| /* |
| * Copyright (c) 2019, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <limits.h> |
| #include <math.h> |
| #include <stdbool.h> |
| #include <stdio.h> |
| |
| #include "config/aom_config.h" |
| #include "config/aom_dsp_rtcd.h" |
| #include "config/av1_rtcd.h" |
| |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_dsp/binary_codes_writer.h" |
| #include "aom_ports/mem.h" |
| #include "aom_ports/aom_timer.h" |
| |
| #include "av1/common/reconinter.h" |
| #include "av1/common/blockd.h" |
| |
| #include "av1/encoder/encodeframe.h" |
| #include "av1/encoder/var_based_part.h" |
| #include "av1/encoder/reconinter_enc.h" |
| #include "av1/encoder/rdopt_utils.h" |
| |
| // Possible values for the force_split variable while evaluating variance based |
| // partitioning. |
| enum { |
| // Evaluate all partition types |
| PART_EVAL_ALL = 0, |
| // Force PARTITION_SPLIT |
| PART_EVAL_ONLY_SPLIT = 1, |
| // Force PARTITION_NONE |
| PART_EVAL_ONLY_NONE = 2 |
| } UENUM1BYTE(PART_EVAL_STATUS); |
| |
| typedef struct { |
| VPVariance *part_variances; |
| VPartVar *split[4]; |
| } variance_node; |
| |
| static AOM_INLINE void tree_to_node(void *data, BLOCK_SIZE bsize, |
| variance_node *node) { |
| node->part_variances = NULL; |
| switch (bsize) { |
| case BLOCK_128X128: { |
| VP128x128 *vt = (VP128x128 *)data; |
| node->part_variances = &vt->part_variances; |
| for (int split_idx = 0; split_idx < 4; split_idx++) |
| node->split[split_idx] = &vt->split[split_idx].part_variances.none; |
| break; |
| } |
| case BLOCK_64X64: { |
| VP64x64 *vt = (VP64x64 *)data; |
| node->part_variances = &vt->part_variances; |
| for (int split_idx = 0; split_idx < 4; split_idx++) |
| node->split[split_idx] = &vt->split[split_idx].part_variances.none; |
| break; |
| } |
| case BLOCK_32X32: { |
| VP32x32 *vt = (VP32x32 *)data; |
| node->part_variances = &vt->part_variances; |
| for (int split_idx = 0; split_idx < 4; split_idx++) |
| node->split[split_idx] = &vt->split[split_idx].part_variances.none; |
| break; |
| } |
| case BLOCK_16X16: { |
| VP16x16 *vt = (VP16x16 *)data; |
| node->part_variances = &vt->part_variances; |
| for (int split_idx = 0; split_idx < 4; split_idx++) |
| node->split[split_idx] = &vt->split[split_idx].part_variances.none; |
| break; |
| } |
| case BLOCK_8X8: { |
| VP8x8 *vt = (VP8x8 *)data; |
| node->part_variances = &vt->part_variances; |
| for (int split_idx = 0; split_idx < 4; split_idx++) |
| node->split[split_idx] = &vt->split[split_idx].part_variances.none; |
| break; |
| } |
| default: { |
| VP4x4 *vt = (VP4x4 *)data; |
| assert(bsize == BLOCK_4X4); |
| node->part_variances = &vt->part_variances; |
| for (int split_idx = 0; split_idx < 4; split_idx++) |
| node->split[split_idx] = &vt->split[split_idx]; |
| break; |
| } |
| } |
| } |
| |
| // Set variance values given sum square error, sum error, count. |
| static AOM_INLINE void fill_variance(uint32_t s2, int32_t s, int c, |
| VPartVar *v) { |
| v->sum_square_error = s2; |
| v->sum_error = s; |
| v->log2_count = c; |
| } |
| |
| static AOM_INLINE void get_variance(VPartVar *v) { |
| v->variance = |
| (int)(256 * (v->sum_square_error - |
| (uint32_t)(((int64_t)v->sum_error * v->sum_error) >> |
| v->log2_count)) >> |
| v->log2_count); |
| } |
| |
| static AOM_INLINE void sum_2_variances(const VPartVar *a, const VPartVar *b, |
| VPartVar *r) { |
| assert(a->log2_count == b->log2_count); |
| fill_variance(a->sum_square_error + b->sum_square_error, |
| a->sum_error + b->sum_error, a->log2_count + 1, r); |
| } |
| |
| static AOM_INLINE void fill_variance_tree(void *data, BLOCK_SIZE bsize) { |
| variance_node node; |
| memset(&node, 0, sizeof(node)); |
| tree_to_node(data, bsize, &node); |
| sum_2_variances(node.split[0], node.split[1], &node.part_variances->horz[0]); |
| sum_2_variances(node.split[2], node.split[3], &node.part_variances->horz[1]); |
| sum_2_variances(node.split[0], node.split[2], &node.part_variances->vert[0]); |
| sum_2_variances(node.split[1], node.split[3], &node.part_variances->vert[1]); |
| sum_2_variances(&node.part_variances->vert[0], &node.part_variances->vert[1], |
| &node.part_variances->none); |
| } |
| |
| static AOM_INLINE void set_block_size(AV1_COMP *const cpi, int mi_row, |
| int mi_col, BLOCK_SIZE bsize) { |
| if (cpi->common.mi_params.mi_cols > mi_col && |
| cpi->common.mi_params.mi_rows > mi_row) { |
| CommonModeInfoParams *mi_params = &cpi->common.mi_params; |
| const int mi_grid_idx = get_mi_grid_idx(mi_params, mi_row, mi_col); |
| const int mi_alloc_idx = get_alloc_mi_idx(mi_params, mi_row, mi_col); |
| MB_MODE_INFO *mi = mi_params->mi_grid_base[mi_grid_idx] = |
| &mi_params->mi_alloc[mi_alloc_idx]; |
| mi->bsize = bsize; |
| } |
| } |
| |
| static int set_vt_partitioning(AV1_COMP *cpi, MACROBLOCKD *const xd, |
| const TileInfo *const tile, void *data, |
| BLOCK_SIZE bsize, int mi_row, int mi_col, |
| int64_t threshold, BLOCK_SIZE bsize_min, |
| PART_EVAL_STATUS force_split) { |
| AV1_COMMON *const cm = &cpi->common; |
| variance_node vt; |
| const int block_width = mi_size_wide[bsize]; |
| const int block_height = mi_size_high[bsize]; |
| int bs_width_check = block_width; |
| int bs_height_check = block_height; |
| int bs_width_vert_check = block_width >> 1; |
| int bs_height_horiz_check = block_height >> 1; |
| // On the right and bottom boundary we only need to check |
| // if half the bsize fits, because boundary is extended |
| // up to 64. So do this check only for sb_size = 64X64. |
| if (cm->seq_params->sb_size == BLOCK_64X64) { |
| if (tile->mi_col_end == cm->mi_params.mi_cols) { |
| bs_width_check = (block_width >> 1) + 1; |
| bs_width_vert_check = (block_width >> 2) + 1; |
| } |
| if (tile->mi_row_end == cm->mi_params.mi_rows) { |
| bs_height_check = (block_height >> 1) + 1; |
| bs_height_horiz_check = (block_height >> 2) + 1; |
| } |
| } |
| |
| assert(block_height == block_width); |
| tree_to_node(data, bsize, &vt); |
| |
| if (mi_col + bs_width_check <= tile->mi_col_end && |
| mi_row + bs_height_check <= tile->mi_row_end && |
| force_split == PART_EVAL_ONLY_NONE) { |
| set_block_size(cpi, mi_row, mi_col, bsize); |
| return 1; |
| } |
| if (force_split == PART_EVAL_ONLY_SPLIT) return 0; |
| |
| // For bsize=bsize_min (16x16/8x8 for 8x8/4x4 downsampling), select if |
| // variance is below threshold, otherwise split will be selected. |
| // No check for vert/horiz split as too few samples for variance. |
| if (bsize == bsize_min) { |
| // Variance already computed to set the force_split. |
| if (frame_is_intra_only(cm)) get_variance(&vt.part_variances->none); |
| if (mi_col + bs_width_check <= tile->mi_col_end && |
| mi_row + bs_height_check <= tile->mi_row_end && |
| vt.part_variances->none.variance < threshold) { |
| set_block_size(cpi, mi_row, mi_col, bsize); |
| return 1; |
| } |
| return 0; |
| } else if (bsize > bsize_min) { |
| // Variance already computed to set the force_split. |
| if (frame_is_intra_only(cm)) get_variance(&vt.part_variances->none); |
| // For key frame: take split for bsize above 32X32 or very high variance. |
| if (frame_is_intra_only(cm) && |
| (bsize > BLOCK_32X32 || |
| vt.part_variances->none.variance > (threshold << 4))) { |
| return 0; |
| } |
| // If variance is low, take the bsize (no split). |
| if (mi_col + bs_width_check <= tile->mi_col_end && |
| mi_row + bs_height_check <= tile->mi_row_end && |
| vt.part_variances->none.variance < threshold) { |
| set_block_size(cpi, mi_row, mi_col, bsize); |
| return 1; |
| } |
| // Check vertical split. |
| if (mi_row + bs_height_check <= tile->mi_row_end && |
| mi_col + bs_width_vert_check <= tile->mi_col_end) { |
| BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_VERT); |
| BLOCK_SIZE plane_bsize = |
| get_plane_block_size(subsize, xd->plane[AOM_PLANE_U].subsampling_x, |
| xd->plane[AOM_PLANE_U].subsampling_y); |
| get_variance(&vt.part_variances->vert[0]); |
| get_variance(&vt.part_variances->vert[1]); |
| if (vt.part_variances->vert[0].variance < threshold && |
| vt.part_variances->vert[1].variance < threshold && |
| plane_bsize < BLOCK_INVALID) { |
| set_block_size(cpi, mi_row, mi_col, subsize); |
| set_block_size(cpi, mi_row, mi_col + block_width / 2, subsize); |
| return 1; |
| } |
| } |
| // Check horizontal split. |
| if (mi_col + bs_width_check <= tile->mi_col_end && |
| mi_row + bs_height_horiz_check <= tile->mi_row_end) { |
| BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_HORZ); |
| BLOCK_SIZE plane_bsize = |
| get_plane_block_size(subsize, xd->plane[AOM_PLANE_U].subsampling_x, |
| xd->plane[AOM_PLANE_U].subsampling_y); |
| get_variance(&vt.part_variances->horz[0]); |
| get_variance(&vt.part_variances->horz[1]); |
| if (vt.part_variances->horz[0].variance < threshold && |
| vt.part_variances->horz[1].variance < threshold && |
| plane_bsize < BLOCK_INVALID) { |
| set_block_size(cpi, mi_row, mi_col, subsize); |
| set_block_size(cpi, mi_row + block_height / 2, mi_col, subsize); |
| return 1; |
| } |
| } |
| return 0; |
| } |
| return 0; |
| } |
| |
| static AOM_INLINE int all_blks_inside(int x16_idx, int y16_idx, int pixels_wide, |
| int pixels_high) { |
| int all_inside = 1; |
| for (int idx = 0; idx < 4; idx++) { |
| all_inside &= ((x16_idx + GET_BLK_IDX_X(idx, 3)) < pixels_wide); |
| all_inside &= ((y16_idx + GET_BLK_IDX_Y(idx, 3)) < pixels_high); |
| } |
| return all_inside; |
| } |
| |
| #if CONFIG_AV1_HIGHBITDEPTH |
| // TODO(yunqingwang): Perform average of four 8x8 blocks similar to lowbd |
| static AOM_INLINE void fill_variance_8x8avg_highbd( |
| const uint8_t *src_buf, int src_stride, const uint8_t *dst_buf, |
| int dst_stride, int x16_idx, int y16_idx, VP16x16 *vst, int pixels_wide, |
| int pixels_high) { |
| for (int idx = 0; idx < 4; idx++) { |
| const int x8_idx = x16_idx + GET_BLK_IDX_X(idx, 3); |
| const int y8_idx = y16_idx + GET_BLK_IDX_Y(idx, 3); |
| unsigned int sse = 0; |
| int sum = 0; |
| if (x8_idx < pixels_wide && y8_idx < pixels_high) { |
| int src_avg = aom_highbd_avg_8x8(src_buf + y8_idx * src_stride + x8_idx, |
| src_stride); |
| int dst_avg = aom_highbd_avg_8x8(dst_buf + y8_idx * dst_stride + x8_idx, |
| dst_stride); |
| |
| sum = src_avg - dst_avg; |
| sse = sum * sum; |
| } |
| fill_variance(sse, sum, 0, &vst->split[idx].part_variances.none); |
| } |
| } |
| #endif |
| |
| static AOM_INLINE void fill_variance_8x8avg_lowbd( |
| const uint8_t *src_buf, int src_stride, const uint8_t *dst_buf, |
| int dst_stride, int x16_idx, int y16_idx, VP16x16 *vst, int pixels_wide, |
| int pixels_high) { |
| unsigned int sse[4] = { 0 }; |
| int sum[4] = { 0 }; |
| |
| if (all_blks_inside(x16_idx, y16_idx, pixels_wide, pixels_high)) { |
| int src_avg[4]; |
| int dst_avg[4]; |
| aom_avg_8x8_quad(src_buf, src_stride, x16_idx, y16_idx, src_avg); |
| aom_avg_8x8_quad(dst_buf, dst_stride, x16_idx, y16_idx, dst_avg); |
| for (int idx = 0; idx < 4; idx++) { |
| sum[idx] = src_avg[idx] - dst_avg[idx]; |
| sse[idx] = sum[idx] * sum[idx]; |
| } |
| } else { |
| for (int idx = 0; idx < 4; idx++) { |
| const int x8_idx = x16_idx + GET_BLK_IDX_X(idx, 3); |
| const int y8_idx = y16_idx + GET_BLK_IDX_Y(idx, 3); |
| if (x8_idx < pixels_wide && y8_idx < pixels_high) { |
| int src_avg = |
| aom_avg_8x8(src_buf + y8_idx * src_stride + x8_idx, src_stride); |
| int dst_avg = |
| aom_avg_8x8(dst_buf + y8_idx * dst_stride + x8_idx, dst_stride); |
| sum[idx] = src_avg - dst_avg; |
| sse[idx] = sum[idx] * sum[idx]; |
| } |
| } |
| } |
| |
| for (int idx = 0; idx < 4; idx++) { |
| fill_variance(sse[idx], sum[idx], 0, &vst->split[idx].part_variances.none); |
| } |
| } |
| |
| // Obtain parameters required to calculate variance (such as sum, sse, etc,.) |
| // at 8x8 sub-block level for a given 16x16 block. |
| // The function can be called only when is_key_frame is false since sum is |
| // computed between source and reference frames. |
| static AOM_INLINE void fill_variance_8x8avg( |
| const uint8_t *src_buf, int src_stride, const uint8_t *dst_buf, |
| int dst_stride, int x16_idx, int y16_idx, VP16x16 *vst, int highbd_flag, |
| int pixels_wide, int pixels_high) { |
| #if CONFIG_AV1_HIGHBITDEPTH |
| if (highbd_flag) { |
| fill_variance_8x8avg_highbd(src_buf, src_stride, dst_buf, dst_stride, |
| x16_idx, y16_idx, vst, pixels_wide, |
| pixels_high); |
| return; |
| } |
| #else |
| (void)highbd_flag; |
| #endif // CONFIG_AV1_HIGHBITDEPTH |
| fill_variance_8x8avg_lowbd(src_buf, src_stride, dst_buf, dst_stride, x16_idx, |
| y16_idx, vst, pixels_wide, pixels_high); |
| } |
| |
| static int compute_minmax_8x8(const uint8_t *src_buf, int src_stride, |
| const uint8_t *dst_buf, int dst_stride, |
| int x16_idx, int y16_idx, |
| #if CONFIG_AV1_HIGHBITDEPTH |
| int highbd_flag, |
| #endif |
| int pixels_wide, int pixels_high) { |
| int minmax_max = 0; |
| int minmax_min = 255; |
| // Loop over the 4 8x8 subblocks. |
| for (int idx = 0; idx < 4; idx++) { |
| const int x8_idx = x16_idx + GET_BLK_IDX_X(idx, 3); |
| const int y8_idx = y16_idx + GET_BLK_IDX_Y(idx, 3); |
| int min = 0; |
| int max = 0; |
| if (x8_idx < pixels_wide && y8_idx < pixels_high) { |
| #if CONFIG_AV1_HIGHBITDEPTH |
| if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) { |
| aom_highbd_minmax_8x8( |
| src_buf + y8_idx * src_stride + x8_idx, src_stride, |
| dst_buf + y8_idx * dst_stride + x8_idx, dst_stride, &min, &max); |
| } else { |
| aom_minmax_8x8(src_buf + y8_idx * src_stride + x8_idx, src_stride, |
| dst_buf + y8_idx * dst_stride + x8_idx, dst_stride, &min, |
| &max); |
| } |
| #else |
| aom_minmax_8x8(src_buf + y8_idx * src_stride + x8_idx, src_stride, |
| dst_buf + y8_idx * dst_stride + x8_idx, dst_stride, &min, |
| &max); |
| #endif |
| if ((max - min) > minmax_max) minmax_max = (max - min); |
| if ((max - min) < minmax_min) minmax_min = (max - min); |
| } |
| } |
| return (minmax_max - minmax_min); |
| } |
| |
| // Function to compute average and variance of 4x4 sub-block. |
| // The function can be called only when is_key_frame is true since sum is |
| // computed using source frame only. |
| static AOM_INLINE void fill_variance_4x4avg(const uint8_t *src_buf, |
| int src_stride, int x8_idx, |
| int y8_idx, VP8x8 *vst, |
| #if CONFIG_AV1_HIGHBITDEPTH |
| int highbd_flag, |
| #endif |
| int pixels_wide, int pixels_high, |
| int border_offset_4x4) { |
| for (int idx = 0; idx < 4; idx++) { |
| const int x4_idx = x8_idx + GET_BLK_IDX_X(idx, 2); |
| const int y4_idx = y8_idx + GET_BLK_IDX_Y(idx, 2); |
| unsigned int sse = 0; |
| int sum = 0; |
| if (x4_idx < pixels_wide - border_offset_4x4 && |
| y4_idx < pixels_high - border_offset_4x4) { |
| int src_avg; |
| int dst_avg = 128; |
| #if CONFIG_AV1_HIGHBITDEPTH |
| if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) { |
| src_avg = aom_highbd_avg_4x4(src_buf + y4_idx * src_stride + x4_idx, |
| src_stride); |
| } else { |
| src_avg = |
| aom_avg_4x4(src_buf + y4_idx * src_stride + x4_idx, src_stride); |
| } |
| #else |
| src_avg = aom_avg_4x4(src_buf + y4_idx * src_stride + x4_idx, src_stride); |
| #endif |
| |
| sum = src_avg - dst_avg; |
| sse = sum * sum; |
| } |
| fill_variance(sse, sum, 0, &vst->split[idx].part_variances.none); |
| } |
| } |
| |
| // TODO(kyslov) Bring back threshold adjustment based on content state |
| static int64_t scale_part_thresh_content(int64_t threshold_base, int speed, |
| int width, int height, |
| int non_reference_frame) { |
| (void)width; |
| (void)height; |
| int64_t threshold = threshold_base; |
| if (non_reference_frame) threshold = (3 * threshold) >> 1; |
| if (speed >= 8) { |
| return (5 * threshold) >> 2; |
| } |
| return threshold; |
| } |
| |
| // Tune thresholds less or more aggressively to prefer larger partitions |
| static AOM_INLINE void tune_thresh_based_on_qindex( |
| AV1_COMP *cpi, int64_t thresholds[], uint64_t block_sad, int current_qindex, |
| int num_pixels, bool is_segment_id_boosted, int source_sad_nonrd, |
| int lighting_change) { |
| double weight; |
| if (cpi->sf.rt_sf.prefer_large_partition_blocks >= 3) { |
| const int win = 20; |
| if (current_qindex < QINDEX_LARGE_BLOCK_THR - win) |
| weight = 1.0; |
| else if (current_qindex > QINDEX_LARGE_BLOCK_THR + win) |
| weight = 0.0; |
| else |
| weight = |
| 1.0 - (current_qindex - QINDEX_LARGE_BLOCK_THR + win) / (2 * win); |
| if (num_pixels > RESOLUTION_480P) { |
| for (int i = 0; i < 4; i++) { |
| thresholds[i] <<= 1; |
| } |
| } |
| if (num_pixels <= RESOLUTION_288P) { |
| thresholds[3] = INT64_MAX; |
| if (is_segment_id_boosted == false) { |
| thresholds[1] <<= 2; |
| thresholds[2] <<= (source_sad_nonrd <= kLowSad) ? 5 : 4; |
| } else { |
| thresholds[1] <<= 1; |
| thresholds[2] <<= 3; |
| } |
| // Allow for split to 8x8 for superblocks where part of it has |
| // moving boundary. So allow for sb with source_sad above threshold, |
| // and avoid very large source_sad or high source content, to avoid |
| // too many 8x8 within superblock. |
| uint64_t avg_source_sad_thresh = 25000; |
| uint64_t block_sad_low = 25000; |
| uint64_t block_sad_high = 50000; |
| if (cpi->svc.temporal_layer_id == 0 && |
| cpi->svc.number_temporal_layers > 1) { |
| // Increase the sad thresholds for base TL0, as reference/LAST is |
| // 2/4 frames behind (for 2/3 #TL). |
| avg_source_sad_thresh = 40000; |
| block_sad_high = 70000; |
| } |
| if (is_segment_id_boosted == false && |
| cpi->rc.avg_source_sad < avg_source_sad_thresh && |
| block_sad > block_sad_low && block_sad < block_sad_high && |
| !lighting_change) { |
| thresholds[2] = (3 * thresholds[2]) >> 2; |
| thresholds[3] = thresholds[2] << 3; |
| } |
| // Condition the increase of partition thresholds on the segment |
| // and the content. Avoid the increase for superblocks which have |
| // high source sad, unless the whole frame has very high motion |
| // (i.e, cpi->rc.avg_source_sad is very large, in which case all blocks |
| // have high source sad). |
| } else if (num_pixels > RESOLUTION_480P && is_segment_id_boosted == false && |
| (source_sad_nonrd != kHighSad || |
| cpi->rc.avg_source_sad > 50000)) { |
| thresholds[0] = (3 * thresholds[0]) >> 1; |
| thresholds[3] = INT64_MAX; |
| if (current_qindex > QINDEX_LARGE_BLOCK_THR) { |
| thresholds[1] = |
| (int)((1 - weight) * (thresholds[1] << 1) + weight * thresholds[1]); |
| thresholds[2] = |
| (int)((1 - weight) * (thresholds[2] << 1) + weight * thresholds[2]); |
| } |
| } else if (current_qindex > QINDEX_LARGE_BLOCK_THR && |
| is_segment_id_boosted == false && |
| (source_sad_nonrd != kHighSad || |
| cpi->rc.avg_source_sad > 50000)) { |
| thresholds[1] = |
| (int)((1 - weight) * (thresholds[1] << 2) + weight * thresholds[1]); |
| thresholds[2] = |
| (int)((1 - weight) * (thresholds[2] << 4) + weight * thresholds[2]); |
| thresholds[3] = INT64_MAX; |
| } |
| } else if (cpi->sf.rt_sf.prefer_large_partition_blocks >= 2) { |
| thresholds[1] <<= (source_sad_nonrd <= kLowSad) ? 2 : 0; |
| thresholds[2] = |
| (source_sad_nonrd <= kLowSad) ? (3 * thresholds[2]) : thresholds[2]; |
| } else if (cpi->sf.rt_sf.prefer_large_partition_blocks >= 1) { |
| const int fac = (source_sad_nonrd <= kLowSad) ? 2 : 1; |
| if (current_qindex < QINDEX_LARGE_BLOCK_THR - 45) |
| weight = 1.0; |
| else if (current_qindex > QINDEX_LARGE_BLOCK_THR + 45) |
| weight = 0.0; |
| else |
| weight = 1.0 - (current_qindex - QINDEX_LARGE_BLOCK_THR + 45) / (2 * 45); |
| thresholds[1] = |
| (int)((1 - weight) * (thresholds[1] << 1) + weight * thresholds[1]); |
| thresholds[2] = |
| (int)((1 - weight) * (thresholds[2] << 1) + weight * thresholds[2]); |
| thresholds[3] = |
| (int)((1 - weight) * (thresholds[3] << fac) + weight * thresholds[3]); |
| } |
| if (cpi->sf.part_sf.disable_8x8_part_based_on_qidx && (current_qindex < 128)) |
| thresholds[3] = INT64_MAX; |
| } |
| |
| static void set_vbp_thresholds_key_frame(AV1_COMP *cpi, int64_t thresholds[], |
| int64_t threshold_base, |
| int threshold_left_shift, |
| int num_pixels) { |
| if (cpi->sf.rt_sf.force_large_partition_blocks_intra) { |
| const int shift_steps = |
| threshold_left_shift - (cpi->oxcf.mode == ALLINTRA ? 7 : 8); |
| assert(shift_steps >= 0); |
| threshold_base <<= shift_steps; |
| } |
| thresholds[0] = threshold_base; |
| thresholds[1] = threshold_base; |
| if (num_pixels < RESOLUTION_720P) { |
| thresholds[2] = threshold_base / 3; |
| thresholds[3] = threshold_base >> 1; |
| } else { |
| int shift_val = 2; |
| if (cpi->sf.rt_sf.force_large_partition_blocks_intra) { |
| shift_val = 0; |
| } |
| |
| thresholds[2] = threshold_base >> shift_val; |
| thresholds[3] = threshold_base >> shift_val; |
| } |
| thresholds[4] = threshold_base << 2; |
| } |
| |
| static AOM_INLINE void tune_thresh_based_on_resolution( |
| AV1_COMP *cpi, int64_t thresholds[], int64_t threshold_base, |
| int current_qindex, int source_sad_rd, int num_pixels) { |
| if (num_pixels >= RESOLUTION_720P) thresholds[3] = thresholds[3] << 1; |
| if (num_pixels <= RESOLUTION_288P) { |
| const int qindex_thr[5][2] = { |
| { 200, 220 }, { 140, 170 }, { 120, 150 }, { 200, 210 }, { 170, 220 }, |
| }; |
| int th_idx = 0; |
| if (cpi->sf.rt_sf.var_part_based_on_qidx >= 1) |
| th_idx = |
| (source_sad_rd <= kLowSad) ? cpi->sf.rt_sf.var_part_based_on_qidx : 0; |
| if (cpi->sf.rt_sf.var_part_based_on_qidx >= 3) |
| th_idx = cpi->sf.rt_sf.var_part_based_on_qidx; |
| const int qindex_low_thr = qindex_thr[th_idx][0]; |
| const int qindex_high_thr = qindex_thr[th_idx][1]; |
| if (current_qindex >= qindex_high_thr) { |
| threshold_base = (5 * threshold_base) >> 1; |
| thresholds[1] = threshold_base >> 3; |
| thresholds[2] = threshold_base << 2; |
| thresholds[3] = threshold_base << 5; |
| } else if (current_qindex < qindex_low_thr) { |
| thresholds[1] = threshold_base >> 3; |
| thresholds[2] = threshold_base >> 1; |
| thresholds[3] = threshold_base << 3; |
| } else { |
| int64_t qi_diff_low = current_qindex - qindex_low_thr; |
| int64_t qi_diff_high = qindex_high_thr - current_qindex; |
| int64_t threshold_diff = qindex_high_thr - qindex_low_thr; |
| int64_t threshold_base_high = (5 * threshold_base) >> 1; |
| |
| threshold_diff = threshold_diff > 0 ? threshold_diff : 1; |
| threshold_base = |
| (qi_diff_low * threshold_base_high + qi_diff_high * threshold_base) / |
| threshold_diff; |
| thresholds[1] = threshold_base >> 3; |
| thresholds[2] = ((qi_diff_low * threshold_base) + |
| qi_diff_high * (threshold_base >> 1)) / |
| threshold_diff; |
| thresholds[3] = ((qi_diff_low * (threshold_base << 5)) + |
| qi_diff_high * (threshold_base << 3)) / |
| threshold_diff; |
| } |
| } else if (num_pixels < RESOLUTION_720P) { |
| thresholds[2] = (5 * threshold_base) >> 2; |
| } else if (num_pixels < RESOLUTION_1080P) { |
| thresholds[2] = threshold_base << 1; |
| } else { |
| // num_pixels >= RESOLUTION_1080P |
| if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN) { |
| if (num_pixels < RESOLUTION_1440P) { |
| thresholds[2] = (5 * threshold_base) >> 1; |
| } else { |
| thresholds[2] = (7 * threshold_base) >> 1; |
| } |
| } else { |
| if (cpi->oxcf.speed > 7) { |
| thresholds[2] = 6 * threshold_base; |
| } else { |
| thresholds[2] = 3 * threshold_base; |
| } |
| } |
| } |
| } |
| |
| // Increase partition thresholds for noisy content. Apply it only for |
| // superblocks where sumdiff is low, as we assume the sumdiff of superblock |
| // whose only change is due to noise will be low (i.e, noise will average |
| // out over large block). |
| static AOM_INLINE int64_t tune_thresh_noisy_content(AV1_COMP *cpi, |
| int64_t threshold_base, |
| int content_lowsumdiff, |
| int num_pixels) { |
| AV1_COMMON *const cm = &cpi->common; |
| int64_t updated_thresh_base = threshold_base; |
| if (cpi->noise_estimate.enabled && content_lowsumdiff && |
| num_pixels > RESOLUTION_480P && cm->current_frame.frame_number > 60) { |
| NOISE_LEVEL noise_level = |
| av1_noise_estimate_extract_level(&cpi->noise_estimate); |
| if (noise_level == kHigh) |
| updated_thresh_base = (5 * updated_thresh_base) >> 1; |
| else if (noise_level == kMedium && |
| !cpi->sf.rt_sf.prefer_large_partition_blocks) |
| updated_thresh_base = (5 * updated_thresh_base) >> 2; |
| } |
| // TODO(kyslov) Enable var based partition adjusment on temporal denoising |
| #if 0 // CONFIG_AV1_TEMPORAL_DENOISING |
| if (cpi->oxcf.noise_sensitivity > 0 && denoise_svc(cpi) && |
| cpi->oxcf.speed > 5 && cpi->denoiser.denoising_level >= kDenLow) |
| updated_thresh_base = |
| av1_scale_part_thresh(updated_thresh_base, cpi->denoiser.denoising_level, |
| content_state, cpi->svc.temporal_layer_id); |
| else |
| threshold_base = |
| scale_part_thresh_content(updated_thresh_base, cpi->oxcf.speed, cm->width, |
| cm->height, cpi->ppi->rtc_ref.non_reference_frame); |
| #else |
| // Increase base variance threshold based on content_state/sum_diff level. |
| updated_thresh_base = scale_part_thresh_content( |
| updated_thresh_base, cpi->oxcf.speed, cm->width, cm->height, |
| cpi->ppi->rtc_ref.non_reference_frame); |
| #endif |
| return updated_thresh_base; |
| } |
| |
| static AOM_INLINE void set_vbp_thresholds( |
| AV1_COMP *cpi, int64_t thresholds[], uint64_t blk_sad, int qindex, |
| int content_lowsumdiff, int source_sad_nonrd, int source_sad_rd, |
| bool is_segment_id_boosted, int lighting_change) { |
| AV1_COMMON *const cm = &cpi->common; |
| const int is_key_frame = frame_is_intra_only(cm); |
| const int threshold_multiplier = is_key_frame ? 120 : 1; |
| const int ac_q = av1_ac_quant_QTX(qindex, 0, cm->seq_params->bit_depth); |
| int64_t threshold_base = (int64_t)(threshold_multiplier * ac_q); |
| const int current_qindex = cm->quant_params.base_qindex; |
| const int threshold_left_shift = cpi->sf.rt_sf.var_part_split_threshold_shift; |
| const int num_pixels = cm->width * cm->height; |
| |
| if (is_key_frame) { |
| set_vbp_thresholds_key_frame(cpi, thresholds, threshold_base, |
| threshold_left_shift, num_pixels); |
| return; |
| } |
| |
| threshold_base = tune_thresh_noisy_content(cpi, threshold_base, |
| content_lowsumdiff, num_pixels); |
| thresholds[0] = threshold_base >> 1; |
| thresholds[1] = threshold_base; |
| thresholds[3] = threshold_base << threshold_left_shift; |
| |
| tune_thresh_based_on_resolution(cpi, thresholds, threshold_base, |
| current_qindex, source_sad_rd, num_pixels); |
| |
| tune_thresh_based_on_qindex(cpi, thresholds, blk_sad, current_qindex, |
| num_pixels, is_segment_id_boosted, |
| source_sad_nonrd, lighting_change); |
| } |
| |
| // Set temporal variance low flag for superblock 64x64. |
| // Only first 25 in the array are used in this case. |
| static AOM_INLINE void set_low_temp_var_flag_64x64( |
| CommonModeInfoParams *mi_params, PartitionSearchInfo *part_info, |
| MACROBLOCKD *xd, VP64x64 *vt, const int64_t thresholds[], int mi_col, |
| int mi_row) { |
| if (xd->mi[0]->bsize == BLOCK_64X64) { |
| if ((vt->part_variances).none.variance < (thresholds[0] >> 1)) |
| part_info->variance_low[0] = 1; |
| } else if (xd->mi[0]->bsize == BLOCK_64X32) { |
| for (int part_idx = 0; part_idx < 2; part_idx++) { |
| if (vt->part_variances.horz[part_idx].variance < (thresholds[0] >> 2)) |
| part_info->variance_low[part_idx + 1] = 1; |
| } |
| } else if (xd->mi[0]->bsize == BLOCK_32X64) { |
| for (int part_idx = 0; part_idx < 2; part_idx++) { |
| if (vt->part_variances.vert[part_idx].variance < (thresholds[0] >> 2)) |
| part_info->variance_low[part_idx + 3] = 1; |
| } |
| } else { |
| static const int idx[4][2] = { { 0, 0 }, { 0, 8 }, { 8, 0 }, { 8, 8 } }; |
| for (int lvl1_idx = 0; lvl1_idx < 4; lvl1_idx++) { |
| const int idx_str = mi_params->mi_stride * (mi_row + idx[lvl1_idx][0]) + |
| mi_col + idx[lvl1_idx][1]; |
| MB_MODE_INFO **this_mi = mi_params->mi_grid_base + idx_str; |
| |
| if (mi_params->mi_cols <= mi_col + idx[lvl1_idx][1] || |
| mi_params->mi_rows <= mi_row + idx[lvl1_idx][0]) |
| continue; |
| |
| if (*this_mi == NULL) continue; |
| |
| if ((*this_mi)->bsize == BLOCK_32X32) { |
| int64_t threshold_32x32 = (5 * thresholds[1]) >> 3; |
| if (vt->split[lvl1_idx].part_variances.none.variance < threshold_32x32) |
| part_info->variance_low[lvl1_idx + 5] = 1; |
| } else { |
| // For 32x16 and 16x32 blocks, the flag is set on each 16x16 block |
| // inside. |
| if ((*this_mi)->bsize == BLOCK_16X16 || |
| (*this_mi)->bsize == BLOCK_32X16 || |
| (*this_mi)->bsize == BLOCK_16X32) { |
| for (int lvl2_idx = 0; lvl2_idx < 4; lvl2_idx++) { |
| if (vt->split[lvl1_idx] |
| .split[lvl2_idx] |
| .part_variances.none.variance < (thresholds[2] >> 8)) |
| part_info->variance_low[(lvl1_idx << 2) + lvl2_idx + 9] = 1; |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| static AOM_INLINE void set_low_temp_var_flag_128x128( |
| CommonModeInfoParams *mi_params, PartitionSearchInfo *part_info, |
| MACROBLOCKD *xd, VP128x128 *vt, const int64_t thresholds[], int mi_col, |
| int mi_row) { |
| if (xd->mi[0]->bsize == BLOCK_128X128) { |
| if (vt->part_variances.none.variance < (thresholds[0] >> 1)) |
| part_info->variance_low[0] = 1; |
| } else if (xd->mi[0]->bsize == BLOCK_128X64) { |
| for (int part_idx = 0; part_idx < 2; part_idx++) { |
| if (vt->part_variances.horz[part_idx].variance < (thresholds[0] >> 2)) |
| part_info->variance_low[part_idx + 1] = 1; |
| } |
| } else if (xd->mi[0]->bsize == BLOCK_64X128) { |
| for (int part_idx = 0; part_idx < 2; part_idx++) { |
| if (vt->part_variances.vert[part_idx].variance < (thresholds[0] >> 2)) |
| part_info->variance_low[part_idx + 3] = 1; |
| } |
| } else { |
| static const int idx64[4][2] = { |
| { 0, 0 }, { 0, 16 }, { 16, 0 }, { 16, 16 } |
| }; |
| static const int idx32[4][2] = { { 0, 0 }, { 0, 8 }, { 8, 0 }, { 8, 8 } }; |
| for (int lvl1_idx = 0; lvl1_idx < 4; lvl1_idx++) { |
| const int idx_str = mi_params->mi_stride * (mi_row + idx64[lvl1_idx][0]) + |
| mi_col + idx64[lvl1_idx][1]; |
| MB_MODE_INFO **mi_64 = mi_params->mi_grid_base + idx_str; |
| if (*mi_64 == NULL) continue; |
| if (mi_params->mi_cols <= mi_col + idx64[lvl1_idx][1] || |
| mi_params->mi_rows <= mi_row + idx64[lvl1_idx][0]) |
| continue; |
| const int64_t threshold_64x64 = (5 * thresholds[1]) >> 3; |
| if ((*mi_64)->bsize == BLOCK_64X64) { |
| if (vt->split[lvl1_idx].part_variances.none.variance < threshold_64x64) |
| part_info->variance_low[5 + lvl1_idx] = 1; |
| } else if ((*mi_64)->bsize == BLOCK_64X32) { |
| for (int part_idx = 0; part_idx < 2; part_idx++) |
| if (vt->split[lvl1_idx].part_variances.horz[part_idx].variance < |
| (threshold_64x64 >> 1)) |
| part_info->variance_low[9 + (lvl1_idx << 1) + part_idx] = 1; |
| } else if ((*mi_64)->bsize == BLOCK_32X64) { |
| for (int part_idx = 0; part_idx < 2; part_idx++) |
| if (vt->split[lvl1_idx].part_variances.vert[part_idx].variance < |
| (threshold_64x64 >> 1)) |
| part_info->variance_low[17 + (lvl1_idx << 1) + part_idx] = 1; |
| } else { |
| for (int lvl2_idx = 0; lvl2_idx < 4; lvl2_idx++) { |
| const int idx_str1 = |
| mi_params->mi_stride * idx32[lvl2_idx][0] + idx32[lvl2_idx][1]; |
| MB_MODE_INFO **mi_32 = mi_params->mi_grid_base + idx_str + idx_str1; |
| if (*mi_32 == NULL) continue; |
| |
| if (mi_params->mi_cols <= |
| mi_col + idx64[lvl1_idx][1] + idx32[lvl2_idx][1] || |
| mi_params->mi_rows <= |
| mi_row + idx64[lvl1_idx][0] + idx32[lvl2_idx][0]) |
| continue; |
| const int64_t threshold_32x32 = (5 * thresholds[2]) >> 3; |
| if ((*mi_32)->bsize == BLOCK_32X32) { |
| if (vt->split[lvl1_idx] |
| .split[lvl2_idx] |
| .part_variances.none.variance < threshold_32x32) |
| part_info->variance_low[25 + (lvl1_idx << 2) + lvl2_idx] = 1; |
| } else { |
| // For 32x16 and 16x32 blocks, the flag is set on each 16x16 block |
| // inside. |
| if ((*mi_32)->bsize == BLOCK_16X16 || |
| (*mi_32)->bsize == BLOCK_32X16 || |
| (*mi_32)->bsize == BLOCK_16X32) { |
| for (int lvl3_idx = 0; lvl3_idx < 4; lvl3_idx++) { |
| VPartVar *none_var = &vt->split[lvl1_idx] |
| .split[lvl2_idx] |
| .split[lvl3_idx] |
| .part_variances.none; |
| if (none_var->variance < (thresholds[3] >> 8)) |
| part_info->variance_low[41 + (lvl1_idx << 4) + |
| (lvl2_idx << 2) + lvl3_idx] = 1; |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| static AOM_INLINE void set_low_temp_var_flag( |
| AV1_COMP *cpi, PartitionSearchInfo *part_info, MACROBLOCKD *xd, |
| VP128x128 *vt, int64_t thresholds[], MV_REFERENCE_FRAME ref_frame_partition, |
| int mi_col, int mi_row, const bool is_small_sb) { |
| AV1_COMMON *const cm = &cpi->common; |
| // Check temporal variance for bsize >= 16x16, if LAST_FRAME was selected. |
| // If the temporal variance is small set the flag |
| // variance_low for the block. The variance threshold can be adjusted, the |
| // higher the more aggressive. |
| if (ref_frame_partition == LAST_FRAME) { |
| if (is_small_sb) |
| set_low_temp_var_flag_64x64(&cm->mi_params, part_info, xd, |
| &(vt->split[0]), thresholds, mi_col, mi_row); |
| else |
| set_low_temp_var_flag_128x128(&cm->mi_params, part_info, xd, vt, |
| thresholds, mi_col, mi_row); |
| } |
| } |
| |
| static const int pos_shift_16x16[4][4] = { |
| { 9, 10, 13, 14 }, { 11, 12, 15, 16 }, { 17, 18, 21, 22 }, { 19, 20, 23, 24 } |
| }; |
| |
| int av1_get_force_skip_low_temp_var_small_sb(const uint8_t *variance_low, |
| int mi_row, int mi_col, |
| BLOCK_SIZE bsize) { |
| // Relative indices of MB inside the superblock. |
| const int mi_x = mi_row & 0xF; |
| const int mi_y = mi_col & 0xF; |
| // Relative indices of 16x16 block inside the superblock. |
| const int i = mi_x >> 2; |
| const int j = mi_y >> 2; |
| int force_skip_low_temp_var = 0; |
| // Set force_skip_low_temp_var based on the block size and block offset. |
| switch (bsize) { |
| case BLOCK_64X64: force_skip_low_temp_var = variance_low[0]; break; |
| case BLOCK_64X32: |
| if (!mi_y && !mi_x) { |
| force_skip_low_temp_var = variance_low[1]; |
| } else if (!mi_y && mi_x) { |
| force_skip_low_temp_var = variance_low[2]; |
| } |
| break; |
| case BLOCK_32X64: |
| if (!mi_y && !mi_x) { |
| force_skip_low_temp_var = variance_low[3]; |
| } else if (mi_y && !mi_x) { |
| force_skip_low_temp_var = variance_low[4]; |
| } |
| break; |
| case BLOCK_32X32: |
| if (!mi_y && !mi_x) { |
| force_skip_low_temp_var = variance_low[5]; |
| } else if (mi_y && !mi_x) { |
| force_skip_low_temp_var = variance_low[6]; |
| } else if (!mi_y && mi_x) { |
| force_skip_low_temp_var = variance_low[7]; |
| } else if (mi_y && mi_x) { |
| force_skip_low_temp_var = variance_low[8]; |
| } |
| break; |
| case BLOCK_32X16: |
| case BLOCK_16X32: |
| case BLOCK_16X16: |
| force_skip_low_temp_var = variance_low[pos_shift_16x16[i][j]]; |
| break; |
| default: break; |
| } |
| |
| return force_skip_low_temp_var; |
| } |
| |
| int av1_get_force_skip_low_temp_var(const uint8_t *variance_low, int mi_row, |
| int mi_col, BLOCK_SIZE bsize) { |
| int force_skip_low_temp_var = 0; |
| int x, y; |
| x = (mi_col & 0x1F) >> 4; |
| // y = (mi_row & 0x1F) >> 4; |
| // const int idx64 = (y << 1) + x; |
| y = (mi_row & 0x17) >> 3; |
| const int idx64 = y + x; |
| |
| x = (mi_col & 0xF) >> 3; |
| // y = (mi_row & 0xF) >> 3; |
| // const int idx32 = (y << 1) + x; |
| y = (mi_row & 0xB) >> 2; |
| const int idx32 = y + x; |
| |
| x = (mi_col & 0x7) >> 2; |
| // y = (mi_row & 0x7) >> 2; |
| // const int idx16 = (y << 1) + x; |
| y = (mi_row & 0x5) >> 1; |
| const int idx16 = y + x; |
| // Set force_skip_low_temp_var based on the block size and block offset. |
| switch (bsize) { |
| case BLOCK_128X128: force_skip_low_temp_var = variance_low[0]; break; |
| case BLOCK_128X64: |
| assert((mi_col & 0x1F) == 0); |
| force_skip_low_temp_var = variance_low[1 + ((mi_row & 0x1F) != 0)]; |
| break; |
| case BLOCK_64X128: |
| assert((mi_row & 0x1F) == 0); |
| force_skip_low_temp_var = variance_low[3 + ((mi_col & 0x1F) != 0)]; |
| break; |
| case BLOCK_64X64: |
| // Location of this 64x64 block inside the 128x128 superblock |
| force_skip_low_temp_var = variance_low[5 + idx64]; |
| break; |
| case BLOCK_64X32: |
| x = (mi_col & 0x1F) >> 4; |
| y = (mi_row & 0x1F) >> 3; |
| /* |
| .---------------.---------------. |
| | x=0,y=0,idx=0 | x=0,y=0,idx=2 | |
| :---------------+---------------: |
| | x=0,y=1,idx=1 | x=1,y=1,idx=3 | |
| :---------------+---------------: |
| | x=0,y=2,idx=4 | x=1,y=2,idx=6 | |
| :---------------+---------------: |
| | x=0,y=3,idx=5 | x=1,y=3,idx=7 | |
| '---------------'---------------' |
| */ |
| const int idx64x32 = (x << 1) + (y % 2) + ((y >> 1) << 2); |
| force_skip_low_temp_var = variance_low[9 + idx64x32]; |
| break; |
| case BLOCK_32X64: |
| x = (mi_col & 0x1F) >> 3; |
| y = (mi_row & 0x1F) >> 4; |
| const int idx32x64 = (y << 2) + x; |
| force_skip_low_temp_var = variance_low[17 + idx32x64]; |
| break; |
| case BLOCK_32X32: |
| force_skip_low_temp_var = variance_low[25 + (idx64 << 2) + idx32]; |
| break; |
| case BLOCK_32X16: |
| case BLOCK_16X32: |
| case BLOCK_16X16: |
| force_skip_low_temp_var = |
| variance_low[41 + (idx64 << 4) + (idx32 << 2) + idx16]; |
| break; |
| default: break; |
| } |
| return force_skip_low_temp_var; |
| } |
| |
| void av1_set_variance_partition_thresholds(AV1_COMP *cpi, int qindex, |
| int content_lowsumdiff) { |
| SPEED_FEATURES *const sf = &cpi->sf; |
| if (sf->part_sf.partition_search_type != VAR_BASED_PARTITION) { |
| return; |
| } else { |
| set_vbp_thresholds(cpi, cpi->vbp_info.thresholds, 0, qindex, |
| content_lowsumdiff, 0, 0, 0, 0); |
| // The threshold below is not changed locally. |
| cpi->vbp_info.threshold_minmax = 15 + (qindex >> 3); |
| } |
| } |
| |
| static AOM_INLINE void chroma_check(AV1_COMP *cpi, MACROBLOCK *x, |
| BLOCK_SIZE bsize, unsigned int y_sad, |
| unsigned int y_sad_g, |
| unsigned int y_sad_alt, bool is_key_frame, |
| bool zero_motion, unsigned int *uv_sad) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| const int source_sad_nonrd = x->content_state_sb.source_sad_nonrd; |
| int shift_upper_limit = 1; |
| int shift_lower_limit = 3; |
| int fac_uv = 6; |
| if (is_key_frame || cpi->oxcf.tool_cfg.enable_monochrome) return; |
| |
| // Use lower threshold (more conservative in setting color flag) for |
| // higher resolutions non-screen, which tend to have more camera noise. |
| // Since this may be used to skip compound mode in nonrd pickmode, which |
| // is generally more effective for higher resolutions, better to be more |
| // conservative. |
| if (cpi->oxcf.tune_cfg.content != AOM_CONTENT_SCREEN) { |
| if (cpi->common.width * cpi->common.height >= RESOLUTION_1080P) |
| fac_uv = 3; |
| else |
| fac_uv = 5; |
| } |
| if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN && |
| cpi->rc.high_source_sad) { |
| shift_lower_limit = 7; |
| } else if (source_sad_nonrd >= kMedSad && x->source_variance > 500 && |
| cpi->common.width * cpi->common.height >= 640 * 360) { |
| shift_upper_limit = 2; |
| shift_lower_limit = source_sad_nonrd > kMedSad ? 5 : 4; |
| } |
| |
| MB_MODE_INFO *mi = xd->mi[0]; |
| const AV1_COMMON *const cm = &cpi->common; |
| const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_yv12_buf(cm, LAST_FRAME); |
| const YV12_BUFFER_CONFIG *yv12_g = get_ref_frame_yv12_buf(cm, GOLDEN_FRAME); |
| const YV12_BUFFER_CONFIG *yv12_alt = get_ref_frame_yv12_buf(cm, ALTREF_FRAME); |
| const struct scale_factors *const sf = |
| get_ref_scale_factors_const(cm, LAST_FRAME); |
| struct buf_2d dst; |
| unsigned int uv_sad_g = 0; |
| unsigned int uv_sad_alt = 0; |
| |
| for (int plane = AOM_PLANE_U; plane < MAX_MB_PLANE; ++plane) { |
| struct macroblock_plane *p = &x->plane[plane]; |
| struct macroblockd_plane *pd = &xd->plane[plane]; |
| const BLOCK_SIZE bs = |
| get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); |
| |
| if (bs != BLOCK_INVALID) { |
| // For last: |
| if (zero_motion) { |
| if (mi->ref_frame[0] == LAST_FRAME) { |
| uv_sad[plane - 1] = cpi->ppi->fn_ptr[bs].sdf( |
| p->src.buf, p->src.stride, pd->pre[0].buf, pd->pre[0].stride); |
| } else { |
| uint8_t *src = (plane == 1) ? yv12->u_buffer : yv12->v_buffer; |
| setup_pred_plane(&dst, xd->mi[0]->bsize, src, yv12->uv_crop_width, |
| yv12->uv_crop_height, yv12->uv_stride, xd->mi_row, |
| xd->mi_col, sf, xd->plane[plane].subsampling_x, |
| xd->plane[plane].subsampling_y); |
| |
| uv_sad[plane - 1] = cpi->ppi->fn_ptr[bs].sdf( |
| p->src.buf, p->src.stride, dst.buf, dst.stride); |
| } |
| } else { |
| uv_sad[plane - 1] = cpi->ppi->fn_ptr[bs].sdf( |
| p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride); |
| } |
| |
| // For golden: |
| if (y_sad_g != UINT_MAX) { |
| uint8_t *src = (plane == 1) ? yv12_g->u_buffer : yv12_g->v_buffer; |
| setup_pred_plane(&dst, xd->mi[0]->bsize, src, yv12_g->uv_crop_width, |
| yv12_g->uv_crop_height, yv12_g->uv_stride, xd->mi_row, |
| xd->mi_col, sf, xd->plane[plane].subsampling_x, |
| xd->plane[plane].subsampling_y); |
| uv_sad_g = cpi->ppi->fn_ptr[bs].sdf(p->src.buf, p->src.stride, dst.buf, |
| dst.stride); |
| } |
| |
| // For altref: |
| if (y_sad_alt != UINT_MAX) { |
| uint8_t *src = (plane == 1) ? yv12_alt->u_buffer : yv12_alt->v_buffer; |
| setup_pred_plane(&dst, xd->mi[0]->bsize, src, yv12_alt->uv_crop_width, |
| yv12_alt->uv_crop_height, yv12_alt->uv_stride, |
| xd->mi_row, xd->mi_col, sf, |
| xd->plane[plane].subsampling_x, |
| xd->plane[plane].subsampling_y); |
| uv_sad_alt = cpi->ppi->fn_ptr[bs].sdf(p->src.buf, p->src.stride, |
| dst.buf, dst.stride); |
| } |
| } |
| |
| if (uv_sad[plane - 1] > (y_sad >> shift_upper_limit)) |
| x->color_sensitivity_sb[COLOR_SENS_IDX(plane)] = 1; |
| else if (uv_sad[plane - 1] < (y_sad >> shift_lower_limit)) |
| x->color_sensitivity_sb[COLOR_SENS_IDX(plane)] = 0; |
| // Borderline case: to be refined at coding block level in nonrd_pickmode, |
| // for coding block size < sb_size. |
| else |
| x->color_sensitivity_sb[COLOR_SENS_IDX(plane)] = 2; |
| |
| x->color_sensitivity_sb_g[COLOR_SENS_IDX(plane)] = |
| uv_sad_g > y_sad_g / fac_uv; |
| x->color_sensitivity_sb_alt[COLOR_SENS_IDX(plane)] = |
| uv_sad_alt > y_sad_alt / fac_uv; |
| } |
| } |
| |
| static void fill_variance_tree_leaves( |
| AV1_COMP *cpi, MACROBLOCK *x, VP128x128 *vt, PART_EVAL_STATUS *force_split, |
| int avg_16x16[][4], int maxvar_16x16[][4], int minvar_16x16[][4], |
| int *variance4x4downsample, int64_t *thresholds, const uint8_t *src_buf, |
| int src_stride, const uint8_t *dst_buf, int dst_stride, bool is_key_frame, |
| const bool is_small_sb) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| const int num_64x64_blocks = is_small_sb ? 1 : 4; |
| // TODO(kyslov) Bring back compute_minmax_variance with content type detection |
| const int compute_minmax_variance = 0; |
| const int segment_id = xd->mi[0]->segment_id; |
| int pixels_wide = 128, pixels_high = 128; |
| int border_offset_4x4 = 0; |
| int temporal_denoising = cpi->sf.rt_sf.use_rtc_tf; |
| // dst_buf pointer is not used for is_key_frame, so it should be NULL. |
| assert(IMPLIES(is_key_frame, dst_buf == NULL)); |
| if (is_small_sb) { |
| pixels_wide = 64; |
| pixels_high = 64; |
| } |
| if (xd->mb_to_right_edge < 0) pixels_wide += (xd->mb_to_right_edge >> 3); |
| if (xd->mb_to_bottom_edge < 0) pixels_high += (xd->mb_to_bottom_edge >> 3); |
| #if CONFIG_AV1_TEMPORAL_DENOISING |
| temporal_denoising |= cpi->oxcf.noise_sensitivity; |
| #endif |
| // For temporal filtering or temporal denoiser enabled: since the source |
| // is modified we need to avoid 4x4 avg along superblock boundary, since |
| // simd code will load 8 pixels for 4x4 avg and so can access source |
| // data outside superblock (while its being modified by temporal filter). |
| // Temporal filtering is never done on key frames. |
| if (!is_key_frame && temporal_denoising) border_offset_4x4 = 4; |
| for (int blk64_idx = 0; blk64_idx < num_64x64_blocks; blk64_idx++) { |
| const int x64_idx = GET_BLK_IDX_X(blk64_idx, 6); |
| const int y64_idx = GET_BLK_IDX_Y(blk64_idx, 6); |
| const int blk64_scale_idx = blk64_idx << 2; |
| force_split[blk64_idx + 1] = PART_EVAL_ALL; |
| |
| for (int lvl1_idx = 0; lvl1_idx < 4; lvl1_idx++) { |
| const int x32_idx = x64_idx + GET_BLK_IDX_X(lvl1_idx, 5); |
| const int y32_idx = y64_idx + GET_BLK_IDX_Y(lvl1_idx, 5); |
| const int lvl1_scale_idx = (blk64_scale_idx + lvl1_idx) << 2; |
| force_split[5 + blk64_scale_idx + lvl1_idx] = PART_EVAL_ALL; |
| avg_16x16[blk64_idx][lvl1_idx] = 0; |
| maxvar_16x16[blk64_idx][lvl1_idx] = 0; |
| minvar_16x16[blk64_idx][lvl1_idx] = INT_MAX; |
| for (int lvl2_idx = 0; lvl2_idx < 4; lvl2_idx++) { |
| const int x16_idx = x32_idx + GET_BLK_IDX_X(lvl2_idx, 4); |
| const int y16_idx = y32_idx + GET_BLK_IDX_Y(lvl2_idx, 4); |
| const int split_index = 21 + lvl1_scale_idx + lvl2_idx; |
| VP16x16 *vst = &vt->split[blk64_idx].split[lvl1_idx].split[lvl2_idx]; |
| force_split[split_index] = PART_EVAL_ALL; |
| variance4x4downsample[lvl1_scale_idx + lvl2_idx] = 0; |
| if (is_key_frame) { |
| force_split[split_index] = PART_EVAL_ALL; |
| // Go down to 4x4 down-sampling for variance. |
| variance4x4downsample[lvl1_scale_idx + lvl2_idx] = 1; |
| for (int lvl3_idx = 0; lvl3_idx < 4; lvl3_idx++) { |
| const int x8_idx = x16_idx + GET_BLK_IDX_X(lvl3_idx, 3); |
| const int y8_idx = y16_idx + GET_BLK_IDX_Y(lvl3_idx, 3); |
| VP8x8 *vst2 = &vst->split[lvl3_idx]; |
| fill_variance_4x4avg(src_buf, src_stride, x8_idx, y8_idx, vst2, |
| #if CONFIG_AV1_HIGHBITDEPTH |
| xd->cur_buf->flags, |
| #endif |
| pixels_wide, pixels_high, border_offset_4x4); |
| } |
| } else { |
| fill_variance_8x8avg(src_buf, src_stride, dst_buf, dst_stride, |
| x16_idx, y16_idx, vst, is_cur_buf_hbd(xd), |
| pixels_wide, pixels_high); |
| |
| fill_variance_tree(vst, BLOCK_16X16); |
| VPartVar *none_var = &vt->split[blk64_idx] |
| .split[lvl1_idx] |
| .split[lvl2_idx] |
| .part_variances.none; |
| get_variance(none_var); |
| const int val_none_var = none_var->variance; |
| avg_16x16[blk64_idx][lvl1_idx] += val_none_var; |
| minvar_16x16[blk64_idx][lvl1_idx] = |
| AOMMIN(minvar_16x16[blk64_idx][lvl1_idx], val_none_var); |
| maxvar_16x16[blk64_idx][lvl1_idx] = |
| AOMMAX(maxvar_16x16[blk64_idx][lvl1_idx], val_none_var); |
| if (val_none_var > thresholds[3]) { |
| // 16X16 variance is above threshold for split, so force split to |
| // 8x8 for this 16x16 block (this also forces splits for upper |
| // levels). |
| force_split[split_index] = PART_EVAL_ONLY_SPLIT; |
| force_split[5 + blk64_scale_idx + lvl1_idx] = PART_EVAL_ONLY_SPLIT; |
| force_split[blk64_idx + 1] = PART_EVAL_ONLY_SPLIT; |
| force_split[0] = PART_EVAL_ONLY_SPLIT; |
| } else if (!cyclic_refresh_segment_id_boosted(segment_id) && |
| compute_minmax_variance && val_none_var > thresholds[2]) { |
| // We have some nominal amount of 16x16 variance (based on average), |
| // compute the minmax over the 8x8 sub-blocks, and if above |
| // threshold, force split to 8x8 block for this 16x16 block. |
| int minmax = compute_minmax_8x8(src_buf, src_stride, dst_buf, |
| dst_stride, x16_idx, y16_idx, |
| #if CONFIG_AV1_HIGHBITDEPTH |
| xd->cur_buf->flags, |
| #endif |
| pixels_wide, pixels_high); |
| const int thresh_minmax = (int)cpi->vbp_info.threshold_minmax; |
| if (minmax > thresh_minmax) { |
| force_split[split_index] = PART_EVAL_ONLY_SPLIT; |
| force_split[5 + blk64_scale_idx + lvl1_idx] = |
| PART_EVAL_ONLY_SPLIT; |
| force_split[blk64_idx + 1] = PART_EVAL_ONLY_SPLIT; |
| force_split[0] = PART_EVAL_ONLY_SPLIT; |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| static AOM_INLINE void set_ref_frame_for_partition( |
| AV1_COMP *cpi, MACROBLOCK *x, MACROBLOCKD *xd, |
| MV_REFERENCE_FRAME *ref_frame_partition, MB_MODE_INFO *mi, |
| unsigned int *y_sad, unsigned int *y_sad_g, unsigned int *y_sad_alt, |
| const YV12_BUFFER_CONFIG *yv12_g, const YV12_BUFFER_CONFIG *yv12_alt, |
| int mi_row, int mi_col, int num_planes) { |
| AV1_COMMON *const cm = &cpi->common; |
| const bool is_set_golden_ref_frame = |
| *y_sad_g < 0.9 * *y_sad && *y_sad_g < *y_sad_alt; |
| const bool is_set_altref_ref_frame = |
| *y_sad_alt < 0.9 * *y_sad && *y_sad_alt < *y_sad_g; |
| |
| if (is_set_golden_ref_frame) { |
| av1_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col, |
| get_ref_scale_factors(cm, GOLDEN_FRAME), num_planes); |
| mi->ref_frame[0] = GOLDEN_FRAME; |
| mi->mv[0].as_int = 0; |
| *y_sad = *y_sad_g; |
| *ref_frame_partition = GOLDEN_FRAME; |
| x->nonrd_prune_ref_frame_search = 0; |
| x->sb_me_partition = 0; |
| } else if (is_set_altref_ref_frame) { |
| av1_setup_pre_planes(xd, 0, yv12_alt, mi_row, mi_col, |
| get_ref_scale_factors(cm, ALTREF_FRAME), num_planes); |
| mi->ref_frame[0] = ALTREF_FRAME; |
| mi->mv[0].as_int = 0; |
| *y_sad = *y_sad_alt; |
| *ref_frame_partition = ALTREF_FRAME; |
| x->nonrd_prune_ref_frame_search = 0; |
| x->sb_me_partition = 0; |
| } else { |
| *ref_frame_partition = LAST_FRAME; |
| x->nonrd_prune_ref_frame_search = |
| cpi->sf.rt_sf.nonrd_prune_ref_frame_search; |
| } |
| } |
| |
| static AOM_FORCE_INLINE int mv_distance(const FULLPEL_MV *mv0, |
| const FULLPEL_MV *mv1) { |
| return abs(mv0->row - mv1->row) + abs(mv0->col - mv1->col); |
| } |
| |
| static AOM_INLINE void evaluate_neighbour_mvs(AV1_COMP *cpi, MACROBLOCK *x, |
| unsigned int *y_sad, |
| bool is_small_sb, |
| int est_motion) { |
| const int source_sad_nonrd = x->content_state_sb.source_sad_nonrd; |
| // TODO(yunqingwang@google.com): test if this condition works with other |
| // speeds. |
| if (est_motion > 2 && source_sad_nonrd > kMedSad) return; |
| |
| MACROBLOCKD *xd = &x->e_mbd; |
| BLOCK_SIZE bsize = is_small_sb ? BLOCK_64X64 : BLOCK_128X128; |
| MB_MODE_INFO *mi = xd->mi[0]; |
| |
| unsigned int above_y_sad = UINT_MAX; |
| unsigned int left_y_sad = UINT_MAX; |
| FULLPEL_MV above_mv = kZeroFullMv; |
| FULLPEL_MV left_mv = kZeroFullMv; |
| SubpelMvLimits subpel_mv_limits; |
| const MV dummy_mv = { 0, 0 }; |
| av1_set_subpel_mv_search_range(&subpel_mv_limits, &x->mv_limits, &dummy_mv); |
| |
| // Current best MV |
| FULLPEL_MV best_mv = get_fullmv_from_mv(&mi->mv[0].as_mv); |
| const int multi = (est_motion > 2 && source_sad_nonrd > kLowSad) ? 7 : 8; |
| |
| if (xd->up_available) { |
| const MB_MODE_INFO *above_mbmi = xd->above_mbmi; |
| if (above_mbmi->mode >= INTRA_MODE_END && |
| above_mbmi->ref_frame[0] == LAST_FRAME) { |
| MV temp = above_mbmi->mv[0].as_mv; |
| clamp_mv(&temp, &subpel_mv_limits); |
| above_mv = get_fullmv_from_mv(&temp); |
| |
| if (mv_distance(&best_mv, &above_mv) > 0) { |
| uint8_t const *ref_buf = |
| get_buf_from_fullmv(&xd->plane[0].pre[0], &above_mv); |
| above_y_sad = cpi->ppi->fn_ptr[bsize].sdf( |
| x->plane[0].src.buf, x->plane[0].src.stride, ref_buf, |
| xd->plane[0].pre[0].stride); |
| } |
| } |
| } |
| if (xd->left_available) { |
| const MB_MODE_INFO *left_mbmi = xd->left_mbmi; |
| if (left_mbmi->mode >= INTRA_MODE_END && |
| left_mbmi->ref_frame[0] == LAST_FRAME) { |
| MV temp = left_mbmi->mv[0].as_mv; |
| clamp_mv(&temp, &subpel_mv_limits); |
| left_mv = get_fullmv_from_mv(&temp); |
| |
| if (mv_distance(&best_mv, &left_mv) > 0 && |
| mv_distance(&above_mv, &left_mv) > 0) { |
| uint8_t const *ref_buf = |
| get_buf_from_fullmv(&xd->plane[0].pre[0], &left_mv); |
| left_y_sad = cpi->ppi->fn_ptr[bsize].sdf( |
| x->plane[0].src.buf, x->plane[0].src.stride, ref_buf, |
| xd->plane[0].pre[0].stride); |
| } |
| } |
| } |
| |
| if (above_y_sad < ((multi * *y_sad) >> 3) && above_y_sad < left_y_sad) { |
| *y_sad = above_y_sad; |
| mi->mv[0].as_mv = get_mv_from_fullmv(&above_mv); |
| clamp_mv(&mi->mv[0].as_mv, &subpel_mv_limits); |
| } |
| if (left_y_sad < ((multi * *y_sad) >> 3) && left_y_sad < above_y_sad) { |
| *y_sad = left_y_sad; |
| mi->mv[0].as_mv = get_mv_from_fullmv(&left_mv); |
| clamp_mv(&mi->mv[0].as_mv, &subpel_mv_limits); |
| } |
| } |
| |
| static void setup_planes(AV1_COMP *cpi, MACROBLOCK *x, unsigned int *y_sad, |
| unsigned int *y_sad_g, unsigned int *y_sad_alt, |
| unsigned int *y_sad_last, |
| MV_REFERENCE_FRAME *ref_frame_partition, |
| struct scale_factors *sf_no_scale, int mi_row, |
| int mi_col, bool is_small_sb, bool scaled_ref_last) { |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *xd = &x->e_mbd; |
| const int num_planes = av1_num_planes(cm); |
| bool scaled_ref_golden = false; |
| bool scaled_ref_alt = false; |
| BLOCK_SIZE bsize = is_small_sb ? BLOCK_64X64 : BLOCK_128X128; |
| MB_MODE_INFO *mi = xd->mi[0]; |
| const YV12_BUFFER_CONFIG *yv12 = |
| scaled_ref_last ? av1_get_scaled_ref_frame(cpi, LAST_FRAME) |
| : get_ref_frame_yv12_buf(cm, LAST_FRAME); |
| assert(yv12 != NULL); |
| const YV12_BUFFER_CONFIG *yv12_g = NULL; |
| const YV12_BUFFER_CONFIG *yv12_alt = NULL; |
| // Check if LAST is a reference. For spatial layers always use it as |
| // reference scaling. |
| int use_last_ref = (cpi->ref_frame_flags & AOM_LAST_FLAG) || |
| cpi->svc.number_spatial_layers > 1; |
| int use_golden_ref = cpi->ref_frame_flags & AOM_GOLD_FLAG; |
| int use_alt_ref = cpi->ppi->rtc_ref.set_ref_frame_config || |
| cpi->sf.rt_sf.use_nonrd_altref_frame || |
| (cpi->sf.rt_sf.use_comp_ref_nonrd && |
| cpi->sf.rt_sf.ref_frame_comp_nonrd[2] == 1); |
| |
| // For 1 spatial layer: GOLDEN is another temporal reference. |
| // Check if it should be used as reference for partitioning. |
| if (cpi->svc.number_spatial_layers == 1 && use_golden_ref && |
| (x->content_state_sb.source_sad_nonrd != kZeroSad || !use_last_ref)) { |
| yv12_g = get_ref_frame_yv12_buf(cm, GOLDEN_FRAME); |
| if (yv12_g && (yv12_g->y_crop_height != cm->height || |
| yv12_g->y_crop_width != cm->width)) { |
| yv12_g = av1_get_scaled_ref_frame(cpi, GOLDEN_FRAME); |
| scaled_ref_golden = true; |
| } |
| if (yv12_g && yv12_g != yv12) { |
| av1_setup_pre_planes( |
| xd, 0, yv12_g, mi_row, mi_col, |
| scaled_ref_golden ? NULL : get_ref_scale_factors(cm, GOLDEN_FRAME), |
| num_planes); |
| *y_sad_g = cpi->ppi->fn_ptr[bsize].sdf( |
| x->plane[AOM_PLANE_Y].src.buf, x->plane[AOM_PLANE_Y].src.stride, |
| xd->plane[AOM_PLANE_Y].pre[0].buf, |
| xd->plane[AOM_PLANE_Y].pre[0].stride); |
| } |
| } |
| |
| // For 1 spatial layer: ALTREF is another temporal reference. |
| // Check if it should be used as reference for partitioning. |
| if (cpi->svc.number_spatial_layers == 1 && use_alt_ref && |
| (cpi->ref_frame_flags & AOM_ALT_FLAG) && |
| (x->content_state_sb.source_sad_nonrd != kZeroSad || !use_last_ref)) { |
| yv12_alt = get_ref_frame_yv12_buf(cm, ALTREF_FRAME); |
| if (yv12_alt && (yv12_alt->y_crop_height != cm->height || |
| yv12_alt->y_crop_width != cm->width)) { |
| yv12_alt = av1_get_scaled_ref_frame(cpi, ALTREF_FRAME); |
| scaled_ref_alt = true; |
| } |
| if (yv12_alt && yv12_alt != yv12) { |
| av1_setup_pre_planes( |
| xd, 0, yv12_alt, mi_row, mi_col, |
| scaled_ref_alt ? NULL : get_ref_scale_factors(cm, ALTREF_FRAME), |
| num_planes); |
| *y_sad_alt = cpi->ppi->fn_ptr[bsize].sdf( |
| x->plane[AOM_PLANE_Y].src.buf, x->plane[AOM_PLANE_Y].src.stride, |
| xd->plane[AOM_PLANE_Y].pre[0].buf, |
| xd->plane[AOM_PLANE_Y].pre[0].stride); |
| } |
| } |
| |
| if (use_last_ref) { |
| const int source_sad_nonrd = x->content_state_sb.source_sad_nonrd; |
| av1_setup_pre_planes( |
| xd, 0, yv12, mi_row, mi_col, |
| scaled_ref_last ? NULL : get_ref_scale_factors(cm, LAST_FRAME), |
| num_planes); |
| mi->ref_frame[0] = LAST_FRAME; |
| mi->ref_frame[1] = NONE_FRAME; |
| mi->bsize = cm->seq_params->sb_size; |
| mi->mv[0].as_int = 0; |
| mi->interp_filters = av1_broadcast_interp_filter(BILINEAR); |
| |
| int est_motion = cpi->sf.rt_sf.estimate_motion_for_var_based_partition; |
| // TODO(b/290596301): Look into adjusting this condition. |
| // There is regression on color content when |
| // estimate_motion_for_var_based_partition = 3 and high motion, |
| // so for now force it to 2 based on superblock sad. |
| if (est_motion > 2 && source_sad_nonrd > kMedSad) est_motion = 2; |
| |
| if (est_motion == 1 || est_motion == 2) { |
| if (xd->mb_to_right_edge >= 0 && xd->mb_to_bottom_edge >= 0) { |
| // For screen only do int_pro_motion for spatial variance above |
| // threshold and motion level above LowSad. |
| if (x->source_variance > 100 && source_sad_nonrd > kLowSad) { |
| int is_screen = cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN; |
| int me_search_size_col = |
| is_screen ? 96 : block_size_wide[cm->seq_params->sb_size] >> 1; |
| // For screen use larger search size row motion to capture |
| // vertical scroll, which can be larger motion. |
| int me_search_size_row = |
| is_screen ? 192 : block_size_high[cm->seq_params->sb_size] >> 1; |
| unsigned int y_sad_zero; |
| *y_sad = av1_int_pro_motion_estimation( |
| cpi, x, cm->seq_params->sb_size, mi_row, mi_col, &kZeroMv, |
| &y_sad_zero, me_search_size_col, me_search_size_row); |
| // The logic below selects whether the motion estimated in the |
| // int_pro_motion() will be used in nonrd_pickmode. Only do this |
| // for screen for now. |
| if (is_screen) { |
| unsigned int thresh_sad = |
| (cm->seq_params->sb_size == BLOCK_128X128) ? 50000 : 20000; |
| if (*y_sad < (y_sad_zero >> 1) && *y_sad < thresh_sad) { |
| x->sb_me_partition = 1; |
| x->sb_me_mv.as_int = mi->mv[0].as_int; |
| } else { |
| x->sb_me_partition = 0; |
| // Fall back to using zero motion. |
| *y_sad = y_sad_zero; |
| mi->mv[0].as_int = 0; |
| } |
| } |
| } |
| } |
| } |
| |
| if (*y_sad == UINT_MAX) { |
| *y_sad = cpi->ppi->fn_ptr[bsize].sdf( |
| x->plane[AOM_PLANE_Y].src.buf, x->plane[AOM_PLANE_Y].src.stride, |
| xd->plane[AOM_PLANE_Y].pre[0].buf, |
| xd->plane[AOM_PLANE_Y].pre[0].stride); |
| } |
| |
| // Evaluate if neighbours' MVs give better predictions. Zero MV is tested |
| // already, so only non-zero MVs are tested here. Here the neighbour blocks |
| // are the first block above or left to this superblock. |
| if (est_motion >= 2 && (xd->up_available || xd->left_available)) |
| evaluate_neighbour_mvs(cpi, x, y_sad, is_small_sb, est_motion); |
| |
| *y_sad_last = *y_sad; |
| } |
| |
| // Pick the ref frame for partitioning, use golden or altref frame only if |
| // its lower sad, bias to LAST with factor 0.9. |
| set_ref_frame_for_partition(cpi, x, xd, ref_frame_partition, mi, y_sad, |
| y_sad_g, y_sad_alt, yv12_g, yv12_alt, mi_row, |
| mi_col, num_planes); |
| |
| // Only calculate the predictor for non-zero MV. |
| if (mi->mv[0].as_int != 0) { |
| if (!scaled_ref_last) { |
| set_ref_ptrs(cm, xd, mi->ref_frame[0], mi->ref_frame[1]); |
| } else { |
| xd->block_ref_scale_factors[0] = sf_no_scale; |
| xd->block_ref_scale_factors[1] = sf_no_scale; |
| } |
| av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, |
| cm->seq_params->sb_size, AOM_PLANE_Y, |
| num_planes - 1); |
| } |
| } |
| |
| // Decides whether to split or merge a 16x16 partition block in variance based |
| // partitioning based on the 8x8 sub-block variances. |
| static AOM_INLINE PART_EVAL_STATUS get_part_eval_based_on_sub_blk_var( |
| VP16x16 *var_16x16_info, int64_t threshold16) { |
| int max_8x8_var = 0, min_8x8_var = INT_MAX; |
| for (int split_idx = 0; split_idx < 4; split_idx++) { |
| get_variance(&var_16x16_info->split[split_idx].part_variances.none); |
| int this_8x8_var = |
| var_16x16_info->split[split_idx].part_variances.none.variance; |
| max_8x8_var = AOMMAX(this_8x8_var, max_8x8_var); |
| min_8x8_var = AOMMIN(this_8x8_var, min_8x8_var); |
| } |
| // If the difference between maximum and minimum sub-block variances is high, |
| // then only evaluate PARTITION_SPLIT for the 16x16 block. Otherwise, evaluate |
| // only PARTITION_NONE. The shift factor for threshold16 has been derived |
| // empirically. |
| return ((max_8x8_var - min_8x8_var) > (threshold16 << 2)) |
| ? PART_EVAL_ONLY_SPLIT |
| : PART_EVAL_ONLY_NONE; |
| } |
| |
| static AOM_INLINE bool is_set_force_zeromv_skip_based_on_src_sad( |
| int set_zeromv_skip_based_on_source_sad, SOURCE_SAD source_sad_nonrd) { |
| if (set_zeromv_skip_based_on_source_sad == 0) return false; |
| |
| if (set_zeromv_skip_based_on_source_sad >= 2) |
| return source_sad_nonrd <= kVeryLowSad; |
| else if (set_zeromv_skip_based_on_source_sad >= 1) |
| return source_sad_nonrd == kZeroSad; |
| |
| return false; |
| } |
| |
| static AOM_INLINE bool set_force_zeromv_skip_for_sb( |
| AV1_COMP *cpi, MACROBLOCK *x, const TileInfo *const tile, VP16x16 *vt2, |
| VP128x128 *vt, unsigned int *uv_sad, int mi_row, int mi_col, |
| unsigned int y_sad, BLOCK_SIZE bsize) { |
| AV1_COMMON *const cm = &cpi->common; |
| if (!is_set_force_zeromv_skip_based_on_src_sad( |
| cpi->sf.rt_sf.set_zeromv_skip_based_on_source_sad, |
| x->content_state_sb.source_sad_nonrd)) |
| return false; |
| const int block_width = mi_size_wide[cm->seq_params->sb_size]; |
| const int block_height = mi_size_high[cm->seq_params->sb_size]; |
| const unsigned int thresh_exit_part_y = |
| cpi->zeromv_skip_thresh_exit_part[bsize]; |
| unsigned int thresh_exit_part_uv = |
| CALC_CHROMA_THRESH_FOR_ZEROMV_SKIP(thresh_exit_part_y); |
| // Be more aggressive in UV threshold if source_sad >= VeryLowSad |
| // to suppreess visual artifact caused by the speed feature: |
| // set_zeromv_skip_based_on_source_sad = 2. For now only for |
| // part_early_exit_zeromv = 1. |
| if (x->content_state_sb.source_sad_nonrd >= kVeryLowSad && |
| cpi->sf.rt_sf.part_early_exit_zeromv == 1) |
| thresh_exit_part_uv = thresh_exit_part_uv >> 3; |
| if (mi_col + block_width <= tile->mi_col_end && |
| mi_row + block_height <= tile->mi_row_end && y_sad < thresh_exit_part_y && |
| uv_sad[0] < thresh_exit_part_uv && uv_sad[1] < thresh_exit_part_uv) { |
| set_block_size(cpi, mi_row, mi_col, bsize); |
| x->force_zeromv_skip_for_sb = 1; |
| aom_free(vt2); |
| aom_free(vt); |
| // Partition shape is set here at SB level. |
| // Exit needs to happen from av1_choose_var_based_partitioning(). |
| return true; |
| } else if (x->content_state_sb.source_sad_nonrd == kZeroSad && |
| cpi->sf.rt_sf.part_early_exit_zeromv >= 2) |
| x->force_zeromv_skip_for_sb = 2; |
| return false; |
| } |
| |
| int av1_choose_var_based_partitioning(AV1_COMP *cpi, const TileInfo *const tile, |
| ThreadData *td, MACROBLOCK *x, int mi_row, |
| int mi_col) { |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing(cpi, choose_var_based_partitioning_time); |
| #endif |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *xd = &x->e_mbd; |
| const int64_t *const vbp_thresholds = cpi->vbp_info.thresholds; |
| VP128x128 *vt; |
| VP16x16 *vt2 = NULL; |
| PART_EVAL_STATUS force_split[85]; |
| int avg_64x64; |
| int max_var_32x32[4]; |
| int min_var_32x32[4]; |
| int var_32x32; |
| int var_64x64; |
| int min_var_64x64 = INT_MAX; |
| int max_var_64x64 = 0; |
| int avg_16x16[4][4]; |
| int maxvar_16x16[4][4]; |
| int minvar_16x16[4][4]; |
| int64_t threshold_4x4avg; |
| const uint8_t *src_buf; |
| const uint8_t *dst_buf; |
| int dst_stride; |
| unsigned int uv_sad[MAX_MB_PLANE - 1]; |
| NOISE_LEVEL noise_level = kLow; |
| bool is_zero_motion = true; |
| bool scaled_ref_last = false; |
| struct scale_factors sf_no_scale; |
| av1_setup_scale_factors_for_frame(&sf_no_scale, cm->width, cm->height, |
| cm->width, cm->height); |
| |
| bool is_key_frame = |
| (frame_is_intra_only(cm) || |
| (cpi->ppi->use_svc && |
| cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame)); |
| |
| assert(cm->seq_params->sb_size == BLOCK_64X64 || |
| cm->seq_params->sb_size == BLOCK_128X128); |
| const bool is_small_sb = (cm->seq_params->sb_size == BLOCK_64X64); |
| const int num_64x64_blocks = is_small_sb ? 1 : 4; |
| |
| unsigned int y_sad = UINT_MAX; |
| unsigned int y_sad_g = UINT_MAX; |
| unsigned int y_sad_alt = UINT_MAX; |
| unsigned int y_sad_last = UINT_MAX; |
| BLOCK_SIZE bsize = is_small_sb ? BLOCK_64X64 : BLOCK_128X128; |
| |
| // Ref frame used in partitioning. |
| MV_REFERENCE_FRAME ref_frame_partition = LAST_FRAME; |
| |
| AOM_CHECK_MEM_ERROR(xd->error_info, vt, aom_malloc(sizeof(*vt))); |
| |
| vt->split = td->vt64x64; |
| |
| int64_t thresholds[5] = { vbp_thresholds[0], vbp_thresholds[1], |
| vbp_thresholds[2], vbp_thresholds[3], |
| vbp_thresholds[4] }; |
| |
| const int low_res = (cm->width <= 352 && cm->height <= 288); |
| int variance4x4downsample[64]; |
| const int segment_id = xd->mi[0]->segment_id; |
| uint64_t blk_sad = 0; |
| if (cpi->src_sad_blk_64x64 != NULL && |
| cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1) { |
| const int sb_size_by_mb = (cm->seq_params->sb_size == BLOCK_128X128) |
| ? (cm->seq_params->mib_size >> 1) |
| : cm->seq_params->mib_size; |
| const int sb_cols = |
| (cm->mi_params.mi_cols + sb_size_by_mb - 1) / sb_size_by_mb; |
| const int sbi_col = mi_col / sb_size_by_mb; |
| const int sbi_row = mi_row / sb_size_by_mb; |
| blk_sad = cpi->src_sad_blk_64x64[sbi_col + sbi_row * sb_cols]; |
| } |
| |
| const bool is_segment_id_boosted = |
| cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled && |
| cyclic_refresh_segment_id_boosted(segment_id); |
| const int qindex = |
| is_segment_id_boosted |
| ? av1_get_qindex(&cm->seg, segment_id, cm->quant_params.base_qindex) |
| : cm->quant_params.base_qindex; |
| set_vbp_thresholds( |
| cpi, thresholds, blk_sad, qindex, x->content_state_sb.low_sumdiff, |
| x->content_state_sb.source_sad_nonrd, x->content_state_sb.source_sad_rd, |
| is_segment_id_boosted, x->content_state_sb.lighting_change); |
| |
| // For non keyframes, disable 4x4 average for low resolution when speed = 8 |
| threshold_4x4avg = INT64_MAX; |
| |
| src_buf = x->plane[AOM_PLANE_Y].src.buf; |
| int src_stride = x->plane[AOM_PLANE_Y].src.stride; |
| |
| // Index for force_split: 0 for 64x64, 1-4 for 32x32 blocks, |
| // 5-20 for the 16x16 blocks. |
| force_split[0] = PART_EVAL_ALL; |
| memset(x->part_search_info.variance_low, 0, |
| sizeof(x->part_search_info.variance_low)); |
| |
| // Check if LAST frame is NULL, and if so, treat this frame |
| // as a key frame, for the purpose of the superblock partitioning. |
| // LAST == NULL can happen in cases where enhancement spatial layers are |
| // enabled dyanmically and the only reference is the spatial(GOLDEN). |
| // If LAST frame has a different resolution: set the scaled_ref_last flag |
| // and check if ref_scaled is NULL. |
| if (!frame_is_intra_only(cm)) { |
| const YV12_BUFFER_CONFIG *ref = get_ref_frame_yv12_buf(cm, LAST_FRAME); |
| if (ref == NULL) { |
| is_key_frame = true; |
| } else if (ref->y_crop_height != cm->height || |
| ref->y_crop_width != cm->width) { |
| scaled_ref_last = true; |
| const YV12_BUFFER_CONFIG *ref_scaled = |
| av1_get_scaled_ref_frame(cpi, LAST_FRAME); |
| if (ref_scaled == NULL) is_key_frame = true; |
| } |
| } |
| |
| x->source_variance = UINT_MAX; |
| // For nord_pickmode: compute source_variance, only for superblocks with |
| // some motion for now. This input can then be used to bias the partitioning |
| // or the chroma_check. |
| if (cpi->sf.rt_sf.use_nonrd_pick_mode && |
| x->content_state_sb.source_sad_nonrd > kLowSad) |
| x->source_variance = av1_get_perpixel_variance_facade( |
| cpi, xd, &x->plane[0].src, cm->seq_params->sb_size, AOM_PLANE_Y); |
| |
| if (!is_key_frame) { |
| setup_planes(cpi, x, &y_sad, &y_sad_g, &y_sad_alt, &y_sad_last, |
| &ref_frame_partition, &sf_no_scale, mi_row, mi_col, |
| is_small_sb, scaled_ref_last); |
| |
| MB_MODE_INFO *mi = xd->mi[0]; |
| // Use reference SB directly for zero mv. |
| if (mi->mv[0].as_int != 0) { |
| dst_buf = xd->plane[AOM_PLANE_Y].dst.buf; |
| dst_stride = xd->plane[AOM_PLANE_Y].dst.stride; |
| is_zero_motion = false; |
| } else { |
| dst_buf = xd->plane[AOM_PLANE_Y].pre[0].buf; |
| dst_stride = xd->plane[AOM_PLANE_Y].pre[0].stride; |
| } |
| } else { |
| dst_buf = NULL; |
| dst_stride = 0; |
| } |
| |
| // check and set the color sensitivity of sb. |
| av1_zero(uv_sad); |
| chroma_check(cpi, x, bsize, y_sad_last, y_sad_g, y_sad_alt, is_key_frame, |
| is_zero_motion, uv_sad); |
| |
| x->force_zeromv_skip_for_sb = 0; |
| |
| // If the superblock is completely static (zero source sad) and |
| // the y_sad (relative to LAST ref) is very small, take the sb_size partition |
| // and exit, and force zeromv_last skip mode for nonrd_pickmode. |
| // Only do this on the base segment (so the QP-boosted segment, if applied, |
| // can still continue cleaning/ramping up the quality). |
| // Condition on color uv_sad is also added. |
| if (!is_key_frame && cpi->sf.rt_sf.part_early_exit_zeromv && |
| cpi->rc.frames_since_key > 30 && segment_id == CR_SEGMENT_ID_BASE && |
| ref_frame_partition == LAST_FRAME && xd->mi[0]->mv[0].as_int == 0) { |
| // Exit here, if zero mv skip flag is set at SB level. |
| if (set_force_zeromv_skip_for_sb(cpi, x, tile, vt2, vt, uv_sad, mi_row, |
| mi_col, y_sad, bsize)) |
| return 0; |
| } |
| |
| if (cpi->noise_estimate.enabled) |
| noise_level = av1_noise_estimate_extract_level(&cpi->noise_estimate); |
| |
| if (low_res && threshold_4x4avg < INT64_MAX) { |
| vt2 = aom_malloc(sizeof(*vt2)); |
| if (!vt2) { |
| aom_free(vt); |
| aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, |
| "Error allocating partition buffer vt2"); |
| } |
| } |
| // Fill in the entire tree of 8x8 (or 4x4 under some conditions) variances |
| // for splits. |
| fill_variance_tree_leaves(cpi, x, vt, force_split, avg_16x16, maxvar_16x16, |
| minvar_16x16, variance4x4downsample, thresholds, |
| src_buf, src_stride, dst_buf, dst_stride, |
| is_key_frame, is_small_sb); |
| |
| avg_64x64 = 0; |
| for (int blk64_idx = 0; blk64_idx < num_64x64_blocks; ++blk64_idx) { |
| max_var_32x32[blk64_idx] = 0; |
| min_var_32x32[blk64_idx] = INT_MAX; |
| const int blk64_scale_idx = blk64_idx << 2; |
| for (int lvl1_idx = 0; lvl1_idx < 4; lvl1_idx++) { |
| const int lvl1_scale_idx = (blk64_scale_idx + lvl1_idx) << 2; |
| for (int lvl2_idx = 0; lvl2_idx < 4; lvl2_idx++) { |
| if (variance4x4downsample[lvl1_scale_idx + lvl2_idx] != 1) continue; |
| VP16x16 *vtemp = |
| (!is_key_frame) |
| ? &vt2[lvl1_scale_idx + lvl2_idx] |
| : &vt->split[blk64_idx].split[lvl1_idx].split[lvl2_idx]; |
| for (int lvl3_idx = 0; lvl3_idx < 4; lvl3_idx++) |
| fill_variance_tree(&vtemp->split[lvl3_idx], BLOCK_8X8); |
| fill_variance_tree(vtemp, BLOCK_16X16); |
| // If variance of this 16x16 block is above the threshold, force block |
| // to split. This also forces a split on the upper levels. |
| get_variance(&vtemp->part_variances.none); |
| if (vtemp->part_variances.none.variance > thresholds[3]) { |
| const int split_index = 21 + lvl1_scale_idx + lvl2_idx; |
| force_split[split_index] = |
| cpi->sf.rt_sf.vbp_prune_16x16_split_using_min_max_sub_blk_var |
| ? get_part_eval_based_on_sub_blk_var(vtemp, thresholds[3]) |
| : PART_EVAL_ONLY_SPLIT; |
| force_split[5 + blk64_scale_idx + lvl1_idx] = PART_EVAL_ONLY_SPLIT; |
| force_split[blk64_idx + 1] = PART_EVAL_ONLY_SPLIT; |
| force_split[0] = PART_EVAL_ONLY_SPLIT; |
| } |
| } |
| fill_variance_tree(&vt->split[blk64_idx].split[lvl1_idx], BLOCK_32X32); |
| // If variance of this 32x32 block is above the threshold, or if its above |
| // (some threshold of) the average variance over the sub-16x16 blocks, |
| // then force this block to split. This also forces a split on the upper |
| // (64x64) level. |
| uint64_t frame_sad_thresh = 20000; |
| const int is_360p_or_smaller = cm->width * cm->height <= RESOLUTION_360P; |
| if (cpi->svc.number_temporal_layers > 2 && |
| cpi->svc.temporal_layer_id == 0) |
| frame_sad_thresh = frame_sad_thresh << 1; |
| if (force_split[5 + blk64_scale_idx + lvl1_idx] == PART_EVAL_ALL) { |
| get_variance(&vt->split[blk64_idx].split[lvl1_idx].part_variances.none); |
| var_32x32 = |
| vt->split[blk64_idx].split[lvl1_idx].part_variances.none.variance; |
| max_var_32x32[blk64_idx] = AOMMAX(var_32x32, max_var_32x32[blk64_idx]); |
| min_var_32x32[blk64_idx] = AOMMIN(var_32x32, min_var_32x32[blk64_idx]); |
| const int max_min_var_16X16_diff = (maxvar_16x16[blk64_idx][lvl1_idx] - |
| minvar_16x16[blk64_idx][lvl1_idx]); |
| |
| if (var_32x32 > thresholds[2] || |
| (!is_key_frame && var_32x32 > (thresholds[2] >> 1) && |
| var_32x32 > (avg_16x16[blk64_idx][lvl1_idx] >> 1))) { |
| force_split[5 + blk64_scale_idx + lvl1_idx] = PART_EVAL_ONLY_SPLIT; |
| force_split[blk64_idx + 1] = PART_EVAL_ONLY_SPLIT; |
| force_split[0] = PART_EVAL_ONLY_SPLIT; |
| } else if (!is_key_frame && is_360p_or_smaller && |
| ((max_min_var_16X16_diff > (thresholds[2] >> 1) && |
| maxvar_16x16[blk64_idx][lvl1_idx] > thresholds[2]) || |
| (cpi->sf.rt_sf.prefer_large_partition_blocks && |
| x->content_state_sb.source_sad_nonrd > kLowSad && |
| cpi->rc.frame_source_sad < frame_sad_thresh && |
| maxvar_16x16[blk64_idx][lvl1_idx] > (thresholds[2] >> 4) && |
| maxvar_16x16[blk64_idx][lvl1_idx] > |
| (minvar_16x16[blk64_idx][lvl1_idx] << 2)))) { |
| force_split[5 + blk64_scale_idx + lvl1_idx] = PART_EVAL_ONLY_SPLIT; |
| force_split[blk64_idx + 1] = PART_EVAL_ONLY_SPLIT; |
| force_split[0] = PART_EVAL_ONLY_SPLIT; |
| } |
| } |
| } |
| if (force_split[1 + blk64_idx] == PART_EVAL_ALL) { |
| fill_variance_tree(&vt->split[blk64_idx], BLOCK_64X64); |
| get_variance(&vt->split[blk64_idx].part_variances.none); |
| var_64x64 = vt->split[blk64_idx].part_variances.none.variance; |
| max_var_64x64 = AOMMAX(var_64x64, max_var_64x64); |
| min_var_64x64 = AOMMIN(var_64x64, min_var_64x64); |
| // If the difference of the max-min variances of sub-blocks or max |
| // variance of a sub-block is above some threshold of then force this |
| // block to split. Only checking this for noise level >= medium, if |
| // encoder is in SVC or if we already forced large blocks. |
| const int max_min_var_32x32_diff = |
| max_var_32x32[blk64_idx] - min_var_32x32[blk64_idx]; |
| const int check_max_var = max_var_32x32[blk64_idx] > thresholds[1] >> 1; |
| const bool check_noise_lvl = noise_level >= kMedium || |
| cpi->ppi->use_svc || |
| cpi->sf.rt_sf.prefer_large_partition_blocks; |
| const int64_t set_threshold = 3 * (thresholds[1] >> 3); |
| |
| if (!is_key_frame && max_min_var_32x32_diff > set_threshold && |
| check_max_var && check_noise_lvl) { |
| force_split[1 + blk64_idx] = PART_EVAL_ONLY_SPLIT; |
| force_split[0] = PART_EVAL_ONLY_SPLIT; |
| } |
| avg_64x64 += var_64x64; |
| } |
| if (is_small_sb) force_split[0] = PART_EVAL_ONLY_SPLIT; |
| } |
| |
| if (force_split[0] == PART_EVAL_ALL) { |
| fill_variance_tree(vt, BLOCK_128X128); |
| get_variance(&vt->part_variances.none); |
| const int set_avg_64x64 = (9 * avg_64x64) >> 5; |
| if (!is_key_frame && vt->part_variances.none.variance > set_avg_64x64) |
| force_split[0] = PART_EVAL_ONLY_SPLIT; |
| |
| if (!is_key_frame && |
| (max_var_64x64 - min_var_64x64) > 3 * (thresholds[0] >> 3) && |
| max_var_64x64 > thresholds[0] >> 1) |
| force_split[0] = PART_EVAL_ONLY_SPLIT; |
| } |
| |
| if (mi_col + 32 > tile->mi_col_end || mi_row + 32 > tile->mi_row_end || |
| !set_vt_partitioning(cpi, xd, tile, vt, BLOCK_128X128, mi_row, mi_col, |
| thresholds[0], BLOCK_16X16, force_split[0])) { |
| for (int blk64_idx = 0; blk64_idx < num_64x64_blocks; ++blk64_idx) { |
| const int x64_idx = GET_BLK_IDX_X(blk64_idx, 4); |
| const int y64_idx = GET_BLK_IDX_Y(blk64_idx, 4); |
| const int blk64_scale_idx = blk64_idx << 2; |
| |
| // Now go through the entire structure, splitting every block size until |
| // we get to one that's got a variance lower than our threshold. |
| if (set_vt_partitioning(cpi, xd, tile, &vt->split[blk64_idx], BLOCK_64X64, |
| mi_row + y64_idx, mi_col + x64_idx, thresholds[1], |
| BLOCK_16X16, force_split[1 + blk64_idx])) |
| continue; |
| for (int lvl1_idx = 0; lvl1_idx < 4; ++lvl1_idx) { |
| const int x32_idx = GET_BLK_IDX_X(lvl1_idx, 3); |
| const int y32_idx = GET_BLK_IDX_Y(lvl1_idx, 3); |
| const int lvl1_scale_idx = (blk64_scale_idx + lvl1_idx) << 2; |
| if (set_vt_partitioning( |
| cpi, xd, tile, &vt->split[blk64_idx].split[lvl1_idx], |
| BLOCK_32X32, (mi_row + y64_idx + y32_idx), |
| (mi_col + x64_idx + x32_idx), thresholds[2], BLOCK_16X16, |
| force_split[5 + blk64_scale_idx + lvl1_idx])) |
| continue; |
| for (int lvl2_idx = 0; lvl2_idx < 4; ++lvl2_idx) { |
| const int x16_idx = GET_BLK_IDX_X(lvl2_idx, 2); |
| const int y16_idx = GET_BLK_IDX_Y(lvl2_idx, 2); |
| const int split_index = 21 + lvl1_scale_idx + lvl2_idx; |
| // For inter frames: if variance4x4downsample[] == 1 for this |
| // 16x16 block, then the variance is based on 4x4 down-sampling, |
| // so use vt2 in set_vt_partioning(), otherwise use vt. |
| VP16x16 *vtemp = |
| (!is_key_frame && |
| variance4x4downsample[lvl1_scale_idx + lvl2_idx] == 1) |
| ? &vt2[lvl1_scale_idx + lvl2_idx] |
| : &vt->split[blk64_idx].split[lvl1_idx].split[lvl2_idx]; |
| if (set_vt_partitioning(cpi, xd, tile, vtemp, BLOCK_16X16, |
| mi_row + y64_idx + y32_idx + y16_idx, |
| mi_col + x64_idx + x32_idx + x16_idx, |
| thresholds[3], BLOCK_8X8, |
| force_split[split_index])) |
| continue; |
| for (int lvl3_idx = 0; lvl3_idx < 4; ++lvl3_idx) { |
| const int x8_idx = GET_BLK_IDX_X(lvl3_idx, 1); |
| const int y8_idx = GET_BLK_IDX_Y(lvl3_idx, 1); |
| set_block_size(cpi, (mi_row + y64_idx + y32_idx + y16_idx + y8_idx), |
| (mi_col + x64_idx + x32_idx + x16_idx + x8_idx), |
| BLOCK_8X8); |
| } |
| } |
| } |
| } |
| } |
| |
| if (cpi->sf.rt_sf.short_circuit_low_temp_var) { |
| set_low_temp_var_flag(cpi, &x->part_search_info, xd, vt, thresholds, |
| ref_frame_partition, mi_col, mi_row, is_small_sb); |
| } |
| |
| aom_free(vt2); |
| aom_free(vt); |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing(cpi, choose_var_based_partitioning_time); |
| #endif |
| return 0; |
| } |