| /* |
| * Copyright (c) 2018, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <math.h> |
| |
| #include <algorithm> |
| #include <complex> |
| #include <vector> |
| |
| #include "aom_dsp/fft_common.h" |
| #include "aom_mem/aom_mem.h" |
| #include "av1/common/common.h" |
| #include "config/aom_dsp_rtcd.h" |
| #include "test/acm_random.h" |
| #include "third_party/googletest/src/googletest/include/gtest/gtest.h" |
| |
| namespace { |
| |
| typedef void (*tform_fun_t)(const float *input, float *temp, float *output); |
| |
| // Simple 1D FFT implementation |
| template <typename InputType> |
| void fft(const InputType *data, std::complex<float> *result, int n) { |
| if (n == 1) { |
| result[0] = data[0]; |
| return; |
| } |
| std::vector<InputType> temp(n); |
| for (int k = 0; k < n / 2; ++k) { |
| temp[k] = data[2 * k]; |
| temp[n / 2 + k] = data[2 * k + 1]; |
| } |
| fft(&temp[0], result, n / 2); |
| fft(&temp[n / 2], result + n / 2, n / 2); |
| for (int k = 0; k < n / 2; ++k) { |
| std::complex<float> w = std::complex<float>((float)cos(2. * PI * k / n), |
| (float)-sin(2. * PI * k / n)); |
| std::complex<float> a = result[k]; |
| std::complex<float> b = result[n / 2 + k]; |
| result[k] = a + w * b; |
| result[n / 2 + k] = a - w * b; |
| } |
| } |
| |
| void transpose(std::vector<std::complex<float> > *data, int n) { |
| for (int y = 0; y < n; ++y) { |
| for (int x = y + 1; x < n; ++x) { |
| std::swap((*data)[y * n + x], (*data)[x * n + y]); |
| } |
| } |
| } |
| |
| // Simple 2D FFT implementation |
| template <class InputType> |
| std::vector<std::complex<float> > fft2d(const InputType *input, int n) { |
| std::vector<std::complex<float> > rowfft(n * n); |
| std::vector<std::complex<float> > result(n * n); |
| for (int y = 0; y < n; ++y) { |
| fft(input + y * n, &rowfft[y * n], n); |
| } |
| transpose(&rowfft, n); |
| for (int y = 0; y < n; ++y) { |
| fft(&rowfft[y * n], &result[y * n], n); |
| } |
| transpose(&result, n); |
| return result; |
| } |
| |
| struct FFTTestArg { |
| int n; |
| void (*fft)(const float *input, float *temp, float *output); |
| FFTTestArg(int n_in, tform_fun_t fft_in) : n(n_in), fft(fft_in) {} |
| }; |
| |
| std::ostream &operator<<(std::ostream &os, const FFTTestArg &test_arg) { |
| return os << "fft_arg { n:" << test_arg.n << " fft:" << test_arg.fft << " }"; |
| } |
| |
| class FFT2DTest : public ::testing::TestWithParam<FFTTestArg> { |
| protected: |
| void SetUp() { |
| int n = GetParam().n; |
| input_ = (float *)aom_memalign(32, sizeof(*input_) * n * n); |
| temp_ = (float *)aom_memalign(32, sizeof(*temp_) * n * n); |
| output_ = (float *)aom_memalign(32, sizeof(*output_) * n * n * 2); |
| memset(input_, 0, sizeof(*input_) * n * n); |
| memset(temp_, 0, sizeof(*temp_) * n * n); |
| memset(output_, 0, sizeof(*output_) * n * n * 2); |
| } |
| void TearDown() { |
| aom_free(input_); |
| aom_free(temp_); |
| aom_free(output_); |
| } |
| float *input_; |
| float *temp_; |
| float *output_; |
| }; |
| |
| TEST_P(FFT2DTest, Correct) { |
| int n = GetParam().n; |
| for (int i = 0; i < n * n; ++i) { |
| input_[i] = 1; |
| std::vector<std::complex<float> > expected = fft2d<float>(&input_[0], n); |
| GetParam().fft(&input_[0], &temp_[0], &output_[0]); |
| for (int y = 0; y < n; ++y) { |
| for (int x = 0; x < (n / 2) + 1; ++x) { |
| EXPECT_NEAR(expected[y * n + x].real(), output_[2 * (y * n + x)], 1e-5); |
| EXPECT_NEAR(expected[y * n + x].imag(), output_[2 * (y * n + x) + 1], |
| 1e-5); |
| } |
| } |
| input_[i] = 0; |
| } |
| } |
| |
| TEST_P(FFT2DTest, Benchmark) { |
| int n = GetParam().n; |
| float sum = 0; |
| for (int i = 0; i < 1000 * (64 - n); ++i) { |
| input_[i % (n * n)] = 1; |
| GetParam().fft(&input_[0], &temp_[0], &output_[0]); |
| sum += output_[0]; |
| input_[i % (n * n)] = 0; |
| } |
| } |
| |
| INSTANTIATE_TEST_CASE_P(C, FFT2DTest, |
| ::testing::Values(FFTTestArg(2, aom_fft2x2_float_c), |
| FFTTestArg(4, aom_fft4x4_float_c), |
| FFTTestArg(8, aom_fft8x8_float_c), |
| FFTTestArg(16, aom_fft16x16_float_c), |
| FFTTestArg(32, |
| aom_fft32x32_float_c))); |
| #if ARCH_X86 || ARCH_X86_64 |
| #if HAVE_SSE2 |
| INSTANTIATE_TEST_CASE_P( |
| SSE2, FFT2DTest, |
| ::testing::Values(FFTTestArg(4, aom_fft4x4_float_sse2), |
| FFTTestArg(8, aom_fft8x8_float_sse2), |
| FFTTestArg(16, aom_fft16x16_float_sse2), |
| FFTTestArg(32, aom_fft32x32_float_sse2))); |
| #endif // HAVE_SSE2 |
| #if HAVE_AVX2 |
| INSTANTIATE_TEST_CASE_P( |
| AVX2, FFT2DTest, |
| ::testing::Values(FFTTestArg(8, aom_fft8x8_float_avx2), |
| FFTTestArg(16, aom_fft16x16_float_avx2), |
| FFTTestArg(32, aom_fft32x32_float_avx2))); |
| #endif // HAVE_AVX2 |
| #endif // ARCH_X86 || ARCH_X86_64 |
| |
| struct IFFTTestArg { |
| int n; |
| tform_fun_t ifft; |
| IFFTTestArg(int n_in, tform_fun_t ifft_in) : n(n_in), ifft(ifft_in) {} |
| }; |
| |
| std::ostream &operator<<(std::ostream &os, const IFFTTestArg &test_arg) { |
| return os << "ifft_arg { n:" << test_arg.n << " fft:" << test_arg.ifft |
| << " }"; |
| } |
| |
| class IFFT2DTest : public ::testing::TestWithParam<IFFTTestArg> { |
| protected: |
| void SetUp() { |
| int n = GetParam().n; |
| input_ = (float *)aom_memalign(32, sizeof(*input_) * n * n * 2); |
| temp_ = (float *)aom_memalign(32, sizeof(*temp_) * n * n * 2); |
| output_ = (float *)aom_memalign(32, sizeof(*output_) * n * n); |
| memset(input_, 0, sizeof(*input_) * n * n * 2); |
| memset(temp_, 0, sizeof(*temp_) * n * n * 2); |
| memset(output_, 0, sizeof(*output_) * n * n); |
| } |
| void TearDown() { |
| aom_free(input_); |
| aom_free(temp_); |
| aom_free(output_); |
| } |
| float *input_; |
| float *temp_; |
| float *output_; |
| }; |
| |
| TEST_P(IFFT2DTest, Correctness) { |
| int n = GetParam().n; |
| ASSERT_GE(n, 2); |
| std::vector<float> expected(n * n); |
| std::vector<float> actual(n * n); |
| // Do forward transform then invert to make sure we get back expected |
| for (int y = 0; y < n; ++y) { |
| for (int x = 0; x < n; ++x) { |
| expected[y * n + x] = 1; |
| std::vector<std::complex<float> > input_c = fft2d(&expected[0], n); |
| for (int i = 0; i < n * n; ++i) { |
| input_[2 * i + 0] = input_c[i].real(); |
| input_[2 * i + 1] = input_c[i].imag(); |
| } |
| GetParam().ifft(&input_[0], &temp_[0], &output_[0]); |
| |
| for (int yy = 0; yy < n; ++yy) { |
| for (int xx = 0; xx < n; ++xx) { |
| EXPECT_NEAR(expected[yy * n + xx], output_[yy * n + xx] / (n * n), |
| 1e-5); |
| } |
| } |
| expected[y * n + x] = 0; |
| } |
| } |
| }; |
| |
| TEST_P(IFFT2DTest, Benchmark) { |
| int n = GetParam().n; |
| float sum = 0; |
| for (int i = 0; i < 1000 * (64 - n); ++i) { |
| input_[i % (n * n)] = 1; |
| GetParam().ifft(&input_[0], &temp_[0], &output_[0]); |
| sum += output_[0]; |
| input_[i % (n * n)] = 0; |
| } |
| } |
| INSTANTIATE_TEST_CASE_P( |
| C, IFFT2DTest, |
| ::testing::Values(IFFTTestArg(2, aom_ifft2x2_float_c), |
| IFFTTestArg(4, aom_ifft4x4_float_c), |
| IFFTTestArg(8, aom_ifft8x8_float_c), |
| IFFTTestArg(16, aom_ifft16x16_float_c), |
| IFFTTestArg(32, aom_ifft32x32_float_c))); |
| #if ARCH_X86 || ARCH_X86_64 |
| #if HAVE_SSE2 |
| INSTANTIATE_TEST_CASE_P( |
| SSE2, IFFT2DTest, |
| ::testing::Values(IFFTTestArg(4, aom_ifft4x4_float_sse2), |
| IFFTTestArg(8, aom_ifft8x8_float_sse2), |
| IFFTTestArg(16, aom_ifft16x16_float_sse2), |
| IFFTTestArg(32, aom_ifft32x32_float_sse2))); |
| #endif // HAVE_SSE2 |
| |
| #if HAVE_AVX2 |
| INSTANTIATE_TEST_CASE_P( |
| AVX2, IFFT2DTest, |
| ::testing::Values(IFFTTestArg(8, aom_ifft8x8_float_avx2), |
| IFFTTestArg(16, aom_ifft16x16_float_avx2), |
| IFFTTestArg(32, aom_ifft32x32_float_avx2))); |
| #endif // HAVE_AVX2 |
| #endif // ARCH_X86 || ARCH_X86_64 |
| |
| } // namespace |