| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <limits.h> |
| #include <float.h> |
| #include <math.h> |
| #include <stdbool.h> |
| #include <stdio.h> |
| |
| #include "config/aom_config.h" |
| #include "config/aom_dsp_rtcd.h" |
| #include "config/av1_rtcd.h" |
| |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_dsp/binary_codes_writer.h" |
| #include "aom_ports/mem.h" |
| #include "aom_ports/aom_timer.h" |
| |
| #if CONFIG_MISMATCH_DEBUG |
| #include "aom_util/debug_util.h" |
| #endif // CONFIG_MISMATCH_DEBUG |
| |
| #include "av1/common/cfl.h" |
| #include "av1/common/common.h" |
| #include "av1/common/common_data.h" |
| #include "av1/common/entropy.h" |
| #include "av1/common/entropymode.h" |
| #include "av1/common/idct.h" |
| #include "av1/common/mv.h" |
| #include "av1/common/mvref_common.h" |
| #include "av1/common/pred_common.h" |
| #include "av1/common/quant_common.h" |
| #include "av1/common/reconintra.h" |
| #include "av1/common/reconinter.h" |
| #include "av1/common/seg_common.h" |
| #include "av1/common/tile_common.h" |
| #include "av1/common/warped_motion.h" |
| |
| #include "av1/encoder/allintra_vis.h" |
| #include "av1/encoder/aq_complexity.h" |
| #include "av1/encoder/aq_cyclicrefresh.h" |
| #include "av1/encoder/aq_variance.h" |
| #include "av1/encoder/global_motion_facade.h" |
| #include "av1/encoder/encodeframe.h" |
| #include "av1/encoder/encodeframe_utils.h" |
| #include "av1/encoder/encodemb.h" |
| #include "av1/encoder/encodemv.h" |
| #include "av1/encoder/encodetxb.h" |
| #include "av1/encoder/ethread.h" |
| #include "av1/encoder/extend.h" |
| #include "av1/encoder/intra_mode_search_utils.h" |
| #include "av1/encoder/ml.h" |
| #include "av1/encoder/motion_search_facade.h" |
| #include "av1/encoder/partition_strategy.h" |
| #if !CONFIG_REALTIME_ONLY |
| #include "av1/encoder/partition_model_weights.h" |
| #endif |
| #include "av1/encoder/partition_search.h" |
| #include "av1/encoder/rd.h" |
| #include "av1/encoder/rdopt.h" |
| #include "av1/encoder/reconinter_enc.h" |
| #include "av1/encoder/segmentation.h" |
| #include "av1/encoder/tokenize.h" |
| #include "av1/encoder/tpl_model.h" |
| #include "av1/encoder/var_based_part.h" |
| |
| #if CONFIG_TUNE_VMAF |
| #include "av1/encoder/tune_vmaf.h" |
| #endif |
| |
| /*!\cond */ |
| // This is used as a reference when computing the source variance for the |
| // purposes of activity masking. |
| // Eventually this should be replaced by custom no-reference routines, |
| // which will be faster. |
| static const uint8_t AV1_VAR_OFFS[MAX_SB_SIZE] = { |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128 |
| }; |
| |
| #if CONFIG_AV1_HIGHBITDEPTH |
| static const uint16_t AV1_HIGH_VAR_OFFS_8[MAX_SB_SIZE] = { |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128 |
| }; |
| |
| static const uint16_t AV1_HIGH_VAR_OFFS_10[MAX_SB_SIZE] = { |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4 |
| }; |
| |
| static const uint16_t AV1_HIGH_VAR_OFFS_12[MAX_SB_SIZE] = { |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16 |
| }; |
| #endif // CONFIG_AV1_HIGHBITDEPTH |
| /*!\endcond */ |
| |
| // For the given bit depth, returns a constant array used to assist the |
| // calculation of source block variance, which will then be used to decide |
| // adaptive quantizers. |
| static const uint8_t *get_var_offs(int use_hbd, int bd) { |
| #if CONFIG_AV1_HIGHBITDEPTH |
| if (use_hbd) { |
| assert(bd == 8 || bd == 10 || bd == 12); |
| const int off_index = (bd - 8) >> 1; |
| static const uint16_t *high_var_offs[3] = { AV1_HIGH_VAR_OFFS_8, |
| AV1_HIGH_VAR_OFFS_10, |
| AV1_HIGH_VAR_OFFS_12 }; |
| return CONVERT_TO_BYTEPTR(high_var_offs[off_index]); |
| } |
| #else |
| (void)use_hbd; |
| (void)bd; |
| assert(!use_hbd); |
| #endif |
| assert(bd == 8); |
| return AV1_VAR_OFFS; |
| } |
| |
| void av1_init_rtc_counters(MACROBLOCK *const x) { |
| av1_init_cyclic_refresh_counters(x); |
| x->cnt_zeromv = 0; |
| } |
| |
| void av1_accumulate_rtc_counters(AV1_COMP *cpi, const MACROBLOCK *const x) { |
| if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ) |
| av1_accumulate_cyclic_refresh_counters(cpi->cyclic_refresh, x); |
| cpi->rc.cnt_zeromv += x->cnt_zeromv; |
| } |
| |
| unsigned int av1_get_perpixel_variance(const AV1_COMP *cpi, |
| const MACROBLOCKD *xd, |
| const struct buf_2d *ref, |
| BLOCK_SIZE bsize, int plane, |
| int use_hbd) { |
| const int subsampling_x = xd->plane[plane].subsampling_x; |
| const int subsampling_y = xd->plane[plane].subsampling_y; |
| const BLOCK_SIZE plane_bsize = |
| get_plane_block_size(bsize, subsampling_x, subsampling_y); |
| unsigned int sse; |
| const unsigned int var = cpi->ppi->fn_ptr[plane_bsize].vf( |
| ref->buf, ref->stride, get_var_offs(use_hbd, xd->bd), 0, &sse); |
| return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[plane_bsize]); |
| } |
| |
| unsigned int av1_get_perpixel_variance_facade(const AV1_COMP *cpi, |
| const MACROBLOCKD *xd, |
| const struct buf_2d *ref, |
| BLOCK_SIZE bsize, int plane) { |
| const int use_hbd = is_cur_buf_hbd(xd); |
| return av1_get_perpixel_variance(cpi, xd, ref, bsize, plane, use_hbd); |
| } |
| |
| void av1_setup_src_planes(MACROBLOCK *x, const YV12_BUFFER_CONFIG *src, |
| int mi_row, int mi_col, const int num_planes, |
| BLOCK_SIZE bsize) { |
| // Set current frame pointer. |
| x->e_mbd.cur_buf = src; |
| |
| // We use AOMMIN(num_planes, MAX_MB_PLANE) instead of num_planes to quiet |
| // the static analysis warnings. |
| for (int i = 0; i < AOMMIN(num_planes, MAX_MB_PLANE); i++) { |
| const int is_uv = i > 0; |
| setup_pred_plane( |
| &x->plane[i].src, bsize, src->buffers[i], src->crop_widths[is_uv], |
| src->crop_heights[is_uv], src->strides[is_uv], mi_row, mi_col, NULL, |
| x->e_mbd.plane[i].subsampling_x, x->e_mbd.plane[i].subsampling_y); |
| } |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| /*!\brief Assigns different quantization parameters to each super |
| * block based on its TPL weight. |
| * |
| * \ingroup tpl_modelling |
| * |
| * \param[in] cpi Top level encoder instance structure |
| * \param[in,out] td Thread data structure |
| * \param[in,out] x Macro block level data for this block. |
| * \param[in] tile_info Tile infromation / identification |
| * \param[in] mi_row Block row (in "MI_SIZE" units) index |
| * \param[in] mi_col Block column (in "MI_SIZE" units) index |
| * \param[out] num_planes Number of image planes (e.g. Y,U,V) |
| * |
| * \remark No return value but updates macroblock and thread data |
| * related to the q / q delta to be used. |
| */ |
| static AOM_INLINE void setup_delta_q(AV1_COMP *const cpi, ThreadData *td, |
| MACROBLOCK *const x, |
| const TileInfo *const tile_info, |
| int mi_row, int mi_col, int num_planes) { |
| AV1_COMMON *const cm = &cpi->common; |
| const CommonModeInfoParams *const mi_params = &cm->mi_params; |
| const DeltaQInfo *const delta_q_info = &cm->delta_q_info; |
| assert(delta_q_info->delta_q_present_flag); |
| |
| const BLOCK_SIZE sb_size = cm->seq_params->sb_size; |
| // Delta-q modulation based on variance |
| av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes, sb_size); |
| |
| const int delta_q_res = delta_q_info->delta_q_res; |
| int current_qindex = cm->quant_params.base_qindex; |
| if (cpi->use_ducky_encode && cpi->ducky_encode_info.frame_info.qp_mode == |
| DUCKY_ENCODE_FRAME_MODE_QINDEX) { |
| const int sb_row = mi_row >> cm->seq_params->mib_size_log2; |
| const int sb_col = mi_col >> cm->seq_params->mib_size_log2; |
| const int sb_cols = |
| CEIL_POWER_OF_TWO(cm->mi_params.mi_cols, cm->seq_params->mib_size_log2); |
| const int sb_index = sb_row * sb_cols + sb_col; |
| current_qindex = |
| cpi->ducky_encode_info.frame_info.superblock_encode_qindex[sb_index]; |
| } else if (cpi->oxcf.q_cfg.deltaq_mode == DELTA_Q_PERCEPTUAL) { |
| if (DELTA_Q_PERCEPTUAL_MODULATION == 1) { |
| const int block_wavelet_energy_level = |
| av1_block_wavelet_energy_level(cpi, x, sb_size); |
| x->sb_energy_level = block_wavelet_energy_level; |
| current_qindex = av1_compute_q_from_energy_level_deltaq_mode( |
| cpi, block_wavelet_energy_level); |
| } else { |
| const int block_var_level = av1_log_block_var(cpi, x, sb_size); |
| x->sb_energy_level = block_var_level; |
| current_qindex = |
| av1_compute_q_from_energy_level_deltaq_mode(cpi, block_var_level); |
| } |
| } else if (cpi->oxcf.q_cfg.deltaq_mode == DELTA_Q_OBJECTIVE && |
| cpi->oxcf.algo_cfg.enable_tpl_model) { |
| // Setup deltaq based on tpl stats |
| current_qindex = |
| av1_get_q_for_deltaq_objective(cpi, td, NULL, sb_size, mi_row, mi_col); |
| } else if (cpi->oxcf.q_cfg.deltaq_mode == DELTA_Q_PERCEPTUAL_AI) { |
| current_qindex = av1_get_sbq_perceptual_ai(cpi, sb_size, mi_row, mi_col); |
| } else if (cpi->oxcf.q_cfg.deltaq_mode == DELTA_Q_USER_RATING_BASED) { |
| current_qindex = av1_get_sbq_user_rating_based(cpi, mi_row, mi_col); |
| } else if (cpi->oxcf.q_cfg.enable_hdr_deltaq) { |
| current_qindex = av1_get_q_for_hdr(cpi, x, sb_size, mi_row, mi_col); |
| } |
| |
| x->rdmult_cur_qindex = current_qindex; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const int adjusted_qindex = av1_adjust_q_from_delta_q_res( |
| delta_q_res, xd->current_base_qindex, current_qindex); |
| if (cpi->use_ducky_encode) { |
| assert(adjusted_qindex == current_qindex); |
| } |
| current_qindex = adjusted_qindex; |
| |
| x->delta_qindex = current_qindex - cm->quant_params.base_qindex; |
| x->rdmult_delta_qindex = x->delta_qindex; |
| |
| av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size); |
| xd->mi[0]->current_qindex = current_qindex; |
| av1_init_plane_quantizers(cpi, x, xd->mi[0]->segment_id, 0); |
| |
| // keep track of any non-zero delta-q used |
| td->deltaq_used |= (x->delta_qindex != 0); |
| |
| if (cpi->oxcf.tool_cfg.enable_deltalf_mode) { |
| const int delta_lf_res = delta_q_info->delta_lf_res; |
| const int lfmask = ~(delta_lf_res - 1); |
| const int delta_lf_from_base = |
| ((x->delta_qindex / 4 + delta_lf_res / 2) & lfmask); |
| const int8_t delta_lf = |
| (int8_t)clamp(delta_lf_from_base, -MAX_LOOP_FILTER, MAX_LOOP_FILTER); |
| const int frame_lf_count = |
| av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2; |
| const int mib_size = cm->seq_params->mib_size; |
| |
| // pre-set the delta lf for loop filter. Note that this value is set |
| // before mi is assigned for each block in current superblock |
| for (int j = 0; j < AOMMIN(mib_size, mi_params->mi_rows - mi_row); j++) { |
| for (int k = 0; k < AOMMIN(mib_size, mi_params->mi_cols - mi_col); k++) { |
| const int grid_idx = get_mi_grid_idx(mi_params, mi_row + j, mi_col + k); |
| mi_params->mi_alloc[grid_idx].delta_lf_from_base = delta_lf; |
| for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) { |
| mi_params->mi_alloc[grid_idx].delta_lf[lf_id] = delta_lf; |
| } |
| } |
| } |
| } |
| } |
| |
| static void init_ref_frame_space(AV1_COMP *cpi, ThreadData *td, int mi_row, |
| int mi_col) { |
| const AV1_COMMON *cm = &cpi->common; |
| const GF_GROUP *const gf_group = &cpi->ppi->gf_group; |
| const CommonModeInfoParams *const mi_params = &cm->mi_params; |
| MACROBLOCK *x = &td->mb; |
| const int frame_idx = cpi->gf_frame_index; |
| TplParams *const tpl_data = &cpi->ppi->tpl_data; |
| const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2; |
| |
| av1_zero(x->tpl_keep_ref_frame); |
| |
| if (!av1_tpl_stats_ready(tpl_data, frame_idx)) return; |
| if (!is_frame_tpl_eligible(gf_group, cpi->gf_frame_index)) return; |
| if (cpi->oxcf.q_cfg.aq_mode != NO_AQ) return; |
| |
| const int is_overlay = |
| cpi->ppi->gf_group.update_type[frame_idx] == OVERLAY_UPDATE; |
| if (is_overlay) { |
| memset(x->tpl_keep_ref_frame, 1, sizeof(x->tpl_keep_ref_frame)); |
| return; |
| } |
| |
| TplDepFrame *tpl_frame = &tpl_data->tpl_frame[frame_idx]; |
| TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr; |
| const int tpl_stride = tpl_frame->stride; |
| int64_t inter_cost[INTER_REFS_PER_FRAME] = { 0 }; |
| const int step = 1 << block_mis_log2; |
| const BLOCK_SIZE sb_size = cm->seq_params->sb_size; |
| |
| const int mi_row_end = |
| AOMMIN(mi_size_high[sb_size] + mi_row, mi_params->mi_rows); |
| const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width); |
| const int mi_col_sr = |
| coded_to_superres_mi(mi_col, cm->superres_scale_denominator); |
| const int mi_col_end_sr = |
| AOMMIN(coded_to_superres_mi(mi_col + mi_size_wide[sb_size], |
| cm->superres_scale_denominator), |
| mi_cols_sr); |
| const int row_step = step; |
| const int col_step_sr = |
| coded_to_superres_mi(step, cm->superres_scale_denominator); |
| for (int row = mi_row; row < mi_row_end; row += row_step) { |
| for (int col = mi_col_sr; col < mi_col_end_sr; col += col_step_sr) { |
| const TplDepStats *this_stats = |
| &tpl_stats[av1_tpl_ptr_pos(row, col, tpl_stride, block_mis_log2)]; |
| int64_t tpl_pred_error[INTER_REFS_PER_FRAME] = { 0 }; |
| // Find the winner ref frame idx for the current block |
| int64_t best_inter_cost = this_stats->pred_error[0]; |
| int best_rf_idx = 0; |
| for (int idx = 1; idx < INTER_REFS_PER_FRAME; ++idx) { |
| if ((this_stats->pred_error[idx] < best_inter_cost) && |
| (this_stats->pred_error[idx] != 0)) { |
| best_inter_cost = this_stats->pred_error[idx]; |
| best_rf_idx = idx; |
| } |
| } |
| // tpl_pred_error is the pred_error reduction of best_ref w.r.t. |
| // LAST_FRAME. |
| tpl_pred_error[best_rf_idx] = this_stats->pred_error[best_rf_idx] - |
| this_stats->pred_error[LAST_FRAME - 1]; |
| |
| for (int rf_idx = 1; rf_idx < INTER_REFS_PER_FRAME; ++rf_idx) |
| inter_cost[rf_idx] += tpl_pred_error[rf_idx]; |
| } |
| } |
| |
| int rank_index[INTER_REFS_PER_FRAME - 1]; |
| for (int idx = 0; idx < INTER_REFS_PER_FRAME - 1; ++idx) { |
| rank_index[idx] = idx + 1; |
| for (int i = idx; i > 0; --i) { |
| if (inter_cost[rank_index[i - 1]] > inter_cost[rank_index[i]]) { |
| const int tmp = rank_index[i - 1]; |
| rank_index[i - 1] = rank_index[i]; |
| rank_index[i] = tmp; |
| } |
| } |
| } |
| |
| x->tpl_keep_ref_frame[INTRA_FRAME] = 1; |
| x->tpl_keep_ref_frame[LAST_FRAME] = 1; |
| |
| int cutoff_ref = 0; |
| for (int idx = 0; idx < INTER_REFS_PER_FRAME - 1; ++idx) { |
| x->tpl_keep_ref_frame[rank_index[idx] + LAST_FRAME] = 1; |
| if (idx > 2) { |
| if (!cutoff_ref) { |
| // If the predictive coding gains are smaller than the previous more |
| // relevant frame over certain amount, discard this frame and all the |
| // frames afterwards. |
| if (llabs(inter_cost[rank_index[idx]]) < |
| llabs(inter_cost[rank_index[idx - 1]]) / 8 || |
| inter_cost[rank_index[idx]] == 0) |
| cutoff_ref = 1; |
| } |
| |
| if (cutoff_ref) x->tpl_keep_ref_frame[rank_index[idx] + LAST_FRAME] = 0; |
| } |
| } |
| } |
| |
| static AOM_INLINE void adjust_rdmult_tpl_model(AV1_COMP *cpi, MACROBLOCK *x, |
| int mi_row, int mi_col) { |
| const BLOCK_SIZE sb_size = cpi->common.seq_params->sb_size; |
| const int orig_rdmult = cpi->rd.RDMULT; |
| |
| assert(IMPLIES(cpi->ppi->gf_group.size > 0, |
| cpi->gf_frame_index < cpi->ppi->gf_group.size)); |
| const int gf_group_index = cpi->gf_frame_index; |
| if (cpi->oxcf.algo_cfg.enable_tpl_model && cpi->oxcf.q_cfg.aq_mode == NO_AQ && |
| cpi->oxcf.q_cfg.deltaq_mode == NO_DELTA_Q && gf_group_index > 0 && |
| cpi->ppi->gf_group.update_type[gf_group_index] == ARF_UPDATE) { |
| const int dr = |
| av1_get_rdmult_delta(cpi, sb_size, mi_row, mi_col, orig_rdmult); |
| x->rdmult = dr; |
| } |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| #if CONFIG_RT_ML_PARTITIONING |
| // Get a prediction(stored in x->est_pred) for the whole superblock. |
| static void get_estimated_pred(AV1_COMP *cpi, const TileInfo *const tile, |
| MACROBLOCK *x, int mi_row, int mi_col) { |
| AV1_COMMON *const cm = &cpi->common; |
| const int is_key_frame = frame_is_intra_only(cm); |
| MACROBLOCKD *xd = &x->e_mbd; |
| |
| // TODO(kyslov) Extend to 128x128 |
| assert(cm->seq_params->sb_size == BLOCK_64X64); |
| |
| av1_set_offsets(cpi, tile, x, mi_row, mi_col, BLOCK_64X64); |
| |
| if (!is_key_frame) { |
| MB_MODE_INFO *mi = xd->mi[0]; |
| const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_yv12_buf(cm, LAST_FRAME); |
| |
| assert(yv12 != NULL); |
| |
| av1_setup_pre_planes(xd, 0, yv12, mi_row, mi_col, |
| get_ref_scale_factors(cm, LAST_FRAME), 1); |
| mi->ref_frame[0] = LAST_FRAME; |
| mi->ref_frame[1] = NONE; |
| mi->bsize = BLOCK_64X64; |
| mi->mv[0].as_int = 0; |
| mi->interp_filters = av1_broadcast_interp_filter(BILINEAR); |
| |
| set_ref_ptrs(cm, xd, mi->ref_frame[0], mi->ref_frame[1]); |
| |
| xd->plane[0].dst.buf = x->est_pred; |
| xd->plane[0].dst.stride = 64; |
| av1_enc_build_inter_predictor_y(xd, mi_row, mi_col); |
| } else { |
| #if CONFIG_AV1_HIGHBITDEPTH |
| switch (xd->bd) { |
| case 8: memset(x->est_pred, 128, 64 * 64 * sizeof(x->est_pred[0])); break; |
| case 10: |
| memset(x->est_pred, 128 * 4, 64 * 64 * sizeof(x->est_pred[0])); |
| break; |
| case 12: |
| memset(x->est_pred, 128 * 16, 64 * 64 * sizeof(x->est_pred[0])); |
| break; |
| } |
| #else |
| memset(x->est_pred, 128, 64 * 64 * sizeof(x->est_pred[0])); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| } |
| } |
| #endif // CONFIG_RT_ML_PARTITIONING |
| |
| #define AVG_CDF_WEIGHT_LEFT 3 |
| #define AVG_CDF_WEIGHT_TOP_RIGHT 1 |
| |
| /*!\brief Encode a superblock (minimal RD search involved) |
| * |
| * \ingroup partition_search |
| * Encodes the superblock by a pre-determined partition pattern, only minor |
| * rd-based searches are allowed to adjust the initial pattern. It is only used |
| * by realtime encoding. |
| */ |
| static AOM_INLINE void encode_nonrd_sb(AV1_COMP *cpi, ThreadData *td, |
| TileDataEnc *tile_data, TokenExtra **tp, |
| const int mi_row, const int mi_col, |
| const int seg_skip) { |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCK *const x = &td->mb; |
| const SPEED_FEATURES *const sf = &cpi->sf; |
| const TileInfo *const tile_info = &tile_data->tile_info; |
| MB_MODE_INFO **mi = cm->mi_params.mi_grid_base + |
| get_mi_grid_idx(&cm->mi_params, mi_row, mi_col); |
| const BLOCK_SIZE sb_size = cm->seq_params->sb_size; |
| PC_TREE *const pc_root = td->pc_root; |
| |
| #if CONFIG_RT_ML_PARTITIONING |
| if (sf->part_sf.partition_search_type == ML_BASED_PARTITION) { |
| RD_STATS dummy_rdc; |
| get_estimated_pred(cpi, tile_info, x, mi_row, mi_col); |
| av1_nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, |
| BLOCK_64X64, &dummy_rdc, 1, INT64_MAX, pc_root); |
| return; |
| } |
| #endif |
| // Set the partition |
| if (sf->part_sf.partition_search_type == FIXED_PARTITION || seg_skip) { |
| // set a fixed-size partition |
| av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size); |
| const BLOCK_SIZE bsize = |
| seg_skip ? sb_size : sf->part_sf.fixed_partition_size; |
| av1_set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize); |
| } else if (sf->part_sf.partition_search_type == VAR_BASED_PARTITION) { |
| // set a variance-based partition |
| av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size); |
| av1_choose_var_based_partitioning(cpi, tile_info, td, x, mi_row, mi_col); |
| } |
| assert(sf->part_sf.partition_search_type == FIXED_PARTITION || seg_skip || |
| sf->part_sf.partition_search_type == VAR_BASED_PARTITION); |
| set_cb_offsets(td->mb.cb_offset, 0, 0); |
| |
| // Initialize the flag to skip cdef to 1. |
| if (sf->rt_sf.skip_cdef_sb) { |
| const int block64_in_sb = (sb_size == BLOCK_128X128) ? 2 : 1; |
| // If 128x128 block is used, we need to set the flag for all 4 64x64 sub |
| // "blocks". |
| for (int r = 0; r < block64_in_sb; ++r) { |
| for (int c = 0; c < block64_in_sb; ++c) { |
| const int idx_in_sb = |
| r * MI_SIZE_64X64 * cm->mi_params.mi_stride + c * MI_SIZE_64X64; |
| if (mi[idx_in_sb]) mi[idx_in_sb]->cdef_strength = 1; |
| } |
| } |
| } |
| |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing(cpi, nonrd_use_partition_time); |
| #endif |
| av1_nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, sb_size, |
| pc_root); |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing(cpi, nonrd_use_partition_time); |
| #endif |
| } |
| |
| // This function initializes the stats for encode_rd_sb. |
| static INLINE void init_encode_rd_sb(AV1_COMP *cpi, ThreadData *td, |
| const TileDataEnc *tile_data, |
| SIMPLE_MOTION_DATA_TREE *sms_root, |
| RD_STATS *rd_cost, int mi_row, int mi_col, |
| int gather_tpl_data) { |
| const AV1_COMMON *cm = &cpi->common; |
| const TileInfo *tile_info = &tile_data->tile_info; |
| MACROBLOCK *x = &td->mb; |
| |
| const SPEED_FEATURES *sf = &cpi->sf; |
| const int use_simple_motion_search = |
| (sf->part_sf.simple_motion_search_split || |
| sf->part_sf.simple_motion_search_prune_rect || |
| sf->part_sf.simple_motion_search_early_term_none || |
| sf->part_sf.ml_early_term_after_part_split_level) && |
| !frame_is_intra_only(cm); |
| if (use_simple_motion_search) { |
| av1_init_simple_motion_search_mvs_for_sb(cpi, tile_info, x, sms_root, |
| mi_row, mi_col); |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| if (!(has_no_stats_stage(cpi) && cpi->oxcf.mode == REALTIME && |
| cpi->oxcf.gf_cfg.lag_in_frames == 0)) { |
| init_ref_frame_space(cpi, td, mi_row, mi_col); |
| x->sb_energy_level = 0; |
| x->part_search_info.cnn_output_valid = 0; |
| if (gather_tpl_data) { |
| if (cm->delta_q_info.delta_q_present_flag) { |
| const int num_planes = av1_num_planes(cm); |
| const BLOCK_SIZE sb_size = cm->seq_params->sb_size; |
| setup_delta_q(cpi, td, x, tile_info, mi_row, mi_col, num_planes); |
| av1_tpl_rdmult_setup_sb(cpi, x, sb_size, mi_row, mi_col); |
| } |
| |
| // TODO(jingning): revisit this function. |
| if (cpi->oxcf.algo_cfg.enable_tpl_model && (0)) { |
| adjust_rdmult_tpl_model(cpi, x, mi_row, mi_col); |
| } |
| } |
| } |
| #else |
| (void)tile_info; |
| (void)mi_row; |
| (void)mi_col; |
| (void)gather_tpl_data; |
| #endif |
| |
| x->reuse_inter_pred = false; |
| x->txfm_search_params.mode_eval_type = DEFAULT_EVAL; |
| reset_mb_rd_record(x->txfm_search_info.mb_rd_record); |
| av1_zero(x->picked_ref_frames_mask); |
| av1_invalid_rd_stats(rd_cost); |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| static void sb_qp_sweep_init_quantizers(AV1_COMP *cpi, ThreadData *td, |
| const TileDataEnc *tile_data, |
| SIMPLE_MOTION_DATA_TREE *sms_tree, |
| RD_STATS *rd_cost, int mi_row, |
| int mi_col, int delta_qp_ofs) { |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCK *const x = &td->mb; |
| const BLOCK_SIZE sb_size = cm->seq_params->sb_size; |
| const TileInfo *tile_info = &tile_data->tile_info; |
| const CommonModeInfoParams *const mi_params = &cm->mi_params; |
| const DeltaQInfo *const delta_q_info = &cm->delta_q_info; |
| assert(delta_q_info->delta_q_present_flag); |
| const int delta_q_res = delta_q_info->delta_q_res; |
| |
| const SPEED_FEATURES *sf = &cpi->sf; |
| const int use_simple_motion_search = |
| (sf->part_sf.simple_motion_search_split || |
| sf->part_sf.simple_motion_search_prune_rect || |
| sf->part_sf.simple_motion_search_early_term_none || |
| sf->part_sf.ml_early_term_after_part_split_level) && |
| !frame_is_intra_only(cm); |
| if (use_simple_motion_search) { |
| av1_init_simple_motion_search_mvs_for_sb(cpi, tile_info, x, sms_tree, |
| mi_row, mi_col); |
| } |
| |
| int current_qindex = x->rdmult_cur_qindex + delta_qp_ofs; |
| |
| MACROBLOCKD *const xd = &x->e_mbd; |
| current_qindex = av1_adjust_q_from_delta_q_res( |
| delta_q_res, xd->current_base_qindex, current_qindex); |
| |
| x->delta_qindex = current_qindex - cm->quant_params.base_qindex; |
| |
| av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size); |
| xd->mi[0]->current_qindex = current_qindex; |
| av1_init_plane_quantizers(cpi, x, xd->mi[0]->segment_id, 0); |
| |
| // keep track of any non-zero delta-q used |
| td->deltaq_used |= (x->delta_qindex != 0); |
| |
| if (cpi->oxcf.tool_cfg.enable_deltalf_mode) { |
| const int delta_lf_res = delta_q_info->delta_lf_res; |
| const int lfmask = ~(delta_lf_res - 1); |
| const int delta_lf_from_base = |
| ((x->delta_qindex / 4 + delta_lf_res / 2) & lfmask); |
| const int8_t delta_lf = |
| (int8_t)clamp(delta_lf_from_base, -MAX_LOOP_FILTER, MAX_LOOP_FILTER); |
| const int frame_lf_count = |
| av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2; |
| const int mib_size = cm->seq_params->mib_size; |
| |
| // pre-set the delta lf for loop filter. Note that this value is set |
| // before mi is assigned for each block in current superblock |
| for (int j = 0; j < AOMMIN(mib_size, mi_params->mi_rows - mi_row); j++) { |
| for (int k = 0; k < AOMMIN(mib_size, mi_params->mi_cols - mi_col); k++) { |
| const int grid_idx = get_mi_grid_idx(mi_params, mi_row + j, mi_col + k); |
| mi_params->mi_alloc[grid_idx].delta_lf_from_base = delta_lf; |
| for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) { |
| mi_params->mi_alloc[grid_idx].delta_lf[lf_id] = delta_lf; |
| } |
| } |
| } |
| } |
| |
| x->reuse_inter_pred = false; |
| x->txfm_search_params.mode_eval_type = DEFAULT_EVAL; |
| reset_mb_rd_record(x->txfm_search_info.mb_rd_record); |
| av1_zero(x->picked_ref_frames_mask); |
| av1_invalid_rd_stats(rd_cost); |
| } |
| |
| static int sb_qp_sweep(AV1_COMP *const cpi, ThreadData *td, |
| TileDataEnc *tile_data, TokenExtra **tp, int mi_row, |
| int mi_col, BLOCK_SIZE bsize, |
| SIMPLE_MOTION_DATA_TREE *sms_tree, |
| SB_FIRST_PASS_STATS *sb_org_stats) { |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCK *const x = &td->mb; |
| RD_STATS rdc_winner, cur_rdc; |
| av1_invalid_rd_stats(&rdc_winner); |
| |
| int best_qindex = td->mb.rdmult_delta_qindex; |
| const int start = cm->current_frame.frame_type == KEY_FRAME ? -20 : -12; |
| const int end = cm->current_frame.frame_type == KEY_FRAME ? 20 : 12; |
| const int step = cm->delta_q_info.delta_q_res; |
| |
| for (int sweep_qp_delta = start; sweep_qp_delta <= end; |
| sweep_qp_delta += step) { |
| sb_qp_sweep_init_quantizers(cpi, td, tile_data, sms_tree, &cur_rdc, mi_row, |
| mi_col, sweep_qp_delta); |
| |
| const int alloc_mi_idx = get_alloc_mi_idx(&cm->mi_params, mi_row, mi_col); |
| const int backup_current_qindex = |
| cm->mi_params.mi_alloc[alloc_mi_idx].current_qindex; |
| |
| av1_reset_mbmi(&cm->mi_params, bsize, mi_row, mi_col); |
| av1_restore_sb_state(sb_org_stats, cpi, td, tile_data, mi_row, mi_col); |
| cm->mi_params.mi_alloc[alloc_mi_idx].current_qindex = backup_current_qindex; |
| |
| td->pc_root = av1_alloc_pc_tree_node(bsize); |
| if (!td->pc_root) |
| aom_internal_error(x->e_mbd.error_info, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate PC_TREE"); |
| av1_rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, bsize, |
| &cur_rdc, cur_rdc, td->pc_root, sms_tree, NULL, |
| SB_DRY_PASS, NULL); |
| |
| if ((rdc_winner.rdcost > cur_rdc.rdcost) || |
| (abs(sweep_qp_delta) < abs(best_qindex - x->rdmult_delta_qindex) && |
| rdc_winner.rdcost == cur_rdc.rdcost)) { |
| rdc_winner = cur_rdc; |
| best_qindex = x->rdmult_delta_qindex + sweep_qp_delta; |
| } |
| } |
| |
| return best_qindex; |
| } |
| #endif //! CONFIG_REALTIME_ONLY |
| |
| /*!\brief Encode a superblock (RD-search-based) |
| * |
| * \ingroup partition_search |
| * Conducts partition search for a superblock, based on rate-distortion costs, |
| * from scratch or adjusting from a pre-calculated partition pattern. |
| */ |
| static AOM_INLINE void encode_rd_sb(AV1_COMP *cpi, ThreadData *td, |
| TileDataEnc *tile_data, TokenExtra **tp, |
| const int mi_row, const int mi_col, |
| const int seg_skip) { |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const SPEED_FEATURES *const sf = &cpi->sf; |
| const TileInfo *const tile_info = &tile_data->tile_info; |
| MB_MODE_INFO **mi = cm->mi_params.mi_grid_base + |
| get_mi_grid_idx(&cm->mi_params, mi_row, mi_col); |
| const BLOCK_SIZE sb_size = cm->seq_params->sb_size; |
| const int num_planes = av1_num_planes(cm); |
| int dummy_rate; |
| int64_t dummy_dist; |
| RD_STATS dummy_rdc; |
| SIMPLE_MOTION_DATA_TREE *const sms_root = td->sms_root; |
| |
| #if CONFIG_REALTIME_ONLY |
| (void)seg_skip; |
| #endif // CONFIG_REALTIME_ONLY |
| |
| init_encode_rd_sb(cpi, td, tile_data, sms_root, &dummy_rdc, mi_row, mi_col, |
| 1); |
| |
| // Encode the superblock |
| if (sf->part_sf.partition_search_type == VAR_BASED_PARTITION) { |
| // partition search starting from a variance-based partition |
| av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size); |
| av1_choose_var_based_partitioning(cpi, tile_info, td, x, mi_row, mi_col); |
| |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing(cpi, rd_use_partition_time); |
| #endif |
| td->pc_root = av1_alloc_pc_tree_node(sb_size); |
| if (!td->pc_root) |
| aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate PC_TREE"); |
| av1_rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, sb_size, |
| &dummy_rate, &dummy_dist, 1, td->pc_root); |
| av1_free_pc_tree_recursive(td->pc_root, num_planes, 0, 0, |
| sf->part_sf.partition_search_type); |
| td->pc_root = NULL; |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing(cpi, rd_use_partition_time); |
| #endif |
| } |
| #if !CONFIG_REALTIME_ONLY |
| else if (sf->part_sf.partition_search_type == FIXED_PARTITION || seg_skip) { |
| // partition search by adjusting a fixed-size partition |
| av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size); |
| const BLOCK_SIZE bsize = |
| seg_skip ? sb_size : sf->part_sf.fixed_partition_size; |
| av1_set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize); |
| td->pc_root = av1_alloc_pc_tree_node(sb_size); |
| if (!td->pc_root) |
| aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate PC_TREE"); |
| av1_rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, sb_size, |
| &dummy_rate, &dummy_dist, 1, td->pc_root); |
| av1_free_pc_tree_recursive(td->pc_root, num_planes, 0, 0, |
| sf->part_sf.partition_search_type); |
| td->pc_root = NULL; |
| } else { |
| // The most exhaustive recursive partition search |
| SuperBlockEnc *sb_enc = &x->sb_enc; |
| // No stats for overlay frames. Exclude key frame. |
| av1_get_tpl_stats_sb(cpi, sb_size, mi_row, mi_col, sb_enc); |
| |
| // Reset the tree for simple motion search data |
| av1_reset_simple_motion_tree_partition(sms_root, sb_size); |
| |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing(cpi, rd_pick_partition_time); |
| #endif |
| |
| // Estimate the maximum square partition block size, which will be used |
| // as the starting block size for partitioning the sb |
| set_max_min_partition_size(sb_enc, cpi, x, sf, sb_size, mi_row, mi_col); |
| |
| // The superblock can be searched only once, or twice consecutively for |
| // better quality. Note that the meaning of passes here is different from |
| // the general concept of 1-pass/2-pass encoders. |
| const int num_passes = |
| cpi->oxcf.unit_test_cfg.sb_multipass_unit_test ? 2 : 1; |
| |
| if (cpi->oxcf.sb_qp_sweep && |
| !(has_no_stats_stage(cpi) && cpi->oxcf.mode == REALTIME && |
| cpi->oxcf.gf_cfg.lag_in_frames == 0) && |
| cm->delta_q_info.delta_q_present_flag) { |
| AOM_CHECK_MEM_ERROR( |
| x->e_mbd.error_info, td->mb.sb_stats_cache, |
| (SB_FIRST_PASS_STATS *)aom_malloc(sizeof(*td->mb.sb_stats_cache))); |
| av1_backup_sb_state(td->mb.sb_stats_cache, cpi, td, tile_data, mi_row, |
| mi_col); |
| assert(x->rdmult_delta_qindex == x->delta_qindex); |
| |
| const int best_qp_diff = |
| sb_qp_sweep(cpi, td, tile_data, tp, mi_row, mi_col, sb_size, sms_root, |
| td->mb.sb_stats_cache) - |
| x->rdmult_delta_qindex; |
| |
| sb_qp_sweep_init_quantizers(cpi, td, tile_data, sms_root, &dummy_rdc, |
| mi_row, mi_col, best_qp_diff); |
| |
| const int alloc_mi_idx = get_alloc_mi_idx(&cm->mi_params, mi_row, mi_col); |
| const int backup_current_qindex = |
| cm->mi_params.mi_alloc[alloc_mi_idx].current_qindex; |
| |
| av1_reset_mbmi(&cm->mi_params, sb_size, mi_row, mi_col); |
| av1_restore_sb_state(td->mb.sb_stats_cache, cpi, td, tile_data, mi_row, |
| mi_col); |
| |
| cm->mi_params.mi_alloc[alloc_mi_idx].current_qindex = |
| backup_current_qindex; |
| aom_free(td->mb.sb_stats_cache); |
| td->mb.sb_stats_cache = NULL; |
| } |
| if (num_passes == 1) { |
| #if CONFIG_PARTITION_SEARCH_ORDER |
| if (cpi->ext_part_controller.ready && !frame_is_intra_only(cm)) { |
| av1_reset_part_sf(&cpi->sf.part_sf); |
| av1_reset_sf_for_ext_part(cpi); |
| RD_STATS this_rdc; |
| av1_rd_partition_search(cpi, td, tile_data, tp, sms_root, mi_row, |
| mi_col, sb_size, &this_rdc); |
| } else { |
| td->pc_root = av1_alloc_pc_tree_node(sb_size); |
| if (!td->pc_root) |
| aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate PC_TREE"); |
| av1_rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, sb_size, |
| &dummy_rdc, dummy_rdc, td->pc_root, sms_root, |
| NULL, SB_SINGLE_PASS, NULL); |
| } |
| #else |
| td->pc_root = av1_alloc_pc_tree_node(sb_size); |
| if (!td->pc_root) |
| aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate PC_TREE"); |
| av1_rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, sb_size, |
| &dummy_rdc, dummy_rdc, td->pc_root, sms_root, NULL, |
| SB_SINGLE_PASS, NULL); |
| #endif // CONFIG_PARTITION_SEARCH_ORDER |
| } else { |
| // First pass |
| AOM_CHECK_MEM_ERROR( |
| x->e_mbd.error_info, td->mb.sb_fp_stats, |
| (SB_FIRST_PASS_STATS *)aom_malloc(sizeof(*td->mb.sb_fp_stats))); |
| av1_backup_sb_state(td->mb.sb_fp_stats, cpi, td, tile_data, mi_row, |
| mi_col); |
| td->pc_root = av1_alloc_pc_tree_node(sb_size); |
| if (!td->pc_root) |
| aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate PC_TREE"); |
| av1_rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, sb_size, |
| &dummy_rdc, dummy_rdc, td->pc_root, sms_root, NULL, |
| SB_DRY_PASS, NULL); |
| |
| // Second pass |
| init_encode_rd_sb(cpi, td, tile_data, sms_root, &dummy_rdc, mi_row, |
| mi_col, 0); |
| av1_reset_mbmi(&cm->mi_params, sb_size, mi_row, mi_col); |
| av1_reset_simple_motion_tree_partition(sms_root, sb_size); |
| |
| av1_restore_sb_state(td->mb.sb_fp_stats, cpi, td, tile_data, mi_row, |
| mi_col); |
| |
| td->pc_root = av1_alloc_pc_tree_node(sb_size); |
| if (!td->pc_root) |
| aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate PC_TREE"); |
| av1_rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, sb_size, |
| &dummy_rdc, dummy_rdc, td->pc_root, sms_root, NULL, |
| SB_WET_PASS, NULL); |
| aom_free(td->mb.sb_fp_stats); |
| td->mb.sb_fp_stats = NULL; |
| } |
| |
| // Reset to 0 so that it wouldn't be used elsewhere mistakenly. |
| sb_enc->tpl_data_count = 0; |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing(cpi, rd_pick_partition_time); |
| #endif |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| // Update the inter rd model |
| // TODO(angiebird): Let inter_mode_rd_model_estimation support multi-tile. |
| if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1 && |
| cm->tiles.cols == 1 && cm->tiles.rows == 1) { |
| av1_inter_mode_data_fit(tile_data, x->rdmult); |
| } |
| } |
| |
| // Check if the cost update of symbols mode, coeff and dv are tile or off. |
| static AOM_INLINE int is_mode_coeff_dv_upd_freq_tile_or_off( |
| const AV1_COMP *const cpi) { |
| const INTER_MODE_SPEED_FEATURES *const inter_sf = &cpi->sf.inter_sf; |
| |
| return (inter_sf->coeff_cost_upd_level <= INTERNAL_COST_UPD_TILE && |
| inter_sf->mode_cost_upd_level <= INTERNAL_COST_UPD_TILE && |
| cpi->sf.intra_sf.dv_cost_upd_level <= INTERNAL_COST_UPD_TILE); |
| } |
| |
| // When row-mt is enabled and cost update frequencies are set to off/tile, |
| // processing of current SB can start even before processing of top-right SB |
| // is finished. This function checks if it is sufficient to wait for top SB |
| // to finish processing before current SB starts processing. |
| static AOM_INLINE int delay_wait_for_top_right_sb(const AV1_COMP *const cpi) { |
| const MODE mode = cpi->oxcf.mode; |
| if (mode == GOOD) return 0; |
| |
| if (mode == ALLINTRA) |
| return is_mode_coeff_dv_upd_freq_tile_or_off(cpi); |
| else if (mode == REALTIME) |
| return (is_mode_coeff_dv_upd_freq_tile_or_off(cpi) && |
| cpi->sf.inter_sf.mv_cost_upd_level <= INTERNAL_COST_UPD_TILE); |
| else |
| return 0; |
| } |
| |
| /*!\brief Calculate source SAD at superblock level using 64x64 block source SAD |
| * |
| * \ingroup partition_search |
| * \callgraph |
| * \callergraph |
| */ |
| static AOM_INLINE uint64_t get_sb_source_sad(const AV1_COMP *cpi, int mi_row, |
| int mi_col) { |
| if (cpi->src_sad_blk_64x64 == NULL) return UINT64_MAX; |
| |
| const AV1_COMMON *const cm = &cpi->common; |
| const int blk_64x64_in_mis = (cm->seq_params->sb_size == BLOCK_128X128) |
| ? (cm->seq_params->mib_size >> 1) |
| : cm->seq_params->mib_size; |
| const int num_blk_64x64_cols = |
| (cm->mi_params.mi_cols + blk_64x64_in_mis - 1) / blk_64x64_in_mis; |
| const int num_blk_64x64_rows = |
| (cm->mi_params.mi_rows + blk_64x64_in_mis - 1) / blk_64x64_in_mis; |
| const int blk_64x64_col_index = mi_col / blk_64x64_in_mis; |
| const int blk_64x64_row_index = mi_row / blk_64x64_in_mis; |
| uint64_t curr_sb_sad = UINT64_MAX; |
| const uint64_t *const src_sad_blk_64x64_data = |
| &cpi->src_sad_blk_64x64[blk_64x64_col_index + |
| blk_64x64_row_index * num_blk_64x64_cols]; |
| if (cm->seq_params->sb_size == BLOCK_128X128 && |
| blk_64x64_col_index + 1 < num_blk_64x64_cols && |
| blk_64x64_row_index + 1 < num_blk_64x64_rows) { |
| // Calculate SB source SAD by accumulating source SAD of 64x64 blocks in the |
| // superblock |
| curr_sb_sad = src_sad_blk_64x64_data[0] + src_sad_blk_64x64_data[1] + |
| src_sad_blk_64x64_data[num_blk_64x64_cols] + |
| src_sad_blk_64x64_data[num_blk_64x64_cols + 1]; |
| } else if (cm->seq_params->sb_size == BLOCK_64X64) { |
| curr_sb_sad = src_sad_blk_64x64_data[0]; |
| } |
| return curr_sb_sad; |
| } |
| |
| /*!\brief Determine whether grading content can be skipped based on sad stat |
| * |
| * \ingroup partition_search |
| * \callgraph |
| * \callergraph |
| */ |
| static AOM_INLINE bool is_calc_src_content_needed(AV1_COMP *cpi, |
| MACROBLOCK *const x, |
| int mi_row, int mi_col) { |
| if (cpi->svc.spatial_layer_id < cpi->svc.number_spatial_layers - 1) |
| return true; |
| const uint64_t curr_sb_sad = get_sb_source_sad(cpi, mi_row, mi_col); |
| if (curr_sb_sad == UINT64_MAX) return true; |
| if (curr_sb_sad == 0) { |
| x->content_state_sb.source_sad_nonrd = kZeroSad; |
| return false; |
| } |
| AV1_COMMON *const cm = &cpi->common; |
| bool do_calc_src_content = true; |
| |
| if (cpi->oxcf.speed < 9) return do_calc_src_content; |
| |
| // TODO(yunqing): Tune/validate the thresholds for 128x128 SB size. |
| if (AOMMIN(cm->width, cm->height) < 360) { |
| // Derive Average 64x64 block source SAD from SB source SAD |
| const uint64_t avg_64x64_blk_sad = |
| (cm->seq_params->sb_size == BLOCK_128X128) ? ((curr_sb_sad + 2) >> 2) |
| : curr_sb_sad; |
| |
| // The threshold is determined based on kLowSad and kHighSad threshold and |
| // test results. |
| const uint64_t thresh_low = 15000; |
| const uint64_t thresh_high = 40000; |
| |
| if (avg_64x64_blk_sad > thresh_low && avg_64x64_blk_sad < thresh_high) { |
| do_calc_src_content = false; |
| // Note: set x->content_state_sb.source_sad_rd as well if this is extended |
| // to RTC rd path. |
| x->content_state_sb.source_sad_nonrd = kMedSad; |
| } |
| } |
| |
| return do_calc_src_content; |
| } |
| |
| /*!\brief Determine whether grading content is needed based on sf and frame stat |
| * |
| * \ingroup partition_search |
| * \callgraph |
| * \callergraph |
| */ |
| // TODO(any): consolidate sfs to make interface cleaner |
| static AOM_INLINE void grade_source_content_sb(AV1_COMP *cpi, |
| MACROBLOCK *const x, |
| TileDataEnc *tile_data, |
| int mi_row, int mi_col) { |
| AV1_COMMON *const cm = &cpi->common; |
| if (cm->current_frame.frame_type == KEY_FRAME || |
| (cpi->ppi->use_svc && |
| cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame)) { |
| assert(x->content_state_sb.source_sad_nonrd == kMedSad); |
| assert(x->content_state_sb.source_sad_rd == kMedSad); |
| return; |
| } |
| bool calc_src_content = false; |
| |
| if (cpi->sf.rt_sf.source_metrics_sb_nonrd) { |
| if (!cpi->sf.rt_sf.check_scene_detection || cpi->rc.frame_source_sad > 0) { |
| calc_src_content = is_calc_src_content_needed(cpi, x, mi_row, mi_col); |
| } else { |
| x->content_state_sb.source_sad_nonrd = kZeroSad; |
| } |
| } else if ((cpi->sf.rt_sf.var_part_based_on_qidx >= 1) && |
| (cm->width * cm->height <= 352 * 288)) { |
| if (cpi->rc.frame_source_sad > 0) |
| calc_src_content = true; |
| else |
| x->content_state_sb.source_sad_rd = kZeroSad; |
| } |
| if (calc_src_content) |
| av1_source_content_sb(cpi, x, tile_data, mi_row, mi_col); |
| } |
| |
| /*!\brief Encode a superblock row by breaking it into superblocks |
| * |
| * \ingroup partition_search |
| * \callgraph |
| * \callergraph |
| * Do partition and mode search for an sb row: one row of superblocks filling up |
| * the width of the current tile. |
| */ |
| static AOM_INLINE void encode_sb_row(AV1_COMP *cpi, ThreadData *td, |
| TileDataEnc *tile_data, int mi_row, |
| TokenExtra **tp) { |
| AV1_COMMON *const cm = &cpi->common; |
| const TileInfo *const tile_info = &tile_data->tile_info; |
| MultiThreadInfo *const mt_info = &cpi->mt_info; |
| AV1EncRowMultiThreadInfo *const enc_row_mt = &mt_info->enc_row_mt; |
| AV1EncRowMultiThreadSync *const row_mt_sync = &tile_data->row_mt_sync; |
| bool row_mt_enabled = mt_info->row_mt_enabled; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const int sb_cols_in_tile = av1_get_sb_cols_in_tile(cm, tile_info); |
| const BLOCK_SIZE sb_size = cm->seq_params->sb_size; |
| const int mib_size = cm->seq_params->mib_size; |
| const int mib_size_log2 = cm->seq_params->mib_size_log2; |
| const int sb_row = (mi_row - tile_info->mi_row_start) >> mib_size_log2; |
| const int use_nonrd_mode = cpi->sf.rt_sf.use_nonrd_pick_mode; |
| |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing(cpi, encode_sb_row_time); |
| #endif |
| |
| // Initialize the left context for the new SB row |
| av1_zero_left_context(xd); |
| |
| // Reset delta for quantizer and loof filters at the beginning of every tile |
| if (mi_row == tile_info->mi_row_start || row_mt_enabled) { |
| if (cm->delta_q_info.delta_q_present_flag) |
| xd->current_base_qindex = cm->quant_params.base_qindex; |
| if (cm->delta_q_info.delta_lf_present_flag) { |
| av1_reset_loop_filter_delta(xd, av1_num_planes(cm)); |
| } |
| } |
| |
| reset_thresh_freq_fact(x); |
| |
| // Code each SB in the row |
| for (int mi_col = tile_info->mi_col_start, sb_col_in_tile = 0; |
| mi_col < tile_info->mi_col_end; mi_col += mib_size, sb_col_in_tile++) { |
| // In realtime/allintra mode and when frequency of cost updates is off/tile, |
| // wait for the top superblock to finish encoding. Otherwise, wait for the |
| // top-right superblock to finish encoding. |
| enc_row_mt->sync_read_ptr( |
| row_mt_sync, sb_row, sb_col_in_tile - delay_wait_for_top_right_sb(cpi)); |
| |
| #if CONFIG_MULTITHREAD |
| if (row_mt_enabled) { |
| pthread_mutex_lock(enc_row_mt->mutex_); |
| const bool row_mt_exit = enc_row_mt->row_mt_exit; |
| pthread_mutex_unlock(enc_row_mt->mutex_); |
| // Exit in case any worker has encountered an error. |
| if (row_mt_exit) return; |
| } |
| #endif |
| |
| const int update_cdf = tile_data->allow_update_cdf && row_mt_enabled; |
| if (update_cdf && (tile_info->mi_row_start != mi_row)) { |
| if ((tile_info->mi_col_start == mi_col)) { |
| // restore frame context at the 1st column sb |
| memcpy(xd->tile_ctx, x->row_ctx, sizeof(*xd->tile_ctx)); |
| } else { |
| // update context |
| int wt_left = AVG_CDF_WEIGHT_LEFT; |
| int wt_tr = AVG_CDF_WEIGHT_TOP_RIGHT; |
| if (tile_info->mi_col_end > (mi_col + mib_size)) |
| av1_avg_cdf_symbols(xd->tile_ctx, x->row_ctx + sb_col_in_tile, |
| wt_left, wt_tr); |
| else |
| av1_avg_cdf_symbols(xd->tile_ctx, x->row_ctx + sb_col_in_tile - 1, |
| wt_left, wt_tr); |
| } |
| } |
| |
| // Update the rate cost tables for some symbols |
| av1_set_cost_upd_freq(cpi, td, tile_info, mi_row, mi_col); |
| |
| // Reset color coding related parameters |
| av1_zero(x->color_sensitivity_sb); |
| av1_zero(x->color_sensitivity_sb_g); |
| av1_zero(x->color_sensitivity_sb_alt); |
| av1_zero(x->color_sensitivity); |
| x->content_state_sb.source_sad_nonrd = kMedSad; |
| x->content_state_sb.source_sad_rd = kMedSad; |
| x->content_state_sb.lighting_change = 0; |
| x->content_state_sb.low_sumdiff = 0; |
| x->force_zeromv_skip_for_sb = 0; |
| x->sb_me_block = 0; |
| x->sb_me_partition = 0; |
| x->sb_me_mv.as_int = 0; |
| |
| if (cpi->oxcf.mode == ALLINTRA) { |
| x->intra_sb_rdmult_modifier = 128; |
| } |
| |
| xd->cur_frame_force_integer_mv = cm->features.cur_frame_force_integer_mv; |
| x->source_variance = UINT_MAX; |
| td->mb.cb_coef_buff = av1_get_cb_coeff_buffer(cpi, mi_row, mi_col); |
| |
| // Get segment id and skip flag |
| const struct segmentation *const seg = &cm->seg; |
| int seg_skip = 0; |
| if (seg->enabled) { |
| const uint8_t *const map = |
| seg->update_map ? cpi->enc_seg.map : cm->last_frame_seg_map; |
| const uint8_t segment_id = |
| map ? get_segment_id(&cm->mi_params, map, sb_size, mi_row, mi_col) |
| : 0; |
| seg_skip = segfeature_active(seg, segment_id, SEG_LVL_SKIP); |
| } |
| |
| produce_gradients_for_sb(cpi, x, sb_size, mi_row, mi_col); |
| |
| init_src_var_info_of_4x4_sub_blocks(cpi, x->src_var_info_of_4x4_sub_blocks, |
| sb_size); |
| |
| // Grade the temporal variation of the sb, the grade will be used to decide |
| // fast mode search strategy for coding blocks |
| grade_source_content_sb(cpi, x, tile_data, mi_row, mi_col); |
| |
| // encode the superblock |
| if (use_nonrd_mode) { |
| encode_nonrd_sb(cpi, td, tile_data, tp, mi_row, mi_col, seg_skip); |
| } else { |
| encode_rd_sb(cpi, td, tile_data, tp, mi_row, mi_col, seg_skip); |
| } |
| |
| // Update the top-right context in row_mt coding |
| if (update_cdf && (tile_info->mi_row_end > (mi_row + mib_size))) { |
| if (sb_cols_in_tile == 1) |
| memcpy(x->row_ctx, xd->tile_ctx, sizeof(*xd->tile_ctx)); |
| else if (sb_col_in_tile >= 1) |
| memcpy(x->row_ctx + sb_col_in_tile - 1, xd->tile_ctx, |
| sizeof(*xd->tile_ctx)); |
| } |
| enc_row_mt->sync_write_ptr(row_mt_sync, sb_row, sb_col_in_tile, |
| sb_cols_in_tile); |
| } |
| |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing(cpi, encode_sb_row_time); |
| #endif |
| } |
| |
| static AOM_INLINE void init_encode_frame_mb_context(AV1_COMP *cpi) { |
| AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| MACROBLOCK *const x = &cpi->td.mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| |
| // Copy data over into macro block data structures. |
| av1_setup_src_planes(x, cpi->source, 0, 0, num_planes, |
| cm->seq_params->sb_size); |
| |
| av1_setup_block_planes(xd, cm->seq_params->subsampling_x, |
| cm->seq_params->subsampling_y, num_planes); |
| } |
| |
| void av1_alloc_tile_data(AV1_COMP *cpi) { |
| AV1_COMMON *const cm = &cpi->common; |
| const int tile_cols = cm->tiles.cols; |
| const int tile_rows = cm->tiles.rows; |
| |
| av1_row_mt_mem_dealloc(cpi); |
| |
| aom_free(cpi->tile_data); |
| CHECK_MEM_ERROR( |
| cm, cpi->tile_data, |
| aom_memalign(32, tile_cols * tile_rows * sizeof(*cpi->tile_data))); |
| |
| cpi->allocated_tiles = tile_cols * tile_rows; |
| } |
| |
| void av1_init_tile_data(AV1_COMP *cpi) { |
| AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| const int tile_cols = cm->tiles.cols; |
| const int tile_rows = cm->tiles.rows; |
| int tile_col, tile_row; |
| TokenInfo *const token_info = &cpi->token_info; |
| TokenExtra *pre_tok = token_info->tile_tok[0][0]; |
| TokenList *tplist = token_info->tplist[0][0]; |
| unsigned int tile_tok = 0; |
| int tplist_count = 0; |
| |
| if (!is_stat_generation_stage(cpi) && |
| cm->features.allow_screen_content_tools) { |
| // Number of tokens for which token info needs to be allocated. |
| unsigned int tokens_required = |
| get_token_alloc(cm->mi_params.mb_rows, cm->mi_params.mb_cols, |
| MAX_SB_SIZE_LOG2, num_planes); |
| // Allocate/reallocate memory for token related info if the number of tokens |
| // required is more than the number of tokens already allocated. This could |
| // occur in case of the following: |
| // 1) If the memory is not yet allocated |
| // 2) If the frame dimensions have changed |
| const bool realloc_tokens = tokens_required > token_info->tokens_allocated; |
| if (realloc_tokens) { |
| free_token_info(token_info); |
| alloc_token_info(cm, token_info, tokens_required); |
| pre_tok = token_info->tile_tok[0][0]; |
| tplist = token_info->tplist[0][0]; |
| } |
| } |
| |
| for (tile_row = 0; tile_row < tile_rows; ++tile_row) { |
| for (tile_col = 0; tile_col < tile_cols; ++tile_col) { |
| TileDataEnc *const tile_data = |
| &cpi->tile_data[tile_row * tile_cols + tile_col]; |
| TileInfo *const tile_info = &tile_data->tile_info; |
| av1_tile_init(tile_info, cm, tile_row, tile_col); |
| tile_data->firstpass_top_mv = kZeroMv; |
| tile_data->abs_sum_level = 0; |
| |
| if (is_token_info_allocated(token_info)) { |
| token_info->tile_tok[tile_row][tile_col] = pre_tok + tile_tok; |
| pre_tok = token_info->tile_tok[tile_row][tile_col]; |
| tile_tok = allocated_tokens( |
| tile_info, cm->seq_params->mib_size_log2 + MI_SIZE_LOG2, |
| num_planes); |
| token_info->tplist[tile_row][tile_col] = tplist + tplist_count; |
| tplist = token_info->tplist[tile_row][tile_col]; |
| tplist_count = av1_get_sb_rows_in_tile(cm, tile_info); |
| } |
| tile_data->allow_update_cdf = !cm->tiles.large_scale; |
| tile_data->allow_update_cdf = tile_data->allow_update_cdf && |
| !cm->features.disable_cdf_update && |
| !delay_wait_for_top_right_sb(cpi); |
| tile_data->tctx = *cm->fc; |
| } |
| } |
| } |
| |
| // Populate the start palette token info prior to encoding an SB row. |
| static AOM_INLINE void get_token_start(AV1_COMP *cpi, const TileInfo *tile_info, |
| int tile_row, int tile_col, int mi_row, |
| TokenExtra **tp) { |
| const TokenInfo *token_info = &cpi->token_info; |
| if (!is_token_info_allocated(token_info)) return; |
| |
| const AV1_COMMON *cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| TokenList *const tplist = cpi->token_info.tplist[tile_row][tile_col]; |
| const int sb_row_in_tile = |
| (mi_row - tile_info->mi_row_start) >> cm->seq_params->mib_size_log2; |
| |
| get_start_tok(cpi, tile_row, tile_col, mi_row, tp, |
| cm->seq_params->mib_size_log2 + MI_SIZE_LOG2, num_planes); |
| assert(tplist != NULL); |
| tplist[sb_row_in_tile].start = *tp; |
| } |
| |
| // Populate the token count after encoding an SB row. |
| static AOM_INLINE void populate_token_count(AV1_COMP *cpi, |
| const TileInfo *tile_info, |
| int tile_row, int tile_col, |
| int mi_row, TokenExtra *tok) { |
| const TokenInfo *token_info = &cpi->token_info; |
| if (!is_token_info_allocated(token_info)) return; |
| |
| const AV1_COMMON *cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| TokenList *const tplist = token_info->tplist[tile_row][tile_col]; |
| const int sb_row_in_tile = |
| (mi_row - tile_info->mi_row_start) >> cm->seq_params->mib_size_log2; |
| const int tile_mb_cols = |
| (tile_info->mi_col_end - tile_info->mi_col_start + 2) >> 2; |
| const int num_mb_rows_in_sb = |
| ((1 << (cm->seq_params->mib_size_log2 + MI_SIZE_LOG2)) + 8) >> 4; |
| tplist[sb_row_in_tile].count = |
| (unsigned int)(tok - tplist[sb_row_in_tile].start); |
| |
| assert((unsigned int)(tok - tplist[sb_row_in_tile].start) <= |
| get_token_alloc(num_mb_rows_in_sb, tile_mb_cols, |
| cm->seq_params->mib_size_log2 + MI_SIZE_LOG2, |
| num_planes)); |
| |
| (void)num_planes; |
| (void)tile_mb_cols; |
| (void)num_mb_rows_in_sb; |
| } |
| |
| /*!\brief Encode a superblock row |
| * |
| * \ingroup partition_search |
| */ |
| void av1_encode_sb_row(AV1_COMP *cpi, ThreadData *td, int tile_row, |
| int tile_col, int mi_row) { |
| AV1_COMMON *const cm = &cpi->common; |
| const int tile_cols = cm->tiles.cols; |
| TileDataEnc *this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col]; |
| const TileInfo *const tile_info = &this_tile->tile_info; |
| TokenExtra *tok = NULL; |
| |
| get_token_start(cpi, tile_info, tile_row, tile_col, mi_row, &tok); |
| |
| encode_sb_row(cpi, td, this_tile, mi_row, &tok); |
| |
| populate_token_count(cpi, tile_info, tile_row, tile_col, mi_row, tok); |
| } |
| |
| /*!\brief Encode a tile |
| * |
| * \ingroup partition_search |
| */ |
| void av1_encode_tile(AV1_COMP *cpi, ThreadData *td, int tile_row, |
| int tile_col) { |
| AV1_COMMON *const cm = &cpi->common; |
| TileDataEnc *const this_tile = |
| &cpi->tile_data[tile_row * cm->tiles.cols + tile_col]; |
| const TileInfo *const tile_info = &this_tile->tile_info; |
| |
| if (!cpi->sf.rt_sf.use_nonrd_pick_mode) av1_inter_mode_data_init(this_tile); |
| |
| av1_zero_above_context(cm, &td->mb.e_mbd, tile_info->mi_col_start, |
| tile_info->mi_col_end, tile_row); |
| av1_init_above_context(&cm->above_contexts, av1_num_planes(cm), tile_row, |
| &td->mb.e_mbd); |
| |
| if (cpi->oxcf.intra_mode_cfg.enable_cfl_intra) |
| cfl_init(&td->mb.e_mbd.cfl, cm->seq_params); |
| |
| if (td->mb.txfm_search_info.mb_rd_record != NULL) { |
| av1_crc32c_calculator_init( |
| &td->mb.txfm_search_info.mb_rd_record->crc_calculator); |
| } |
| |
| for (int mi_row = tile_info->mi_row_start; mi_row < tile_info->mi_row_end; |
| mi_row += cm->seq_params->mib_size) { |
| av1_encode_sb_row(cpi, td, tile_row, tile_col, mi_row); |
| } |
| this_tile->abs_sum_level = td->abs_sum_level; |
| } |
| |
| /*!\brief Break one frame into tiles and encode the tiles |
| * |
| * \ingroup partition_search |
| * |
| * \param[in] cpi Top-level encoder structure |
| */ |
| static AOM_INLINE void encode_tiles(AV1_COMP *cpi) { |
| AV1_COMMON *const cm = &cpi->common; |
| const int tile_cols = cm->tiles.cols; |
| const int tile_rows = cm->tiles.rows; |
| int tile_col, tile_row; |
| |
| MACROBLOCK *const mb = &cpi->td.mb; |
| assert(IMPLIES(cpi->tile_data == NULL, |
| cpi->allocated_tiles < tile_cols * tile_rows)); |
| if (cpi->allocated_tiles < tile_cols * tile_rows) av1_alloc_tile_data(cpi); |
| |
| av1_init_tile_data(cpi); |
| av1_alloc_mb_data(cpi, mb); |
| |
| for (tile_row = 0; tile_row < tile_rows; ++tile_row) { |
| for (tile_col = 0; tile_col < tile_cols; ++tile_col) { |
| TileDataEnc *const this_tile = |
| &cpi->tile_data[tile_row * cm->tiles.cols + tile_col]; |
| cpi->td.intrabc_used = 0; |
| cpi->td.deltaq_used = 0; |
| cpi->td.abs_sum_level = 0; |
| cpi->td.rd_counts.seg_tmp_pred_cost[0] = 0; |
| cpi->td.rd_counts.seg_tmp_pred_cost[1] = 0; |
| cpi->td.mb.e_mbd.tile_ctx = &this_tile->tctx; |
| cpi->td.mb.tile_pb_ctx = &this_tile->tctx; |
| av1_init_rtc_counters(&cpi->td.mb); |
| cpi->td.mb.palette_pixels = 0; |
| av1_encode_tile(cpi, &cpi->td, tile_row, tile_col); |
| if (!frame_is_intra_only(&cpi->common)) |
| av1_accumulate_rtc_counters(cpi, &cpi->td.mb); |
| cpi->palette_pixel_num += cpi->td.mb.palette_pixels; |
| cpi->intrabc_used |= cpi->td.intrabc_used; |
| cpi->deltaq_used |= cpi->td.deltaq_used; |
| } |
| } |
| |
| av1_dealloc_mb_data(mb, av1_num_planes(cm)); |
| } |
| |
| // Set the relative distance of a reference frame w.r.t. current frame |
| static AOM_INLINE void set_rel_frame_dist( |
| const AV1_COMMON *const cm, RefFrameDistanceInfo *const ref_frame_dist_info, |
| const int ref_frame_flags) { |
| MV_REFERENCE_FRAME ref_frame; |
| int min_past_dist = INT32_MAX, min_future_dist = INT32_MAX; |
| ref_frame_dist_info->nearest_past_ref = NONE_FRAME; |
| ref_frame_dist_info->nearest_future_ref = NONE_FRAME; |
| for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { |
| ref_frame_dist_info->ref_relative_dist[ref_frame - LAST_FRAME] = 0; |
| if (ref_frame_flags & av1_ref_frame_flag_list[ref_frame]) { |
| int dist = av1_encoder_get_relative_dist( |
| cm->cur_frame->ref_display_order_hint[ref_frame - LAST_FRAME], |
| cm->current_frame.display_order_hint); |
| ref_frame_dist_info->ref_relative_dist[ref_frame - LAST_FRAME] = dist; |
| // Get the nearest ref_frame in the past |
| if (abs(dist) < min_past_dist && dist < 0) { |
| ref_frame_dist_info->nearest_past_ref = ref_frame; |
| min_past_dist = abs(dist); |
| } |
| // Get the nearest ref_frame in the future |
| if (dist < min_future_dist && dist > 0) { |
| ref_frame_dist_info->nearest_future_ref = ref_frame; |
| min_future_dist = dist; |
| } |
| } |
| } |
| } |
| |
| static INLINE int refs_are_one_sided(const AV1_COMMON *cm) { |
| assert(!frame_is_intra_only(cm)); |
| |
| int one_sided_refs = 1; |
| const int cur_display_order_hint = cm->current_frame.display_order_hint; |
| for (int ref = LAST_FRAME; ref <= ALTREF_FRAME; ++ref) { |
| const RefCntBuffer *const buf = get_ref_frame_buf(cm, ref); |
| if (buf == NULL) continue; |
| if (av1_encoder_get_relative_dist(buf->display_order_hint, |
| cur_display_order_hint) > 0) { |
| one_sided_refs = 0; // bwd reference |
| break; |
| } |
| } |
| return one_sided_refs; |
| } |
| |
| static INLINE void get_skip_mode_ref_offsets(const AV1_COMMON *cm, |
| int ref_order_hint[2]) { |
| const SkipModeInfo *const skip_mode_info = &cm->current_frame.skip_mode_info; |
| ref_order_hint[0] = ref_order_hint[1] = 0; |
| if (!skip_mode_info->skip_mode_allowed) return; |
| |
| const RefCntBuffer *const buf_0 = |
| get_ref_frame_buf(cm, LAST_FRAME + skip_mode_info->ref_frame_idx_0); |
| const RefCntBuffer *const buf_1 = |
| get_ref_frame_buf(cm, LAST_FRAME + skip_mode_info->ref_frame_idx_1); |
| assert(buf_0 != NULL && buf_1 != NULL); |
| |
| ref_order_hint[0] = buf_0->order_hint; |
| ref_order_hint[1] = buf_1->order_hint; |
| } |
| |
| static int check_skip_mode_enabled(AV1_COMP *const cpi) { |
| AV1_COMMON *const cm = &cpi->common; |
| |
| av1_setup_skip_mode_allowed(cm); |
| if (!cm->current_frame.skip_mode_info.skip_mode_allowed) return 0; |
| |
| // Turn off skip mode if the temporal distances of the reference pair to the |
| // current frame are different by more than 1 frame. |
| const int cur_offset = (int)cm->current_frame.order_hint; |
| int ref_offset[2]; |
| get_skip_mode_ref_offsets(cm, ref_offset); |
| const int cur_to_ref0 = get_relative_dist(&cm->seq_params->order_hint_info, |
| cur_offset, ref_offset[0]); |
| const int cur_to_ref1 = abs(get_relative_dist( |
| &cm->seq_params->order_hint_info, cur_offset, ref_offset[1])); |
| if (abs(cur_to_ref0 - cur_to_ref1) > 1) return 0; |
| |
| // High Latency: Turn off skip mode if all refs are fwd. |
| if (cpi->all_one_sided_refs && cpi->oxcf.gf_cfg.lag_in_frames > 0) return 0; |
| |
| static const int flag_list[REF_FRAMES] = { 0, |
| AOM_LAST_FLAG, |
| AOM_LAST2_FLAG, |
| AOM_LAST3_FLAG, |
| AOM_GOLD_FLAG, |
| AOM_BWD_FLAG, |
| AOM_ALT2_FLAG, |
| AOM_ALT_FLAG }; |
| const int ref_frame[2] = { |
| cm->current_frame.skip_mode_info.ref_frame_idx_0 + LAST_FRAME, |
| cm->current_frame.skip_mode_info.ref_frame_idx_1 + LAST_FRAME |
| }; |
| if (!(cpi->ref_frame_flags & flag_list[ref_frame[0]]) || |
| !(cpi->ref_frame_flags & flag_list[ref_frame[1]])) |
| return 0; |
| |
| return 1; |
| } |
| |
| static AOM_INLINE void set_default_interp_skip_flags( |
| const AV1_COMMON *cm, InterpSearchFlags *interp_search_flags) { |
| const int num_planes = av1_num_planes(cm); |
| interp_search_flags->default_interp_skip_flags = |
| (num_planes == 1) ? INTERP_SKIP_LUMA_EVAL_CHROMA |
| : INTERP_SKIP_LUMA_SKIP_CHROMA; |
| } |
| |
| static AOM_INLINE void setup_prune_ref_frame_mask(AV1_COMP *cpi) { |
| if ((!cpi->oxcf.ref_frm_cfg.enable_onesided_comp || |
| cpi->sf.inter_sf.disable_onesided_comp) && |
| cpi->all_one_sided_refs) { |
| // Disable all compound references |
| cpi->prune_ref_frame_mask = (1 << MODE_CTX_REF_FRAMES) - (1 << REF_FRAMES); |
| } else if (!cpi->sf.rt_sf.use_nonrd_pick_mode && |
| cpi->sf.inter_sf.selective_ref_frame >= 2) { |
| AV1_COMMON *const cm = &cpi->common; |
| const int cur_frame_display_order_hint = |
| cm->current_frame.display_order_hint; |
| unsigned int *ref_display_order_hint = |
| cm->cur_frame->ref_display_order_hint; |
| const int arf2_dist = av1_encoder_get_relative_dist( |
| ref_display_order_hint[ALTREF2_FRAME - LAST_FRAME], |
| cur_frame_display_order_hint); |
| const int bwd_dist = av1_encoder_get_relative_dist( |
| ref_display_order_hint[BWDREF_FRAME - LAST_FRAME], |
| cur_frame_display_order_hint); |
| |
| for (int ref_idx = REF_FRAMES; ref_idx < MODE_CTX_REF_FRAMES; ++ref_idx) { |
| MV_REFERENCE_FRAME rf[2]; |
| av1_set_ref_frame(rf, ref_idx); |
| if (!(cpi->ref_frame_flags & av1_ref_frame_flag_list[rf[0]]) || |
| !(cpi->ref_frame_flags & av1_ref_frame_flag_list[rf[1]])) { |
| continue; |
| } |
| |
| if (!cpi->all_one_sided_refs) { |
| int ref_dist[2]; |
| for (int i = 0; i < 2; ++i) { |
| ref_dist[i] = av1_encoder_get_relative_dist( |
| ref_display_order_hint[rf[i] - LAST_FRAME], |
| cur_frame_display_order_hint); |
| } |
| |
| // One-sided compound is used only when all reference frames are |
| // one-sided. |
| if ((ref_dist[0] > 0) == (ref_dist[1] > 0)) { |
| cpi->prune_ref_frame_mask |= 1 << ref_idx; |
| } |
| } |
| |
| if (cpi->sf.inter_sf.selective_ref_frame >= 4 && |
| (rf[0] == ALTREF2_FRAME || rf[1] == ALTREF2_FRAME) && |
| (cpi->ref_frame_flags & av1_ref_frame_flag_list[BWDREF_FRAME])) { |
| // Check if both ALTREF2_FRAME and BWDREF_FRAME are future references. |
| if (arf2_dist > 0 && bwd_dist > 0 && bwd_dist <= arf2_dist) { |
| // Drop ALTREF2_FRAME as a reference if BWDREF_FRAME is a closer |
| // reference to the current frame than ALTREF2_FRAME |
| cpi->prune_ref_frame_mask |= 1 << ref_idx; |
| } |
| } |
| } |
| } |
| } |
| |
| static int allow_deltaq_mode(AV1_COMP *cpi) { |
| #if !CONFIG_REALTIME_ONLY |
| AV1_COMMON *const cm = &cpi->common; |
| BLOCK_SIZE sb_size = cm->seq_params->sb_size; |
| int sbs_wide = mi_size_wide[sb_size]; |
| int sbs_high = mi_size_high[sb_size]; |
| |
| int64_t delta_rdcost = 0; |
| for (int mi_row = 0; mi_row < cm->mi_params.mi_rows; mi_row += sbs_high) { |
| for (int mi_col = 0; mi_col < cm->mi_params.mi_cols; mi_col += sbs_wide) { |
| int64_t this_delta_rdcost = 0; |
| av1_get_q_for_deltaq_objective(cpi, &cpi->td, &this_delta_rdcost, sb_size, |
| mi_row, mi_col); |
| delta_rdcost += this_delta_rdcost; |
| } |
| } |
| return delta_rdcost < 0; |
| #else |
| (void)cpi; |
| return 1; |
| #endif // !CONFIG_REALTIME_ONLY |
| } |
| |
| #define FORCE_ZMV_SKIP_128X128_BLK_DIFF 10000 |
| #define FORCE_ZMV_SKIP_MAX_PER_PIXEL_DIFF 4 |
| |
| // Populates block level thresholds for force zeromv-skip decision |
| static void populate_thresh_to_force_zeromv_skip(AV1_COMP *cpi) { |
| if (cpi->sf.rt_sf.part_early_exit_zeromv == 0) return; |
| |
| // Threshold for forcing zeromv-skip decision is as below: |
| // For 128x128 blocks, threshold is 10000 and per pixel threshold is 0.6103. |
| // For 64x64 blocks, threshold is 5000 and per pixel threshold is 1.221 |
| // allowing slightly higher error for smaller blocks. |
| // Per Pixel Threshold of 64x64 block Area of 64x64 block 1 1 |
| // ------------------------------------=sqrt(---------------------)=sqrt(-)=- |
| // Per Pixel Threshold of 128x128 block Area of 128x128 block 4 2 |
| // Thus, per pixel thresholds for blocks of size 32x32, 16x16,... can be |
| // chosen as 2.442, 4.884,.... As the per pixel error tends to be higher for |
| // small blocks, the same is clipped to 4. |
| const unsigned int thresh_exit_128x128_part = FORCE_ZMV_SKIP_128X128_BLK_DIFF; |
| const int num_128x128_pix = |
| block_size_wide[BLOCK_128X128] * block_size_high[BLOCK_128X128]; |
| |
| for (BLOCK_SIZE bsize = BLOCK_4X4; bsize < BLOCK_SIZES_ALL; bsize++) { |
| const int num_block_pix = block_size_wide[bsize] * block_size_high[bsize]; |
| |
| // Calculate the threshold for zeromv-skip decision based on area of the |
| // partition |
| unsigned int thresh_exit_part_blk = |
| (unsigned int)(thresh_exit_128x128_part * |
| sqrt((double)num_block_pix / num_128x128_pix) + |
| 0.5); |
| thresh_exit_part_blk = AOMMIN( |
| thresh_exit_part_blk, |
| (unsigned int)(FORCE_ZMV_SKIP_MAX_PER_PIXEL_DIFF * num_block_pix)); |
| cpi->zeromv_skip_thresh_exit_part[bsize] = thresh_exit_part_blk; |
| } |
| } |
| |
| static void free_block_hash_buffers(uint32_t *block_hash_values[2][2], |
| int8_t *is_block_same[2][3]) { |
| for (int k = 0; k < 2; ++k) { |
| for (int j = 0; j < 2; ++j) { |
| aom_free(block_hash_values[k][j]); |
| } |
| |
| for (int j = 0; j < 3; ++j) { |
| aom_free(is_block_same[k][j]); |
| } |
| } |
| } |
| |
| /*!\brief Encoder setup(only for the current frame), encoding, and recontruction |
| * for a single frame |
| * |
| * \ingroup high_level_algo |
| */ |
| static AOM_INLINE void encode_frame_internal(AV1_COMP *cpi) { |
| ThreadData *const td = &cpi->td; |
| MACROBLOCK *const x = &td->mb; |
| AV1_COMMON *const cm = &cpi->common; |
| CommonModeInfoParams *const mi_params = &cm->mi_params; |
| FeatureFlags *const features = &cm->features; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| RD_COUNTS *const rdc = &cpi->td.rd_counts; |
| #if CONFIG_FPMT_TEST |
| FrameProbInfo *const temp_frame_probs = &cpi->ppi->temp_frame_probs; |
| FrameProbInfo *const temp_frame_probs_simulation = |
| &cpi->ppi->temp_frame_probs_simulation; |
| #endif |
| FrameProbInfo *const frame_probs = &cpi->ppi->frame_probs; |
| IntraBCHashInfo *const intrabc_hash_info = &x->intrabc_hash_info; |
| MultiThreadInfo *const mt_info = &cpi->mt_info; |
| AV1EncRowMultiThreadInfo *const enc_row_mt = &mt_info->enc_row_mt; |
| const AV1EncoderConfig *const oxcf = &cpi->oxcf; |
| const DELTAQ_MODE deltaq_mode = oxcf->q_cfg.deltaq_mode; |
| int i; |
| |
| if (!cpi->sf.rt_sf.use_nonrd_pick_mode) { |
| mi_params->setup_mi(mi_params); |
| } |
| |
| set_mi_offsets(mi_params, xd, 0, 0); |
| |
| av1_zero(*td->counts); |
| av1_zero(rdc->tx_type_used); |
| av1_zero(rdc->obmc_used); |
| av1_zero(rdc->warped_used); |
| av1_zero(rdc->seg_tmp_pred_cost); |
| |
| // Reset the flag. |
| cpi->intrabc_used = 0; |
| // Need to disable intrabc when superres is selected |
| if (av1_superres_scaled(cm)) { |
| features->allow_intrabc = 0; |
| } |
| |
| features->allow_intrabc &= (oxcf->kf_cfg.enable_intrabc); |
| |
| if (features->allow_warped_motion && |
| cpi->sf.inter_sf.prune_warped_prob_thresh > 0) { |
| const FRAME_UPDATE_TYPE update_type = |
| get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index); |
| int warped_probability = |
| #if CONFIG_FPMT_TEST |
| cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE |
| ? temp_frame_probs->warped_probs[update_type] |
| : |
| #endif // CONFIG_FPMT_TEST |
| frame_probs->warped_probs[update_type]; |
| if (warped_probability < cpi->sf.inter_sf.prune_warped_prob_thresh) |
| features->allow_warped_motion = 0; |
| } |
| |
| int hash_table_created = 0; |
| if (!is_stat_generation_stage(cpi) && av1_use_hash_me(cpi) && |
| !cpi->sf.rt_sf.use_nonrd_pick_mode) { |
| // TODO(any): move this outside of the recoding loop to avoid recalculating |
| // the hash table. |
| // add to hash table |
| const int pic_width = cpi->source->y_crop_width; |
| const int pic_height = cpi->source->y_crop_height; |
| uint32_t *block_hash_values[2][2] = { { NULL } }; |
| int8_t *is_block_same[2][3] = { { NULL } }; |
| int k, j; |
| bool error = false; |
| |
| for (k = 0; k < 2 && !error; ++k) { |
| for (j = 0; j < 2; ++j) { |
| block_hash_values[k][j] = (uint32_t *)aom_malloc( |
| sizeof(*block_hash_values[0][0]) * pic_width * pic_height); |
| if (!block_hash_values[k][j]) { |
| error = true; |
| break; |
| } |
| } |
| |
| for (j = 0; j < 3 && !error; ++j) { |
| is_block_same[k][j] = (int8_t *)aom_malloc( |
| sizeof(*is_block_same[0][0]) * pic_width * pic_height); |
| if (!is_block_same[k][j]) error = true; |
| } |
| } |
| |
| av1_hash_table_init(intrabc_hash_info); |
| if (error || |
| !av1_hash_table_create(&intrabc_hash_info->intrabc_hash_table)) { |
| free_block_hash_buffers(block_hash_values, is_block_same); |
| aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR, |
| "Error allocating intrabc_hash_table and buffers"); |
| } |
| hash_table_created = 1; |
| av1_generate_block_2x2_hash_value(intrabc_hash_info, cpi->source, |
| block_hash_values[0], is_block_same[0]); |
| // Hash data generated for screen contents is used for intraBC ME |
| const int min_alloc_size = block_size_wide[mi_params->mi_alloc_bsize]; |
| const int max_sb_size = |
| (1 << (cm->seq_params->mib_size_log2 + MI_SIZE_LOG2)); |
| int src_idx = 0; |
| for (int size = 4; size <= max_sb_size; size *= 2, src_idx = !src_idx) { |
| const int dst_idx = !src_idx; |
| av1_generate_block_hash_value( |
| intrabc_hash_info, cpi->source, size, block_hash_values[src_idx], |
| block_hash_values[dst_idx], is_block_same[src_idx], |
| is_block_same[dst_idx]); |
| if (size >= min_alloc_size) { |
| if (!av1_add_to_hash_map_by_row_with_precal_data( |
| &intrabc_hash_info->intrabc_hash_table, |
| block_hash_values[dst_idx], is_block_same[dst_idx][2], |
| pic_width, pic_height, size)) { |
| error = true; |
| break; |
| } |
| } |
| } |
| |
| free_block_hash_buffers(block_hash_values, is_block_same); |
| |
| if (error) { |
| aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR, |
| "Error adding data to intrabc_hash_table"); |
| } |
| } |
| |
| const CommonQuantParams *quant_params = &cm->quant_params; |
| for (i = 0; i < MAX_SEGMENTS; ++i) { |
| const int qindex = |
| cm->seg.enabled ? av1_get_qindex(&cm->seg, i, quant_params->base_qindex) |
| : quant_params->base_qindex; |
| xd->lossless[i] = |
| qindex == 0 && quant_params->y_dc_delta_q == 0 && |
| quant_params->u_dc_delta_q == 0 && quant_params->u_ac_delta_q == 0 && |
| quant_params->v_dc_delta_q == 0 && quant_params->v_ac_delta_q == 0; |
| if (xd->lossless[i]) cpi->enc_seg.has_lossless_segment = 1; |
| xd->qindex[i] = qindex; |
| if (xd->lossless[i]) { |
| cpi->optimize_seg_arr[i] = NO_TRELLIS_OPT; |
| } else { |
| cpi->optimize_seg_arr[i] = cpi->sf.rd_sf.optimize_coefficients; |
| } |
| } |
| features->coded_lossless = is_coded_lossless(cm, xd); |
| features->all_lossless = features->coded_lossless && !av1_superres_scaled(cm); |
| |
| // Fix delta q resolution for the moment |
| |
| cm->delta_q_info.delta_q_res = 0; |
| if (cpi->use_ducky_encode) { |
| cm->delta_q_info.delta_q_res = DEFAULT_DELTA_Q_RES_DUCKY_ENCODE; |
| } else if (cpi->oxcf.q_cfg.aq_mode != CYCLIC_REFRESH_AQ) { |
| if (deltaq_mode == DELTA_Q_OBJECTIVE) |
| cm->delta_q_info.delta_q_res = DEFAULT_DELTA_Q_RES_OBJECTIVE; |
| else if (deltaq_mode == DELTA_Q_PERCEPTUAL) |
| cm->delta_q_info.delta_q_res = DEFAULT_DELTA_Q_RES_PERCEPTUAL; |
| else if (deltaq_mode == DELTA_Q_PERCEPTUAL_AI) |
| cm->delta_q_info.delta_q_res = DEFAULT_DELTA_Q_RES_PERCEPTUAL; |
| else if (deltaq_mode == DELTA_Q_USER_RATING_BASED) |
| cm->delta_q_info.delta_q_res = DEFAULT_DELTA_Q_RES_PERCEPTUAL; |
| else if (deltaq_mode == DELTA_Q_HDR) |
| cm->delta_q_info.delta_q_res = DEFAULT_DELTA_Q_RES_PERCEPTUAL; |
| // Set delta_q_present_flag before it is used for the first time |
| cm->delta_q_info.delta_lf_res = DEFAULT_DELTA_LF_RES; |
| cm->delta_q_info.delta_q_present_flag = deltaq_mode != NO_DELTA_Q; |
| |
| // Turn off cm->delta_q_info.delta_q_present_flag if objective delta_q |
| // is used for ineligible frames. That effectively will turn off row_mt |
| // usage. Note objective delta_q and tpl eligible frames are only altref |
| // frames currently. |
| const GF_GROUP *gf_group = &cpi->ppi->gf_group; |
| if (cm->delta_q_info.delta_q_present_flag) { |
| if (deltaq_mode == DELTA_Q_OBJECTIVE && |
| gf_group->update_type[cpi->gf_frame_index] == LF_UPDATE) |
| cm->delta_q_info.delta_q_present_flag = 0; |
| |
| if (deltaq_mode == DELTA_Q_OBJECTIVE && |
| cm->delta_q_info.delta_q_present_flag) { |
| cm->delta_q_info.delta_q_present_flag &= allow_deltaq_mode(cpi); |
| } |
| } |
| |
| // Reset delta_q_used flag |
| cpi->deltaq_used = 0; |
| |
| cm->delta_q_info.delta_lf_present_flag = |
| cm->delta_q_info.delta_q_present_flag && |
| oxcf->tool_cfg.enable_deltalf_mode; |
| cm->delta_q_info.delta_lf_multi = DEFAULT_DELTA_LF_MULTI; |
| |
| // update delta_q_present_flag and delta_lf_present_flag based on |
| // base_qindex |
| cm->delta_q_info.delta_q_present_flag &= quant_params->base_qindex > 0; |
| cm->delta_q_info.delta_lf_present_flag &= quant_params->base_qindex > 0; |
| } else if (cpi->cyclic_refresh->apply_cyclic_refresh || |
| cpi->svc.number_temporal_layers == 1) { |
| cpi->cyclic_refresh->actual_num_seg1_blocks = 0; |
| cpi->cyclic_refresh->actual_num_seg2_blocks = 0; |
| } |
| cpi->rc.cnt_zeromv = 0; |
| |
| av1_frame_init_quantizer(cpi); |
| init_encode_frame_mb_context(cpi); |
| set_default_interp_skip_flags(cm, &cpi->interp_search_flags); |
| |
| if (cm->prev_frame && cm->prev_frame->seg.enabled) |
| cm->last_frame_seg_map = cm->prev_frame->seg_map; |
| else |
| cm->last_frame_seg_map = NULL; |
| if (features->allow_intrabc || features->coded_lossless) { |
| av1_set_default_ref_deltas(cm->lf.ref_deltas); |
| av1_set_default_mode_deltas(cm->lf.mode_deltas); |
| } else if (cm->prev_frame) { |
| memcpy(cm->lf.ref_deltas, cm->prev_frame->ref_deltas, REF_FRAMES); |
| memcpy(cm->lf.mode_deltas, cm->prev_frame->mode_deltas, MAX_MODE_LF_DELTAS); |
| } |
| memcpy(cm->cur_frame->ref_deltas, cm->lf.ref_deltas, REF_FRAMES); |
| memcpy(cm->cur_frame->mode_deltas, cm->lf.mode_deltas, MAX_MODE_LF_DELTAS); |
| |
| cpi->all_one_sided_refs = |
| frame_is_intra_only(cm) ? 0 : refs_are_one_sided(cm); |
| |
| cpi->prune_ref_frame_mask = 0; |
| // Figure out which ref frames can be skipped at frame level. |
| setup_prune_ref_frame_mask(cpi); |
| |
| x->txfm_search_info.txb_split_count = 0; |
| #if CONFIG_SPEED_STATS |
| x->txfm_search_info.tx_search_count = 0; |
| #endif // CONFIG_SPEED_STATS |
| |
| #if !CONFIG_REALTIME_ONLY |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing(cpi, av1_compute_global_motion_time); |
| #endif |
| av1_compute_global_motion_facade(cpi); |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing(cpi, av1_compute_global_motion_time); |
| #endif |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing(cpi, av1_setup_motion_field_time); |
| #endif |
| av1_calculate_ref_frame_side(cm); |
| if (features->allow_ref_frame_mvs) av1_setup_motion_field(cm); |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing(cpi, av1_setup_motion_field_time); |
| #endif |
| |
| cm->current_frame.skip_mode_info.skip_mode_flag = |
| check_skip_mode_enabled(cpi); |
| |
| // Initialization of skip mode cost depends on the value of |
| // 'skip_mode_flag'. This initialization happens in the function |
| // av1_fill_mode_rates(), which is in turn called in |
| // av1_initialize_rd_consts(). Thus, av1_initialize_rd_consts() |
| // has to be called after 'skip_mode_flag' is initialized. |
| av1_initialize_rd_consts(cpi); |
| av1_set_sad_per_bit(cpi, &x->sadperbit, quant_params->base_qindex); |
| populate_thresh_to_force_zeromv_skip(cpi); |
| |
| enc_row_mt->sync_read_ptr = av1_row_mt_sync_read_dummy; |
| enc_row_mt->sync_write_ptr = av1_row_mt_sync_write_dummy; |
| mt_info->row_mt_enabled = 0; |
| mt_info->pack_bs_mt_enabled = AOMMIN(mt_info->num_mod_workers[MOD_PACK_BS], |
| cm->tiles.cols * cm->tiles.rows) > 1; |
| |
| if (oxcf->row_mt && (mt_info->num_workers > 1)) { |
| mt_info->row_mt_enabled = 1; |
| enc_row_mt->sync_read_ptr = av1_row_mt_sync_read; |
| enc_row_mt->sync_write_ptr = av1_row_mt_sync_write; |
| av1_encode_tiles_row_mt(cpi); |
| } else { |
| if (AOMMIN(mt_info->num_workers, cm->tiles.cols * cm->tiles.rows) > 1) { |
| av1_encode_tiles_mt(cpi); |
| } else { |
| // Preallocate the pc_tree for realtime coding to reduce the cost of |
| // memory allocation. |
| const int use_nonrd_mode = cpi->sf.rt_sf.use_nonrd_pick_mode; |
| if (use_nonrd_mode) { |
| td->pc_root = av1_alloc_pc_tree_node(cm->seq_params->sb_size); |
| if (!td->pc_root) |
| aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate PC_TREE"); |
| } else { |
| td->pc_root = NULL; |
| } |
| |
| encode_tiles(cpi); |
| av1_free_pc_tree_recursive(td->pc_root, av1_num_planes(cm), 0, 0, |
| cpi->sf.part_sf.partition_search_type); |
| td->pc_root = NULL; |
| } |
| } |
| |
| // If intrabc is allowed but never selected, reset the allow_intrabc flag. |
| if (features->allow_intrabc && !cpi->intrabc_used) { |
| features->allow_intrabc = 0; |
| } |
| if (features->allow_intrabc) { |
| cm->delta_q_info.delta_lf_present_flag = 0; |
| } |
| |
| if (cm->delta_q_info.delta_q_present_flag && cpi->deltaq_used == 0) { |
| cm->delta_q_info.delta_q_present_flag = 0; |
| } |
| |
| // Set the transform size appropriately before bitstream creation |
| const MODE_EVAL_TYPE eval_type = |
| cpi->sf.winner_mode_sf.enable_winner_mode_for_tx_size_srch |
| ? WINNER_MODE_EVAL |
| : DEFAULT_EVAL; |
| const TX_SIZE_SEARCH_METHOD tx_search_type = |
| cpi->winner_mode_params.tx_size_search_methods[eval_type]; |
| assert(oxcf->txfm_cfg.enable_tx64 || tx_search_type != USE_LARGESTALL); |
| features->tx_mode = select_tx_mode(cm, tx_search_type); |
| |
| // Retain the frame level probability update conditions for parallel frames. |
| // These conditions will be consumed during postencode stage to update the |
| // probability. |
| if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) { |
| cpi->do_update_frame_probs_txtype[cpi->num_frame_recode] = |
| cpi->sf.tx_sf.tx_type_search.prune_tx_type_using_stats; |
| cpi->do_update_frame_probs_obmc[cpi->num_frame_recode] = |
| (cpi->sf.inter_sf.prune_obmc_prob_thresh > 0 && |
| cpi->sf.inter_sf.prune_obmc_prob_thresh < INT_MAX); |
| cpi->do_update_frame_probs_warp[cpi->num_frame_recode] = |
| (features->allow_warped_motion && |
| cpi->sf.inter_sf.prune_warped_prob_thresh > 0); |
| cpi->do_update_frame_probs_interpfilter[cpi->num_frame_recode] = |
| (cm->current_frame.frame_type != KEY_FRAME && |
| cpi->sf.interp_sf.adaptive_interp_filter_search == 2 && |
| features->interp_filter == SWITCHABLE); |
| } |
| |
| if (cpi->sf.tx_sf.tx_type_search.prune_tx_type_using_stats || |
| ((cpi->sf.tx_sf.tx_type_search.fast_inter_tx_type_prob_thresh != |
| INT_MAX) && |
| (cpi->sf.tx_sf.tx_type_search.fast_inter_tx_type_prob_thresh != 0))) { |
| const FRAME_UPDATE_TYPE update_type = |
| get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index); |
| for (i = 0; i < TX_SIZES_ALL; i++) { |
| int sum = 0; |
| int j; |
| int left = MAX_TX_TYPE_PROB; |
| |
| for (j = 0; j < TX_TYPES; j++) |
| sum += cpi->td.rd_counts.tx_type_used[i][j]; |
| |
| for (j = TX_TYPES - 1; j >= 0; j--) { |
| int update_txtype_frameprobs = 1; |
| const int new_prob = |
| sum ? MAX_TX_TYPE_PROB * cpi->td.rd_counts.tx_type_used[i][j] / sum |
| : (j ? 0 : MAX_TX_TYPE_PROB); |
| #if CONFIG_FPMT_TEST |
| if (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) { |
| if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] == |
| 0) { |
| int prob = |
| (temp_frame_probs_simulation->tx_type_probs[update_type][i][j] + |
| new_prob) >> |
| 1; |
| left -= prob; |
| if (j == 0) prob += left; |
| temp_frame_probs_simulation->tx_type_probs[update_type][i][j] = |
| prob; |
| // Copy temp_frame_probs_simulation to temp_frame_probs |
| for (int update_type_idx = 0; update_type_idx < FRAME_UPDATE_TYPES; |
| update_type_idx++) { |
| temp_frame_probs->tx_type_probs[update_type_idx][i][j] = |
| temp_frame_probs_simulation |
| ->tx_type_probs[update_type_idx][i][j]; |
| } |
| } |
| update_txtype_frameprobs = 0; |
| } |
| #endif // CONFIG_FPMT_TEST |
| // Track the frame probabilities of parallel encode frames to update |
| // during postencode stage. |
| if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) { |
| update_txtype_frameprobs = 0; |
| cpi->frame_new_probs[cpi->num_frame_recode] |
| .tx_type_probs[update_type][i][j] = new_prob; |
| } |
| if (update_txtype_frameprobs) { |
| int prob = |
| (frame_probs->tx_type_probs[update_type][i][j] + new_prob) >> 1; |
| left -= prob; |
| if (j == 0) prob += left; |
| frame_probs->tx_type_probs[update_type][i][j] = prob; |
| } |
| } |
| } |
| } |
| |
| if (cm->seg.enabled) { |
| cm->seg.temporal_update = 1; |
| if (rdc->seg_tmp_pred_cost[0] < rdc->seg_tmp_pred_cost[1]) |
| cm->seg.temporal_update = 0; |
| } |
| |
| if (cpi->sf.inter_sf.prune_obmc_prob_thresh > 0 && |
| cpi->sf.inter_sf.prune_obmc_prob_thresh < INT_MAX) { |
| const FRAME_UPDATE_TYPE update_type = |
| get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index); |
| |
| for (i = 0; i < BLOCK_SIZES_ALL; i++) { |
| int sum = 0; |
| int update_obmc_frameprobs = 1; |
| for (int j = 0; j < 2; j++) sum += cpi->td.rd_counts.obmc_used[i][j]; |
| |
| const int new_prob = |
| sum ? 128 * cpi->td.rd_counts.obmc_used[i][1] / sum : 0; |
| #if CONFIG_FPMT_TEST |
| if (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) { |
| if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] == 0) { |
| temp_frame_probs_simulation->obmc_probs[update_type][i] = |
| (temp_frame_probs_simulation->obmc_probs[update_type][i] + |
| new_prob) >> |
| 1; |
| // Copy temp_frame_probs_simulation to temp_frame_probs |
| for (int update_type_idx = 0; update_type_idx < FRAME_UPDATE_TYPES; |
| update_type_idx++) { |
| temp_frame_probs->obmc_probs[update_type_idx][i] = |
| temp_frame_probs_simulation->obmc_probs[update_type_idx][i]; |
| } |
| } |
| update_obmc_frameprobs = 0; |
| } |
| #endif // CONFIG_FPMT_TEST |
| // Track the frame probabilities of parallel encode frames to update |
| // during postencode stage. |
| if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) { |
| update_obmc_frameprobs = 0; |
| cpi->frame_new_probs[cpi->num_frame_recode].obmc_probs[update_type][i] = |
| new_prob; |
| } |
| if (update_obmc_frameprobs) { |
| frame_probs->obmc_probs[update_type][i] = |
| (frame_probs->obmc_probs[update_type][i] + new_prob) >> 1; |
| } |
| } |
| } |
| |
| if (features->allow_warped_motion && |
| cpi->sf.inter_sf.prune_warped_prob_thresh > 0) { |
| const FRAME_UPDATE_TYPE update_type = |
| get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index); |
| int update_warp_frameprobs = 1; |
| int sum = 0; |
| for (i = 0; i < 2; i++) sum += cpi->td.rd_counts.warped_used[i]; |
| const int new_prob = sum ? 128 * cpi->td.rd_counts.warped_used[1] / sum : 0; |
| #if CONFIG_FPMT_TEST |
| if (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) { |
| if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] == 0) { |
| temp_frame_probs_simulation->warped_probs[update_type] = |
| (temp_frame_probs_simulation->warped_probs[update_type] + |
| new_prob) >> |
| 1; |
| // Copy temp_frame_probs_simulation to temp_frame_probs |
| for (int update_type_idx = 0; update_type_idx < FRAME_UPDATE_TYPES; |
| update_type_idx++) { |
| temp_frame_probs->warped_probs[update_type_idx] = |
| temp_frame_probs_simulation->warped_probs[update_type_idx]; |
| } |
| } |
| update_warp_frameprobs = 0; |
| } |
| #endif // CONFIG_FPMT_TEST |
| // Track the frame probabilities of parallel encode frames to update |
| // during postencode stage. |
| if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) { |
| update_warp_frameprobs = 0; |
| cpi->frame_new_probs[cpi->num_frame_recode].warped_probs[update_type] = |
| new_prob; |
| } |
| if (update_warp_frameprobs) { |
| frame_probs->warped_probs[update_type] = |
| (frame_probs->warped_probs[update_type] + new_prob) >> 1; |
| } |
| } |
| |
| if (cm->current_frame.frame_type != KEY_FRAME && |
| cpi->sf.interp_sf.adaptive_interp_filter_search == 2 && |
| features->interp_filter == SWITCHABLE) { |
| const FRAME_UPDATE_TYPE update_type = |
| get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index); |
| |
| for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) { |
| int sum = 0; |
| int j; |
| int left = 1536; |
| |
| for (j = 0; j < SWITCHABLE_FILTERS; j++) { |
| sum += cpi->td.counts->switchable_interp[i][j]; |
| } |
| |
| for (j = SWITCHABLE_FILTERS - 1; j >= 0; j--) { |
| int update_interpfilter_frameprobs = 1; |
| const int new_prob = |
| sum ? 1536 * cpi->td.counts->switchable_interp[i][j] / sum |
| : (j ? 0 : 1536); |
| #if CONFIG_FPMT_TEST |
| if (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) { |
| if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] == |
| 0) { |
| int prob = (temp_frame_probs_simulation |
| ->switchable_interp_probs[update_type][i][j] + |
| new_prob) >> |
| 1; |
| left -= prob; |
| if (j == 0) prob += left; |
| temp_frame_probs_simulation |
| ->switchable_interp_probs[update_type][i][j] = prob; |
| // Copy temp_frame_probs_simulation to temp_frame_probs |
| for (int update_type_idx = 0; update_type_idx < FRAME_UPDATE_TYPES; |
| update_type_idx++) { |
| temp_frame_probs->switchable_interp_probs[update_type_idx][i][j] = |
| temp_frame_probs_simulation |
| ->switchable_interp_probs[update_type_idx][i][j]; |
| } |
| } |
| update_interpfilter_frameprobs = 0; |
| } |
| #endif // CONFIG_FPMT_TEST |
| // Track the frame probabilities of parallel encode frames to update |
| // during postencode stage. |
| if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) { |
| update_interpfilter_frameprobs = 0; |
| cpi->frame_new_probs[cpi->num_frame_recode] |
| .switchable_interp_probs[update_type][i][j] = new_prob; |
| } |
| if (update_interpfilter_frameprobs) { |
| int prob = (frame_probs->switchable_interp_probs[update_type][i][j] + |
| new_prob) >> |
| 1; |
| left -= prob; |
| if (j == 0) prob += left; |
| frame_probs->switchable_interp_probs[update_type][i][j] = prob; |
| } |
| } |
| } |
| } |
| if (hash_table_created) { |
| av1_hash_table_destroy(&intrabc_hash_info->intrabc_hash_table); |
| } |
| } |
| |
| /*!\brief Setup reference frame buffers and encode a frame |
| * |
| * \ingroup high_level_algo |
| * \callgraph |
| * \callergraph |
| * |
| * \param[in] cpi Top-level encoder structure |
| */ |
| void av1_encode_frame(AV1_COMP *cpi) { |
| AV1_COMMON *const cm = &cpi->common; |
| CurrentFrame *const current_frame = &cm->current_frame; |
| FeatureFlags *const features = &cm->features; |
| RD_COUNTS *const rdc = &cpi->td.rd_counts; |
| const AV1EncoderConfig *const oxcf = &cpi->oxcf; |
| // Indicates whether or not to use a default reduced set for ext-tx |
| // rather than the potential full set of 16 transforms |
| features->reduced_tx_set_used = oxcf->txfm_cfg.reduced_tx_type_set; |
| |
| // Make sure segment_id is no larger than last_active_segid. |
| if (cm->seg.enabled && cm->seg.update_map) { |
| const int mi_rows = cm->mi_params.mi_rows; |
| const int mi_cols = cm->mi_params.mi_cols; |
| const int last_active_segid = cm->seg.last_active_segid; |
| uint8_t *map = cpi->enc_seg.map; |
| for (int mi_row = 0; mi_row < mi_rows; ++mi_row) { |
| for (int mi_col = 0; mi_col < mi_cols; ++mi_col) { |
| map[mi_col] = AOMMIN(map[mi_col], last_active_segid); |
| } |
| map += mi_cols; |
| } |
| } |
| |
| av1_setup_frame_buf_refs(cm); |
| enforce_max_ref_frames(cpi, &cpi->ref_frame_flags, |
| cm->cur_frame->ref_display_order_hint, |
| cm->current_frame.display_order_hint); |
| set_rel_frame_dist(&cpi->common, &cpi->ref_frame_dist_info, |
| cpi->ref_frame_flags); |
| av1_setup_frame_sign_bias(cm); |
| |
| // If global motion is enabled, then every buffer which is used as either |
| // a source or a ref frame should have an image pyramid allocated. |
| // Check here so that issues can be caught early in debug mode |
| #if !defined(NDEBUG) && !CONFIG_REALTIME_ONLY |
| if (cpi->image_pyramid_levels > 0) { |
| assert(cpi->source->y_pyramid); |
| for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { |
| const RefCntBuffer *const buf = get_ref_frame_buf(cm, ref_frame); |
| if (buf != NULL) { |
| assert(buf->buf.y_pyramid); |
| } |
| } |
| } |
| #endif // !defined(NDEBUG) && !CONFIG_REALTIME_ONLY |
| |
| #if CONFIG_MISMATCH_DEBUG |
| mismatch_reset_frame(av1_num_planes(cm)); |
| #endif |
| |
| rdc->newmv_or_intra_blocks = 0; |
| cpi->palette_pixel_num = 0; |
| |
| if (cpi->sf.hl_sf.frame_parameter_update || |
| cpi->sf.rt_sf.use_comp_ref_nonrd) { |
| if (frame_is_intra_only(cm)) |
| current_frame->reference_mode = SINGLE_REFERENCE; |
| else |
| current_frame->reference_mode = REFERENCE_MODE_SELECT; |
| |
| features->interp_filter = SWITCHABLE; |
| if (cm->tiles.large_scale) features->interp_filter = EIGHTTAP_REGULAR; |
| |
| features->switchable_motion_mode = is_switchable_motion_mode_allowed( |
| features->allow_warped_motion, oxcf->motion_mode_cfg.enable_obmc); |
| |
| rdc->compound_ref_used_flag = 0; |
| rdc->skip_mode_used_flag = 0; |
| |
| encode_frame_internal(cpi); |
| |
| if (current_frame->reference_mode == REFERENCE_MODE_SELECT) { |
| // Use a flag that includes 4x4 blocks |
| if (rdc->compound_ref_used_flag == 0) { |
| current_frame->reference_mode = SINGLE_REFERENCE; |
| #if CONFIG_ENTROPY_STATS |
| av1_zero(cpi->td.counts->comp_inter); |
| #endif // CONFIG_ENTROPY_STATS |
| } |
| } |
| // Re-check on the skip mode status as reference mode may have been |
| // changed. |
| SkipModeInfo *const skip_mode_info = ¤t_frame->skip_mode_info; |
| if (frame_is_intra_only(cm) || |
| current_frame->reference_mode == SINGLE_REFERENCE) { |
| skip_mode_info->skip_mode_allowed = 0; |
| skip_mode_info->skip_mode_flag = 0; |
| } |
| if (skip_mode_info->skip_mode_flag && rdc->skip_mode_used_flag == 0) |
| skip_mode_info->skip_mode_flag = 0; |
| |
| if (!cm->tiles.large_scale) { |
| if (features->tx_mode == TX_MODE_SELECT && |
| cpi->td.mb.txfm_search_info.txb_split_count == 0) |
| features->tx_mode = TX_MODE_LARGEST; |
| } |
| } else { |
| // This is needed if real-time speed setting is changed on the fly |
| // from one using compound prediction to one using single reference. |
| if (current_frame->reference_mode == REFERENCE_MODE_SELECT) |
| current_frame->reference_mode = SINGLE_REFERENCE; |
| encode_frame_internal(cpi); |
| } |
| } |