interp_skip_flags(AV1_COMP *cpi) {
const int num_planes = av1_num_planes(&cpi->common);
cpi->default_interp_skip_flags = (num_planes == 1)
? INTERP_SKIP_LUMA_EVAL_CHROMA
: INTERP_SKIP_LUMA_SKIP_CHROMA;
}
// TODO(Remya): Can include erroradv_prod_tr[] for threshold calculation
static INLINE int64_t calc_erroradv_threshold(AV1_COMP *cpi,
int64_t ref_frame_error) {
if (!cpi->sf.disable_adaptive_warp_error_thresh)
return (int64_t)(ref_frame_error * erroradv_tr[cpi->sf.gm_erroradv_type] +
0.5);
else
return INT64_MAX;
}
static void compute_global_motion_for_ref_frame(
AV1_COMP *cpi, YV12_BUFFER_CONFIG *ref_buf[REF_FRAMES], int frame,
int *num_frm_corners, int *frm_corners, unsigned char *frm_buffer,
MotionModel *params_by_motion, uint8_t *segment_map,
const int segment_map_w, const int segment_map_h,
const WarpedMotionParams *ref_params) {
ThreadData *const td = &cpi->td;
MACROBLOCK *const x = &td->mb;
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
int i;
// clang-format off
static const double kIdentityParams[MAX_PARAMDIM - 1] = {
0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0
};
// clang-format on
WarpedMotionParams tmp_wm_params;
const double *params_this_motion;
int inliers_by_motion[RANSAC_NUM_MOTIONS];
assert(ref_buf[frame] != NULL);
if (*num_frm_corners < 0) {
// compute interest points using FAST features
*num_frm_corners = av1_fast_corner_detect(
frm_buffer, cpi->source->y_width, cpi->source->y_height,
cpi->source->y_stride, frm_corners, MAX_CORNERS);
}
TransformationType model;
aom_clear_system_state();
// TODO(sarahparker, debargha): Explore do_adaptive_gm_estimation = 1
const int do_adaptive_gm_estimation = 0;
const int ref_frame_dist = get_relative_dist(
&cm->seq_params.order_hint_info, cm->current_frame.order_hint,
cm->cur_frame->ref_order_hints[frame - LAST_FRAME]);
const GlobalMotionEstimationType gm_estimation_type =
cm->seq_params.order_hint_info.enable_order_hint &&
abs(ref_frame_dist) <= 2 && do_adaptive_gm_estimation
? GLOBAL_MOTION_DISFLOW_BASED
: GLOBAL_MOTION_FEATURE_BASED;
for (model = ROTZOOM; model < GLOBAL_TRANS_TYPES_ENC; ++model) {
int64_t best_warp_error = INT64_MAX;
// Initially set all params to identity.
for (i = 0; i < RANSAC_NUM_MOTIONS; ++i) {
memcpy(params_by_motion[i].params, kIdentityParams,
(MAX_PARAMDIM - 1) * sizeof(*(params_by_motion[i].params)));
params_by_motion[i].num_inliers = 0;
}
av1_compute_global_motion(
model, frm_buffer, cpi->source->y_width, cpi->source->y_height,
cpi->source->y_stride, frm_corners, *num_frm_corners, ref_buf[frame],
cpi->common.seq_params.bit_depth, gm_estimation_type, inliers_by_motion,
params_by_motion, RANSAC_NUM_MOTIONS);
int64_t ref_frame_error = 0;
for (i = 0; i < RANSAC_NUM_MOTIONS; ++i) {
if (inliers_by_motion[i] == 0) continue;
params_this_motion = params_by_motion[i].params;
av1_convert_model_to_params(params_this_motion, &tmp_wm_params);
if (tmp_wm_params.wmtype != IDENTITY) {
av1_compute_feature_segmentation_map(
segment_map, segment_map_w, segment_map_h,
params_by_motion[i].inliers, params_by_motion[i].num_inliers);
ref_frame_error = av1_segmented_frame_error(
is_cur_buf_hbd(xd), xd->bd, ref_buf[frame]->y_buffer,
ref_buf[frame]->y_stride, cpi->source->y_buffer,
cpi->source->y_width, cpi->source->y_height, cpi->source->y_stride,
segment_map, segment_map_w);
int64_t erroradv_threshold =
calc_erroradv_threshold(cpi, ref_frame_error);
const int64_t warp_error = av1_refine_integerized_param(
&tmp_wm_params, tmp_wm_params.wmtype, is_cur_buf_hbd(xd), xd->bd,
ref_buf[frame]->y_buffer, ref_buf[frame]->y_width,
ref_buf[frame]->y_height, ref_buf[frame]->y_stride,
cpi->source->y_buffer, cpi->source->y_width, cpi->source->y_height,
cpi->source->y_stride, GM_REFINEMENT_COUNT, best_warp_error,
segment_map, segment_map_w, erroradv_threshold);
if (warp_error < best_warp_error) {
best_warp_error = warp_error;
// Save the wm_params modified by
// av1_refine_integerized_param() rather than motion index to
// avoid rerunning refine() below.
memcpy(&(cm->global_motion[frame]), &tmp_wm_params,
sizeof(WarpedMotionParams));
}
}
}
if (cm->global_motion[frame].wmtype <= AFFINE)
if (!av1_get_shear_params(&cm->global_motion[frame]))
cm->global_motion[frame] = default_warp_params;
if (cm->global_motion[frame].wmtype == TRANSLATION) {
cm->global_motion[frame].wmmat[0] =
convert_to_trans_prec(cm->allow_high_precision_mv,
cm->global_motion[frame].wmmat[0]) *
GM_TRANS_ONLY_DECODE_FACTOR;
cm->global_motion[frame].wmmat[1] =
convert_to_trans_prec(cm->allow_high_precision_mv,
cm->global_motion[frame].wmmat[1]) *
GM_TRANS_ONLY_DECODE_FACTOR;
}
if (cm->global_motion[frame].wmtype == IDENTITY) continue;
if (ref_frame_error == 0) continue;
// If the best error advantage found doesn't meet the threshold for
// this motion type, revert to IDENTITY.
if (!av1_is_enough_erroradvantage(
(double)best_warp_error / ref_frame_error,
gm_get_params_cost(&cm->global_motion[frame], ref_params,
cm->allow_high_precision_mv),
cpi->sf.gm_erroradv_type)) {
cm->global_motion[frame] = default_warp_params;
}
if (cm->global_motion[frame].wmtype != IDENTITY) break;
}
aom_clear_system_state();
}
typedef struct {
int distance;
MV_REFERENCE_FRAME frame;
} FrameDistPair;
static INLINE void update_valid_ref_frames_for_gm(
AV1_COMP *cpi, YV12_BUFFER_CONFIG *ref_buf[REF_FRAMES],
FrameDistPair *past_ref_frame, FrameDistPair *future_ref_frame,
int *num_past_ref_frames, int *num_future_ref_frames) {
AV1_COMMON *const cm = &cpi->common;
const OrderHintInfo *const order_hint_info = &cm->seq_params.order_hint_info;
for (int frame = ALTREF_FRAME; frame >= LAST_FRAME; --frame) {
const MV_REFERENCE_FRAME ref_frame[2] = { frame, NONE_FRAME };
RefCntBuffer *buf = get_ref_frame_buf(cm, frame);
const int ref_disabled =
!(cpi->ref_frame_flags & av1_ref_frame_flag_list[frame]);
ref_buf[frame] = NULL;
cm->global_motion[frame] = default_warp_params;
// Skip global motion estimation for invalid ref frames
if (buf == NULL ||
(ref_disabled && cpi->sf.recode_loop != DISALLOW_RECODE)) {
cpi->gmparams_cost[frame] = 0;
continue;
} else {
ref_buf[frame] = &buf->buf;
}
if (ref_buf[frame]->y_crop_width == cpi->source->y_crop_width &&
ref_buf[frame]->y_crop_height == cpi->source->y_crop_height &&
do_gm_search_logic(&cpi->sf, frame) &&
!prune_ref_by_selective_ref_frame(
cpi, ref_frame, cm->cur_frame->ref_display_order_hint,
cm->current_frame.display_order_hint) &&
!(cpi->sf.selective_ref_gm && skip_gm_frame(cm, frame))) {
assert(ref_buf[frame] != NULL);
int relative_frame_dist = av1_encoder_get_relative_dist(
order_hint_info, buf->display_order_hint,
cm->cur_frame->display_order_hint);
// Populate past and future ref frames
if (relative_frame_dist <= 0) {
past_ref_frame[*num_past_ref_frames].distance =
abs(relative_frame_dist);
past_ref_frame[*num_past_ref_frames].frame = frame;
(*num_past_ref_frames)++;
} else {
future_ref_frame[*num_future_ref_frames].distance =
abs(relative_frame_dist);
future_ref_frame[*num_future_ref_frames].frame = frame;
(*num_future_ref_frames)++;
}
}
}
}
static INLINE void compute_gm_for_valid_ref_frames(
AV1_COMP *cpi, YV12_BUFFER_CONFIG *ref_buf[REF_FRAMES], int frame,
int *num_frm_corners, int *frm_corners, unsigned char *frm_buffer,
MotionModel *params_by_motion, uint8_t *segment_map,
const int segment_map_w, const int segment_map_h) {
AV1_COMMON *const cm = &cpi->common;
const WarpedMotionParams *ref_params =
cm->prev_frame ? &cm->prev_frame->global_motion[frame]
: &default_warp_params;
compute_global_motion_for_ref_frame(
cpi, ref_buf, frame, num_frm_corners, frm_corners, frm_buffer,
params_by_motion, segment_map, segment_map_w, segment_map_h, ref_params);
cpi->gmparams_cost[frame] =
gm_get_params_cost(&cm->global_motion[frame], ref_params,
cm->allow_high_precision_mv) +
cpi->gmtype_cost[cm->global_motion[frame].wmtype] -
cpi->gmtype_cost[IDENTITY];
}
static int compare_distance(const void *a, const void *b) {
const int diff =
((FrameDistPair *)a)->distance - ((FrameDistPair *)b)->distance;
if (diff > 0)
return 1;
else if (diff < 0)
return -1;
return 0;
}
static INLINE void compute_global_motion_for_references(
AV1_COMP *cpi, YV12_BUFFER_CONFIG *ref_buf[REF_FRAMES],
FrameDistPair reference_frame[REF_FRAMES - 1], int num_ref_frames,
int *num_frm_corners, int *frm_corners, unsigned char *frm_buffer,
MotionModel *params_by_motion, uint8_t *segment_map,
const int segment_map_w, const int segment_map_h) {
AV1_COMMON *const cm = &cpi->common;
// Compute global motion w.r.t. reference frames starting from the nearest ref
// frame in a given direction
for (int frame = 0; frame < num_ref_frames; frame++) {
int ref_frame = reference_frame[frame].frame;
compute_gm_for_valid_ref_frames(cpi, ref_buf, ref_frame, num_frm_corners,
frm_corners, frm_buffer, params_by_motion,
segment_map, segment_map_w, segment_map_h);
// If global motion w.r.t. current ref frame is
// INVALID/TRANSLATION/IDENTITY, skip the evaluation of global motion w.r.t
// the remaining ref frames in that direction. The below exit is disabled
// when ref frame distance w.r.t. current frame is zero. E.g.:
// source_alt_ref_frame w.r.t. ARF frames
if (cpi->sf.prune_ref_frame_for_gm_search &&
reference_frame[frame].distance != 0 &&
cm->global_motion[ref_frame].wmtype != ROTZOOM)
break;
}
}
static AOM_INLINE void encode_frame_internal(AV1_COMP *cpi) {
ThreadData *const td = &cpi->td;
MACROBLOCK *const x = &td->mb;
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
RD_COUNTS *const rdc = &cpi->td.rd_counts;
int i;
#if CONFIG_DIST_8X8
x->using_dist_8x8 = cpi->oxcf.using_dist_8x8;
x->tune_metric = cpi->oxcf.tuning;
#endif
if (!cpi->sf.use_nonrd_pick_mode) {
cm->setup_mi(cm);
}
xd->mi = cm->mi_grid_base;
xd->mi[0] = cm->mi;
xd->tx_type_map = cm->tx_type_map;
xd->tx_type_map_stride = cm->mi_stride;
av1_zero(*td->counts);
av1_zero(rdc->comp_pred_diff);
av1_zero(rdc->tx_type_used);
av1_zero(rdc->obmc_used);
// Reset the flag.
cpi->intrabc_used = 0;
// Need to disable intrabc when superres is selected
if (av1_superres_scaled(cm)) {
cm->allow_intrabc = 0;
}
cm->allow_intrabc &= (cpi->oxcf.enable_intrabc);
if (!is_stat_generation_stage(cpi) && av1_use_hash_me(cpi) &&
!cpi->sf.use_nonrd_pick_mode) {
// add to hash table
const int pic_width = cpi->source->y_crop_width;
const int pic_height = cpi->source->y_crop_height;
uint32_t *block_hash_values[2][2];
int8_t *is_block_same[2][3];
int k, j;
for (k = 0; k < 2; k++) {
for (j = 0; j < 2; j++) {
CHECK_MEM_ERROR(cm, block_hash_values[k][j],
aom_malloc(sizeof(uint32_t) * pic_width * pic_height));
}
for (j = 0; j < 3; j++) {
CHECK_MEM_ERROR(cm, is_block_same[k][j],
aom_malloc(sizeof(int8_t) * pic_width * pic_height));
}
}
#if CONFIG_DEBUG
cm->cur_frame->hash_table.has_content++;
#endif
av1_hash_table_create(&cm->cur_frame->hash_table);
av1_generate_block_2x2_hash_value(cpi->source, block_hash_values[0],
is_block_same[0], &cpi->td.mb);
// Hash data generated for screen contents is used for the following:
// 1. intraBC ME
// 2. Calculation of cm->cur_frame_force_integer_mv
// As the calculation of cm->cur_frame_force_integer_mv is limited to 8x8
// block size, for non-intra frames, max_size for hash calculation can be
// limited to 8x8
// TODO(any): Adjust max_size based on superblock size for intra frames
const int max_size =
frame_is_intra_only(cm) ? 128 : FORCE_INT_MV_DECISION_BLOCK_SIZE;
const int min_size = 4;
const int min_alloc_size = block_size_wide[cm->mi_alloc_bsize];
int src_idx = 0;
for (int size = min_size; size <= max_size; size *= 2, src_idx = !src_idx) {
const int dst_idx = !src_idx;
av1_generate_block_hash_value(
cpi->source, size, block_hash_values[src_idx],
block_hash_values[dst_idx], is_block_same[src_idx],
is_block_same[dst_idx], &cpi->td.mb);
if (size >= min_alloc_size) {
av1_add_to_hash_map_by_row_with_precal_data(
&cm->cur_frame->hash_table, block_hash_values[dst_idx],
is_block_same[dst_idx][2], pic_width, pic_height, size);
}
}
for (k = 0; k < 2; k++) {
for (j = 0; j < 2; j++) {
aom_free(block_hash_values[k][j]);
}
for (j = 0; j < 3; j++) {
aom_free(is_block_same[k][j]);
}
}
}
for (i = 0; i < MAX_SEGMENTS; ++i) {
const int qindex = cm->seg.enabled
? av1_get_qindex(&cm->seg, i, cm->base_qindex)
: cm->base_qindex;
xd->lossless[i] = qindex == 0 && cm->y_dc_delta_q == 0 &&
cm->u_dc_delta_q == 0 && cm->u_ac_delta_q == 0 &&
cm->v_dc_delta_q == 0 && cm->v_ac_delta_q == 0;
if (xd->lossless[i]) cpi->has_lossless_segment = 1;
xd->qindex[i] = qindex;
if (xd->lossless[i]) {
cpi->optimize_seg_arr[i] = 0;
} else {
cpi->optimize_seg_arr[i] = cpi->sf.optimize_coefficients;
}
}
cm->coded_lossless = is_coded_lossless(cm, xd);
cm->all_lossless = cm->coded_lossless && !av1_superres_scaled(cm);
// Fix delta q resolution for the moment
cm->delta_q_info.delta_q_res = 0;
if (cpi->oxcf.deltaq_mode == DELTA_Q_OBJECTIVE)
cm->delta_q_info.delta_q_res = DEFAULT_DELTA_Q_RES_OBJECTIVE;
else if (cpi->oxcf.deltaq_mode == DELTA_Q_PERCEPTUAL)
cm->delta_q_info.delta_q_res = DEFAULT_DELTA_Q_RES_PERCEPTUAL;
// Set delta_q_present_flag before it is used for the first time
cm->delta_q_info.delta_lf_res = DEFAULT_DELTA_LF_RES;
cm->delta_q_info.delta_q_present_flag = cpi->oxcf.deltaq_mode != NO_DELTA_Q;
// Turn off cm->delta_q_info.delta_q_present_flag if objective delta_q is used
// for ineligible frames. That effectively will turn off row_mt usage.
// Note objective delta_q and tpl eligible frames are only altref frames
// currently.
if (cm->delta_q_info.delta_q_present_flag) {
if (cpi->oxcf.deltaq_mode == DELTA_Q_OBJECTIVE &&
!is_frame_tpl_eligible(cpi))
cm->delta_q_info.delta_q_present_flag = 0;
}
// Reset delta_q_used flag
cpi->deltaq_used = 0;
cm->delta_q_info.delta_lf_present_flag =
cm->delta_q_info.delta_q_present_flag && cpi->oxcf.deltalf_mode;
cm->delta_q_info.delta_lf_multi = DEFAULT_DELTA_LF_MULTI;
// update delta_q_present_flag and delta_lf_present_flag based on
// base_qindex
cm->delta_q_info.delta_q_present_flag &= cm->base_qindex > 0;
cm->delta_q_info.delta_lf_present_flag &= cm->base_qindex > 0;
av1_frame_init_quantizer(cpi);
av1_initialize_rd_consts(cpi);
av1_initialize_me_consts(cpi, x, cm->base_qindex);
init_encode_frame_mb_context(cpi);
set_default_interp_skip_flags(cpi);
if (cm->prev_frame && cm->prev_frame->seg.enabled)
cm->last_frame_seg_map = cm->prev_frame->seg_map;
else
cm->last_frame_seg_map = NULL;
if (cm->allow_intrabc || cm->coded_lossless) {
av1_set_default_ref_deltas(cm->lf.ref_deltas);
av1_set_default_mode_deltas(cm->lf.mode_deltas);
} else if (cm->prev_frame) {
memcpy(cm->lf.ref_deltas, cm->prev_frame->ref_deltas, REF_FRAMES);
memcpy(cm->lf.mode_deltas, cm->prev_frame->mode_deltas, MAX_MODE_LF_DELTAS);
}
memcpy(cm->cur_frame->ref_deltas, cm->lf.ref_deltas, REF_FRAMES);
memcpy(cm->cur_frame->mode_deltas, cm->lf.mode_deltas, MAX_MODE_LF_DELTAS);
x->txb_split_count = 0;
#if CONFIG_SPEED_STATS
x->tx_search_count = 0;
#endif // CONFIG_SPEED_STATS
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, av1_compute_global_motion_time);
#endif
av1_zero(rdc->global_motion_used);
av1_zero(cpi->gmparams_cost);
if (cpi->common.current_frame.frame_type == INTER_FRAME && cpi->source &&
cpi->oxcf.enable_global_motion && !cpi->global_motion_search_done) {
YV12_BUFFER_CONFIG *ref_buf[REF_FRAMES];
MotionModel params_by_motion[RANSAC_NUM_MOTIONS];
for (int m = 0; m < RANSAC_NUM_MOTIONS; m++) {
memset(&params_by_motion[m], 0, sizeof(params_by_motion[m]));
params_by_motion[m].inliers =
aom_malloc(sizeof(*(params_by_motion[m].inliers)) * 2 * MAX_CORNERS);
}
int num_frm_corners = -1;
int frm_corners[2 * MAX_CORNERS];
unsigned char *frm_buffer = cpi->source->y_buffer;
if (cpi->source->flags & YV12_FLAG_HIGHBITDEPTH) {
// The frame buffer is 16-bit, so we need to convert to 8 bits for the
// following code. We cache the result until the frame is released.
frm_buffer =
av1_downconvert_frame(cpi->source, cpi->common.seq_params.bit_depth);
}
const int segment_map_w =
(cpi->source->y_width + WARP_ERROR_BLOCK) >> WARP_ERROR_BLOCK_LOG;
const int segment_map_h =
(cpi->source->y_height + WARP_ERROR_BLOCK) >> WARP_ERROR_BLOCK_LOG;
uint8_t *segment_map =
aom_malloc(sizeof(*segment_map) * segment_map_w * segment_map_h);
memset(segment_map, 0,
sizeof(*segment_map) * segment_map_w * segment_map_h);
FrameDistPair future_ref_frame[REF_FRAMES - 1] = {
{ -1, NONE_FRAME }, { -1, NONE_FRAME }, { -1, NONE_FRAME },
{ -1, NONE_FRAME }, { -1, NONE_FRAME }, { -1, NONE_FRAME },
{ -1, NONE_FRAME }
};
FrameDistPair past_ref_frame[REF_FRAMES - 1] = {
{ -1, NONE_FRAME }, { -1, NONE_FRAME }, { -1, NONE_FRAME },
{ -1, NONE_FRAME }, { -1, NONE_FRAME }, { -1, NONE_FRAME },
{ -1, NONE_FRAME }
};
int num_past_ref_frames = 0;
int num_future_ref_frames = 0;
// Populate ref_buf for valid ref frames in global motion
update_valid_ref_frames_for_gm(cpi, ref_buf, past_ref_frame,
future_ref_frame, &num_past_ref_frames,
&num_future_ref_frames);
// Sort the ref frames in the ascending order of their distance from the
// current frame
qsort(past_ref_frame, num_past_ref_frames, sizeof(past_ref_frame[0]),
compare_distance);
qsort(future_ref_frame, num_future_ref_frames, sizeof(future_ref_frame[0]),
compare_distance);
// Compute global motion w.r.t. past reference frames
if (num_past_ref_frames > 0)
compute_global_motion_for_references(
cpi, ref_buf, past_ref_frame, num_past_ref_frames, &num_frm_corners,
frm_corners, frm_buffer, params_by_motion, segment_map, segment_map_w,
segment_map_h);
// Compute global motion w.r.t. future reference frames
if (num_future_ref_frames > 0)
compute_global_motion_for_references(
cpi, ref_buf, future_ref_frame, num_future_ref_frames,
&num_frm_corners, frm_corners, frm_buffer, params_by_motion,
segment_map, segment_map_w, segment_map_h);
aom_free(segment_map);
cpi->global_motion_search_done = 1;
for (int m = 0; m < RANSAC_NUM_MOTIONS; m++) {
aom_free(params_by_motion[m].inliers);
}
}
memcpy(cm->cur_frame->global_motion, cm->global_motion,
REF_FRAMES * sizeof(WarpedMotionParams));
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, av1_compute_global_motion_time);
#endif
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, av1_setup_motion_field_time);
#endif
if (cm->allow_ref_frame_mvs) av1_setup_motion_field(cm);
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, av1_setup_motion_field_time);
#endif
cpi->all_one_sided_refs =
frame_is_intra_only(cm) ? 0 : av1_refs_are_one_sided(cm);
cm->current_frame.skip_mode_info.skip_mode_flag =
check_skip_mode_enabled(cpi);
cpi->row_mt_sync_read_ptr = av1_row_mt_sync_read_dummy;
cpi->row_mt_sync_write_ptr = av1_row_mt_sync_write_dummy;
cpi->row_mt = 0;
if (cpi->oxcf.row_mt && (cpi->oxcf.max_threads > 1)) {
cpi->row_mt = 1;
cpi->row_mt_sync_read_ptr = av1_row_mt_sync_read;
cpi->row_mt_sync_write_ptr = av1_row_mt_sync_write;
av1_encode_tiles_row_mt(cpi);
} else {
if (AOMMIN(cpi->oxcf.max_threads, cm->tile_cols * cm->tile_rows) > 1)
av1_encode_tiles_mt(cpi);
else
encode_tiles(cpi);
}
// If intrabc is allowed but never selected, reset the allow_intrabc flag.
if (cm->allow_intrabc && !cpi->intrabc_used) cm->allow_intrabc = 0;
if (cm->allow_intrabc) cm->delta_q_info.delta_lf_present_flag = 0;
if (cm->delta_q_info.delta_q_present_flag && cpi->deltaq_used == 0) {
cm->delta_q_info.delta_q_present_flag = 0;
}
// Set the transform size appropriately before bitstream creation
const MODE_EVAL_TYPE eval_type = cpi->sf.enable_winner_mode_for_tx_size_srch
? WINNER_MODE_EVAL
: DEFAULT_EVAL;
const TX_SIZE_SEARCH_METHOD tx_search_type =
cpi->tx_size_search_methods[eval_type];
assert(cpi->oxcf.enable_tx64 || tx_search_type != USE_LARGESTALL);
cm->tx_mode = select_tx_mode(cpi, tx_search_type);
if (cpi->sf.tx_type_search.prune_tx_type_using_stats) {
const FRAME_UPDATE_TYPE update_type = get_frame_update_type(&cpi->gf_group);
for (i = 0; i < TX_SIZES_ALL; i++) {
int sum = 0;
int j;
int left = 1024;
for (j = 0; j < TX_TYPES; j++)
sum += cpi->td.rd_counts.tx_type_used[i][j];
for (j = TX_TYPES - 1; j >= 0; j--) {
const int new_prob =
sum ? 1024 * cpi->td.rd_counts.tx_type_used[i][j] / sum
: (j ? 0 : 1024);
int prob = (cpi->tx_type_probs[update_type][i][j] + new_prob) >> 1;
left -= prob;
if (j == 0) prob += left;
cpi->tx_type_probs[update_type][i][j] = prob;
}
}
}
if (!cpi->sf.disable_obmc && cpi->sf.prune_obmc_prob_thresh > 0) {
const FRAME_UPDATE_TYPE update_type = get_frame_update_type(&cpi->gf_group);
for (i = 0; i < BLOCK_SIZES_ALL; i++) {
int sum = 0;
for (int j = 0; j < 2; j++) sum += cpi->td.rd_counts.obmc_used[i][j];
const int new_prob =
sum ? 128 * cpi->td.rd_counts.obmc_used[i][1] / sum : 0;
cpi->obmc_probs[update_type][i] =
(cpi->obmc_probs[update_type][i] + new_prob) >> 1;
}
}
}
#define CHECK_PRECOMPUTED_REF_FRAME_MAP 0
void av1_encode_frame(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
CurrentFrame *const current_frame = &cm->current_frame;
const int num_planes = av1_num_planes(cm);
// Indicates whether or not to use a default reduced set for ext-tx
// rather than the potential full set of 16 transforms
cm->reduced_tx_set_used = cpi->oxcf.reduced_tx_type_set;
// Make sure segment_id is no larger than last_active_segid.
if (cm->seg.enabled && cm->seg.update_map) {
const int mi_rows = cm->mi_rows;
const int mi_cols = cm->mi_cols;
const int last_active_segid = cm->seg.last_active_segid;
uint8_t *map = cpi->segmentation_map;
for (int mi_row = 0; mi_row < mi_rows; ++mi_row) {
for (int mi_col = 0; mi_col < mi_cols; ++mi_col) {
map[mi_col] = AOMMIN(map[mi_col], last_active_segid);
}
map += mi_cols;
}
}
av1_setup_frame_buf_refs(cm);
enforce_max_ref_frames(cpi);
set_rel_frame_dist(cpi);
av1_setup_frame_sign_bias(cm);
#if CHECK_PRECOMPUTED_REF_FRAME_MAP
GF_GROUP *gf_group = &cpi->gf_group;
// TODO(yuec): The check is disabled on OVERLAY frames for now, because info
// in cpi->gf_group has been refreshed for the next GOP when the check is
// performed for OVERLAY frames. Since we have not support inter-GOP ref
// frame map computation, the precomputed ref map for an OVERLAY frame is all
// -1 at this point (although it is meaning before gf_group is refreshed).
if (!frame_is_intra_only(cm) && gf_group->index != 0) {
const RefCntBuffer *const golden_buf = get_ref_frame_buf(cm, GOLDEN_FRAME);
if (golden_buf) {
const int golden_order_hint = golden_buf->order_hint;
for (int ref = LAST_FRAME; ref < EXTREF_FRAME; ++ref) {
const RefCntBuffer *const buf = get_ref_frame_buf(cm, ref);
const int ref_disp_idx_precomputed =
gf_group->ref_frame_disp_idx[gf_group->index][ref - LAST_FRAME];
(void)ref_disp_idx_precomputed;
if (buf != NULL) {
const int ref_disp_idx =
get_relative_dist(&cm->seq_params.order_hint_info,
buf->order_hint, golden_order_hint);
if (ref_disp_idx >= 0)
assert(ref_disp_idx == ref_disp_idx_precomputed);
else
assert(ref_disp_idx_precomputed == -1);
} else {
assert(ref_disp_idx_precomputed == -1);
}
}
}
}
#endif
#if CONFIG_MISMATCH_DEBUG
mismatch_reset_frame(num_planes);
#else
(void)num_planes;
#endif
if (cpi->sf.frame_parameter_update) {
RD_COUNTS *const rdc = &cpi->td.rd_counts;
if (frame_is_intra_only(cm))
current_frame->reference_mode = SINGLE_REFERENCE;
else
current_frame->reference_mode = REFERENCE_MODE_SELECT;
cm->interp_filter = SWITCHABLE;
if (cm->large_scale_tile) cm->interp_filter = EIGHTTAP_REGULAR;
cm->switchable_motion_mode = 1;
rdc->compound_ref_used_flag = 0;
rdc->skip_mode_used_flag = 0;
encode_frame_internal(cpi);
if (current_frame->reference_mode == REFERENCE_MODE_SELECT) {
// Use a flag that includes 4x4 blocks
if (rdc->compound_ref_used_flag == 0) {
current_frame->reference_mode = SINGLE_REFERENCE;
#if CONFIG_ENTROPY_STATS
av1_zero(cpi->td.counts->comp_inter);
#endif // CONFIG_ENTROPY_STATS
}
}
// Re-check on the skip mode status as reference mode may have been
// changed.
SkipModeInfo *const skip_mode_info = &current_frame->skip_mode_info;
if (frame_is_intra_only(cm) ||
current_frame->reference_mode == SINGLE_REFERENCE) {
skip_mode_info->skip_mode_allowed = 0;
skip_mode_info->skip_mode_flag = 0;
}
if (skip_mode_info->skip_mode_flag && rdc->skip_mode_used_flag == 0)
skip_mode_info->skip_mode_flag = 0;
if (!cm->large_scale_tile) {
if (cm->tx_mode == TX_MODE_SELECT && cpi->td.mb.txb_split_count == 0)
cm->tx_mode = TX_MODE_LARGEST;
}
} else {
encode_frame_internal(cpi);
}
}
static AOM_INLINE void update_txfm_count(MACROBLOCK *x, MACROBLOCKD *xd,
FRAME_COUNTS *counts, TX_SIZE tx_size,
int depth, int blk_row, int blk_col,
uint8_t allow_update_cdf) {
MB_MODE_INFO *mbmi = xd->mi[0];
const BLOCK_SIZE bsize = mbmi->sb_type;
const int max_blocks_high = max_block_high(xd, bsize, 0);
const int max_blocks_wide = max_block_wide(xd, bsize, 0);
int ctx = txfm_partition_context(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row,
mbmi->sb_type, tx_size);
const int txb_size_index = av1_get_txb_size_index(bsize, blk_row, blk_col);
const TX_SIZE plane_tx_size = mbmi->inter_tx_size[txb_size_index];
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
assert(tx_size > TX_4X4);
if (depth == MAX_VARTX_DEPTH) {
// Don't add to counts in this case
mbmi->tx_size = tx_size;
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, tx_size, tx_size);
return;
}
if (tx_size == plane_tx_size) {
#if CONFIG_ENTROPY_STATS
++counts->txfm_partition[ctx][0];
#endif
if (allow_update_cdf)
update_cdf(xd->tile_ctx->txfm_partition_cdf[ctx], 0, 2);
mbmi->tx_size = tx_size;
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, tx_size, tx_size);
} else {
const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
const int bsw = tx_size_wide_unit[sub_txs];
const int bsh = tx_size_high_unit[sub_txs];
#if CONFIG_ENTROPY_STATS
++counts->txfm_partition[ctx][1];
#endif
if (allow_update_cdf)
update_cdf(xd->tile_ctx->txfm_partition_cdf[ctx], 1, 2);
++x->txb_split_count;
if (sub_txs == TX_4X4) {
mbmi->inter_tx_size[txb_size_index] = TX_4X4;
mbmi->tx_size = TX_4X4;
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, TX_4X4, tx_size);
return;
}
for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) {
for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) {
int offsetr = row;
int offsetc = col;
update_txfm_count(x, xd, counts, sub_txs, depth + 1, blk_row + offsetr,
blk_col + offsetc, allow_update_cdf);
}
}
}
}
static AOM_INLINE void tx_partition_count_update(
const AV1_COMMON *const cm, MACROBLOCK *x, BLOCK_SIZE plane_bsize,
int mi_row, int mi_col, FRAME_COUNTS *td_counts, uint8_t allow_update_cdf) {
MACROBLOCKD *xd = &x->e_mbd;
const int mi_width = mi_size_wide[plane_bsize];
const int mi_height = mi_size_high[plane_bsize];
const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, 0);
const int bh = tx_size_high_unit[max_tx_size];
const int bw = tx_size_wide_unit[max_tx_size];
int idx, idy;
xd->above_txfm_context = cm->above_txfm_context[xd->tile.tile_row] + mi_col;
xd->left_txfm_context =
xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
for (idy = 0; idy < mi_height; idy += bh)
for (idx = 0; idx < mi_width; idx += bw)
update_txfm_count(x, xd, td_counts, max_tx_size, 0, idy, idx,
allow_update_cdf);
}
static AOM_INLINE void set_txfm_context(MACROBLOCKD *xd, TX_SIZE tx_size,
int blk_row, int blk_col) {
MB_MODE_INFO *mbmi = xd->mi[0];
const BLOCK_SIZE bsize = mbmi->sb_type;
const int max_blocks_high = max_block_high(xd, bsize, 0);
const int max_blocks_wide = max_block_wide(xd, bsize, 0);
const int txb_size_index = av1_get_txb_size_index(bsize, blk_row, blk_col);
const TX_SIZE plane_tx_size = mbmi->inter_tx_size[txb_size_index];
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
if (tx_size == plane_tx_size) {
mbmi->tx_size = tx_size;
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, tx_size, tx_size);
} else {
if (tx_size == TX_8X8) {
mbmi->inter_tx_size[txb_size_index] = TX_4X4;
mbmi->tx_size = TX_4X4;
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, TX_4X4, tx_size);
return;
}
const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
const int bsw = tx_size_wide_unit[sub_txs];
const int bsh = tx_size_high_unit[sub_txs];
for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) {
for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) {
const int offsetr = blk_row + row;
const int offsetc = blk_col + col;
if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue;
set_txfm_context(xd, sub_txs, offsetr, offsetc);
}
}
}
}
static AOM_INLINE void tx_partition_set_contexts(const AV1_COMMON *const cm,
MACROBLOCKD *xd,
BLOCK_SIZE plane_bsize,
int mi_row, int mi_col) {
const int mi_width = mi_size_wide[plane_bsize];
const int mi_height = mi_size_high[plane_bsize];
const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, 0);
const int bh = tx_size_high_unit[max_tx_size];
const int bw = tx_size_wide_unit[max_tx_size];
xd->above_txfm_context = cm->above_txfm_context[xd->tile.tile_row] + mi_col;
xd->left_txfm_context =
xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
for (int idy = 0; idy < mi_height; idy += bh) {
for (int idx = 0; idx < mi_width; idx += bw) {
set_txfm_context(xd, max_tx_size, idy, idx);
}
}
}
static AOM_INLINE void encode_superblock(const AV1_COMP *const cpi,
TileDataEnc *tile_data, ThreadData *td,
TOKENEXTRA **t, RUN_TYPE dry_run,
BLOCK_SIZE bsize, int *rate) {
const AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO **mi_4x4 = xd->mi;
MB_MODE_INFO *mbmi = mi_4x4[0];
const int seg_skip =
segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP);
const int mis = cm->mi_stride;
const int mi_width = mi_size_wide[bsize];
const int mi_height = mi_size_high[bsize];
const int is_inter = is_inter_block(mbmi);
// Initialize tx_mode and tx_size_search_method
set_tx_size_search_method(cpi, x, cpi->sf.enable_winner_mode_for_tx_size_srch,
1);
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
if (!is_inter) {
xd->cfl.is_chroma_reference =
is_chroma_reference(mi_row, mi_col, bsize, cm->seq_params.subsampling_x,
cm->seq_params.subsampling_y);
xd->cfl.store_y = store_cfl_required(cm, xd);
mbmi->skip = 1;
for (int plane = 0; plane < num_planes; ++plane) {
av1_encode_intra_block_plane(cpi, x, bsize, plane,
cpi->optimize_seg_arr[mbmi->segment_id],
mi_row, mi_col);
}
// If there is at least one lossless segment, force the skip for intra
// block to be 0, in order to avoid the segment_id to be changed by in
// write_segment_id().
if (!cpi->common.seg.segid_preskip && cpi->common.seg.update_map &&
cpi->has_lossless_segment)
mbmi->skip = 0;
xd->cfl.store_y = 0;
if (av1_allow_palette(cm->allow_screen_content_tools, bsize)) {
for (int plane = 0; plane < AOMMIN(2, num_planes); ++plane) {
if (mbmi->palette_mode_info.palette_size[plane] > 0) {
if (!dry_run) {
av1_tokenize_color_map(x, plane, t, bsize, mbmi->tx_size,
PALETTE_MAP, tile_data->allow_update_cdf,
td->counts);
} else if (dry_run == DRY_RUN_COSTCOEFFS) {
rate +=
av1_cost_color_map(x, plane, bsize, mbmi->tx_size, PALETTE_MAP);
}
}
}
}
av1_update_txb_context(cpi, td, dry_run, bsize, rate, mi_row, mi_col,
tile_data->allow_update_cdf);
} else {
int ref;
const int is_compound = has_second_ref(mbmi);
set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
for (ref = 0; ref < 1 + is_compound; ++ref) {
const YV12_BUFFER_CONFIG *cfg =
get_ref_frame_yv12_buf(cm, mbmi->ref_frame[ref]);
assert(IMPLIES(!is_intrabc_block(mbmi), cfg));
av1_setup_pre_planes(xd, ref, cfg, mi_row, mi_col,
xd->block_ref_scale_factors[ref], num_planes);
}
int start_plane = (cpi->sf.reuse_inter_pred_nonrd) ? 1 : 0;
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize,
start_plane, av1_num_planes(cm) - 1);
if (mbmi->motion_mode == OBMC_CAUSAL) {
assert(cpi->oxcf.enable_obmc == 1);
av1_build_obmc_inter_predictors_sb(cm, xd);
}
#if CONFIG_MISMATCH_DEBUG
if (dry_run == OUTPUT_ENABLED) {
for (int plane = 0; plane < num_planes; ++plane) {
const struct macroblockd_plane *pd = &xd->plane[plane];
int pixel_c, pixel_r;
mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, 0, 0,
pd->subsampling_x, pd->subsampling_y);
if (!is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x,
pd->subsampling_y))
continue;
mismatch_record_block_pre(pd->dst.buf, pd->dst.stride,
cm->current_frame.order_hint, plane, pixel_c,
pixel_r, pd->width, pd->height,
xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH);
}
}
#else
(void)num_planes;
#endif
av1_encode_sb(cpi, x, bsize, mi_row, mi_col, dry_run);
av1_tokenize_sb_vartx(cpi, td, dry_run, mi_row, mi_col, bsize, rate,
tile_data->allow_update_cdf);
}
if (!dry_run) {
if (av1_allow_intrabc(cm) && is_intrabc_block(mbmi)) td->intrabc_used = 1;
if (x->tx_mode_search_type == TX_MODE_SELECT &&
!xd->lossless[mbmi->segment_id] && mbmi->sb_type > BLOCK_4X4 &&
!(is_inter && (mbmi->skip || seg_skip))) {
if (is_inter) {
tx_partition_count_update(cm, x, bsize, mi_row, mi_col, td->counts,
tile_data->allow_update_cdf);
} else {
if (mbmi->tx_size != max_txsize_rect_lookup[bsize])
++x->txb_split_count;
if (block_signals_txsize(bsize)) {
const int tx_size_ctx = get_tx_size_context(xd);
const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize);
const int depth = tx_size_to_depth(mbmi->tx_size, bsize);
const int max_depths = bsize_to_max_depth(bsize);
if (tile_data->allow_update_cdf)
update_cdf(xd->tile_ctx->tx_size_cdf[tx_size_cat][tx_size_ctx],
depth, max_depths + 1);
#if CONFIG_ENTROPY_STATS
++td->counts->intra_tx_size[tx_size_cat][tx_size_ctx][depth];
#endif
}
}
assert(IMPLIES(is_rect_tx(mbmi->tx_size), is_rect_tx_allowed(xd, mbmi)));
} else {
int i, j;
TX_SIZE intra_tx_size;
// The new intra coding scheme requires no change of transform size
if (is_inter) {
if (xd->lossless[mbmi->segment_id]) {
intra_tx_size = TX_4X4;
} else {
intra_tx_size = tx_size_from_tx_mode(bsize, x->tx_mode_search_type);
}
} else {
intra_tx_size = mbmi->tx_size;
}
for (j = 0; j < mi_height; j++)
for (i = 0; i < mi_width; i++)
if (mi_col + i < cm->mi_cols && mi_row + j < cm->mi_rows)
mi_4x4[mis * j + i]->tx_size = intra_tx_size;
if (intra_tx_size != max_txsize_rect_lookup[bsize]) ++x->txb_split_count;
}
}
if (x->tx_mode_search_type == TX_MODE_SELECT &&
block_signals_txsize(mbmi->sb_type) && is_inter &&
!(mbmi->skip || seg_skip) && !xd->lossless[mbmi->segment_id]) {
if (dry_run) tx_partition_set_contexts(cm, xd, bsize, mi_row, mi_col);
} else {
TX_SIZE tx_size = mbmi->tx_size;
// The new intra coding scheme requires no change of transform size
if (is_inter) {
if (xd->lossless[mbmi->segment_id]) {
tx_size = TX_4X4;
} else {
tx_size = tx_size_from_tx_mode(bsize, x->tx_mode_search_type);
}
} else {
tx_size = (bsize > BLOCK_4X4) ? tx_size : TX_4X4;
}
mbmi->tx_size = tx_size;
set_txfm_ctxs(tx_size, xd->n4_w, xd->n4_h,
(mbmi->skip || seg_skip) && is_inter_block(mbmi), xd);
}
CFL_CTX *const cfl = &xd->cfl;
if (is_inter_block(mbmi) &&
!is_chroma_reference(mi_row, mi_col, bsize, cfl->subsampling_x,
cfl->subsampling_y) &&
is_cfl_allowed(xd)) {
cfl_store_block(xd, mbmi->sb_type, mbmi->tx_size);
}
}