blob: 12b1cf269420fe3e044dcb2776368d6e80b11d0f [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include "config/aom_dsp_rtcd.h"
#include "config/av1_rtcd.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/blend.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/aom_timer.h"
#include "aom_ports/mem.h"
#include "aom_ports/system_state.h"
#include "av1/common/mvref_common.h"
#include "av1/common/pred_common.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/encoder/encodemv.h"
#include "av1/encoder/rdopt.h"
#include "av1/encoder/reconinter_enc.h"
extern int g_pick_inter_mode_cnt;
typedef struct {
uint8_t *data;
int stride;
int in_use;
} PRED_BUFFER;
typedef struct {
PRED_BUFFER *best_pred;
PREDICTION_MODE best_mode;
TX_SIZE best_tx_size;
TX_SIZE best_intra_tx_size;
MV_REFERENCE_FRAME best_ref_frame;
MV_REFERENCE_FRAME best_second_ref_frame;
uint8_t best_mode_skip_txfm;
int_interpfilters best_pred_filter;
} BEST_PICKMODE;
typedef struct {
MV_REFERENCE_FRAME ref_frame;
PREDICTION_MODE pred_mode;
} REF_MODE;
#define RT_INTER_MODES 9
static const REF_MODE ref_mode_set[RT_INTER_MODES] = {
{ LAST_FRAME, NEARESTMV }, { LAST_FRAME, NEARMV },
{ LAST_FRAME, NEWMV }, { GOLDEN_FRAME, NEARESTMV },
{ GOLDEN_FRAME, NEARMV }, { GOLDEN_FRAME, NEWMV },
{ ALTREF_FRAME, NEARESTMV }, { ALTREF_FRAME, NEARMV },
{ ALTREF_FRAME, NEWMV }
};
static const THR_MODES mode_idx[REF_FRAMES][4] = {
{ THR_DC, THR_V_PRED, THR_H_PRED, THR_SMOOTH },
{ THR_NEARESTMV, THR_NEARMV, THR_GLOBALMV, THR_NEWMV },
{ THR_NEARESTL2, THR_NEARL2, THR_GLOBALL2, THR_NEWL2 },
{ THR_NEARESTL3, THR_NEARL3, THR_GLOBALL3, THR_NEWL3 },
{ THR_NEARESTG, THR_NEARG, THR_GLOBALMV, THR_NEWG },
};
static const PREDICTION_MODE intra_mode_list[] = { DC_PRED, V_PRED, H_PRED,
SMOOTH_PRED };
static INLINE int mode_offset(const PREDICTION_MODE mode) {
if (mode >= NEARESTMV) {
return INTER_OFFSET(mode);
} else {
switch (mode) {
case DC_PRED: return 0;
case V_PRED: return 1;
case H_PRED: return 2;
case SMOOTH_PRED: return 3;
default: assert(0); return -1;
}
}
}
typedef struct {
PREDICTION_MODE mode;
MV_REFERENCE_FRAME ref_frame[2];
} MODE_DEFINITION;
enum {
// INTER_ALL = (1 << NEARESTMV) | (1 << NEARMV) | (1 << NEWMV),
INTER_NEAREST = (1 << NEARESTMV),
INTER_NEAREST_NEW = (1 << NEARESTMV) | (1 << NEWMV),
INTER_NEAREST_NEAR = (1 << NEARESTMV) | (1 << NEARMV),
INTER_NEAR_NEW = (1 << NEARMV) | (1 << NEWMV),
};
static INLINE void init_best_pickmode(BEST_PICKMODE *bp) {
bp->best_mode = NEARESTMV;
bp->best_ref_frame = LAST_FRAME;
bp->best_tx_size = TX_8X8;
bp->best_intra_tx_size = TX_8X8;
bp->best_pred_filter = av1_broadcast_interp_filter(EIGHTTAP_REGULAR);
bp->best_mode_skip_txfm = 0;
bp->best_second_ref_frame = NONE_FRAME;
bp->best_pred = NULL;
}
static int combined_motion_search(AV1_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE bsize, int mi_row, int mi_col,
int_mv *tmp_mv, int *rate_mv,
int64_t best_rd_sofar, int use_base_mv) {
MACROBLOCKD *xd = &x->e_mbd;
const AV1_COMMON *cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
MB_MODE_INFO *mi = xd->mi[0];
struct buf_2d backup_yv12[MAX_MB_PLANE] = { { 0, 0, 0, 0, 0 } };
int step_param = cpi->mv_step_param;
const int sadpb = x->sadperbit16;
MV mvp_full;
const int ref = mi->ref_frame[0];
const MV ref_mv = av1_get_ref_mv(x, mi->ref_mv_idx).as_mv;
MV center_mv;
int dis;
const MvLimits tmp_mv_limits = x->mv_limits;
int rv = 0;
int cost_list[5];
int search_subpel = 1;
const YV12_BUFFER_CONFIG *scaled_ref_frame =
av1_get_scaled_ref_frame(cpi, ref);
if (scaled_ref_frame) {
int i;
// Swap out the reference frame for a version that's been scaled to
// match the resolution of the current frame, allowing the existing
// motion search code to be used without additional modifications.
for (i = 0; i < MAX_MB_PLANE; i++) backup_yv12[i] = xd->plane[i].pre[0];
av1_setup_pre_planes(xd, 0, scaled_ref_frame, mi_row, mi_col, NULL,
num_planes);
}
av1_set_mv_search_range(&x->mv_limits, &ref_mv);
mvp_full = ref_mv;
mvp_full.col >>= 3;
mvp_full.row >>= 3;
if (!use_base_mv)
center_mv = ref_mv;
else
center_mv = tmp_mv->as_mv;
av1_full_pixel_search(
cpi, x, bsize, &mvp_full, step_param, cpi->sf.mv.search_method, 0, sadpb,
cond_cost_list(cpi, cost_list), &center_mv, INT_MAX, 0,
(MI_SIZE * mi_col), (MI_SIZE * mi_row), 0, &cpi->ss_cfg[SS_CFG_SRC], 0);
x->mv_limits = tmp_mv_limits;
*tmp_mv = x->best_mv;
// calculate the bit cost on motion vector
mvp_full.row = tmp_mv->as_mv.row * 8;
mvp_full.col = tmp_mv->as_mv.col * 8;
*rate_mv = av1_mv_bit_cost(&mvp_full, &ref_mv, x->nmv_vec_cost,
x->mv_cost_stack, MV_COST_WEIGHT);
// TODO(kyslov) Account for Rate Mode!
rv = !(RDCOST(x->rdmult, (*rate_mv), 0) > best_rd_sofar);
if (rv && search_subpel) {
SUBPEL_FORCE_STOP subpel_force_stop = cpi->sf.mv.subpel_force_stop;
cpi->find_fractional_mv_step(
x, cm, mi_row, mi_col, &ref_mv, cpi->common.allow_high_precision_mv,
x->errorperbit, &cpi->fn_ptr[bsize], subpel_force_stop,
cpi->sf.mv.subpel_iters_per_step, cond_cost_list(cpi, cost_list),
x->nmv_vec_cost, x->mv_cost_stack, &dis, &x->pred_sse[ref], NULL, NULL,
0, 0, 0, 0, 0, 1);
*tmp_mv = x->best_mv;
*rate_mv = av1_mv_bit_cost(&tmp_mv->as_mv, &ref_mv, x->nmv_vec_cost,
x->mv_cost_stack, MV_COST_WEIGHT);
}
if (scaled_ref_frame) {
int i;
for (i = 0; i < MAX_MB_PLANE; i++) xd->plane[i].pre[0] = backup_yv12[i];
}
return rv;
}
static int search_new_mv(AV1_COMP *cpi, MACROBLOCK *x,
int_mv frame_mv[][REF_FRAMES],
MV_REFERENCE_FRAME ref_frame, int gf_temporal_ref,
BLOCK_SIZE bsize, int mi_row, int mi_col,
int best_pred_sad, int *rate_mv,
int64_t best_sse_sofar, RD_STATS *best_rdc) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mi = xd->mi[0];
AV1_COMMON *cm = &cpi->common;
(void)best_sse_sofar;
if (ref_frame > LAST_FRAME && gf_temporal_ref &&
cpi->oxcf.rc_mode == AOM_CBR) {
int tmp_sad;
int dis;
int cost_list[5] = { INT_MAX, INT_MAX, INT_MAX, INT_MAX, INT_MAX };
if (bsize < BLOCK_16X16) return -1;
tmp_sad = av1_int_pro_motion_estimation(
cpi, x, bsize, mi_row, mi_col,
&x->mbmi_ext->ref_mv_stack[ref_frame][0].this_mv.as_mv);
if (tmp_sad > x->pred_mv_sad[LAST_FRAME]) return -1;
if (tmp_sad + (num_pels_log2_lookup[bsize] << 4) > best_pred_sad) return -1;
frame_mv[NEWMV][ref_frame].as_int = mi->mv[0].as_int;
x->best_mv.as_int = mi->mv[0].as_int;
x->best_mv.as_mv.row >>= 3;
x->best_mv.as_mv.col >>= 3;
MV ref_mv = av1_get_ref_mv(x, 0).as_mv;
*rate_mv =
av1_mv_bit_cost(&frame_mv[NEWMV][ref_frame].as_mv, &ref_mv,
x->nmv_vec_cost, x->mv_cost_stack, MV_COST_WEIGHT);
frame_mv[NEWMV][ref_frame].as_mv.row >>= 3;
frame_mv[NEWMV][ref_frame].as_mv.col >>= 3;
cpi->find_fractional_mv_step(
x, cm, mi_row, mi_col, &ref_mv, cm->allow_high_precision_mv,
x->errorperbit, &cpi->fn_ptr[bsize], cpi->sf.mv.subpel_force_stop,
cpi->sf.mv.subpel_iters_per_step, cond_cost_list(cpi, cost_list),
x->nmv_vec_cost, x->mv_cost_stack, &dis, &x->pred_sse[ref_frame], NULL,
NULL, 0, 0, 0, 0, 0, 1);
frame_mv[NEWMV][ref_frame].as_int = x->best_mv.as_int;
} else if (!combined_motion_search(cpi, x, bsize, mi_row, mi_col,
&frame_mv[NEWMV][ref_frame], rate_mv,
best_rdc->rdcost, 0)) {
return -1;
}
return 0;
}
static INLINE void find_predictors(
AV1_COMP *cpi, MACROBLOCK *x, MV_REFERENCE_FRAME ref_frame,
int_mv frame_mv[MB_MODE_COUNT][REF_FRAMES], int const_motion[REF_FRAMES],
int *ref_frame_skip_mask, const int flag_list[4], TileDataEnc *tile_data,
struct buf_2d yv12_mb[8][MAX_MB_PLANE], BLOCK_SIZE bsize,
int force_skip_low_temp_var, int comp_pred_allowed) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_yv12_buf(cm, ref_frame);
const int num_planes = av1_num_planes(cm);
(void)tile_data;
(void)const_motion;
(void)comp_pred_allowed;
x->pred_mv_sad[ref_frame] = INT_MAX;
frame_mv[NEWMV][ref_frame].as_int = INVALID_MV;
// TODO(kyslov) this needs various further optimizations. to be continued..
if ((cpi->ref_frame_flags & flag_list[ref_frame]) && (yv12 != NULL)) {
const struct scale_factors *const sf =
get_ref_scale_factors_const(cm, ref_frame);
av1_setup_pred_block(xd, yv12_mb[ref_frame], yv12, sf, sf, num_planes);
av1_find_mv_refs(cm, xd, mbmi, ref_frame, mbmi_ext->ref_mv_count,
xd->ref_mv_stack, xd->weight, NULL, mbmi_ext->global_mvs,
mbmi_ext->mode_context);
// TODO(Ravi): Populate mbmi_ext->ref_mv_stack[ref_frame][4] and
// mbmi_ext->weight[ref_frame][4] inside av1_find_mv_refs.
av1_copy_usable_ref_mv_stack_and_weight(xd, mbmi_ext, ref_frame);
av1_find_best_ref_mvs_from_stack(cm->allow_high_precision_mv, mbmi_ext,
ref_frame, &frame_mv[NEARESTMV][ref_frame],
&frame_mv[NEARMV][ref_frame], 0);
// Early exit for golden frame if force_skip_low_temp_var is set.
if (!av1_is_scaled(sf) && bsize >= BLOCK_8X8 &&
!(force_skip_low_temp_var && ref_frame == GOLDEN_FRAME)) {
av1_mv_pred(cpi, x, yv12_mb[ref_frame][0].buf, yv12->y_stride, ref_frame,
bsize);
}
} else {
*ref_frame_skip_mask |= (1 << ref_frame);
}
av1_count_overlappable_neighbors(cm, xd);
mbmi->num_proj_ref = 1;
}
static void estimate_single_ref_frame_costs(const AV1_COMMON *cm,
const MACROBLOCKD *xd,
const MACROBLOCK *x, int segment_id,
unsigned int *ref_costs_single) {
int seg_ref_active =
segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME);
if (seg_ref_active) {
memset(ref_costs_single, 0, REF_FRAMES * sizeof(*ref_costs_single));
} else {
int intra_inter_ctx = av1_get_intra_inter_context(xd);
ref_costs_single[INTRA_FRAME] = x->intra_inter_cost[intra_inter_ctx][0];
unsigned int base_cost = x->intra_inter_cost[intra_inter_ctx][1];
for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i)
ref_costs_single[i] = base_cost;
const int ctx_p1 = av1_get_pred_context_single_ref_p1(xd);
const int ctx_p2 = av1_get_pred_context_single_ref_p2(xd);
const int ctx_p3 = av1_get_pred_context_single_ref_p3(xd);
const int ctx_p4 = av1_get_pred_context_single_ref_p4(xd);
const int ctx_p5 = av1_get_pred_context_single_ref_p5(xd);
const int ctx_p6 = av1_get_pred_context_single_ref_p6(xd);
// Determine cost of a single ref frame, where frame types are represented
// by a tree:
// Level 0: add cost whether this ref is a forward or backward ref
ref_costs_single[LAST_FRAME] += x->single_ref_cost[ctx_p1][0][0];
ref_costs_single[LAST2_FRAME] += x->single_ref_cost[ctx_p1][0][0];
ref_costs_single[LAST3_FRAME] += x->single_ref_cost[ctx_p1][0][0];
ref_costs_single[GOLDEN_FRAME] += x->single_ref_cost[ctx_p1][0][0];
ref_costs_single[BWDREF_FRAME] += x->single_ref_cost[ctx_p1][0][1];
ref_costs_single[ALTREF2_FRAME] += x->single_ref_cost[ctx_p1][0][1];
ref_costs_single[ALTREF_FRAME] += x->single_ref_cost[ctx_p1][0][1];
// Level 1: if this ref is forward ref,
// add cost whether it is last/last2 or last3/golden
ref_costs_single[LAST_FRAME] += x->single_ref_cost[ctx_p3][2][0];
ref_costs_single[LAST2_FRAME] += x->single_ref_cost[ctx_p3][2][0];
ref_costs_single[LAST3_FRAME] += x->single_ref_cost[ctx_p3][2][1];
ref_costs_single[GOLDEN_FRAME] += x->single_ref_cost[ctx_p3][2][1];
// Level 1: if this ref is backward ref
// then add cost whether this ref is altref or backward ref
ref_costs_single[BWDREF_FRAME] += x->single_ref_cost[ctx_p2][1][0];
ref_costs_single[ALTREF2_FRAME] += x->single_ref_cost[ctx_p2][1][0];
ref_costs_single[ALTREF_FRAME] += x->single_ref_cost[ctx_p2][1][1];
// Level 2: further add cost whether this ref is last or last2
ref_costs_single[LAST_FRAME] += x->single_ref_cost[ctx_p4][3][0];
ref_costs_single[LAST2_FRAME] += x->single_ref_cost[ctx_p4][3][1];
// Level 2: last3 or golden
ref_costs_single[LAST3_FRAME] += x->single_ref_cost[ctx_p5][4][0];
ref_costs_single[GOLDEN_FRAME] += x->single_ref_cost[ctx_p5][4][1];
// Level 2: bwdref or altref2
ref_costs_single[BWDREF_FRAME] += x->single_ref_cost[ctx_p6][5][0];
ref_costs_single[ALTREF2_FRAME] += x->single_ref_cost[ctx_p6][5][1];
}
}
static void estimate_comp_ref_frame_costs(
const AV1_COMMON *cm, const MACROBLOCKD *xd, const MACROBLOCK *x,
int segment_id, unsigned int (*ref_costs_comp)[REF_FRAMES]) {
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
for (int ref_frame = 0; ref_frame < REF_FRAMES; ++ref_frame)
memset(ref_costs_comp[ref_frame], 0,
REF_FRAMES * sizeof((*ref_costs_comp)[0]));
} else {
int intra_inter_ctx = av1_get_intra_inter_context(xd);
unsigned int base_cost = x->intra_inter_cost[intra_inter_ctx][1];
if (cm->current_frame.reference_mode != SINGLE_REFERENCE) {
// Similar to single ref, determine cost of compound ref frames.
// cost_compound_refs = cost_first_ref + cost_second_ref
const int bwdref_comp_ctx_p = av1_get_pred_context_comp_bwdref_p(xd);
const int bwdref_comp_ctx_p1 = av1_get_pred_context_comp_bwdref_p1(xd);
const int ref_comp_ctx_p = av1_get_pred_context_comp_ref_p(xd);
const int ref_comp_ctx_p1 = av1_get_pred_context_comp_ref_p1(xd);
const int ref_comp_ctx_p2 = av1_get_pred_context_comp_ref_p2(xd);
const int comp_ref_type_ctx = av1_get_comp_reference_type_context(xd);
unsigned int ref_bicomp_costs[REF_FRAMES] = { 0 };
ref_bicomp_costs[LAST_FRAME] = ref_bicomp_costs[LAST2_FRAME] =
ref_bicomp_costs[LAST3_FRAME] = ref_bicomp_costs[GOLDEN_FRAME] =
base_cost + x->comp_ref_type_cost[comp_ref_type_ctx][1];
ref_bicomp_costs[BWDREF_FRAME] = ref_bicomp_costs[ALTREF2_FRAME] = 0;
ref_bicomp_costs[ALTREF_FRAME] = 0;
// cost of first ref frame
ref_bicomp_costs[LAST_FRAME] += x->comp_ref_cost[ref_comp_ctx_p][0][0];
ref_bicomp_costs[LAST2_FRAME] += x->comp_ref_cost[ref_comp_ctx_p][0][0];
ref_bicomp_costs[LAST3_FRAME] += x->comp_ref_cost[ref_comp_ctx_p][0][1];
ref_bicomp_costs[GOLDEN_FRAME] += x->comp_ref_cost[ref_comp_ctx_p][0][1];
ref_bicomp_costs[LAST_FRAME] += x->comp_ref_cost[ref_comp_ctx_p1][1][0];
ref_bicomp_costs[LAST2_FRAME] += x->comp_ref_cost[ref_comp_ctx_p1][1][1];
ref_bicomp_costs[LAST3_FRAME] += x->comp_ref_cost[ref_comp_ctx_p2][2][0];
ref_bicomp_costs[GOLDEN_FRAME] += x->comp_ref_cost[ref_comp_ctx_p2][2][1];
// cost of second ref frame
ref_bicomp_costs[BWDREF_FRAME] +=
x->comp_bwdref_cost[bwdref_comp_ctx_p][0][0];
ref_bicomp_costs[ALTREF2_FRAME] +=
x->comp_bwdref_cost[bwdref_comp_ctx_p][0][0];
ref_bicomp_costs[ALTREF_FRAME] +=
x->comp_bwdref_cost[bwdref_comp_ctx_p][0][1];
ref_bicomp_costs[BWDREF_FRAME] +=
x->comp_bwdref_cost[bwdref_comp_ctx_p1][1][0];
ref_bicomp_costs[ALTREF2_FRAME] +=
x->comp_bwdref_cost[bwdref_comp_ctx_p1][1][1];
// cost: if one ref frame is forward ref, the other ref is backward ref
for (int ref0 = LAST_FRAME; ref0 <= GOLDEN_FRAME; ++ref0) {
for (int ref1 = BWDREF_FRAME; ref1 <= ALTREF_FRAME; ++ref1) {
ref_costs_comp[ref0][ref1] =
ref_bicomp_costs[ref0] + ref_bicomp_costs[ref1];
}
}
// cost: if both ref frames are the same side.
const int uni_comp_ref_ctx_p = av1_get_pred_context_uni_comp_ref_p(xd);
const int uni_comp_ref_ctx_p1 = av1_get_pred_context_uni_comp_ref_p1(xd);
const int uni_comp_ref_ctx_p2 = av1_get_pred_context_uni_comp_ref_p2(xd);
ref_costs_comp[LAST_FRAME][LAST2_FRAME] =
base_cost + x->comp_ref_type_cost[comp_ref_type_ctx][0] +
x->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][0] +
x->uni_comp_ref_cost[uni_comp_ref_ctx_p1][1][0];
ref_costs_comp[LAST_FRAME][LAST3_FRAME] =
base_cost + x->comp_ref_type_cost[comp_ref_type_ctx][0] +
x->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][0] +
x->uni_comp_ref_cost[uni_comp_ref_ctx_p1][1][1] +
x->uni_comp_ref_cost[uni_comp_ref_ctx_p2][2][0];
ref_costs_comp[LAST_FRAME][GOLDEN_FRAME] =
base_cost + x->comp_ref_type_cost[comp_ref_type_ctx][0] +
x->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][0] +
x->uni_comp_ref_cost[uni_comp_ref_ctx_p1][1][1] +
x->uni_comp_ref_cost[uni_comp_ref_ctx_p2][2][1];
ref_costs_comp[BWDREF_FRAME][ALTREF_FRAME] =
base_cost + x->comp_ref_type_cost[comp_ref_type_ctx][0] +
x->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][1];
} else {
for (int ref0 = LAST_FRAME; ref0 <= GOLDEN_FRAME; ++ref0) {
for (int ref1 = BWDREF_FRAME; ref1 <= ALTREF_FRAME; ++ref1)
ref_costs_comp[ref0][ref1] = 512;
}
ref_costs_comp[LAST_FRAME][LAST2_FRAME] = 512;
ref_costs_comp[LAST_FRAME][LAST3_FRAME] = 512;
ref_costs_comp[LAST_FRAME][GOLDEN_FRAME] = 512;
ref_costs_comp[BWDREF_FRAME][ALTREF_FRAME] = 512;
}
}
}
static void model_rd_with_curvfit(const AV1_COMP *const cpi,
const MACROBLOCK *const x,
BLOCK_SIZE plane_bsize, int plane,
int64_t sse, int num_samples, int *rate,
int64_t *dist) {
(void)cpi;
(void)plane_bsize;
const MACROBLOCKD *const xd = &x->e_mbd;
const struct macroblock_plane *const p = &x->plane[plane];
const int dequant_shift = (is_cur_buf_hbd(xd)) ? xd->bd - 5 : 3;
const int qstep = AOMMAX(p->dequant_QTX[1] >> dequant_shift, 1);
if (sse == 0) {
if (rate) *rate = 0;
if (dist) *dist = 0;
return;
}
aom_clear_system_state();
const double sse_norm = (double)sse / num_samples;
const double qstepsqr = (double)qstep * qstep;
const double xqr = log2(sse_norm / qstepsqr);
double rate_f, dist_by_sse_norm_f;
av1_model_rd_curvfit(plane_bsize, sse_norm, xqr, &rate_f,
&dist_by_sse_norm_f);
// 9.0 gives the best quality gain on a test video
// but it likely shall be qstep dependent
if (rate_f < 9.0) rate_f = 0.0;
const double dist_f = dist_by_sse_norm_f * sse_norm;
int rate_i = (int)(AOMMAX(0.0, rate_f * num_samples) + 0.5);
int64_t dist_i = (int64_t)(AOMMAX(0.0, dist_f * num_samples) + 0.5);
aom_clear_system_state();
// Check if skip is better
if (rate_i == 0) {
dist_i = sse << 4;
} else if (RDCOST(x->rdmult, rate_i, dist_i) >=
RDCOST(x->rdmult, 0, sse << 4)) {
rate_i = 0;
dist_i = sse << 4;
}
if (rate) *rate = rate_i;
if (dist) *dist = dist_i;
}
static TX_SIZE calculate_tx_size(const AV1_COMP *const cpi, BLOCK_SIZE bsize,
MACROBLOCK *const x, unsigned int var,
unsigned int sse) {
MACROBLOCKD *const xd = &x->e_mbd;
TX_SIZE tx_size;
if (x->tx_mode_search_type == TX_MODE_SELECT) {
if (sse > (var << 2))
tx_size = AOMMIN(max_txsize_lookup[bsize],
tx_mode_to_biggest_tx_size[x->tx_mode_search_type]);
else
tx_size = TX_8X8;
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ &&
cyclic_refresh_segment_id_boosted(xd->mi[0]->segment_id))
tx_size = TX_8X8;
else if (tx_size > TX_16X16)
tx_size = TX_16X16;
} else {
tx_size = AOMMIN(max_txsize_lookup[bsize],
tx_mode_to_biggest_tx_size[x->tx_mode_search_type]);
}
if (bsize > BLOCK_32X32) tx_size = TX_16X16;
return AOMMIN(tx_size, TX_16X16);
}
static const uint8_t b_width_log2_lookup[BLOCK_SIZES] = { 0, 0, 1, 1, 1, 2,
2, 2, 3, 3, 3, 4,
4, 4, 5, 5 };
static const uint8_t b_height_log2_lookup[BLOCK_SIZES] = { 0, 1, 0, 1, 2, 1,
2, 3, 2, 3, 4, 3,
4, 5, 4, 5 };
static void block_variance(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride, int w, int h,
unsigned int *sse, int *sum, int block_size,
uint32_t *sse8x8, int *sum8x8, uint32_t *var8x8) {
int i, j, k = 0;
*sse = 0;
*sum = 0;
for (i = 0; i < h; i += block_size) {
for (j = 0; j < w; j += block_size) {
aom_get8x8var(src + src_stride * i + j, src_stride,
ref + ref_stride * i + j, ref_stride, &sse8x8[k],
&sum8x8[k]);
*sse += sse8x8[k];
*sum += sum8x8[k];
var8x8[k] = sse8x8[k] - (uint32_t)(((int64_t)sum8x8[k] * sum8x8[k]) >> 6);
k++;
}
}
}
static void calculate_variance(int bw, int bh, TX_SIZE tx_size,
unsigned int *sse_i, int *sum_i,
unsigned int *var_o, unsigned int *sse_o,
int *sum_o) {
const BLOCK_SIZE unit_size = txsize_to_bsize[tx_size];
const int nw = 1 << (bw - b_width_log2_lookup[unit_size]);
const int nh = 1 << (bh - b_height_log2_lookup[unit_size]);
int i, j, k = 0;
for (i = 0; i < nh; i += 2) {
for (j = 0; j < nw; j += 2) {
sse_o[k] = sse_i[i * nw + j] + sse_i[i * nw + j + 1] +
sse_i[(i + 1) * nw + j] + sse_i[(i + 1) * nw + j + 1];
sum_o[k] = sum_i[i * nw + j] + sum_i[i * nw + j + 1] +
sum_i[(i + 1) * nw + j] + sum_i[(i + 1) * nw + j + 1];
var_o[k] = sse_o[k] - (uint32_t)(((int64_t)sum_o[k] * sum_o[k]) >>
(b_width_log2_lookup[unit_size] +
b_height_log2_lookup[unit_size] + 6));
k++;
}
}
}
// Adjust the ac_thr according to speed, width, height and normalized sum
static int ac_thr_factor(const int speed, const int width, const int height,
const int norm_sum) {
if (speed >= 8 && norm_sum < 5) {
if (width <= 640 && height <= 480)
return 4;
else
return 2;
}
return 1;
}
static void model_skip_for_sb_y_large(AV1_COMP *cpi, BLOCK_SIZE bsize,
int mi_row, int mi_col, MACROBLOCK *x,
MACROBLOCKD *xd, int *out_rate,
int64_t *out_dist, unsigned int *var_y,
unsigned int *sse_y, int *early_term,
int calculate_rd) {
// Note our transform coeffs are 8 times an orthogonal transform.
// Hence quantizer step is also 8 times. To get effective quantizer
// we need to divide by 8 before sending to modeling function.
unsigned int sse;
struct macroblock_plane *const p = &x->plane[0];
struct macroblockd_plane *const pd = &xd->plane[0];
const uint32_t dc_quant = p->dequant_QTX[0];
const uint32_t ac_quant = p->dequant_QTX[1];
const int64_t dc_thr = dc_quant * dc_quant >> 6;
int64_t ac_thr = ac_quant * ac_quant >> 6;
unsigned int var;
int sum;
const int bw = b_width_log2_lookup[bsize];
const int bh = b_height_log2_lookup[bsize];
const int num8x8 = 1 << (bw + bh - 2);
unsigned int sse8x8[256] = { 0 };
int sum8x8[256] = { 0 };
unsigned int var8x8[256] = { 0 };
TX_SIZE tx_size;
int k;
// Calculate variance for whole partition, and also save 8x8 blocks' variance
// to be used in following transform skipping test.
block_variance(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride,
4 << bw, 4 << bh, &sse, &sum, 8, sse8x8, sum8x8, var8x8);
var = sse - (unsigned int)(((int64_t)sum * sum) >> (bw + bh + 4));
*var_y = var;
*sse_y = sse;
ac_thr *= ac_thr_factor(cpi->oxcf.speed, cpi->common.width,
cpi->common.height, abs(sum) >> (bw + bh));
tx_size = calculate_tx_size(cpi, bsize, x, var, sse);
// The code below for setting skip flag assumes tranform size of at least 8x8,
// so force this lower limit on transform.
if (tx_size < TX_8X8) tx_size = TX_8X8;
xd->mi[0]->tx_size = tx_size;
// Evaluate if the partition block is a skippable block in Y plane.
{
unsigned int sse16x16[64] = { 0 };
int sum16x16[64] = { 0 };
unsigned int var16x16[64] = { 0 };
const int num16x16 = num8x8 >> 2;
unsigned int sse32x32[16] = { 0 };
int sum32x32[16] = { 0 };
unsigned int var32x32[16] = { 0 };
const int num32x32 = num8x8 >> 4;
int ac_test = 1;
int dc_test = 1;
const int num = (tx_size == TX_8X8)
? num8x8
: ((tx_size == TX_16X16) ? num16x16 : num32x32);
const unsigned int *sse_tx =
(tx_size == TX_8X8) ? sse8x8
: ((tx_size == TX_16X16) ? sse16x16 : sse32x32);
const unsigned int *var_tx =
(tx_size == TX_8X8) ? var8x8
: ((tx_size == TX_16X16) ? var16x16 : var32x32);
// Calculate variance if tx_size > TX_8X8
if (tx_size >= TX_16X16)
calculate_variance(bw, bh, TX_8X8, sse8x8, sum8x8, var16x16, sse16x16,
sum16x16);
if (tx_size == TX_32X32)
calculate_variance(bw, bh, TX_16X16, sse16x16, sum16x16, var32x32,
sse32x32, sum32x32);
// Skipping test
*early_term = 0;
for (k = 0; k < num; k++)
// Check if all ac coefficients can be quantized to zero.
if (!(var_tx[k] < ac_thr || var == 0)) {
ac_test = 0;
break;
}
for (k = 0; k < num; k++)
// Check if dc coefficient can be quantized to zero.
if (!(sse_tx[k] - var_tx[k] < dc_thr || sse == var)) {
dc_test = 0;
break;
}
if (ac_test && dc_test) {
int skip_uv[2] = { 0 };
unsigned int var_uv[2];
unsigned int sse_uv[2];
AV1_COMMON *const cm = &cpi->common;
// Transform skipping test in UV planes.
for (int i = 1; i <= 2; i++) {
int j = i - 1;
skip_uv[j] = 1;
if (x->color_sensitivity[j]) {
skip_uv[j] = 0;
struct macroblock_plane *const puv = &x->plane[i];
struct macroblockd_plane *const puvd = &xd->plane[i];
const BLOCK_SIZE uv_bsize = get_plane_block_size(
bsize, puvd->subsampling_x, puvd->subsampling_y);
// Adjust these thresholds for UV.
const int64_t uv_dc_thr =
(puv->dequant_QTX[0] * puv->dequant_QTX[0]) >> 3;
const int64_t uv_ac_thr =
(puv->dequant_QTX[1] * puv->dequant_QTX[1]) >> 3;
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, i,
i);
var_uv[j] = cpi->fn_ptr[uv_bsize].vf(puv->src.buf, puv->src.stride,
puvd->dst.buf, puvd->dst.stride,
&sse_uv[j]);
if ((var_uv[j] < uv_ac_thr || var_uv[j] == 0) &&
(sse_uv[j] - var_uv[j] < uv_dc_thr || sse_uv[j] == var_uv[j]))
skip_uv[j] = 1;
else
break;
}
}
if (skip_uv[0] & skip_uv[1]) {
*early_term = 1;
}
}
}
if (calculate_rd && out_dist != NULL && out_rate != NULL) {
if (!*early_term) {
const int bwide = block_size_wide[bsize];
const int bhigh = block_size_high[bsize];
model_rd_with_curvfit(cpi, x, bsize, AOM_PLANE_Y, sse, bwide * bhigh,
out_rate, out_dist);
}
if (*early_term) {
*out_rate = 0;
*out_dist = sse << 4;
}
}
}
static void model_rd_for_sb_y(const AV1_COMP *const cpi, BLOCK_SIZE bsize,
MACROBLOCK *x, MACROBLOCKD *xd, int *out_rate_sum,
int64_t *out_dist_sum, int *skip_txfm_sb,
int64_t *skip_sse_sb, unsigned int *var_y,
unsigned int *sse_y, int calculate_rd) {
// Note our transform coeffs are 8 times an orthogonal transform.
// Hence quantizer step is also 8 times. To get effective quantizer
// we need to divide by 8 before sending to modeling function.
const int ref = xd->mi[0]->ref_frame[0];
assert(bsize < BLOCK_SIZES_ALL);
struct macroblock_plane *const p = &x->plane[0];
struct macroblockd_plane *const pd = &xd->plane[0];
unsigned int sse;
int rate;
int64_t dist;
unsigned int var = cpi->fn_ptr[bsize].vf(p->src.buf, p->src.stride,
pd->dst.buf, pd->dst.stride, &sse);
xd->mi[0]->tx_size = calculate_tx_size(cpi, bsize, x, var, sse);
if (calculate_rd) {
const int bwide = block_size_wide[bsize];
const int bhigh = block_size_high[bsize];
model_rd_with_curvfit(cpi, x, bsize, AOM_PLANE_Y, sse, bwide * bhigh, &rate,
&dist);
} else {
rate = INT_MAX; // this will be overwritten later with block_yrd
dist = INT_MAX;
}
*var_y = var;
*sse_y = sse;
x->pred_sse[ref] = (unsigned int)AOMMIN(sse, UINT_MAX);
assert(rate >= 0);
if (skip_txfm_sb) *skip_txfm_sb = rate == 0;
if (skip_sse_sb) *skip_sse_sb = sse << 4;
rate = AOMMIN(rate, INT_MAX);
*out_rate_sum = (int)rate;
*out_dist_sum = dist;
}
static void block_yrd(AV1_COMP *cpi, MACROBLOCK *x, int mi_row, int mi_col,
RD_STATS *this_rdc, int *skippable, int64_t *sse,
BLOCK_SIZE bsize, TX_SIZE tx_size) {
MACROBLOCKD *xd = &x->e_mbd;
const struct macroblockd_plane *pd = &xd->plane[0];
struct macroblock_plane *const p = &x->plane[0];
const int num_4x4_w = mi_size_wide[bsize];
const int num_4x4_h = mi_size_high[bsize];
const int step = 1 << (tx_size << 1);
const int block_step = (1 << tx_size);
int block = 0;
const int max_blocks_wide =
num_4x4_w + (xd->mb_to_right_edge >= 0 ? 0 : xd->mb_to_right_edge >> 5);
const int max_blocks_high =
num_4x4_h + (xd->mb_to_bottom_edge >= 0 ? 0 : xd->mb_to_bottom_edge >> 5);
int eob_cost = 0;
const int bw = 4 * num_4x4_w;
const int bh = 4 * num_4x4_h;
assert(tx_size > 0 && tx_size <= 4);
(void)mi_row;
(void)mi_col;
(void)cpi;
aom_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride,
pd->dst.buf, pd->dst.stride);
*skippable = 1;
// Keep track of the row and column of the blocks we use so that we know
// if we are in the unrestricted motion border.
for (int r = 0; r < max_blocks_high; r += block_step) {
for (int c = 0; c < num_4x4_w; c += block_step) {
if (c < max_blocks_wide) {
const SCAN_ORDER *const scan_order = &av1_default_scan_orders[tx_size];
const int block_offset = BLOCK_OFFSET(block);
tran_low_t *const coeff = p->coeff + block_offset;
tran_low_t *const qcoeff = p->qcoeff + block_offset;
tran_low_t *const dqcoeff = pd->dqcoeff + block_offset;
uint16_t *const eob = &p->eobs[block];
const int diff_stride = bw;
const int16_t *src_diff;
src_diff = &p->src_diff[(r * diff_stride + c) << 2];
switch (tx_size) {
case TX_64X64:
assert(0); // Not implemented
break;
case TX_32X32:
aom_hadamard_32x32(src_diff, diff_stride, coeff);
av1_quantize_fp(coeff, 32 * 32, p->zbin_QTX, p->round_fp_QTX,
p->quant_fp_QTX, p->quant_shift_QTX, qcoeff,
dqcoeff, p->dequant_QTX, eob, scan_order->scan,
scan_order->iscan);
break;
case TX_16X16:
aom_hadamard_16x16(src_diff, diff_stride, coeff);
av1_quantize_fp(coeff, 16 * 16, p->zbin_QTX, p->round_fp_QTX,
p->quant_fp_QTX, p->quant_shift_QTX, qcoeff,
dqcoeff, p->dequant_QTX, eob, scan_order->scan,
scan_order->iscan);
break;
case TX_8X8:
aom_hadamard_8x8(src_diff, diff_stride, coeff);
av1_quantize_fp(coeff, 8 * 8, p->zbin_QTX, p->round_fp_QTX,
p->quant_fp_QTX, p->quant_shift_QTX, qcoeff,
dqcoeff, p->dequant_QTX, eob, scan_order->scan,
scan_order->iscan);
break;
default: assert(0); break;
}
*skippable &= (*eob == 0);
eob_cost += 1;
}
block += step;
}
}
this_rdc->skip = *skippable;
this_rdc->rate = 0;
if (*sse < INT64_MAX) {
*sse = (*sse << 6) >> 2;
if (*skippable) {
this_rdc->dist = *sse;
return;
}
}
block = 0;
this_rdc->dist = 0;
for (int r = 0; r < max_blocks_high; r += block_step) {
for (int c = 0; c < num_4x4_w; c += block_step) {
if (c < max_blocks_wide) {
int64_t dummy;
const int block_offset = BLOCK_OFFSET(block);
tran_low_t *const coeff = p->coeff + block_offset;
tran_low_t *const qcoeff = p->qcoeff + block_offset;
tran_low_t *const dqcoeff = pd->dqcoeff + block_offset;
uint16_t *const eob = &p->eobs[block];
if (*eob == 1)
this_rdc->rate += (int)abs(qcoeff[0]);
else if (*eob > 1)
this_rdc->rate += aom_satd(qcoeff, step << 4);
this_rdc->dist +=
av1_block_error(coeff, dqcoeff, step << 4, &dummy) >> 2;
}
block += step;
}
}
// If skippable is set, rate gets clobbered later.
this_rdc->rate <<= (2 + AV1_PROB_COST_SHIFT);
this_rdc->rate += (eob_cost << AV1_PROB_COST_SHIFT);
}
static INLINE void init_mbmi(MB_MODE_INFO *mbmi, PREDICTION_MODE pred_mode,
MV_REFERENCE_FRAME ref_frame0,
MV_REFERENCE_FRAME ref_frame1,
const AV1_COMMON *cm) {
PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
mbmi->ref_mv_idx = 0;
mbmi->mode = pred_mode;
mbmi->uv_mode = UV_DC_PRED;
mbmi->ref_frame[0] = ref_frame0;
mbmi->ref_frame[1] = ref_frame1;
pmi->palette_size[0] = 0;
pmi->palette_size[1] = 0;
mbmi->filter_intra_mode_info.use_filter_intra = 0;
mbmi->mv[0].as_int = mbmi->mv[1].as_int = 0;
mbmi->motion_mode = SIMPLE_TRANSLATION;
mbmi->num_proj_ref = 1;
mbmi->interintra_mode = 0;
set_default_interp_filters(mbmi, cm->interp_filter);
}
#if CONFIG_INTERNAL_STATS
static void store_coding_context(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx,
int mode_index) {
#else
static void store_coding_context(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
#endif // CONFIG_INTERNAL_STATS
MACROBLOCKD *const xd = &x->e_mbd;
// Take a snapshot of the coding context so it can be
// restored if we decide to encode this way
ctx->rd_stats.skip = x->skip;
memcpy(ctx->blk_skip, x->blk_skip, sizeof(x->blk_skip[0]) * ctx->num_4x4_blk);
av1_copy_array(ctx->tx_type_map, xd->tx_type_map, ctx->num_4x4_blk);
ctx->skippable = x->skip;
#if CONFIG_INTERNAL_STATS
ctx->best_mode_index = mode_index;
#endif // CONFIG_INTERNAL_STATS
ctx->mic = *xd->mi[0];
ctx->skippable = x->skip;
ctx->mbmi_ext = *x->mbmi_ext;
ctx->comp_pred_diff = 0;
ctx->hybrid_pred_diff = 0;
ctx->single_pred_diff = 0;
}
static int get_pred_buffer(PRED_BUFFER *p, int len) {
for (int i = 0; i < len; i++) {
if (!p[i].in_use) {
p[i].in_use = 1;
return i;
}
}
return -1;
}
static void free_pred_buffer(PRED_BUFFER *p) {
if (p != NULL) p->in_use = 0;
}
static int cost_mv_ref(const MACROBLOCK *const x, PREDICTION_MODE mode,
int16_t mode_context) {
if (is_inter_compound_mode(mode)) {
return x
->inter_compound_mode_cost[mode_context][INTER_COMPOUND_OFFSET(mode)];
}
int mode_cost = 0;
int16_t mode_ctx = mode_context & NEWMV_CTX_MASK;
assert(is_inter_mode(mode));
if (mode == NEWMV) {
mode_cost = x->newmv_mode_cost[mode_ctx][0];
return mode_cost;
} else {
mode_cost = x->newmv_mode_cost[mode_ctx][1];
mode_ctx = (mode_context >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
if (mode == GLOBALMV) {
mode_cost += x->zeromv_mode_cost[mode_ctx][0];
return mode_cost;
} else {
mode_cost += x->zeromv_mode_cost[mode_ctx][1];
mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK;
mode_cost += x->refmv_mode_cost[mode_ctx][mode != NEARESTMV];
return mode_cost;
}
}
}
static void newmv_diff_bias(MACROBLOCKD *xd, PREDICTION_MODE this_mode,
RD_STATS *this_rdc, BLOCK_SIZE bsize, int mv_row,
int mv_col) {
// Bias against MVs associated with NEWMV mode that are very different from
// top/left neighbors.
if (this_mode == NEWMV) {
int al_mv_average_row;
int al_mv_average_col;
int left_row, left_col;
int row_diff, col_diff;
int above_mv_valid = 0;
int left_mv_valid = 0;
int above_row = 0;
int above_col = 0;
if (xd->above_mbmi) {
above_mv_valid = xd->above_mbmi->mv[0].as_int != INVALID_MV;
above_row = xd->above_mbmi->mv[0].as_mv.row;
above_col = xd->above_mbmi->mv[0].as_mv.col;
}
if (xd->left_mbmi) {
left_mv_valid = xd->left_mbmi->mv[0].as_int != INVALID_MV;
left_row = xd->left_mbmi->mv[0].as_mv.row;
left_col = xd->left_mbmi->mv[0].as_mv.col;
}
if (above_mv_valid && left_mv_valid) {
al_mv_average_row = (above_row + left_row + 1) >> 1;
al_mv_average_col = (above_col + left_col + 1) >> 1;
} else if (above_mv_valid) {
al_mv_average_row = above_row;
al_mv_average_col = above_col;
} else if (left_mv_valid) {
al_mv_average_row = left_row;
al_mv_average_col = left_col;
} else {
al_mv_average_row = al_mv_average_col = 0;
}
row_diff = al_mv_average_row - mv_row;
col_diff = al_mv_average_col - mv_col;
if (row_diff > 80 || row_diff < -80 || col_diff > 80 || col_diff < -80) {
if (bsize >= BLOCK_32X32)
this_rdc->rdcost = this_rdc->rdcost << 1;
else
this_rdc->rdcost = 5 * this_rdc->rdcost >> 2;
}
}
}
static void model_rd_for_sb_uv(AV1_COMP *cpi, BLOCK_SIZE plane_bsize,
MACROBLOCK *x, MACROBLOCKD *xd,
RD_STATS *this_rdc, unsigned int *var_y,
unsigned int *sse_y, int start_plane,
int stop_plane) {
// Note our transform coeffs are 8 times an orthogonal transform.
// Hence quantizer step is also 8 times. To get effective quantizer
// we need to divide by 8 before sending to modeling function.
unsigned int sse;
int rate;
int64_t dist;
int i;
uint32_t tot_var = *var_y;
uint32_t tot_sse = *sse_y;
this_rdc->rate = 0;
this_rdc->dist = 0;
this_rdc->skip = 0;
for (i = start_plane; i <= stop_plane; ++i) {
struct macroblock_plane *const p = &x->plane[i];
struct macroblockd_plane *const pd = &xd->plane[i];
const uint32_t dc_quant = p->dequant_QTX[0];
const uint32_t ac_quant = p->dequant_QTX[1];
const BLOCK_SIZE bs = plane_bsize;
unsigned int var;
if (!x->color_sensitivity[i - 1]) continue;
var = cpi->fn_ptr[bs].vf(p->src.buf, p->src.stride, pd->dst.buf,
pd->dst.stride, &sse);
assert(sse >= var);
tot_var += var;
tot_sse += sse;
av1_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bs],
dc_quant >> 3, &rate, &dist);
this_rdc->rate += rate >> 1;
this_rdc->dist += dist << 3;
av1_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bs], ac_quant >> 3,
&rate, &dist);
this_rdc->rate += rate;
this_rdc->dist += dist << 4;
}
if (this_rdc->rate == 0) {
this_rdc->skip = 1;
}
if (RDCOST(x->rdmult, this_rdc->rate, this_rdc->dist) >=
RDCOST(x->rdmult, 0, ((int64_t)tot_sse) << 4)) {
this_rdc->rate = 0;
this_rdc->dist = tot_sse << 4;
this_rdc->skip = 1;
}
*var_y = tot_var;
*sse_y = tot_sse;
}
struct estimate_block_intra_args {
AV1_COMP *cpi;
MACROBLOCK *x;
PREDICTION_MODE mode;
int skippable;
RD_STATS *rdc;
};
static void estimate_block_intra(int plane, int block, int row, int col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
void *arg) {
struct estimate_block_intra_args *const args = arg;
AV1_COMP *const cpi = args->cpi;
AV1_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
const BLOCK_SIZE bsize_tx = txsize_to_bsize[tx_size];
uint8_t *const src_buf_base = p->src.buf;
uint8_t *const dst_buf_base = pd->dst.buf;
const int64_t src_stride = p->src.stride;
const int64_t dst_stride = pd->dst.stride;
RD_STATS this_rdc;
(void)block;
p->src.buf = &src_buf_base[4 * (row * src_stride + col)];
pd->dst.buf = &dst_buf_base[4 * (row * dst_stride + col)];
av1_predict_intra_block_facade(cm, xd, plane, col, row, tx_size);
if (plane == 0) {
int64_t this_sse = INT64_MAX;
block_yrd(cpi, x, 0, 0, &this_rdc, &args->skippable, &this_sse, bsize_tx,
AOMMIN(tx_size, TX_16X16));
} else {
unsigned int var = 0;
unsigned int sse = 0;
model_rd_for_sb_uv(cpi, plane_bsize, x, xd, &this_rdc, &var, &sse, plane,
plane);
}
p->src.buf = src_buf_base;
pd->dst.buf = dst_buf_base;
args->rdc->rate += this_rdc.rate;
args->rdc->dist += this_rdc.dist;
}
static INLINE void update_thresh_freq_fact(AV1_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE bsize,
MV_REFERENCE_FRAME ref_frame,
THR_MODES best_mode_idx,
PREDICTION_MODE mode) {
THR_MODES thr_mode_idx = mode_idx[ref_frame][mode_offset(mode)];
int *freq_fact = &x->thresh_freq_fact[bsize][thr_mode_idx];
if (thr_mode_idx == best_mode_idx) {
*freq_fact -= (*freq_fact >> 4);
} else {
*freq_fact = AOMMIN(*freq_fact + RD_THRESH_INC,
cpi->sf.adaptive_rd_thresh * RD_THRESH_MAX_FACT);
}
}
static INLINE int get_force_skip_low_temp_var(uint8_t *variance_low, int mi_row,
int mi_col, BLOCK_SIZE bsize) {
int force_skip_low_temp_var = 0;
int x, y;
// Set force_skip_low_temp_var based on the block size and block offset.
switch (bsize) {
case BLOCK_128X128: force_skip_low_temp_var = variance_low[0]; break;
case BLOCK_64X64:
case BLOCK_32X32:
case BLOCK_16X16:
x = mi_col % 32;
y = mi_row % 32;
if (bsize == BLOCK_64X64) {
assert((x == 0 || x == 16) && (y == 0 || y == 16));
}
x >>= 4;
y >>= 4;
const int idx64 = y * 2 + x;
if (bsize == BLOCK_64X64) {
force_skip_low_temp_var = variance_low[1 + idx64];
break;
}
x = mi_col % 16;
y = mi_row % 16;
if (bsize == BLOCK_32X32) {
assert((x == 0 || x == 8) && (y == 0 || y == 8));
}
x >>= 3;
y >>= 3;
const int idx32 = y * 2 + x;
if (bsize == BLOCK_32X32) {
force_skip_low_temp_var = variance_low[5 + (idx64 << 2) + idx32];
break;
}
x = mi_col % 8;
y = mi_row % 8;
if (bsize == BLOCK_16X16) {
assert((x == 0 || x == 4) && (y == 0 || y == 4));
}
x >>= 2;
y >>= 2;
const int idx16 = y * 2 + x;
if (bsize == BLOCK_16X16) {
force_skip_low_temp_var =
variance_low[21 + (idx64 << 4) + (idx32 << 2) + idx16];
break;
}
default: break;
}
return force_skip_low_temp_var;
}
#define FILTER_SEARCH_SIZE 2
static void search_filter_ref(AV1_COMP *cpi, MACROBLOCK *x, RD_STATS *this_rdc,
int mi_row, int mi_col, PRED_BUFFER *tmp,
BLOCK_SIZE bsize, int reuse_inter_pred,
PRED_BUFFER **this_mode_pred, unsigned int *var_y,
unsigned int *sse_y, int *this_early_term,
int use_model_yrd_large, int64_t *sse_block_yrd,
int *block_yrd_computed) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblockd_plane *const pd = &xd->plane[0];
MB_MODE_INFO *const mi = xd->mi[0];
const int bw = block_size_wide[bsize];
RD_STATS this_rdc_fil;
int is_skippable;
int pf_rate[FILTER_SEARCH_SIZE] = { 0 };
int64_t pf_dist[FILTER_SEARCH_SIZE] = { 0 };
int curr_rate[FILTER_SEARCH_SIZE] = { 0 };
unsigned int pf_var[FILTER_SEARCH_SIZE] = { 0 };
unsigned int pf_sse[FILTER_SEARCH_SIZE] = { 0 };
int64_t pf_sse_block_yrd[FILTER_SEARCH_SIZE] = { 0 };
TX_SIZE pf_tx_size[FILTER_SEARCH_SIZE] = { 0 };
PRED_BUFFER *current_pred = *this_mode_pred;
int skip_txfm[FILTER_SEARCH_SIZE] = { 0 };
int best_skip = 0;
int best_early_term = 0;
int64_t best_cost = INT64_MAX;
int best_filter_index = -1;
InterpFilter filters[FILTER_SEARCH_SIZE] = { EIGHTTAP_REGULAR,
EIGHTTAP_SMOOTH };
int i;
for (i = 0; i < FILTER_SEARCH_SIZE; ++i) {
int64_t cost;
InterpFilter filter = filters[i];
mi->interp_filters = av1_broadcast_interp_filter(filter);
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize,
AOM_PLANE_Y, AOM_PLANE_Y);
if (use_model_yrd_large)
model_skip_for_sb_y_large(cpi, bsize, mi_row, mi_col, x, xd, &pf_rate[i],
&pf_dist[i], &pf_var[i], &pf_sse[i],
this_early_term,
!cpi->sf.nonrd_use_blockyrd_interp_filter);
else
model_rd_for_sb_y(cpi, bsize, x, xd, &pf_rate[i], &pf_dist[i],
&skip_txfm[i], NULL, &pf_var[i], &pf_sse[i],
!cpi->sf.nonrd_use_blockyrd_interp_filter);
if (cpi->sf.nonrd_use_blockyrd_interp_filter) {
int64_t this_sse = (int64_t)pf_sse[i];
block_yrd(cpi, x, mi_row, mi_col, &this_rdc_fil, &is_skippable, &this_sse,
bsize, mi->tx_size);
pf_rate[i] = this_rdc_fil.rate;
pf_dist[i] = this_rdc_fil.dist;
pf_sse_block_yrd[i] = this_sse;
skip_txfm[i] = this_rdc_fil.skip;
*block_yrd_computed = 1;
}
curr_rate[i] = pf_rate[i];
pf_rate[i] += av1_get_switchable_rate(cm, x, xd);
cost = RDCOST(x->rdmult, pf_rate[i], pf_dist[i]);
pf_tx_size[i] = mi->tx_size;
if (cost < best_cost) {
best_filter_index = i;
best_cost = cost;
best_skip = skip_txfm[i];
best_early_term = *this_early_term;
if (reuse_inter_pred) {
if (*this_mode_pred != current_pred) {
free_pred_buffer(*this_mode_pred);
*this_mode_pred = current_pred;
}
current_pred = &tmp[get_pred_buffer(tmp, 3)];
pd->dst.buf = current_pred->data;
pd->dst.stride = bw;
}
}
}
assert(best_filter_index >= 0 && best_filter_index < FILTER_SEARCH_SIZE);
if (reuse_inter_pred && *this_mode_pred != current_pred)
free_pred_buffer(current_pred);
mi->interp_filters = av1_broadcast_interp_filter(filters[best_filter_index]);
mi->tx_size = pf_tx_size[best_filter_index];
this_rdc->rate = curr_rate[best_filter_index];
this_rdc->dist = pf_dist[best_filter_index];
*var_y = pf_var[best_filter_index];
*sse_y = pf_sse[best_filter_index];
*sse_block_yrd = pf_sse_block_yrd[best_filter_index];
this_rdc->skip = (best_skip || best_early_term);
*this_early_term = best_early_term;
if (reuse_inter_pred) {
pd->dst.buf = (*this_mode_pred)->data;
pd->dst.stride = (*this_mode_pred)->stride;
} else if (best_filter_index < FILTER_SEARCH_SIZE - 1) {
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize,
AOM_PLANE_Y, AOM_PLANE_Y);
}
}
#define COLLECT_PICK_MODE_STAT 0
#if COLLECT_PICK_MODE_STAT
typedef struct _mode_search_stat {
int32_t num_blocks[BLOCK_SIZES];
int64_t avg_block_times[BLOCK_SIZES];
int32_t num_searches[BLOCK_SIZES][MB_MODE_COUNT];
int32_t num_nonskipped_searches[BLOCK_SIZES][MB_MODE_COUNT];
int64_t search_times[BLOCK_SIZES][MB_MODE_COUNT];
int64_t nonskipped_search_times[BLOCK_SIZES][MB_MODE_COUNT];
struct aom_usec_timer timer1;
struct aom_usec_timer timer2;
} mode_search_stat;
#endif // COLLECT_PICK_MODE_STAT
static void compute_intra_yprediction(const AV1_COMMON *cm,
PREDICTION_MODE mode, BLOCK_SIZE bsize,
MACROBLOCK *x, MACROBLOCKD *xd) {
struct macroblockd_plane *const pd = &xd->plane[0];
struct macroblock_plane *const p = &x->plane[0];
uint8_t *const src_buf_base = p->src.buf;
uint8_t *const dst_buf_base = pd->dst.buf;
const int src_stride = p->src.stride;
const int dst_stride = pd->dst.stride;
int plane = 0;
int row, col;
// block and transform sizes, in number of 4x4 blocks log 2 ("*_b")
// 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8
// transform size varies per plane, look it up in a common way.
const TX_SIZE tx_size = max_txsize_lookup[bsize];
const BLOCK_SIZE plane_bsize =
get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y);
// If mb_to_right_edge is < 0 we are in a situation in which
// the current block size extends into the UMV and we won't
// visit the sub blocks that are wholly within the UMV.
const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
// Keep track of the row and column of the blocks we use so that we know
// if we are in the unrestricted motion border.
for (row = 0; row < max_blocks_high; row += (1 << tx_size)) {
// Skip visiting the sub blocks that are wholly within the UMV.
for (col = 0; col < max_blocks_wide; col += (1 << tx_size)) {
p->src.buf = &src_buf_base[4 * (row * (int64_t)src_stride + col)];
pd->dst.buf = &dst_buf_base[4 * (row * (int64_t)dst_stride + col)];
av1_predict_intra_block(cm, xd, block_size_wide[bsize],
block_size_high[bsize], tx_size, mode, 0, 0,
FILTER_INTRA_MODES, pd->dst.buf, dst_stride,
pd->dst.buf, dst_stride, 0, 0, plane);
}
}
p->src.buf = src_buf_base;
pd->dst.buf = dst_buf_base;
}
void av1_nonrd_pick_inter_mode_sb(AV1_COMP *cpi, TileDataEnc *tile_data,
MACROBLOCK *x, RD_STATS *rd_cost,
BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx,
int64_t best_rd_so_far) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mi = xd->mi[0];
struct macroblockd_plane *const pd = &xd->plane[0];
BEST_PICKMODE best_pickmode;
int inter_mode_mask[BLOCK_SIZES];
#if COLLECT_PICK_MODE_STAT
static mode_search_stat ms_stat;
#endif
MV_REFERENCE_FRAME ref_frame;
MV_REFERENCE_FRAME usable_ref_frame, second_ref_frame;
int_mv frame_mv[MB_MODE_COUNT][REF_FRAMES];
uint8_t mode_checked[MB_MODE_COUNT][REF_FRAMES];
struct buf_2d yv12_mb[8][MAX_MB_PLANE];
static const int flag_list[8] = { 0, AOM_LAST_FLAG, 0, 0, AOM_GOLD_FLAG, 0,
0, AOM_ALT_FLAG };
RD_STATS this_rdc, best_rdc;
// var_y and sse_y are saved to be used in skipping checking
unsigned int sse_y = UINT_MAX;
unsigned int var_y = UINT_MAX;
const int *const rd_threshes = cpi->rd.threshes[mi->segment_id][bsize];
const int *const rd_thresh_freq_fact = x->thresh_freq_fact[bsize];
InterpFilter filter_ref;
int const_motion[REF_FRAMES] = { 0 };
int ref_frame_skip_mask = 0;
int best_pred_sad = INT_MAX;
int best_early_term = 0;
unsigned int ref_costs_single[REF_FRAMES],
ref_costs_comp[REF_FRAMES][REF_FRAMES];
int use_golden_nonzeromv = 1;
int force_skip_low_temp_var = 0;
int skip_ref_find_pred[8] = { 0 };
unsigned int sse_zeromv_norm = UINT_MAX;
const unsigned int thresh_skip_golden = 500;
int64_t best_sse_sofar = INT64_MAX;
int gf_temporal_ref = 0;
const struct segmentation *const seg = &cm->seg;
int comp_modes = 0;
int num_inter_modes = RT_INTER_MODES;
unsigned char segment_id = mi->segment_id;
PRED_BUFFER tmp[4];
DECLARE_ALIGNED(16, uint8_t, pred_buf[3 * 128 * 128]);
PRED_BUFFER *this_mode_pred = NULL;
const int reuse_inter_pred = cpi->sf.reuse_inter_pred_nonrd;
const int bh = block_size_high[bsize];
const int bw = block_size_wide[bsize];
const int pixels_in_block = bh * bw;
struct buf_2d orig_dst = pd->dst;
#if COLLECT_PICK_MODE_STAT
aom_usec_timer_start(&ms_stat.timer2);
#endif
int intra_cost_penalty = av1_get_intra_cost_penalty(
cm->base_qindex, cm->y_dc_delta_q, cm->seq_params.bit_depth);
int64_t inter_mode_thresh = RDCOST(x->rdmult, intra_cost_penalty, 0);
const int perform_intra_pred = cpi->sf.check_intra_pred_nonrd;
(void)best_rd_so_far;
init_best_pickmode(&best_pickmode);
for (int i = 0; i < BLOCK_SIZES; ++i) inter_mode_mask[i] = INTER_ALL;
// TODO(kyslov) Move this to Speed Features
inter_mode_mask[BLOCK_128X128] = INTER_NEAREST_NEAR;
struct scale_factors *const sf_last = get_ref_scale_factors(cm, LAST_FRAME);
struct scale_factors *const sf_golden =
get_ref_scale_factors(cm, GOLDEN_FRAME);
gf_temporal_ref = 1;
// For temporal long term prediction, check that the golden reference
// is same scale as last reference, otherwise disable.
if ((sf_last->x_scale_fp != sf_golden->x_scale_fp) ||
(sf_last->y_scale_fp != sf_golden->y_scale_fp)) {
gf_temporal_ref = 0;
}
av1_collect_neighbors_ref_counts(xd);
av1_count_overlappable_neighbors(cm, xd);
estimate_single_ref_frame_costs(cm, xd, x, segment_id, ref_costs_single);
if (cpi->sf.use_comp_ref_nonrd)
estimate_comp_ref_frame_costs(cm, xd, x, segment_id, ref_costs_comp);
memset(&mode_checked[0][0], 0, MB_MODE_COUNT * REF_FRAMES);
if (reuse_inter_pred) {
for (int i = 0; i < 3; i++) {
tmp[i].data = &pred_buf[pixels_in_block * i];
tmp[i].stride = bw;
tmp[i].in_use = 0;
}
tmp[3].data = pd->dst.buf;
tmp[3].stride = pd->dst.stride;
tmp[3].in_use = 0;
}
x->skip = 0;
// Instead of using av1_get_pred_context_switchable_interp(xd) to assign
// filter_ref, we use a less strict condition on assigning filter_ref.
// This is to reduce the probabily of entering the flow of not assigning
// filter_ref and then skip filter search.
filter_ref = cm->interp_filter;
// initialize mode decisions
av1_invalid_rd_stats(&best_rdc);
av1_invalid_rd_stats(&this_rdc);
av1_invalid_rd_stats(rd_cost);
mi->sb_type = bsize;
mi->ref_frame[0] = NONE_FRAME;
mi->ref_frame[1] = NONE_FRAME;
usable_ref_frame =
cpi->sf.use_nonrd_altref_frame ? ALTREF_FRAME : GOLDEN_FRAME;
if (cpi->rc.frames_since_golden == 0 && gf_temporal_ref) {
usable_ref_frame = LAST_FRAME;
}
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
if (cpi->sf.short_circuit_low_temp_var &&
x->nonrd_reduce_golden_mode_search) {
force_skip_low_temp_var =
get_force_skip_low_temp_var(&x->variance_low[0], mi_row, mi_col, bsize);
// If force_skip_low_temp_var is set, and for short circuit mode = 1 and 3,
// skip golden reference.
if ((cpi->sf.short_circuit_low_temp_var == 1 ||
cpi->sf.short_circuit_low_temp_var == 3) &&
force_skip_low_temp_var) {
usable_ref_frame = LAST_FRAME;
}
}
if (!(cpi->ref_frame_flags & flag_list[GOLDEN_FRAME]))
use_golden_nonzeromv = 0;
// If the segment reference frame feature is enabled and it's set to GOLDEN
// reference, then make sure we don't skip checking GOLDEN, this is to
// prevent possibility of not picking any mode.
if (segfeature_active(seg, mi->segment_id, SEG_LVL_REF_FRAME) &&
get_segdata(seg, mi->segment_id, SEG_LVL_REF_FRAME) == GOLDEN_FRAME) {
usable_ref_frame = GOLDEN_FRAME;
skip_ref_find_pred[GOLDEN_FRAME] = 0;
}
for (MV_REFERENCE_FRAME ref_frame_iter = LAST_FRAME;
ref_frame_iter <= usable_ref_frame; ++ref_frame_iter) {
// Skip find_predictor if the reference frame is not in the
// ref_frame_flags (i.e., not used as a reference for this frame).
skip_ref_find_pred[ref_frame_iter] =
!(cpi->ref_frame_flags & flag_list[ref_frame_iter]);
if (!skip_ref_find_pred[ref_frame_iter]) {
find_predictors(cpi, x, ref_frame_iter, frame_mv, const_motion,
&ref_frame_skip_mask, flag_list, tile_data, yv12_mb,
bsize, force_skip_low_temp_var, comp_modes > 0);
}
}
const int large_block = bsize >= BLOCK_32X32;
const int use_model_yrd_large =
cpi->oxcf.rc_mode == AOM_CBR && large_block &&
!cyclic_refresh_segment_id_boosted(xd->mi[0]->segment_id) &&
cm->base_qindex;
#if COLLECT_PICK_MODE_STAT
ms_stat.num_blocks[bsize]++;
#endif
for (int idx = 0; idx < num_inter_modes; ++idx) {
int rate_mv = 0;
int mode_rd_thresh;
int mode_index;
int64_t this_sse;
int is_skippable;
int this_early_term = 0;
int skip_this_mv = 0;
int comp_pred = 0;
int force_mv_inter_layer = 0;
int block_yrd_computed = 0;
PREDICTION_MODE this_mode;
MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
second_ref_frame = NONE_FRAME;
this_mode = ref_mode_set[idx].pred_mode;
ref_frame = ref_mode_set[idx].ref_frame;
#if COLLECT_PICK_MODE_STAT
aom_usec_timer_start(&ms_stat.timer1);
ms_stat.num_searches[bsize][this_mode]++;
#endif
init_mbmi(mi, this_mode, ref_frame, NONE_FRAME, cm);
mi->tx_size =
AOMMIN(AOMMIN(max_txsize_lookup[bsize],
tx_mode_to_biggest_tx_size[x->tx_mode_search_type]),
TX_16X16);
memset(mi->inter_tx_size, mi->tx_size, sizeof(mi->inter_tx_size));
memset(xd->tx_type_map, DCT_DCT,
sizeof(xd->tx_type_map[0]) * ctx->num_4x4_blk);
av1_zero(x->blk_skip);
if (ref_frame > usable_ref_frame) continue;
if (skip_ref_find_pred[ref_frame]) continue;
// Skip non-zero motion for SVC if skip_nonzeromv_ref is set.
if (cpi->use_svc && frame_mv[this_mode][ref_frame].as_int != 0) {
if (ref_frame == LAST_FRAME && cpi->svc.skip_nonzeromv_last)
continue;
else if (ref_frame == GOLDEN_FRAME && cpi->svc.skip_nonzeromv_gf)
continue;
}
// If the segment reference frame feature is enabled then do nothing if the
// current ref frame is not allowed.
if (segfeature_active(seg, mi->segment_id, SEG_LVL_REF_FRAME) &&
get_segdata(seg, mi->segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame)
continue;
if (ref_frame != LAST_FRAME && cpi->oxcf.rc_mode == AOM_CBR &&
sse_zeromv_norm < thresh_skip_golden && this_mode == NEWMV)
continue;
if (!(cpi->ref_frame_flags & flag_list[ref_frame])) continue;
if (!(inter_mode_mask[bsize] & (1 << this_mode))) continue;
if (const_motion[ref_frame] && this_mode == NEARMV) continue;
// Skip testing golden if this flag is set.
if (x->nonrd_reduce_golden_mode_search) {
if (ref_frame != LAST_FRAME &&
(bsize > BLOCK_64X64 || (bsize > BLOCK_16X16 && this_mode == NEWMV)))
continue;
if (ref_frame != LAST_FRAME && this_mode == NEARMV) continue;
}
// Skip non-zeromv mode search for golden frame if force_skip_low_temp_var
// is set. If nearestmv for golden frame is 0, zeromv mode will be skipped
// later.
if (!force_mv_inter_layer && force_skip_low_temp_var &&
ref_frame != LAST_FRAME && frame_mv[this_mode][ref_frame].as_int != 0) {
continue;
}
// TODO(kyslov) Refine logic of pruning reference .
#if 0
if (x->content_state_sb != kVeryHighSad &&
(cpi->sf.short_circuit_low_temp_var >= 2 ||
(cpi->sf.short_circuit_low_temp_var == 1 && bsize == BLOCK_64X64))
&& force_skip_low_temp_var && ref_frame == LAST_FRAME && this_mode ==
NEWMV) {
continue;
}
// Disable this drop out case if the ref frame segment level feature is
// enabled for this segment. This is to prevent the possibility that we
// end up unable to pick any mode.
if (!segfeature_active(seg, mi->segment_id, SEG_LVL_REF_FRAME)) {
if (sf->reference_masking &&
!(frame_mv[this_mode][ref_frame].as_int == 0 &&
ref_frame == LAST_FRAME)) {
if (usable_ref_frame < ALTREF_FRAME) {
if (!force_skip_low_temp_var && usable_ref_frame > LAST_FRAME) {
i = (ref_frame == LAST_FRAME) ? GOLDEN_FRAME : LAST_FRAME;
if ((cpi->ref_frame_flags & flag_list[i]))
if (x->pred_mv_sad[ref_frame] > (x->pred_mv_sad[i] << 1))
ref_frame_skip_mask |= (1 << ref_frame);
}
} else if (!cpi->rc.is_src_frame_alt_ref &&
!(frame_mv[this_mode][ref_frame].as_int == 0 &&
ref_frame == ALTREF_FRAME)) {
int ref1 = (ref_frame == GOLDEN_FRAME) ? LAST_FRAME :
GOLDEN_FRAME; int ref2 = (ref_frame == ALTREF_FRAME) ? LAST_FRAME :
ALTREF_FRAME; if (((cpi->ref_frame_flags & flag_list[ref1]) &&
(x->pred_mv_sad[ref_frame] > (x->pred_mv_sad[ref1] << 1))) ||
((cpi->ref_frame_flags & flag_list[ref2]) &&
(x->pred_mv_sad[ref_frame] > (x->pred_mv_sad[ref2] << 1))))
ref_frame_skip_mask |= (1 << ref_frame);
}
}
if (ref_frame_skip_mask & (1 << ref_frame)) continue;
}
#endif
// Select prediction reference frames.
for (int i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].pre[0] = yv12_mb[ref_frame][i];
}
mi->ref_frame[0] = ref_frame;
mi->ref_frame[1] = second_ref_frame;
set_ref_ptrs(cm, xd, ref_frame, second_ref_frame);
mode_index = mode_idx[ref_frame][INTER_OFFSET(this_mode)];
mode_rd_thresh = best_pickmode.best_mode_skip_txfm
? rd_threshes[mode_index] << 1
: rd_threshes[mode_index];
// Increase mode_rd_thresh value for GOLDEN_FRAME for improved encoding
// speed
if (ref_frame != LAST_FRAME && cpi->rc.frames_since_golden > 4)
mode_rd_thresh = mode_rd_thresh << 3;
if (rd_less_than_thresh(best_rdc.rdcost, mode_rd_thresh,
rd_thresh_freq_fact[mode_index]))
if (frame_mv[this_mode][ref_frame].as_int != 0) continue;
if (this_mode == NEWMV && !force_mv_inter_layer) {
if (search_new_mv(cpi, x, frame_mv, ref_frame, gf_temporal_ref, bsize,
mi_row, mi_col, best_pred_sad, &rate_mv, best_sse_sofar,
&best_rdc))
continue;
}
for (PREDICTION_MODE inter_mv_mode = NEARESTMV; inter_mv_mode <= NEWMV;
inter_mv_mode++) {
if (inter_mv_mode == this_mode || comp_pred) continue;
if (mode_checked[inter_mv_mode][ref_frame] &&
frame_mv[this_mode][ref_frame].as_int ==
frame_mv[inter_mv_mode][ref_frame].as_int &&
frame_mv[inter_mv_mode][ref_frame].as_int == 0) {
skip_this_mv = 1;
break;
}
}
if (skip_this_mv) continue;
// If use_golden_nonzeromv is false, NEWMV mode is skipped for golden, no
// need to compute best_pred_sad which is only used to skip golden NEWMV.
if (use_golden_nonzeromv && this_mode == NEWMV && ref_frame == LAST_FRAME &&
frame_mv[NEWMV][LAST_FRAME].as_int != INVALID_MV) {
const int pre_stride = xd->plane[0].pre[0].stride;
const uint8_t *const pre_buf =
xd->plane[0].pre[0].buf +
(frame_mv[NEWMV][LAST_FRAME].as_mv.row >> 3) * pre_stride +
(frame_mv[NEWMV][LAST_FRAME].as_mv.col >> 3);
best_pred_sad = cpi->fn_ptr[bsize].sdf(
x->plane[0].src.buf, x->plane[0].src.stride, pre_buf, pre_stride);
x->pred_mv_sad[LAST_FRAME] = best_pred_sad;
}
if (this_mode != NEARESTMV && !comp_pred &&
frame_mv[this_mode][ref_frame].as_int ==
frame_mv[NEARESTMV][ref_frame].as_int)
continue;
mi->mode = this_mode;
mi->mv[0].as_int = frame_mv[this_mode][ref_frame].as_int;
mi->mv[1].as_int = 0;
if (reuse_inter_pred) {
if (!this_mode_pred) {
this_mode_pred = &tmp[3];
} else {
this_mode_pred = &tmp[get_pred_buffer(tmp, 3)];
pd->dst.buf = this_mode_pred->data;
pd->dst.stride = bw;
}
}
#if COLLECT_PICK_MODE_STAT
ms_stat.num_nonskipped_searches[bsize][this_mode]++;
#endif
if (cpi->sf.use_nonrd_filter_search &&
((mi->mv[0].as_mv.row & 0x07) || (mi->mv[0].as_mv.col & 0x07)) &&
(ref_frame == LAST_FRAME || !x->nonrd_reduce_golden_mode_search)) {
search_filter_ref(cpi, x, &this_rdc, mi_row, mi_col, tmp, bsize,
reuse_inter_pred, &this_mode_pred, &var_y, &sse_y,
&this_early_term, use_model_yrd_large, &this_sse,
&block_yrd_computed);
} else {
mi->interp_filters = (filter_ref == SWITCHABLE)
? av1_broadcast_interp_filter(EIGHTTAP_REGULAR)
: av1_broadcast_interp_filter(filter_ref);
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize,
AOM_PLANE_Y, AOM_PLANE_Y);
if (cpi->sf.use_modeled_non_rd_cost) {
model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc.rate, &this_rdc.dist,
&this_rdc.skip, NULL, &var_y, &sse_y, 1);
} else {
if (use_model_yrd_large) {
model_skip_for_sb_y_large(cpi, bsize, mi_row, mi_col, x, xd, NULL,
NULL, &var_y, &sse_y, &this_early_term, 0);
} else {
model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc.rate, &this_rdc.dist,
&this_rdc.skip, NULL, &var_y, &sse_y, 0);
}
}
}
if (ref_frame == LAST_FRAME && frame_mv[this_mode][ref_frame].as_int == 0) {
sse_zeromv_norm =
sse_y >> (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]);
}
if (sse_y < best_sse_sofar) best_sse_sofar = sse_y;
const int skip_ctx = av1_get_skip_context(xd);
const int skip_cost = x->skip_cost[skip_ctx][1];
const int no_skip_cost = x->skip_cost[skip_ctx][0];
if (!this_early_term) {
if (cpi->sf.use_modeled_non_rd_cost) {
if (this_rdc.skip) {
this_rdc.rate = skip_cost;
} else {
this_rdc.rate += no_skip_cost;
}
} else {
if (!block_yrd_computed) {
this_sse = (int64_t)sse_y;
block_yrd(cpi, x, mi_row, mi_col, &this_rdc, &is_skippable, &this_sse,
bsize, mi->tx_size);
}
if (this_rdc.skip) {
this_rdc.rate = skip_cost;
} else {
if (RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist) >=
RDCOST(x->rdmult, 0,
this_sse)) { // this_sse already multiplied by 16 in
// block_yrd
this_rdc.skip = 1;
this_rdc.rate = skip_cost;
this_rdc.dist = this_sse;
} else {
this_rdc.rate += no_skip_cost;
}
}
}
} else {
this_rdc.skip = 1;
this_rdc.rate = skip_cost;
this_rdc.dist = sse_y << 4;
}
if (!this_early_term &&
(x->color_sensitivity[0] || x->color_sensitivity[1])) {
RD_STATS rdc_uv;
const BLOCK_SIZE uv_bsize = get_plane_block_size(
bsize, xd->plane[1].subsampling_x, xd->plane[1].subsampling_y);
if (x->color_sensitivity[0]) {
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize,
AOM_PLANE_U, AOM_PLANE_U);
}
if (x->color_sensitivity[1]) {
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize,
AOM_PLANE_V, AOM_PLANE_V);
}
model_rd_for_sb_uv(cpi, uv_bsize, x, xd, &rdc_uv, &var_y, &sse_y, 1, 2);
this_rdc.rate += rdc_uv.rate;
this_rdc.dist += rdc_uv.dist;
this_rdc.skip = this_rdc.skip && rdc_uv.skip;
}
// TODO(kyslov) account for UV prediction cost
this_rdc.rate += rate_mv;
const int16_t mode_ctx =
av1_mode_context_analyzer(mbmi_ext->mode_context, mi->ref_frame);
this_rdc.rate += cost_mv_ref(x, this_mode, mode_ctx);
this_rdc.rate += ref_costs_single[ref_frame];
this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist);
if (cpi->oxcf.rc_mode == AOM_CBR) {
newmv_diff_bias(xd, this_mode, &this_rdc, bsize,
frame_mv[this_mode][ref_frame].as_mv.row,
frame_mv[this_mode][ref_frame].as_mv.col);
}
mode_checked[this_mode][ref_frame] = 1;
#if COLLECT_PICK_MODE_STAT
aom_usec_timer_mark(&ms_stat.timer1);
ms_stat.nonskipped_search_times[bsize][this_mode] +=
aom_usec_timer_elapsed(&ms_stat.timer1);
#endif
if (this_rdc.rdcost < best_rdc.rdcost) {
best_rdc = this_rdc;
best_early_term = this_early_term;
best_pickmode.best_mode = this_mode;
best_pickmode.best_pred_filter = mi->interp_filters;
best_pickmode.best_tx_size = mi->tx_size;
best_pickmode.best_ref_frame = ref_frame;
best_pickmode.best_mode_skip_txfm = this_rdc.skip;
best_pickmode.best_second_ref_frame = second_ref_frame;
if (reuse_inter_pred) {
free_pred_buffer(best_pickmode.best_pred);
best_pickmode.best_pred = this_mode_pred;
}
} else {
if (reuse_inter_pred) free_pred_buffer(this_mode_pred);
}
if (best_early_term && idx > 0) {
x->skip = 1;
break;
}
}
mi->mode = best_pickmode.best_mode;
mi->interp_filters = best_pickmode.best_pred_filter;
mi->tx_size = best_pickmode.best_tx_size;
memset(mi->inter_tx_size, mi->tx_size, sizeof(mi->inter_tx_size));
mi->ref_frame[0] = best_pickmode.best_ref_frame;
mi->mv[0].as_int =
frame_mv[best_pickmode.best_mode][best_pickmode.best_ref_frame].as_int;
mi->ref_frame[1] = best_pickmode.best_second_ref_frame;
x->skip = best_rdc.skip;
// Perform intra prediction search, if the best SAD is above a certain
// threshold.
mi->angle_delta[PLANE_TYPE_Y] = 0;
mi->angle_delta[PLANE_TYPE_UV] = 0;
mi->filter_intra_mode_info.use_filter_intra = 0;
uint32_t spatial_var_thresh = 50;
int do_early_exit_rdthresh = 1;
// Some adjustments to checking intra mode based on source variance.
if (x->source_variance < spatial_var_thresh) {
// If the best inter mode is large motion or non-LAST ref reduce intra cost
// penalty, so intra mode is more likely tested.
if (best_pickmode.best_ref_frame != LAST_FRAME ||
abs(mi->mv[0].as_mv.row) > 32 || abs(mi->mv[0].as_mv.col) > 32) {
intra_cost_penalty = intra_cost_penalty >> 2;
inter_mode_thresh = RDCOST(x->rdmult, intra_cost_penalty, 0);
do_early_exit_rdthresh = 0;
}
// For big blocks worth checking intra (since only DC will be checked),
// even if best_early_term is set.
if (bsize >= BLOCK_32X32) best_early_term = 0;
}
if (best_rdc.rdcost == INT64_MAX || (perform_intra_pred && !best_early_term &&
best_rdc.rdcost > inter_mode_thresh &&
bsize <= cpi->sf.max_intra_bsize)) {
int64_t this_sse = INT64_MAX;
struct estimate_block_intra_args args = { cpi, x, DC_PRED, 1, 0 };
PRED_BUFFER *const best_pred = best_pickmode.best_pred;
TX_SIZE intra_tx_size =
AOMMIN(AOMMIN(max_txsize_lookup[bsize],
tx_mode_to_biggest_tx_size[x->tx_mode_search_type]),
TX_16X16);
if (reuse_inter_pred && best_pred != NULL) {
if (best_pred->data == orig_dst.buf) {
this_mode_pred = &tmp[get_pred_buffer(tmp, 3)];
aom_convolve_copy(best_pred->data, best_pred->stride,
this_mode_pred->data, this_mode_pred->stride, 0, 0, 0,
0, bw, bh);
best_pickmode.best_pred = this_mode_pred;
}
}
pd->dst = orig_dst;
for (int i = 0; i < 4; ++i) {
const PREDICTION_MODE this_mode = intra_mode_list[i];
const THR_MODES mode_index =
mode_idx[INTRA_FRAME][mode_offset(this_mode)];
const int mode_rd_thresh = rd_threshes[mode_index];
// Only check DC for blocks >= 32X32.
if (this_mode > 0 && bsize >= BLOCK_32X32) continue;
if (rd_less_than_thresh(best_rdc.rdcost, mode_rd_thresh,
rd_thresh_freq_fact[mode_index]) &&
(do_early_exit_rdthresh || this_mode == SMOOTH_PRED)) {
continue;
}
const BLOCK_SIZE uv_bsize = get_plane_block_size(
bsize, xd->plane[1].subsampling_x, xd->plane[1].subsampling_y);
mi->mode = this_mode;
mi->ref_frame[0] = INTRA_FRAME;
mi->ref_frame[1] = NONE_FRAME;
this_rdc.dist = this_rdc.rate = 0;
args.mode = this_mode;
args.skippable = 1;
args.rdc = &this_rdc;
mi->tx_size = intra_tx_size;
compute_intra_yprediction(cm, this_mode, bsize, x, xd);
// Look into selecting tx_size here, based on prediction residual.
block_yrd(cpi, x, mi_row, mi_col, &this_rdc, &args.skippable, &this_sse,
bsize, mi->tx_size);
// TODO(kyslov@) Need to account for skippable
if (x->color_sensitivity[0])
av1_foreach_transformed_block_in_plane(xd, uv_bsize, 1,
estimate_block_intra, &args);
if (x->color_sensitivity[1])
av1_foreach_transformed_block_in_plane(xd, uv_bsize, 2,
estimate_block_intra, &args);
int mode_cost = 0;
if (av1_is_directional_mode(this_mode) && av1_use_angle_delta(bsize)) {
mode_cost += x->angle_delta_cost[this_mode - V_PRED]
[MAX_ANGLE_DELTA +
mi->angle_delta[PLANE_TYPE_Y]];
}
if (this_mode == DC_PRED && av1_filter_intra_allowed_bsize(cm, bsize)) {
mode_cost += x->filter_intra_cost[bsize][0];
}
this_rdc.rate += ref_costs_single[INTRA_FRAME];
this_rdc.rate += intra_cost_penalty;
this_rdc.rate += mode_cost;
this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist);
if (this_rdc.rdcost < best_rdc.rdcost) {
best_rdc = this_rdc;
best_pickmode.best_mode = this_mode;
best_pickmode.best_intra_tx_size = mi->tx_size;
best_pickmode.best_ref_frame = INTRA_FRAME;
best_pickmode.best_second_ref_frame = NONE_FRAME;
mi->uv_mode = this_mode;
mi->mv[0].as_int = INVALID_MV;
mi->mv[1].as_int = INVALID_MV;
}
}
// Reset mb_mode_info to the best inter mode.
if (best_pickmode.best_ref_frame != INTRA_FRAME) {
mi->tx_size = best_pickmode.best_tx_size;
} else {
mi->tx_size = best_pickmode.best_intra_tx_size;
}
}
pd->dst = orig_dst;
mi->mode = best_pickmode.best_mode;
mi->ref_frame[0] = best_pickmode.best_ref_frame;
mi->ref_frame[1] = best_pickmode.best_second_ref_frame;
if (!is_inter_block(mi)) {
mi->interp_filters = av1_broadcast_interp_filter(SWITCHABLE_FILTERS);
}
if (reuse_inter_pred && best_pickmode.best_pred != NULL) {
PRED_BUFFER *const best_pred = best_pickmode.best_pred;
if (best_pred->data != orig_dst.buf && is_inter_mode(mi->mode)) {
aom_convolve_copy(best_pred->data, best_pred->stride, pd->dst.buf,
pd->dst.stride, 0, 0, 0, 0, bw, bh);
}
}
if (cpi->sf.adaptive_rd_thresh) {
THR_MODES best_mode_idx =
mode_idx[best_pickmode.best_ref_frame][mode_offset(mi->mode)];
if (best_pickmode.best_ref_frame == INTRA_FRAME) {
// Only consider the modes that are included in the intra_mode_list.
int intra_modes = sizeof(intra_mode_list) / sizeof(PREDICTION_MODE);
int i;
for (i = 0; i < intra_modes; i++) {
update_thresh_freq_fact(cpi, x, bsize, INTRA_FRAME, best_mode_idx,
intra_mode_list[i]);
}
} else {
for (ref_frame = LAST_FRAME; ref_frame <= GOLDEN_FRAME; ++ref_frame) {
PREDICTION_MODE this_mode;
if (best_pickmode.best_ref_frame != ref_frame) continue;
for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) {
update_thresh_freq_fact(cpi, x, bsize, ref_frame, best_mode_idx,
this_mode);
}
}
}
}
#if CONFIG_INTERNAL_STATS
store_coding_context(x, ctx, mi->mode);
#else
store_coding_context(x, ctx);
#endif // CONFIG_INTERNAL_STATS
#if COLLECT_PICK_MODE_STAT
aom_usec_timer_mark(&ms_stat.timer2);
ms_stat.avg_block_times[bsize] += aom_usec_timer_elapsed(&ms_stat.timer2);
//
if ((mi_row + mi_size_high[bsize] >= (cpi->common.mi_rows)) &&
(mi_col + mi_size_wide[bsize] >= (cpi->common.mi_cols))) {
int i, j;
PREDICTION_MODE used_modes[3] = { NEARESTMV, NEARMV, NEWMV };
BLOCK_SIZE bss[5] = { BLOCK_8X8, BLOCK_16X16, BLOCK_32X32, BLOCK_64X64,
BLOCK_128X128 };
int64_t total_time = 0l;
int32_t total_blocks = 0;
printf("\n");
for (i = 0; i < 5; i++) {
printf("BS(%d) Num %d, Avg_time %f: ", bss[i], ms_stat.num_blocks[bss[i]],
ms_stat.num_blocks[bss[i]] > 0
? (float)ms_stat.avg_block_times[bss[i]] /
ms_stat.num_blocks[bss[i]]
: 0);
total_time += ms_stat.avg_block_times[bss[i]];
total_blocks += ms_stat.num_blocks[bss[i]];
for (j = 0; j < 3; j++) {
printf("Mode %d, %d/%d tps %f ", used_modes[j],
ms_stat.num_nonskipped_searches[bss[i]][used_modes[j]],
ms_stat.num_searches[bss[i]][used_modes[j]],
ms_stat.num_nonskipped_searches[bss[i]][used_modes[j]] > 0
? (float)ms_stat
.nonskipped_search_times[bss[i]][used_modes[j]] /
ms_stat.num_nonskipped_searches[bss[i]][used_modes[j]]
: 0l);
}
printf("\n");
}
printf("Total time = %ld. Total blocks = %d\n", total_time, total_blocks);
}
//
#endif // COLLECT_PICK_MODE_STAT
*rd_cost = best_rdc;
}