blob: 55a0a914c7c25cb0bf19dcdd71a94e7ee76b3d51 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include "./av1_rtcd.h"
#include "./aom_dsp_rtcd.h"
#include "./aom_config.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_ports/mem.h"
#include "aom_ports/aom_timer.h"
#include "aom_ports/system_state.h"
#include "av1/common/common.h"
#include "av1/common/entropy.h"
#include "av1/common/entropymode.h"
#include "av1/common/idct.h"
#include "av1/common/mv.h"
#include "av1/common/mvref_common.h"
#include "av1/common/pred_common.h"
#include "av1/common/quant_common.h"
#include "av1/common/reconintra.h"
#include "av1/common/reconinter.h"
#include "av1/common/seg_common.h"
#include "av1/common/tile_common.h"
#include "av1/encoder/aq_complexity.h"
#include "av1/encoder/aq_cyclicrefresh.h"
#include "av1/encoder/aq_variance.h"
#if CONFIG_SUPERTX
#include "av1/encoder/cost.h"
#endif
#if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
#include "av1/common/warped_motion.h"
#endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
#if CONFIG_GLOBAL_MOTION
#include "av1/encoder/global_motion.h"
#endif // CONFIG_GLOBAL_MOTION
#include "av1/encoder/encodeframe.h"
#include "av1/encoder/encodemb.h"
#include "av1/encoder/encodemv.h"
#if CONFIG_LV_MAP
#include "av1/encoder/encodetxb.h"
#endif
#include "av1/encoder/ethread.h"
#include "av1/encoder/extend.h"
#include "av1/encoder/rd.h"
#include "av1/encoder/rdopt.h"
#include "av1/encoder/segmentation.h"
#include "av1/encoder/tokenize.h"
#if CONFIG_PVQ
#include "av1/common/pvq.h"
#include "av1/encoder/pvq_encoder.h"
#endif
#if CONFIG_AOM_HIGHBITDEPTH
#define IF_HBD(...) __VA_ARGS__
#else
#define IF_HBD(...)
#endif // CONFIG_AOM_HIGHBITDEPTH
static void encode_superblock(const AV1_COMP *const cpi, ThreadData *td,
TOKENEXTRA **t, RUN_TYPE dry_run, int mi_row,
int mi_col, BLOCK_SIZE bsize,
PICK_MODE_CONTEXT *ctx, int *rate);
#if CONFIG_SUPERTX
static int check_intra_b(PICK_MODE_CONTEXT *ctx);
static int check_intra_sb(const AV1_COMP *cpi, const TileInfo *const tile,
int mi_row, int mi_col, BLOCK_SIZE bsize,
PC_TREE *pc_tree);
static void predict_superblock(const AV1_COMP *const cpi, ThreadData *td,
#if CONFIG_EXT_INTER
int mi_row_ori, int mi_col_ori,
#endif // CONFIG_EXT_INTER
int mi_row_pred, int mi_col_pred,
BLOCK_SIZE bsize_pred, int b_sub8x8, int block);
static int check_supertx_sb(BLOCK_SIZE bsize, TX_SIZE supertx_size,
PC_TREE *pc_tree);
static void predict_sb_complex(const AV1_COMP *const cpi, ThreadData *td,
const TileInfo *const tile, int mi_row,
int mi_col, int mi_row_ori, int mi_col_ori,
RUN_TYPE dry_run, BLOCK_SIZE bsize,
BLOCK_SIZE top_bsize, uint8_t *dst_buf[3],
int dst_stride[3], PC_TREE *pc_tree);
static void update_state_sb_supertx(const AV1_COMP *const cpi, ThreadData *td,
const TileInfo *const tile, int mi_row,
int mi_col, BLOCK_SIZE bsize,
RUN_TYPE dry_run, PC_TREE *pc_tree);
static void rd_supertx_sb(const AV1_COMP *const cpi, ThreadData *td,
const TileInfo *const tile, int mi_row, int mi_col,
BLOCK_SIZE bsize, int *tmp_rate, int64_t *tmp_dist,
TX_TYPE *best_tx, PC_TREE *pc_tree);
#endif // CONFIG_SUPERTX
// This is used as a reference when computing the source variance for the
// purposes of activity masking.
// Eventually this should be replaced by custom no-reference routines,
// which will be faster.
static const uint8_t AV1_VAR_OFFS[MAX_SB_SIZE] = {
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
#if CONFIG_EXT_PARTITION
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128
#endif // CONFIG_EXT_PARTITION
};
#if CONFIG_AOM_HIGHBITDEPTH
static const uint16_t AV1_HIGH_VAR_OFFS_8[MAX_SB_SIZE] = {
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
#if CONFIG_EXT_PARTITION
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128
#endif // CONFIG_EXT_PARTITION
};
static const uint16_t AV1_HIGH_VAR_OFFS_10[MAX_SB_SIZE] = {
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
#if CONFIG_EXT_PARTITION
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4
#endif // CONFIG_EXT_PARTITION
};
static const uint16_t AV1_HIGH_VAR_OFFS_12[MAX_SB_SIZE] = {
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16,
#if CONFIG_EXT_PARTITION
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16
#endif // CONFIG_EXT_PARTITION
};
#endif // CONFIG_AOM_HIGHBITDEPTH
unsigned int av1_get_sby_perpixel_variance(const AV1_COMP *cpi,
const struct buf_2d *ref,
BLOCK_SIZE bs) {
unsigned int sse;
const unsigned int var =
cpi->fn_ptr[bs].vf(ref->buf, ref->stride, AV1_VAR_OFFS, 0, &sse);
return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]);
}
#if CONFIG_AOM_HIGHBITDEPTH
unsigned int av1_high_get_sby_perpixel_variance(const AV1_COMP *cpi,
const struct buf_2d *ref,
BLOCK_SIZE bs, int bd) {
unsigned int var, sse;
switch (bd) {
case 10:
var =
cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_10), 0, &sse);
break;
case 12:
var =
cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_12), 0, &sse);
break;
case 8:
default:
var =
cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_8), 0, &sse);
break;
}
return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]);
}
#endif // CONFIG_AOM_HIGHBITDEPTH
static unsigned int get_sby_perpixel_diff_variance(const AV1_COMP *const cpi,
const struct buf_2d *ref,
int mi_row, int mi_col,
BLOCK_SIZE bs) {
unsigned int sse, var;
uint8_t *last_y;
const YV12_BUFFER_CONFIG *last = get_ref_frame_buffer(cpi, LAST_FRAME);
assert(last != NULL);
last_y =
&last->y_buffer[mi_row * MI_SIZE * last->y_stride + mi_col * MI_SIZE];
var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride, last_y, last->y_stride, &sse);
return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]);
}
static BLOCK_SIZE get_rd_var_based_fixed_partition(AV1_COMP *cpi, MACROBLOCK *x,
int mi_row, int mi_col) {
unsigned int var = get_sby_perpixel_diff_variance(
cpi, &x->plane[0].src, mi_row, mi_col, BLOCK_64X64);
if (var < 8)
return BLOCK_64X64;
else if (var < 128)
return BLOCK_32X32;
else if (var < 2048)
return BLOCK_16X16;
else
return BLOCK_8X8;
}
// Lighter version of set_offsets that only sets the mode info
// pointers.
static void set_mode_info_offsets(const AV1_COMP *const cpi,
MACROBLOCK *const x, MACROBLOCKD *const xd,
int mi_row, int mi_col) {
const AV1_COMMON *const cm = &cpi->common;
const int idx_str = xd->mi_stride * mi_row + mi_col;
xd->mi = cm->mi_grid_visible + idx_str;
xd->mi[0] = cm->mi + idx_str;
x->mbmi_ext = cpi->mbmi_ext_base + (mi_row * cm->mi_cols + mi_col);
}
static void set_offsets_without_segment_id(const AV1_COMP *const cpi,
const TileInfo *const tile,
MACROBLOCK *const x, int mi_row,
int mi_col, BLOCK_SIZE bsize) {
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
const int mi_width = mi_size_wide[bsize];
const int mi_height = mi_size_high[bsize];
set_skip_context(xd, mi_row, mi_col);
set_mode_info_offsets(cpi, x, xd, mi_row, mi_col);
#if CONFIG_VAR_TX
xd->above_txfm_context = cm->above_txfm_context + mi_col;
xd->left_txfm_context =
xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
xd->max_tx_size = max_txsize_lookup[bsize];
#endif
// Set up destination pointers.
av1_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
// Set up limit values for MV components.
// Mv beyond the range do not produce new/different prediction block.
x->mv_row_min = -(((mi_row + mi_height) * MI_SIZE) + AOM_INTERP_EXTEND);
x->mv_col_min = -(((mi_col + mi_width) * MI_SIZE) + AOM_INTERP_EXTEND);
x->mv_row_max = (cm->mi_rows - mi_row) * MI_SIZE + AOM_INTERP_EXTEND;
x->mv_col_max = (cm->mi_cols - mi_col) * MI_SIZE + AOM_INTERP_EXTEND;
set_plane_n4(xd, mi_width, mi_height);
// Set up distance of MB to edge of frame in 1/8th pel units.
assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1)));
#if CONFIG_DEPENDENT_HORZTILES
set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width, cm->mi_rows,
cm->mi_cols, cm->dependent_horz_tiles);
#else
set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width, cm->mi_rows,
cm->mi_cols);
#endif
// Set up source buffers.
av1_setup_src_planes(x, cpi->Source, mi_row, mi_col);
// R/D setup.
x->rddiv = cpi->rd.RDDIV;
x->rdmult = cpi->rd.RDMULT;
// required by av1_append_sub8x8_mvs_for_idx() and av1_find_best_ref_mvs()
xd->tile = *tile;
}
static void set_offsets(const AV1_COMP *const cpi, const TileInfo *const tile,
MACROBLOCK *const x, int mi_row, int mi_col,
BLOCK_SIZE bsize) {
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi;
const struct segmentation *const seg = &cm->seg;
set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize);
mbmi = &xd->mi[0]->mbmi;
// Setup segment ID.
if (seg->enabled) {
if (!cpi->vaq_refresh) {
const uint8_t *const map =
seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
mbmi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
}
av1_init_plane_quantizers(cpi, x, mbmi->segment_id);
} else {
mbmi->segment_id = 0;
}
#if CONFIG_SUPERTX
mbmi->segment_id_supertx = MAX_SEGMENTS;
#endif // CONFIG_SUPERTX
}
#if CONFIG_SUPERTX
static void set_offsets_supertx(const AV1_COMP *const cpi, ThreadData *td,
const TileInfo *const tile, int mi_row,
int mi_col, BLOCK_SIZE bsize) {
MACROBLOCK *const x = &td->mb;
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
const int mi_width = mi_size_wide[bsize];
const int mi_height = mi_size_high[bsize];
#if CONFIG_DEPENDENT_HORZTILES
set_mode_info_offsets(cpi, x, xd, mi_row, mi_col, cm->dependent_horz_tiles);
#else
set_mode_info_offsets(cpi, x, xd, mi_row, mi_col);
#endif
// Set up distance of MB to edge of frame in 1/8th pel units.
assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1)));
set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width, cm->mi_rows,
cm->mi_cols);
}
static void set_offsets_extend(const AV1_COMP *const cpi, ThreadData *td,
const TileInfo *const tile, int mi_row_pred,
int mi_col_pred, int mi_row_ori, int mi_col_ori,
BLOCK_SIZE bsize_pred) {
// Used in supertx
// (mi_row_ori, mi_col_ori, bsize_ori): region for mv
// (mi_row_pred, mi_col_pred, bsize_pred): region to predict
MACROBLOCK *const x = &td->mb;
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
const int mi_width = mi_size_wide[bsize_pred];
const int mi_height = mi_size_high[bsize_pred];
#if CONFIG_DEPENDENT_HORZTILES
set_mode_info_offsets(cpi, x, xd, mi_row_ori, mi_col_ori,
cm->dependent_horz_tiles);
#else
set_mode_info_offsets(cpi, x, xd, mi_row_ori, mi_col_ori);
#endif
// Set up limit values for MV components.
// Mv beyond the range do not produce new/different prediction block.
x->mv_row_min = -(((mi_row_pred + mi_height) * MI_SIZE) + AOM_INTERP_EXTEND);
x->mv_col_min = -(((mi_col_pred + mi_width) * MI_SIZE) + AOM_INTERP_EXTEND);
x->mv_row_max = (cm->mi_rows - mi_row_pred) * MI_SIZE + AOM_INTERP_EXTEND;
x->mv_col_max = (cm->mi_cols - mi_col_pred) * MI_SIZE + AOM_INTERP_EXTEND;
// Set up distance of MB to edge of frame in 1/8th pel units.
#if !CONFIG_CB4X4
assert(!(mi_col_pred & (mi_width - mi_size_wide[BLOCK_8X8])) &&
!(mi_row_pred & (mi_height - mi_size_high[BLOCK_8X8])));
#endif
set_mi_row_col(xd, tile, mi_row_pred, mi_height, mi_col_pred, mi_width,
cm->mi_rows, cm->mi_cols);
xd->up_available = (mi_row_ori > tile->mi_row_start);
xd->left_available = (mi_col_ori > tile->mi_col_start);
// R/D setup.
x->rddiv = cpi->rd.RDDIV;
x->rdmult = cpi->rd.RDMULT;
}
static void set_segment_id_supertx(const AV1_COMP *const cpi,
MACROBLOCK *const x, const int mi_row,
const int mi_col, const BLOCK_SIZE bsize) {
const AV1_COMMON *cm = &cpi->common;
const struct segmentation *seg = &cm->seg;
const int miw = AOMMIN(mi_size_wide[bsize], cm->mi_cols - mi_col);
const int mih = AOMMIN(mi_size_high[bsize], cm->mi_rows - mi_row);
const int mi_offset = mi_row * cm->mi_stride + mi_col;
MODE_INFO **const mip = cm->mi_grid_visible + mi_offset;
int r, c;
int seg_id_supertx = MAX_SEGMENTS;
if (!seg->enabled) {
seg_id_supertx = 0;
} else {
// Find the minimum segment_id
for (r = 0; r < mih; r++)
for (c = 0; c < miw; c++)
seg_id_supertx =
AOMMIN(mip[r * cm->mi_stride + c]->mbmi.segment_id, seg_id_supertx);
assert(0 <= seg_id_supertx && seg_id_supertx < MAX_SEGMENTS);
// Initialize plane quantisers
av1_init_plane_quantizers(cpi, x, seg_id_supertx);
}
// Assign the the segment_id back to segment_id_supertx
for (r = 0; r < mih; r++)
for (c = 0; c < miw; c++)
mip[r * cm->mi_stride + c]->mbmi.segment_id_supertx = seg_id_supertx;
}
#endif // CONFIG_SUPERTX
static void set_block_size(AV1_COMP *const cpi, MACROBLOCK *const x,
MACROBLOCKD *const xd, int mi_row, int mi_col,
BLOCK_SIZE bsize) {
if (cpi->common.mi_cols > mi_col && cpi->common.mi_rows > mi_row) {
set_mode_info_offsets(cpi, x, xd, mi_row, mi_col);
xd->mi[0]->mbmi.sb_type = bsize;
}
}
static void set_vt_partitioning(AV1_COMP *cpi, MACROBLOCK *const x,
MACROBLOCKD *const xd, VAR_TREE *vt, int mi_row,
int mi_col, const int64_t *const threshold,
const BLOCK_SIZE *const bsize_min) {
AV1_COMMON *const cm = &cpi->common;
const int hbw = mi_size_wide[vt->bsize] / 2;
const int hbh = mi_size_high[vt->bsize] / 2;
const int has_cols = mi_col + hbw < cm->mi_cols;
const int has_rows = mi_row + hbh < cm->mi_rows;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
assert(vt->bsize >= BLOCK_8X8);
assert(hbh == hbw);
if (vt->bsize == BLOCK_8X8 && cm->frame_type != KEY_FRAME) {
set_block_size(cpi, x, xd, mi_row, mi_col, BLOCK_8X8);
return;
}
if (vt->force_split || (!has_cols && !has_rows)) goto split;
// For bsize=bsize_min (16x16/8x8 for 8x8/4x4 downsampling), select if
// variance is below threshold, otherwise split will be selected.
// No check for vert/horiz split as too few samples for variance.
if (vt->bsize == bsize_min[0]) {
if (has_cols && has_rows && vt->variances.none.variance < threshold[0]) {
set_block_size(cpi, x, xd, mi_row, mi_col, vt->bsize);
return;
} else {
BLOCK_SIZE subsize = get_subsize(vt->bsize, PARTITION_SPLIT);
set_block_size(cpi, x, xd, mi_row, mi_col, subsize);
if (vt->bsize > BLOCK_8X8) {
set_block_size(cpi, x, xd, mi_row, mi_col + hbw, subsize);
set_block_size(cpi, x, xd, mi_row + hbh, mi_col, subsize);
set_block_size(cpi, x, xd, mi_row + hbh, mi_col + hbw, subsize);
}
return;
}
} else if (vt->bsize > bsize_min[0]) {
// For key frame: take split for bsize above 32X32 or very high variance.
if (cm->frame_type == KEY_FRAME &&
(vt->bsize > BLOCK_32X32 ||
vt->variances.none.variance > (threshold[0] << 4))) {
goto split;
}
// If variance is low, take the bsize (no split).
if (has_cols && has_rows && vt->variances.none.variance < threshold[0]) {
set_block_size(cpi, x, xd, mi_row, mi_col, vt->bsize);
return;
}
// Check vertical split.
if (has_rows) {
BLOCK_SIZE subsize = get_subsize(vt->bsize, PARTITION_VERT);
if (vt->variances.vert[0].variance < threshold[0] &&
vt->variances.vert[1].variance < threshold[0] &&
get_plane_block_size(subsize, &xd->plane[1]) < BLOCK_INVALID) {
set_block_size(cpi, x, xd, mi_row, mi_col, subsize);
set_block_size(cpi, x, xd, mi_row, mi_col + hbw, subsize);
return;
}
}
// Check horizontal split.
if (has_cols) {
BLOCK_SIZE subsize = get_subsize(vt->bsize, PARTITION_HORZ);
if (vt->variances.horz[0].variance < threshold[0] &&
vt->variances.horz[1].variance < threshold[0] &&
get_plane_block_size(subsize, &xd->plane[1]) < BLOCK_INVALID) {
set_block_size(cpi, x, xd, mi_row, mi_col, subsize);
set_block_size(cpi, x, xd, mi_row + hbh, mi_col, subsize);
return;
}
}
}
split : {
set_vt_partitioning(cpi, x, xd, vt->split[0], mi_row, mi_col, threshold + 1,
bsize_min + 1);
set_vt_partitioning(cpi, x, xd, vt->split[1], mi_row, mi_col + hbw,
threshold + 1, bsize_min + 1);
set_vt_partitioning(cpi, x, xd, vt->split[2], mi_row + hbh, mi_col,
threshold + 1, bsize_min + 1);
set_vt_partitioning(cpi, x, xd, vt->split[3], mi_row + hbh, mi_col + hbw,
threshold + 1, bsize_min + 1);
return;
}
}
// Set the variance split thresholds for following the block sizes:
// 0 - threshold_64x64, 1 - threshold_32x32, 2 - threshold_16x16,
// 3 - vbp_threshold_8x8. vbp_threshold_8x8 (to split to 4x4 partition) is
// currently only used on key frame.
static void set_vbp_thresholds(AV1_COMP *cpi, int64_t thresholds[], int q) {
AV1_COMMON *const cm = &cpi->common;
const int is_key_frame = (cm->frame_type == KEY_FRAME);
const int threshold_multiplier = is_key_frame ? 20 : 1;
const int64_t threshold_base =
(int64_t)(threshold_multiplier * cpi->y_dequant[q][1]);
if (is_key_frame) {
thresholds[1] = threshold_base;
thresholds[2] = threshold_base >> 2;
thresholds[3] = threshold_base >> 2;
thresholds[4] = threshold_base << 2;
} else {
thresholds[2] = threshold_base;
if (cm->width <= 352 && cm->height <= 288) {
thresholds[1] = threshold_base >> 2;
thresholds[3] = threshold_base << 3;
} else {
thresholds[1] = threshold_base;
thresholds[2] = (5 * threshold_base) >> 2;
if (cm->width >= 1920 && cm->height >= 1080)
thresholds[2] = (7 * threshold_base) >> 2;
thresholds[3] = threshold_base << cpi->oxcf.speed;
}
}
thresholds[0] = INT64_MIN;
}
void av1_set_variance_partition_thresholds(AV1_COMP *cpi, int q) {
AV1_COMMON *const cm = &cpi->common;
SPEED_FEATURES *const sf = &cpi->sf;
const int is_key_frame = (cm->frame_type == KEY_FRAME);
if (sf->partition_search_type != VAR_BASED_PARTITION &&
sf->partition_search_type != REFERENCE_PARTITION) {
return;
} else {
set_vbp_thresholds(cpi, cpi->vbp_thresholds, q);
// The thresholds below are not changed locally.
if (is_key_frame) {
cpi->vbp_threshold_sad = 0;
cpi->vbp_bsize_min = BLOCK_8X8;
} else {
if (cm->width <= 352 && cm->height <= 288)
cpi->vbp_threshold_sad = 100;
else
cpi->vbp_threshold_sad = (cpi->y_dequant[q][1] << 1) > 1000
? (cpi->y_dequant[q][1] << 1)
: 1000;
cpi->vbp_bsize_min = BLOCK_16X16;
}
cpi->vbp_threshold_minmax = 15 + (q >> 3);
}
}
// Compute the minmax over the 8x8 subblocks.
static int compute_minmax_8x8(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride,
#if CONFIG_AOM_HIGHBITDEPTH
int highbd,
#endif
int pixels_wide, int pixels_high) {
int k;
int minmax_max = 0;
int minmax_min = 255;
// Loop over the 4 8x8 subblocks.
for (k = 0; k < 4; k++) {
const int x8_idx = ((k & 1) << 3);
const int y8_idx = ((k >> 1) << 3);
int min = 0;
int max = 0;
if (x8_idx < pixels_wide && y8_idx < pixels_high) {
const int src_offset = y8_idx * src_stride + x8_idx;
const int ref_offset = y8_idx * ref_stride + x8_idx;
#if CONFIG_AOM_HIGHBITDEPTH
if (highbd) {
aom_highbd_minmax_8x8(src + src_offset, src_stride, ref + ref_offset,
ref_stride, &min, &max);
} else {
aom_minmax_8x8(src + src_offset, src_stride, ref + ref_offset,
ref_stride, &min, &max);
}
#else
aom_minmax_8x8(src + src_offset, src_stride, ref + ref_offset, ref_stride,
&min, &max);
#endif
if ((max - min) > minmax_max) minmax_max = (max - min);
if ((max - min) < minmax_min) minmax_min = (max - min);
}
}
return (minmax_max - minmax_min);
}
#if CONFIG_AOM_HIGHBITDEPTH
static INLINE int avg_4x4(const uint8_t *const src, const int stride,
const int highbd) {
if (highbd) {
return aom_highbd_avg_4x4(src, stride);
} else {
return aom_avg_4x4(src, stride);
}
}
#else
static INLINE int avg_4x4(const uint8_t *const src, const int stride) {
return aom_avg_4x4(src, stride);
}
#endif
#if CONFIG_AOM_HIGHBITDEPTH
static INLINE int avg_8x8(const uint8_t *const src, const int stride,
const int highbd) {
if (highbd) {
return aom_highbd_avg_8x8(src, stride);
} else {
return aom_avg_8x8(src, stride);
}
}
#else
static INLINE int avg_8x8(const uint8_t *const src, const int stride) {
return aom_avg_8x8(src, stride);
}
#endif
static void init_variance_tree(VAR_TREE *const vt,
#if CONFIG_AOM_HIGHBITDEPTH
const int highbd,
#endif
BLOCK_SIZE bsize, BLOCK_SIZE leaf_size,
const int width, const int height,
const uint8_t *const src, const int src_stride,
const uint8_t *const ref, const int ref_stride) {
assert(bsize >= leaf_size);
vt->bsize = bsize;
vt->force_split = 0;
vt->src = src;
vt->src_stride = src_stride;
vt->ref = ref;
vt->ref_stride = ref_stride;
vt->width = width;
vt->height = height;
#if CONFIG_AOM_HIGHBITDEPTH
vt->highbd = highbd;
#endif // CONFIG_AOM_HIGHBITDEPTH
if (bsize > leaf_size) {
const BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_SPLIT);
const int px = block_size_wide[subsize];
init_variance_tree(vt->split[0],
#if CONFIG_AOM_HIGHBITDEPTH
highbd,
#endif // CONFIG_AOM_HIGHBITDEPTH
subsize, leaf_size, AOMMIN(px, width),
AOMMIN(px, height), src, src_stride, ref, ref_stride);
init_variance_tree(vt->split[1],
#if CONFIG_AOM_HIGHBITDEPTH
highbd,
#endif // CONFIG_AOM_HIGHBITDEPTH
subsize, leaf_size, width - px, AOMMIN(px, height),
src + px, src_stride, ref + px, ref_stride);
init_variance_tree(vt->split[2],
#if CONFIG_AOM_HIGHBITDEPTH
highbd,
#endif // CONFIG_AOM_HIGHBITDEPTH
subsize, leaf_size, AOMMIN(px, width), height - px,
src + px * src_stride, src_stride, ref + px * ref_stride,
ref_stride);
init_variance_tree(vt->split[3],
#if CONFIG_AOM_HIGHBITDEPTH
highbd,
#endif // CONFIG_AOM_HIGHBITDEPTH
subsize, leaf_size, width - px, height - px,
src + px * src_stride + px, src_stride,
ref + px * ref_stride + px, ref_stride);
}
}
// Fill the variance tree based on averaging pixel values (sub-sampling), at
// the leaf node size.
static void fill_variance_tree(VAR_TREE *const vt, const BLOCK_SIZE leaf_size) {
if (vt->bsize > leaf_size) {
fill_variance_tree(vt->split[0], leaf_size);
fill_variance_tree(vt->split[1], leaf_size);
fill_variance_tree(vt->split[2], leaf_size);
fill_variance_tree(vt->split[3], leaf_size);
fill_variance_node(vt);
} else if (vt->width <= 0 || vt->height <= 0) {
fill_variance(0, 0, 0, &vt->variances.none);
} else {
unsigned int sse = 0;
int sum = 0;
int src_avg;
int ref_avg;
assert(leaf_size == BLOCK_4X4 || leaf_size == BLOCK_8X8);
if (leaf_size == BLOCK_4X4) {
src_avg = avg_4x4(vt->src, vt->src_stride IF_HBD(, vt->highbd));
ref_avg = avg_4x4(vt->ref, vt->ref_stride IF_HBD(, vt->highbd));
} else {
src_avg = avg_8x8(vt->src, vt->src_stride IF_HBD(, vt->highbd));
ref_avg = avg_8x8(vt->ref, vt->ref_stride IF_HBD(, vt->highbd));
}
sum = src_avg - ref_avg;
sse = sum * sum;
fill_variance(sse, sum, 0, &vt->variances.none);
}
}
static void refine_variance_tree(VAR_TREE *const vt, const int64_t threshold) {
if (vt->bsize >= BLOCK_8X8) {
if (vt->bsize == BLOCK_16X16) {
if (vt->variances.none.variance <= threshold)
return;
else
vt->force_split = 0;
}
refine_variance_tree(vt->split[0], threshold);
refine_variance_tree(vt->split[1], threshold);
refine_variance_tree(vt->split[2], threshold);
refine_variance_tree(vt->split[3], threshold);
if (vt->bsize <= BLOCK_16X16) fill_variance_node(vt);
} else if (vt->width <= 0 || vt->height <= 0) {
fill_variance(0, 0, 0, &vt->variances.none);
} else {
const int src_avg = avg_4x4(vt->src, vt->src_stride IF_HBD(, vt->highbd));
const int ref_avg = avg_4x4(vt->ref, vt->ref_stride IF_HBD(, vt->highbd));
const int sum = src_avg - ref_avg;
const unsigned int sse = sum * sum;
assert(vt->bsize == BLOCK_4X4);
fill_variance(sse, sum, 0, &vt->variances.none);
}
}
static int check_split_key_frame(VAR_TREE *const vt, const int64_t threshold) {
if (vt->bsize == BLOCK_32X32) {
vt->force_split = vt->variances.none.variance > threshold;
} else {
vt->force_split |= check_split_key_frame(vt->split[0], threshold);
vt->force_split |= check_split_key_frame(vt->split[1], threshold);
vt->force_split |= check_split_key_frame(vt->split[2], threshold);
vt->force_split |= check_split_key_frame(vt->split[3], threshold);
}
return vt->force_split;
}
static int check_split(AV1_COMP *const cpi, VAR_TREE *const vt,
const int segment_id, const int64_t *const thresholds) {
if (vt->bsize == BLOCK_16X16) {
vt->force_split = vt->variances.none.variance > thresholds[0];
if (!vt->force_split && vt->variances.none.variance > thresholds[-1] &&
!cyclic_refresh_segment_id_boosted(segment_id)) {
// We have some nominal amount of 16x16 variance (based on average),
// compute the minmax over the 8x8 sub-blocks, and if above threshold,
// force split to 8x8 block for this 16x16 block.
int minmax =
compute_minmax_8x8(vt->src, vt->src_stride, vt->ref, vt->ref_stride,
#if CONFIG_AOM_HIGHBITDEPTH
vt->highbd,
#endif
vt->width, vt->height);
vt->force_split = minmax > cpi->vbp_threshold_minmax;
}
} else {
vt->force_split |=
check_split(cpi, vt->split[0], segment_id, thresholds + 1);
vt->force_split |=
check_split(cpi, vt->split[1], segment_id, thresholds + 1);
vt->force_split |=
check_split(cpi, vt->split[2], segment_id, thresholds + 1);
vt->force_split |=
check_split(cpi, vt->split[3], segment_id, thresholds + 1);
if (vt->bsize == BLOCK_32X32 && !vt->force_split) {
vt->force_split = vt->variances.none.variance > thresholds[0];
}
}
return vt->force_split;
}
// This function chooses partitioning based on the variance between source and
// reconstructed last (or golden), where variance is computed for down-sampled
// inputs.
static void choose_partitioning(AV1_COMP *const cpi, ThreadData *const td,
const TileInfo *const tile, MACROBLOCK *const x,
const int mi_row, const int mi_col) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
VAR_TREE *const vt = td->var_root[cm->mib_size_log2 - MIN_MIB_SIZE_LOG2];
#if CONFIG_DUAL_FILTER
int i;
#endif
const uint8_t *src;
const uint8_t *ref;
int src_stride;
int ref_stride;
int pixels_wide = MI_SIZE * mi_size_wide[cm->sb_size];
int pixels_high = MI_SIZE * mi_size_high[cm->sb_size];
int64_t thresholds[5] = {
cpi->vbp_thresholds[0], cpi->vbp_thresholds[1], cpi->vbp_thresholds[2],
cpi->vbp_thresholds[3], cpi->vbp_thresholds[4],
};
BLOCK_SIZE bsize_min[5] = { BLOCK_16X16, BLOCK_16X16, BLOCK_16X16,
cpi->vbp_bsize_min, BLOCK_8X8 };
const int start_level = cm->sb_size == BLOCK_64X64 ? 1 : 0;
const int64_t *const thre = thresholds + start_level;
const BLOCK_SIZE *const bmin = bsize_min + start_level;
const int is_key_frame = (cm->frame_type == KEY_FRAME);
const int low_res = (cm->width <= 352 && cm->height <= 288);
int segment_id = CR_SEGMENT_ID_BASE;
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled) {
const uint8_t *const map =
cm->seg.update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
segment_id = get_segment_id(cm, map, cm->sb_size, mi_row, mi_col);
if (cyclic_refresh_segment_id_boosted(segment_id)) {
int q = av1_get_qindex(&cm->seg, segment_id, cm->base_qindex);
set_vbp_thresholds(cpi, thresholds, q);
}
}
set_offsets(cpi, tile, x, mi_row, mi_col, cm->sb_size);
if (xd->mb_to_right_edge < 0) pixels_wide += (xd->mb_to_right_edge >> 3);
if (xd->mb_to_bottom_edge < 0) pixels_high += (xd->mb_to_bottom_edge >> 3);
src = x->plane[0].src.buf;
src_stride = x->plane[0].src.stride;
if (!is_key_frame) {
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, LAST_FRAME);
const YV12_BUFFER_CONFIG *yv12_g = get_ref_frame_buffer(cpi, GOLDEN_FRAME);
unsigned int y_sad, y_sad_g;
const int hbs = cm->mib_size / 2;
const int split_vert = mi_col + hbs >= cm->mi_cols;
const int split_horz = mi_row + hbs >= cm->mi_rows;
BLOCK_SIZE bsize;
if (split_vert && split_horz)
bsize = get_subsize(cm->sb_size, PARTITION_SPLIT);
else if (split_vert)
bsize = get_subsize(cm->sb_size, PARTITION_VERT);
else if (split_horz)
bsize = get_subsize(cm->sb_size, PARTITION_HORZ);
else
bsize = cm->sb_size;
assert(yv12 != NULL);
if (yv12_g && yv12_g != yv12) {
av1_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col,
&cm->frame_refs[GOLDEN_FRAME - 1].sf);
y_sad_g = cpi->fn_ptr[bsize].sdf(
x->plane[0].src.buf, x->plane[0].src.stride, xd->plane[0].pre[0].buf,
xd->plane[0].pre[0].stride);
} else {
y_sad_g = UINT_MAX;
}
av1_setup_pre_planes(xd, 0, yv12, mi_row, mi_col,
&cm->frame_refs[LAST_FRAME - 1].sf);
mbmi->ref_frame[0] = LAST_FRAME;
mbmi->ref_frame[1] = NONE_FRAME;
mbmi->sb_type = cm->sb_size;
mbmi->mv[0].as_int = 0;
#if CONFIG_DUAL_FILTER
for (i = 0; i < 4; ++i) mbmi->interp_filter[i] = BILINEAR;
#else
mbmi->interp_filter = BILINEAR;
#endif
y_sad = av1_int_pro_motion_estimation(cpi, x, bsize, mi_row, mi_col);
if (y_sad_g < y_sad) {
av1_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col,
&cm->frame_refs[GOLDEN_FRAME - 1].sf);
mbmi->ref_frame[0] = GOLDEN_FRAME;
mbmi->mv[0].as_int = 0;
y_sad = y_sad_g;
} else {
x->pred_mv[LAST_FRAME] = mbmi->mv[0].as_mv;
}
av1_build_inter_predictors_sb(xd, mi_row, mi_col, NULL, cm->sb_size);
ref = xd->plane[0].dst.buf;
ref_stride = xd->plane[0].dst.stride;
// If the y_sad is very small, take the largest partition and exit.
// Don't check on boosted segment for now, as largest is suppressed there.
if (segment_id == CR_SEGMENT_ID_BASE && y_sad < cpi->vbp_threshold_sad) {
if (!split_vert && !split_horz) {
set_block_size(cpi, x, xd, mi_row, mi_col, cm->sb_size);
return;
}
}
} else {
ref = AV1_VAR_OFFS;
ref_stride = 0;
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
switch (xd->bd) {
case 10: ref = CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_10); break;
case 12: ref = CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_12); break;
case 8:
default: ref = CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_8); break;
}
}
#endif // CONFIG_AOM_HIGHBITDEPTH
}
init_variance_tree(
vt,
#if CONFIG_AOM_HIGHBITDEPTH
xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH,
#endif // CONFIG_AOM_HIGHBITDEPTH
cm->sb_size, (is_key_frame || low_res) ? BLOCK_4X4 : BLOCK_8X8,
pixels_wide, pixels_high, src, src_stride, ref, ref_stride);
// Fill in the entire tree of variances and compute splits.
if (is_key_frame) {
fill_variance_tree(vt, BLOCK_4X4);
check_split_key_frame(vt, thre[1]);
} else {
fill_variance_tree(vt, BLOCK_8X8);
check_split(cpi, vt, segment_id, thre);
if (low_res) {
refine_variance_tree(vt, thre[1] << 1);
}
}
vt->force_split |= mi_col + cm->mib_size > cm->mi_cols ||
mi_row + cm->mib_size > cm->mi_rows;
// Now go through the entire structure, splitting every block size until
// we get to one that's got a variance lower than our threshold.
set_vt_partitioning(cpi, x, xd, vt, mi_row, mi_col, thre, bmin);
}
#if CONFIG_DUAL_FILTER
static void reset_intmv_filter_type(const AV1_COMMON *const cm, MACROBLOCKD *xd,
MB_MODE_INFO *mbmi) {
int dir;
for (dir = 0; dir < 2; ++dir) {
if (!has_subpel_mv_component(xd->mi[0], xd, dir) &&
(mbmi->ref_frame[1] == NONE_FRAME ||
!has_subpel_mv_component(xd->mi[0], xd, dir + 2)))
mbmi->interp_filter[dir] = (cm->interp_filter == SWITCHABLE)
? EIGHTTAP_REGULAR
: cm->interp_filter;
mbmi->interp_filter[dir + 2] = mbmi->interp_filter[dir];
}
}
static void update_filter_type_count(FRAME_COUNTS *counts,
const MACROBLOCKD *xd,
const MB_MODE_INFO *mbmi) {
int dir;
for (dir = 0; dir < 2; ++dir) {
if (has_subpel_mv_component(xd->mi[0], xd, dir) ||
(mbmi->ref_frame[1] > INTRA_FRAME &&
has_subpel_mv_component(xd->mi[0], xd, dir + 2))) {
const int ctx = av1_get_pred_context_switchable_interp(xd, dir);
++counts->switchable_interp[ctx][mbmi->interp_filter[dir]];
}
}
}
#endif
#if CONFIG_GLOBAL_MOTION
static void update_global_motion_used(PREDICTION_MODE mode, BLOCK_SIZE bsize,
const MB_MODE_INFO *mbmi, AV1_COMP *cpi) {
if (mode == ZEROMV
#if CONFIG_EXT_INTER
|| mode == ZERO_ZEROMV
#endif
) {
const int num_4x4s = bsize >= BLOCK_8X8
? num_4x4_blocks_wide_lookup[bsize] *
num_4x4_blocks_high_lookup[bsize]
: 1;
int ref;
for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) {
++cpi->global_motion_used[mbmi->ref_frame[ref]][0];
cpi->global_motion_used[mbmi->ref_frame[ref]][1] += num_4x4s;
}
}
}
#endif // CONFIG_GLOBAL_MOTION
static void reset_tx_size(MACROBLOCKD *xd, MB_MODE_INFO *mbmi,
const TX_MODE tx_mode) {
if (xd->lossless[mbmi->segment_id]) {
mbmi->tx_size = TX_4X4;
} else if (tx_mode != TX_MODE_SELECT) {
mbmi->tx_size =
tx_size_from_tx_mode(mbmi->sb_type, tx_mode, is_inter_block(mbmi));
}
}
static void update_state(const AV1_COMP *const cpi, ThreadData *td,
PICK_MODE_CONTEXT *ctx, int mi_row, int mi_col,
BLOCK_SIZE bsize, RUN_TYPE dry_run) {
int i, x_idx, y;
const AV1_COMMON *const cm = &cpi->common;
RD_COUNTS *const rdc = &td->rd_counts;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = x->plane;
struct macroblockd_plane *const pd = xd->plane;
MODE_INFO *mi = &ctx->mic;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
MODE_INFO *mi_addr = xd->mi[0];
const struct segmentation *const seg = &cm->seg;
const int bw = mi_size_wide[mi->mbmi.sb_type];
const int bh = mi_size_high[mi->mbmi.sb_type];
const int x_mis = AOMMIN(bw, cm->mi_cols - mi_col);
const int y_mis = AOMMIN(bh, cm->mi_rows - mi_row);
MV_REF *const frame_mvs = cm->cur_frame->mvs + mi_row * cm->mi_cols + mi_col;
int w, h;
const int mis = cm->mi_stride;
const int mi_width = mi_size_wide[bsize];
const int mi_height = mi_size_high[bsize];
const int unify_bsize = CONFIG_CB4X4;
#if CONFIG_REF_MV
int8_t rf_type;
#endif
#if !CONFIG_SUPERTX
assert(mi->mbmi.sb_type == bsize);
#endif
*mi_addr = *mi;
*x->mbmi_ext = ctx->mbmi_ext;
#if CONFIG_DUAL_FILTER
reset_intmv_filter_type(cm, xd, mbmi);
#endif
#if CONFIG_REF_MV
rf_type = av1_ref_frame_type(mbmi->ref_frame);
if (x->mbmi_ext->ref_mv_count[rf_type] > 1 &&
(mbmi->sb_type >= BLOCK_8X8 || unify_bsize) && mbmi->mode == NEWMV) {
for (i = 0; i < 1 + has_second_ref(mbmi); ++i) {
int_mv this_mv =
(i == 0)
? x->mbmi_ext->ref_mv_stack[rf_type][mbmi->ref_mv_idx].this_mv
: x->mbmi_ext->ref_mv_stack[rf_type][mbmi->ref_mv_idx].comp_mv;
clamp_mv_ref(&this_mv.as_mv, xd->n8_w << MI_SIZE_LOG2,
xd->n8_h << MI_SIZE_LOG2, xd);
x->mbmi_ext->ref_mvs[mbmi->ref_frame[i]][0] = this_mv;
mbmi->pred_mv[i] = this_mv;
mi->mbmi.pred_mv[i] = this_mv;
}
}
#endif
// If segmentation in use
if (seg->enabled) {
// For in frame complexity AQ copy the segment id from the segment map.
if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) {
const uint8_t *const map =
seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
mi_addr->mbmi.segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
reset_tx_size(xd, &mi_addr->mbmi, cm->tx_mode);
}
// Else for cyclic refresh mode update the segment map, set the segment id
// and then update the quantizer.
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) {
av1_cyclic_refresh_update_segment(cpi, &xd->mi[0]->mbmi, mi_row, mi_col,
bsize, ctx->rate, ctx->dist, x->skip);
reset_tx_size(xd, &mi_addr->mbmi, cm->tx_mode);
}
}
for (i = 0; i < MAX_MB_PLANE; ++i) {
p[i].coeff = ctx->coeff[i];
p[i].qcoeff = ctx->qcoeff[i];
pd[i].dqcoeff = ctx->dqcoeff[i];
#if CONFIG_PVQ
pd[i].pvq_ref_coeff = ctx->pvq_ref_coeff[i];
#endif
p[i].eobs = ctx->eobs[i];
}
#if CONFIG_PALETTE
for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i];
#endif // CONFIG_PALETTE
// Restore the coding context of the MB to that that was in place
// when the mode was picked for it
for (y = 0; y < mi_height; y++)
for (x_idx = 0; x_idx < mi_width; x_idx++)
if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx &&
(xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y) {
xd->mi[x_idx + y * mis] = mi_addr;
}
#if CONFIG_DELTA_Q
if (cpi->oxcf.aq_mode > NO_AQ && cpi->oxcf.aq_mode < DELTA_AQ)
av1_init_plane_quantizers(cpi, x, xd->mi[0]->mbmi.segment_id);
#else
if (cpi->oxcf.aq_mode)
av1_init_plane_quantizers(cpi, x, xd->mi[0]->mbmi.segment_id);
#endif
if (is_inter_block(mbmi) && mbmi->sb_type < BLOCK_8X8 && !unify_bsize) {
mbmi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int;
mbmi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int;
}
x->skip = ctx->skip;
#if CONFIG_VAR_TX
for (i = 0; i < 1; ++i)
memcpy(x->blk_skip[i], ctx->blk_skip[i],
sizeof(uint8_t) * ctx->num_4x4_blk);
#endif
if (dry_run) return;
#if CONFIG_INTERNAL_STATS
{
unsigned int *const mode_chosen_counts =
(unsigned int *)cpi->mode_chosen_counts; // Cast const away.
if (frame_is_intra_only(cm)) {
static const int kf_mode_index[] = {
THR_DC /*DC_PRED*/,
THR_V_PRED /*V_PRED*/,
THR_H_PRED /*H_PRED*/,
THR_D45_PRED /*D45_PRED*/,
THR_D135_PRED /*D135_PRED*/,
THR_D117_PRED /*D117_PRED*/,
THR_D153_PRED /*D153_PRED*/,
THR_D207_PRED /*D207_PRED*/,
THR_D63_PRED /*D63_PRED*/,
#if CONFIG_ALT_INTRA
THR_SMOOTH, /*SMOOTH_PRED*/
#endif // CONFIG_ALT_INTRA
THR_TM /*TM_PRED*/,
};
++mode_chosen_counts[kf_mode_index[mbmi->mode]];
} else {
// Note how often each mode chosen as best
++mode_chosen_counts[ctx->best_mode_index];
}
}
#endif
if (!frame_is_intra_only(cm)) {
if (is_inter_block(mbmi)) {
av1_update_mv_count(td);
#if CONFIG_GLOBAL_MOTION
if (bsize >= BLOCK_8X8) {
// TODO(sarahparker): global motion stats need to be handled per-tile
// to be compatible with tile-based threading.
update_global_motion_used(mbmi->mode, bsize, mbmi, (AV1_COMP *)cpi);
} else {
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
int idx, idy;
for (idy = 0; idy < 2; idy += num_4x4_h) {
for (idx = 0; idx < 2; idx += num_4x4_w) {
const int j = idy * 2 + idx;
update_global_motion_used(mi->bmi[j].as_mode, bsize, mbmi,
(AV1_COMP *)cpi);
}
}
}
#endif // CONFIG_GLOBAL_MOTION
if (cm->interp_filter == SWITCHABLE
#if CONFIG_WARPED_MOTION
&& mbmi->motion_mode != WARPED_CAUSAL
#endif // CONFIG_WARPED_MOTION
#if CONFIG_GLOBAL_MOTION
&& !is_nontrans_global_motion(xd)
#endif // CONFIG_GLOBAL_MOTION
) {
#if CONFIG_DUAL_FILTER
update_filter_type_count(td->counts, xd, mbmi);
#else
const int switchable_ctx = av1_get_pred_context_switchable_interp(xd);
++td->counts->switchable_interp[switchable_ctx][mbmi->interp_filter];
#endif
}
}
rdc->comp_pred_diff[SINGLE_REFERENCE] += ctx->single_pred_diff;
rdc->comp_pred_diff[COMPOUND_REFERENCE] += ctx->comp_pred_diff;
rdc->comp_pred_diff[REFERENCE_MODE_SELECT] += ctx->hybrid_pred_diff;
}
for (h = 0; h < y_mis; ++h) {
MV_REF *const frame_mv = frame_mvs + h * cm->mi_cols;
for (w = 0; w < x_mis; ++w) {
MV_REF *const mv = frame_mv + w;
mv->ref_frame[0] = mi->mbmi.ref_frame[0];
mv->ref_frame[1] = mi->mbmi.ref_frame[1];
mv->mv[0].as_int = mi->mbmi.mv[0].as_int;
mv->mv[1].as_int = mi->mbmi.mv[1].as_int;
}
}
}
#if CONFIG_SUPERTX
static void update_state_supertx(const AV1_COMP *const cpi, ThreadData *td,
PICK_MODE_CONTEXT *ctx, int mi_row, int mi_col,
BLOCK_SIZE bsize, RUN_TYPE dry_run) {
int y, x_idx;
#if CONFIG_VAR_TX || CONFIG_REF_MV
int i;
#endif
const AV1_COMMON *const cm = &cpi->common;
RD_COUNTS *const rdc = &td->rd_counts;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
MODE_INFO *mi = &ctx->mic;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
MODE_INFO *mi_addr = xd->mi[0];
const struct segmentation *const seg = &cm->seg;
const int mis = cm->mi_stride;
const int mi_width = mi_size_wide[bsize];
const int mi_height = mi_size_high[bsize];
const int x_mis = AOMMIN(mi_width, cm->mi_cols - mi_col);
const int y_mis = AOMMIN(mi_height, cm->mi_rows - mi_row);
MV_REF *const frame_mvs = cm->cur_frame->mvs + mi_row * cm->mi_cols + mi_col;
int w, h;
#if CONFIG_REF_MV
int8_t rf_type;
#endif
*mi_addr = *mi;
*x->mbmi_ext = ctx->mbmi_ext;
assert(is_inter_block(mbmi));
assert(mbmi->tx_size == ctx->mic.mbmi.tx_size);
#if CONFIG_DUAL_FILTER
reset_intmv_filter_type(cm, xd, mbmi);
#endif
#if CONFIG_REF_MV
rf_type = av1_ref_frame_type(mbmi->ref_frame);
if (x->mbmi_ext->ref_mv_count[rf_type] > 1 &&
#if !CONFIG_CB4X4
mbmi->sb_type >= BLOCK_8X8 &&
#endif // !CONFIG_CB4X4
mbmi->mode == NEWMV) {
for (i = 0; i < 1 + has_second_ref(mbmi); ++i) {
int_mv this_mv =
(i == 0)
? x->mbmi_ext->ref_mv_stack[rf_type][mbmi->ref_mv_idx].this_mv
: x->mbmi_ext->ref_mv_stack[rf_type][mbmi->ref_mv_idx].comp_mv;
clamp_mv_ref(&this_mv.as_mv, xd->n8_w << MI_SIZE_LOG2,
xd->n8_h << MI_SIZE_LOG2, xd);
lower_mv_precision(&this_mv.as_mv, cm->allow_high_precision_mv);
x->mbmi_ext->ref_mvs[mbmi->ref_frame[i]][0] = this_mv;
mbmi->pred_mv[i] = this_mv;
}
}
#endif
// If segmentation in use
if (seg->enabled) {
if (cpi->vaq_refresh) {
const int energy =
bsize <= BLOCK_16X16 ? x->mb_energy : av1_block_energy(cpi, x, bsize);
mi_addr->mbmi.segment_id = av1_vaq_segment_id(energy);
} else if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) {
// For cyclic refresh mode, now update the segment map
// and set the segment id.
av1_cyclic_refresh_update_segment(cpi, &xd->mi[0]->mbmi, mi_row, mi_col,
bsize, ctx->rate, ctx->dist, 1);
} else {
// Otherwise just set the segment id based on the current segment map
const uint8_t *const map =
seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
mi_addr->mbmi.segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
}
mi_addr->mbmi.segment_id_supertx = MAX_SEGMENTS;
}
// Restore the coding context of the MB to that that was in place
// when the mode was picked for it
for (y = 0; y < mi_height; y++)
for (x_idx = 0; x_idx < mi_width; x_idx++)
if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx &&
(xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y) {
xd->mi[x_idx + y * mis] = mi_addr;
}
#if !CONFIG_CB4X4
if (is_inter_block(mbmi) && mbmi->sb_type < BLOCK_8X8) {
mbmi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int;
mbmi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int;
}
#endif
x->skip = ctx->skip;
#if CONFIG_VAR_TX
for (i = 0; i < 1; ++i)
memcpy(x->blk_skip[i], ctx->blk_skip[i],
sizeof(uint8_t) * ctx->num_4x4_blk);
if (!is_inter_block(mbmi) || mbmi->skip)
mbmi->min_tx_size = get_min_tx_size(mbmi->tx_size);
#endif // CONFIG_VAR_TX
#if CONFIG_VAR_TX
{
const TX_SIZE mtx = mbmi->tx_size;
const int num_4x4_blocks_wide = tx_size_wide_unit[mtx] >> 1;
const int num_4x4_blocks_high = tx_size_high_unit[mtx] >> 1;
int idy, idx;
mbmi->inter_tx_size[0][0] = mtx;
for (idy = 0; idy < num_4x4_blocks_high; ++idy)
for (idx = 0; idx < num_4x4_blocks_wide; ++idx)
mbmi->inter_tx_size[idy][idx] = mtx;
}
#endif // CONFIG_VAR_TX
// Turn motion variation off for supertx
mbmi->motion_mode = SIMPLE_TRANSLATION;
if (dry_run) return;
if (!frame_is_intra_only(cm)) {
av1_update_mv_count(td);
#if CONFIG_GLOBAL_MOTION
if (is_inter_block(mbmi)) {
if (bsize >= BLOCK_8X8) {
// TODO(sarahparker): global motion stats need to be handled per-tile
// to be compatible with tile-based threading.
update_global_motion_used(mbmi->mode, bsize, mbmi, (AV1_COMP *)cpi);
} else {
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
int idx, idy;
for (idy = 0; idy < 2; idy += num_4x4_h) {
for (idx = 0; idx < 2; idx += num_4x4_w) {
const int j = idy * 2 + idx;
update_global_motion_used(mi->bmi[j].as_mode, bsize, mbmi,
(AV1_COMP *)cpi);
}
}
}
}
#endif // CONFIG_GLOBAL_MOTION
if (cm->interp_filter == SWITCHABLE
#if CONFIG_GLOBAL_MOTION
&& !is_nontrans_global_motion(xd)
#endif // CONFIG_GLOBAL_MOTION
) {
#if CONFIG_DUAL_FILTER
update_filter_type_count(td->counts, xd, mbmi);
#else
const int pred_ctx = av1_get_pred_context_switchable_interp(xd);
++td->counts->switchable_interp[pred_ctx][mbmi->interp_filter];
#endif
}
rdc->comp_pred_diff[SINGLE_REFERENCE] += ctx->single_pred_diff;
rdc->comp_pred_diff[COMPOUND_REFERENCE] += ctx->comp_pred_diff;
rdc->comp_pred_diff[REFERENCE_MODE_SELECT] += ctx->hybrid_pred_diff;
}
for (h = 0; h < y_mis; ++h) {
MV_REF *const frame_mv = frame_mvs + h * cm->mi_cols;
for (w = 0; w < x_mis; ++w) {
MV_REF *const mv = frame_mv + w;
mv->ref_frame[0] = mi->mbmi.ref_frame[0];
mv->ref_frame[1] = mi->mbmi.ref_frame[1];
mv->mv[0].as_int = mi->mbmi.mv[0].as_int;
mv->mv[1].as_int = mi->mbmi.mv[1].as_int;
}
}
}
static void update_state_sb_supertx(const AV1_COMP *const cpi, ThreadData *td,
const TileInfo *const tile, int mi_row,
int mi_col, BLOCK_SIZE bsize,
RUN_TYPE dry_run, PC_TREE *pc_tree) {
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = x->plane;
struct macroblockd_plane *const pd = xd->plane;
int hbs = mi_size_wide[bsize] / 2;
#if CONFIG_CB4X4
const int unify_bsize = 1;
#else
const int unify_bsize = 0;
#endif
PARTITION_TYPE partition = pc_tree->partitioning;
BLOCK_SIZE subsize = get_subsize(bsize, partition);
int i;
#if CONFIG_EXT_PARTITION_TYPES
BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT);
#endif
PICK_MODE_CONTEXT *pmc = NULL;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
if (bsize == BLOCK_16X16 && cpi->vaq_refresh)
x->mb_energy = av1_block_energy(cpi, x, bsize);
switch (partition) {
case PARTITION_NONE:
set_offsets_supertx(cpi, td, tile, mi_row, mi_col, subsize);
update_state_supertx(cpi, td, &pc_tree->none, mi_row, mi_col, subsize,
dry_run);
break;
case PARTITION_VERT:
set_offsets_supertx(cpi, td, tile, mi_row, mi_col, subsize);
update_state_supertx(cpi, td, &pc_tree->vertical[0], mi_row, mi_col,
subsize, dry_run);
if (mi_col + hbs < cm->mi_cols && (bsize > BLOCK_8X8 || unify_bsize)) {
set_offsets_supertx(cpi, td, tile, mi_row, mi_col + hbs, subsize);
update_state_supertx(cpi, td, &pc_tree->vertical[1], mi_row,
mi_col + hbs, subsize, dry_run);
}
pmc = &pc_tree->vertical_supertx;
break;
case PARTITION_HORZ:
set_offsets_supertx(cpi, td, tile, mi_row, mi_col, subsize);
update_state_supertx(cpi, td, &pc_tree->horizontal[0], mi_row, mi_col,
subsize, dry_run);
if (mi_row + hbs < cm->mi_rows && (bsize > BLOCK_8X8 || unify_bsize)) {
set_offsets_supertx(cpi, td, tile, mi_row + hbs, mi_col, subsize);
update_state_supertx(cpi, td, &pc_tree->horizontal[1], mi_row + hbs,
mi_col, subsize, dry_run);
}
pmc = &pc_tree->horizontal_supertx;
break;
case PARTITION_SPLIT:
if (bsize == BLOCK_8X8 && !unify_bsize) {
set_offsets_supertx(cpi, td, tile, mi_row, mi_col, subsize);
update_state_supertx(cpi, td, pc_tree->leaf_split[0], mi_row, mi_col,
subsize, dry_run);
} else {
set_offsets_supertx(cpi, td, tile, mi_row, mi_col, subsize);
update_state_sb_supertx(cpi, td, tile, mi_row, mi_col, subsize, dry_run,
pc_tree->split[0]);
set_offsets_supertx(cpi, td, tile, mi_row, mi_col + hbs, subsize);
update_state_sb_supertx(cpi, td, tile, mi_row, mi_col + hbs, subsize,
dry_run, pc_tree->split[1]);
set_offsets_supertx(cpi, td, tile, mi_row + hbs, mi_col, subsize);
update_state_sb_supertx(cpi, td, tile, mi_row + hbs, mi_col, subsize,
dry_run, pc_tree->split[2]);
set_offsets_supertx(cpi, td, tile, mi_row + hbs, mi_col + hbs, subsize);
update_state_sb_supertx(cpi, td, tile, mi_row + hbs, mi_col + hbs,
subsize, dry_run, pc_tree->split[3]);
}
pmc = &pc_tree->split_supertx;
break;
#if CONFIG_EXT_PARTITION_TYPES
case PARTITION_HORZ_A:
set_offsets_supertx(cpi, td, tile, mi_row, mi_col, bsize2);
update_state_supertx(cpi, td, &pc_tree->horizontala[0], mi_row, mi_col,
bsize2, dry_run);
set_offsets_supertx(cpi, td, tile, mi_row, mi_col + hbs, bsize2);
update_state_supertx(cpi, td, &pc_tree->horizontala[1], mi_row,
mi_col + hbs, bsize2, dry_run);
set_offsets_supertx(cpi, td, tile, mi_row + hbs, mi_col, subsize);
update_state_supertx(cpi, td, &pc_tree->horizontala[2], mi_row + hbs,
mi_col, subsize, dry_run);
pmc = &pc_tree->horizontala_supertx;
break;
case PARTITION_HORZ_B:
set_offsets_supertx(cpi, td, tile, mi_row, mi_col, subsize);
update_state_supertx(cpi, td, &pc_tree->horizontalb[0], mi_row, mi_col,
subsize, dry_run);
set_offsets_supertx(cpi, td, tile, mi_row + hbs, mi_col, bsize2);
update_state_supertx(cpi, td, &pc_tree->horizontalb[1], mi_row + hbs,
mi_col, bsize2, dry_run);
set_offsets_supertx(cpi, td, tile, mi_row + hbs, mi_col + hbs, bsize2);
update_state_supertx(cpi, td, &pc_tree->horizontalb[2], mi_row + hbs,
mi_col + hbs, bsize2, dry_run);
pmc = &pc_tree->horizontalb_supertx;
break;
case PARTITION_VERT_A:
set_offsets_supertx(cpi, td, tile, mi_row, mi_col, bsize2);
update_state_supertx(cpi, td, &pc_tree->verticala[0], mi_row, mi_col,
bsize2, dry_run);
set_offsets_supertx(cpi, td, tile, mi_row + hbs, mi_col, bsize2);
update_state_supertx(cpi, td, &pc_tree->verticala[1], mi_row + hbs,
mi_col, bsize2, dry_run);
set_offsets_supertx(cpi, td, tile, mi_row, mi_col + hbs, subsize);
update_state_supertx(cpi, td, &pc_tree->verticala[2], mi_row,
mi_col + hbs, subsize, dry_run);
pmc = &pc_tree->verticala_supertx;
break;
case PARTITION_VERT_B:
set_offsets_supertx(cpi, td, tile, mi_row, mi_col, subsize);
update_state_supertx(cpi, td, &pc_tree->verticalb[0], mi_row, mi_col,
subsize, dry_run);
set_offsets_supertx(cpi, td, tile, mi_row, mi_col + hbs, bsize2);
update_state_supertx(cpi, td, &pc_tree->verticalb[1], mi_row,
mi_col + hbs, bsize2, dry_run);
set_offsets_supertx(cpi, td, tile, mi_row + hbs, mi_col + hbs, bsize2);
update_state_supertx(cpi, td, &pc_tree->verticalb[2], mi_row + hbs,
mi_col + hbs, bsize2, dry_run);
pmc = &pc_tree->verticalb_supertx;
break;
#endif // CONFIG_EXT_PARTITION_TYPES
default: assert(0);
}
for (i = 0; i < MAX_MB_PLANE; ++i) {
if (pmc != NULL) {
p[i].coeff = pmc->coeff[i];
p[i].qcoeff = pmc->qcoeff[i];
pd[i].dqcoeff = pmc->dqcoeff[i];
p[i].eobs = pmc->eobs[i];
} else {
// These should never be used
p[i].coeff = NULL;
p[i].qcoeff = NULL;
pd[i].dqcoeff = NULL;
p[i].eobs = NULL;
}
}
}
static void update_supertx_param(ThreadData *td, PICK_MODE_CONTEXT *ctx,
int best_tx, TX_SIZE supertx_size) {
MACROBLOCK *const x = &td->mb;
#if CONFIG_VAR_TX
int i;
for (i = 0; i < 1; ++i)
memcpy(ctx->blk_skip[i], x->blk_skip[i],
sizeof(uint8_t) * ctx->num_4x4_blk);
ctx->mic.mbmi.min_tx_size = get_min_tx_size(supertx_size);
#endif // CONFIG_VAR_TX
ctx->mic.mbmi.tx_size = supertx_size;
ctx->skip = x->skip;
ctx->mic.mbmi.tx_type = best_tx;
}
static void update_supertx_param_sb(const AV1_COMP *const cpi, ThreadData *td,
int mi_row, int mi_col, BLOCK_SIZE bsize,
int best_tx, TX_SIZE supertx_size,
PC_TREE *pc_tree) {
const AV1_COMMON *const cm = &cpi->common;
const int hbs = mi_size_wide[bsize] / 2;
PARTITION_TYPE partition = pc_tree->partitioning;
BLOCK_SIZE subsize = get_subsize(bsize, partition);
#if CONFIG_CB4X4
const int unify_bsize = 1;
#else
const int unify_bsize = 0;
#endif
#if CONFIG_EXT_PARTITION_TYPES
int i;
#endif
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
switch (partition) {
case PARTITION_NONE:
update_supertx_param(td, &pc_tree->none, best_tx, supertx_size);
break;
case PARTITION_VERT:
update_supertx_param(td, &pc_tree->vertical[0], best_tx, supertx_size);
if (mi_col + hbs < cm->mi_cols && (bsize > BLOCK_8X8 || unify_bsize))
update_supertx_param(td, &pc_tree->vertical[1], best_tx, supertx_size);
break;
case PARTITION_HORZ:
update_supertx_param(td, &pc_tree->horizontal[0], best_tx, supertx_size);
if (mi_row + hbs < cm->mi_rows && (bsize > BLOCK_8X8 || unify_bsize))
update_supertx_param(td, &pc_tree->horizontal[1], best_tx,
supertx_size);
break;
case PARTITION_SPLIT:
if (bsize == BLOCK_8X8 && !unify_bsize) {
update_supertx_param(td, pc_tree->leaf_split[0], best_tx, supertx_size);
} else {
update_supertx_param_sb(cpi, td, mi_row, mi_col, subsize, best_tx,
supertx_size, pc_tree->split[0]);
update_supertx_param_sb(cpi, td, mi_row, mi_col + hbs, subsize, best_tx,
supertx_size, pc_tree->split[1]);
update_supertx_param_sb(cpi, td, mi_row + hbs, mi_col, subsize, best_tx,
supertx_size, pc_tree->split[2]);
update_supertx_param_sb(cpi, td, mi_row + hbs, mi_col + hbs, subsize,
best_tx, supertx_size, pc_tree->split[3]);
}
break;
#if CONFIG_EXT_PARTITION_TYPES
case PARTITION_HORZ_A:
for (i = 0; i < 3; i++)
update_supertx_param(td, &pc_tree->horizontala[i], best_tx,
supertx_size);
break;
case PARTITION_HORZ_B:
for (i = 0; i < 3; i++)
update_supertx_param(td, &pc_tree->horizontalb[i], best_tx,
supertx_size);
break;
case PARTITION_VERT_A:
for (i = 0; i < 3; i++)
update_supertx_param(td, &pc_tree->verticala[i], best_tx, supertx_size);
break;
case PARTITION_VERT_B:
for (i = 0; i < 3; i++)
update_supertx_param(td, &pc_tree->verticalb[i], best_tx, supertx_size);
break;
#endif // CONFIG_EXT_PARTITION_TYPES
default: assert(0);
}
}
#endif // CONFIG_SUPERTX
#if CONFIG_MOTION_VAR && CONFIG_NCOBMC
static void set_mode_info_b(const AV1_COMP *const cpi,
const TileInfo *const tile, ThreadData *td,
int mi_row, int mi_col, BLOCK_SIZE bsize,
PICK_MODE_CONTEXT *ctx) {
MACROBLOCK *const x = &td->mb;
set_offsets(cpi, tile, x, mi_row, mi_col, bsize);
update_state(cpi, td, ctx, mi_row, mi_col, bsize, 1);
}
static void set_mode_info_sb(const AV1_COMP *const cpi, ThreadData *td,
const TileInfo *const tile, TOKENEXTRA **tp,
int mi_row, int mi_col, BLOCK_SIZE bsize,
PC_TREE *pc_tree) {
const AV1_COMMON *const cm = &cpi->common;
const int hbs = mi_size_wide[bsize] / 2;
const PARTITION_TYPE partition = pc_tree->partitioning;
BLOCK_SIZE subsize = get_subsize(bsize, partition);
#if CONFIG_EXT_PARTITION_TYPES
const BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT);
#endif
#if CONFIG_CB4X4
const int unify_bsize = 1;
#else
const int unify_bsize = 0;
assert(bsize >= BLOCK_8X8);
#endif
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
switch (partition) {
case PARTITION_NONE:
set_mode_info_b(cpi, tile, td, mi_row, mi_col, subsize, &pc_tree->none);
break;
case PARTITION_VERT:
set_mode_info_b(cpi, tile, td, mi_row, mi_col, subsize,
&pc_tree->vertical[0]);
if (mi_col + hbs < cm->mi_cols && (bsize > BLOCK_8X8 || unify_bsize)) {
set_mode_info_b(cpi, tile, td, mi_row, mi_col + hbs, subsize,
&pc_tree->vertical[1]);
}
break;
case PARTITION_HORZ:
set_mode_info_b(cpi, tile, td, mi_row, mi_col, subsize,
&pc_tree->horizontal[0]);
if (mi_row + hbs < cm->mi_rows && (bsize > BLOCK_8X8 || unify_bsize)) {
set_mode_info_b(cpi, tile, td, mi_row + hbs, mi_col, subsize,
&pc_tree->horizontal[1]);
}
break;
case PARTITION_SPLIT:
if (bsize == BLOCK_8X8 && !unify_bsize) {
set_mode_info_b(cpi, tile, td, mi_row, mi_col, subsize,
pc_tree->leaf_split[0]);
} else {
set_mode_info_sb(cpi, td, tile, tp, mi_row, mi_col, subsize,
pc_tree->split[0]);
set_mode_info_sb(cpi, td, tile, tp, mi_row, mi_col + hbs, subsize,
pc_tree->split[1]);
set_mode_info_sb(cpi, td, tile, tp, mi_row + hbs, mi_col, subsize,
pc_tree->split[2]);
set_mode_info_sb(cpi, td, tile, tp, mi_row + hbs, mi_col + hbs, subsize,
pc_tree->split[3]);
}
break;
#if CONFIG_EXT_PARTITION_TYPES
case PARTITION_HORZ_A:
set_mode_info_b(cpi, tile, td, mi_row, mi_col, bsize2,
&pc_tree->horizontala[0]);
set_mode_info_b(cpi, tile, td, mi_row, mi_col + hbs, bsize2,
&pc_tree->horizontala[1]);
set_mode_info_b(cpi, tile, td, mi_row + hbs, mi_col, subsize,
&pc_tree->horizontala[2]);
break;
case PARTITION_HORZ_B:
set_mode_info_b(cpi, tile, td, mi_row, mi_col, subsize,
&pc_tree->horizontalb[0]);
set_mode_info_b(cpi, tile, td, mi_row + hbs, mi_col, bsize2,
&pc_tree->horizontalb[1]);
set_mode_info_b(cpi, tile, td, mi_row + hbs, mi_col + hbs, bsize2,
&pc_tree->horizontalb[2]);
break;
case PARTITION_VERT_A:
set_mode_info_b(cpi, tile, td, mi_row, mi_col, bsize2,
&pc_tree->verticala[0]);
set_mode_info_b(cpi, tile, td, mi_row + hbs, mi_col, bsize2,
&pc_tree->verticala[1]);
set_mode_info_b(cpi, tile, td, mi_row, mi_col + hbs, subsize,
&pc_tree->verticala[2]);
break;
case PARTITION_VERT_B:
set_mode_info_b(cpi, tile, td, mi_row, mi_col, subsize,
&pc_tree->verticalb[0]);
set_mode_info_b(cpi, tile, td, mi_row, mi_col + hbs, bsize2,
&pc_tree->verticalb[1]);
set_mode_info_b(cpi, tile, td, mi_row + hbs, mi_col + hbs, bsize2,
&pc_tree->verticalb[2]);
break;
#endif // CONFIG_EXT_PARTITION_TYPES
default: assert(0 && "Invalid partition type."); break;
}
}
#endif
void av1_setup_src_planes(MACROBLOCK *x, const YV12_BUFFER_CONFIG *src,
int mi_row, int mi_col) {
uint8_t *const buffers[3] = { src->y_buffer, src->u_buffer, src->v_buffer };
const int widths[3] = { src->y_crop_width, src->uv_crop_width,
src->uv_crop_width };
const int heights[3] = { src->y_crop_height, src->uv_crop_height,
src->uv_crop_height };
const int strides[3] = { src->y_stride, src->uv_stride, src->uv_stride };
int i;
// Set current frame pointer.
x->e_mbd.cur_buf = src;
for (i = 0; i < MAX_MB_PLANE; i++)
setup_pred_plane(&x->plane[i].src, buffers[i], widths[i], heights[i],
strides[i], mi_row, mi_col, NULL,
x->e_mbd.plane[i].subsampling_x,
x->e_mbd.plane[i].subsampling_y);
}
static int set_segment_rdmult(const AV1_COMP *const cpi, MACROBLOCK *const x,
int8_t segment_id) {
int segment_qindex;
const AV1_COMMON *const cm = &cpi->common;
av1_init_plane_quantizers(cpi, x, segment_id);
aom_clear_system_state();
segment_qindex = av1_get_qindex(&cm->seg, segment_id, cm->base_qindex);
return av1_compute_rd_mult(cpi, segment_qindex + cm->y_dc_delta_q);
}
static void rd_pick_sb_modes(const AV1_COMP *const cpi, TileDataEnc *tile_data,
MACROBLOCK *const x, int mi_row, int mi_col,
RD_COST *rd_cost,
#if CONFIG_SUPERTX
int *totalrate_nocoef,
#endif
#if CONFIG_EXT_PARTITION_TYPES
PARTITION_TYPE partition,
#endif
BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx,
int64_t best_rd) {
const AV1_COMMON *const cm = &cpi->common;
TileInfo *const tile_info = &tile_data->tile_info;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi;
struct macroblock_plane *const p = x->plane;
struct macroblockd_plane *const pd = xd->plane;
const AQ_MODE aq_mode = cpi->oxcf.aq_mode;
int i, orig_rdmult;
const int unify_bsize = CONFIG_CB4X4;
aom_clear_system_state();
#if CONFIG_PVQ
x->pvq_speed = 1;
x->pvq_coded = 0;
#endif
set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
mbmi = &xd->mi[0]->mbmi;
mbmi->sb_type = bsize;
#if CONFIG_RD_DEBUG
mbmi->mi_row = mi_row;
mbmi->mi_col = mi_col;
#endif
#if CONFIG_SUPERTX
// We set tx_size here as skip blocks would otherwise not set it.
// tx_size needs to be set at this point as supertx_enable in
// write_modes_sb is computed based on this, and if the garbage in memory
// just happens to be the supertx_size, then the packer will code this
// block as a supertx block, even if rdopt did not pick it as such.
mbmi->tx_size = max_txsize_lookup[bsize];
#endif
#if CONFIG_EXT_PARTITION_TYPES
mbmi->partition = partition;
#endif
for (i = 0; i < MAX_MB_PLANE; ++i) {
p[i].coeff = ctx->coeff[i];
p[i].qcoeff = ctx->qcoeff[i];
pd[i].dqcoeff = ctx->dqcoeff[i];
#if CONFIG_PVQ
pd[i].pvq_ref_coeff = ctx->pvq_ref_coeff[i];
#endif
p[i].eobs = ctx->eobs[i];
}
#if CONFIG_PALETTE
for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i];
#endif // CONFIG_PALETTE
ctx->skippable = 0;
ctx->pred_pixel_ready = 0;
// Set to zero to make sure we do not use the previous encoded frame stats
mbmi->skip = 0;
#if CONFIG_CB4X4
x->skip_chroma_rd =
(bsize < BLOCK_8X8) && !is_chroma_reference(mi_row, mi_col);
#endif
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
x->source_variance = av1_high_get_sby_perpixel_variance(
cpi, &x->plane[0].src, bsize, xd->bd);
} else {
x->source_variance =
av1_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
}
#else
x->source_variance =
av1_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
#endif // CONFIG_AOM_HIGHBITDEPTH
// Save rdmult before it might be changed, so it can be restored later.
orig_rdmult = x->rdmult;
if (aq_mode == VARIANCE_AQ) {
if (cpi->vaq_refresh) {
const int energy =
bsize <= BLOCK_16X16 ? x->mb_energy : av1_block_energy(cpi, x, bsize);
mbmi->segment_id = av1_vaq_segment_id(energy);
// Re-initialise quantiser
av1_init_plane_quantizers(cpi, x, mbmi->segment_id);
}
x->rdmult = set_segment_rdmult(cpi, x, mbmi->segment_id);
} else if (aq_mode == COMPLEXITY_AQ) {
x->rdmult = set_segment_rdmult(cpi, x, mbmi->segment_id);
} else if (aq_mode == CYCLIC_REFRESH_AQ) {
// If segment is boosted, use rdmult for that segment.
if (cyclic_refresh_segment_id_boosted(mbmi->segment_id))
x->rdmult = av1_cyclic_refresh_get_rdmult(cpi->cyclic_refresh);
}
// Find best coding mode & reconstruct the MB so it is available
// as a predictor for MBs that follow in the SB
if (frame_is_intra_only(cm)) {
av1_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, best_rd);
#if CONFIG_SUPERTX
*totalrate_nocoef = 0;
#endif // CONFIG_SUPERTX
} else {
if (bsize >= BLOCK_8X8 || unify_bsize) {
if (segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
av1_rd_pick_inter_mode_sb_seg_skip(cpi, tile_data, x, mi_row, mi_col,
rd_cost, bsize, ctx, best_rd);
#if CONFIG_SUPERTX
*totalrate_nocoef = rd_cost->rate;
#endif // CONFIG_SUPERTX
} else {
av1_rd_pick_inter_mode_sb(cpi, tile_data, x, mi_row, mi_col, rd_cost,
#if CONFIG_SUPERTX
totalrate_nocoef,
#endif // CONFIG_SUPERTX
bsize, ctx, best_rd);
#if CONFIG_SUPERTX
assert(*totalrate_nocoef >= 0);
#endif // CONFIG_SUPERTX
}
} else {
if (segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
// The decoder rejects sub8x8 partitions when SEG_LVL_SKIP is set.
rd_cost->rate = INT_MAX;
} else {
av1_rd_pick_inter_mode_sub8x8(cpi, tile_data, x, mi_row, mi_col,
rd_cost,
#if CONFIG_SUPERTX
totalrate_nocoef,
#endif // CONFIG_SUPERTX
bsize, ctx, best_rd);
#if CONFIG_SUPERTX
assert(*totalrate_nocoef >= 0);
#endif // CONFIG_SUPERTX
}
}
}
// Examine the resulting rate and for AQ mode 2 make a segment choice.
if ((rd_cost->rate != INT_MAX) && (aq_mode == COMPLEXITY_AQ) &&
(bsize >= BLOCK_16X16) &&
(cm->frame_type == KEY_FRAME || cpi->refresh_alt_ref_frame ||
(cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref))) {
av1_caq_select_segment(cpi, x, bsize, mi_row, mi_col, rd_cost->rate);
}
x->rdmult = orig_rdmult;
// TODO(jingning) The rate-distortion optimization flow needs to be
// refactored to provide proper exit/return handle.
if (rd_cost->rate == INT_MAX) rd_cost->rdcost = INT64_MAX;
ctx->rate = rd_cost->rate;
ctx->dist = rd_cost->dist;
}
#if CONFIG_REF_MV
static void update_inter_mode_stats(FRAME_COUNTS *counts, PREDICTION_MODE mode,
#if CONFIG_EXT_INTER
int is_compound,
#endif // CONFIG_EXT_INTER
int16_t mode_context) {
int16_t mode_ctx = mode_context & NEWMV_CTX_MASK;
#if CONFIG_EXT_INTER
if (mode == NEWMV || mode == NEWFROMNEARMV) {
if (!is_compound) ++counts->new2mv_mode[mode == NEWFROMNEARMV];
#else
if (mode == NEWMV) {
#endif // CONFIG_EXT_INTER
++counts->newmv_mode[mode_ctx][0];
return;
} else {
++counts->newmv_mode[mode_ctx][1];
if (mode_context & (1 << ALL_ZERO_FLAG_OFFSET)) {
return;
}
mode_ctx = (mode_context >> ZEROMV_OFFSET) & ZEROMV_CTX_MASK;
if (mode == ZEROMV) {
++counts->zeromv_mode[mode_ctx][0];
return;
} else {
++counts->zeromv_mode[mode_ctx][1];
mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK;
if (mode_context & (1 << SKIP_NEARESTMV_OFFSET)) mode_ctx = 6;
if (mode_context & (1 << SKIP_NEARMV_OFFSET)) mode_ctx = 7;
if (mode_context & (1 << SKIP_NEARESTMV_SUB8X8_OFFSET)) mode_ctx = 8;
++counts->refmv_mode[mode_ctx][mode != NEARESTMV];
}
}
}
#endif
static void update_stats(const AV1_COMMON *const cm, ThreadData *td, int mi_row,
int mi_col
#if CONFIG_SUPERTX
,
int supertx_enabled
#endif
) {
#if CONFIG_DELTA_Q
MACROBLOCK *x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
#else
const MACROBLOCK *x = &td->mb;
const MACROBLOCKD *const xd = &x->e_mbd;
#endif
const MODE_INFO *const mi = xd->mi[0];
const MB_MODE_INFO *const mbmi = &mi->mbmi;
const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
const BLOCK_SIZE bsize = mbmi->sb_type;
const int unify_bsize = CONFIG_CB4X4;
#if CONFIG_DELTA_Q
// delta quant applies to both intra and inter
const int super_block_upper_left = ((mi_row & 7) == 0) && ((mi_col & 7) == 0);
if (cm->delta_q_present_flag && (bsize != BLOCK_64X64 || !mbmi->skip) &&
super_block_upper_left) {
const int dq = (mbmi->current_q_index - xd->prev_qindex) / cm->delta_q_res;
const int absdq = abs(dq);
int i;
for (i = 0; i < AOMMIN(absdq, DELTA_Q_SMALL); ++i) {
td->counts->delta_q[i][1]++;
}
if (absdq < DELTA_Q_SMALL) td->counts->delta_q[absdq][0]++;
xd->prev_qindex = mbmi->current_q_index;
}
#else
(void)mi_row;
(void)mi_col;
#endif
if (!frame_is_intra_only(cm)) {
FRAME_COUNTS *const counts = td->counts;
const int inter_block = is_inter_block(mbmi);
const int seg_ref_active =
segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_REF_FRAME);
if (!seg_ref_active) {
#if CONFIG_SUPERTX
if (!supertx_enabled)
#endif
counts->intra_inter[av1_get_intra_inter_context(xd)][inter_block]++;
// If the segment reference feature is enabled we have only a single
// reference frame allowed for the segment so exclude it from
// the reference frame counts used to work out probabilities.
if (inter_block) {
const MV_REFERENCE_FRAME ref0 = mbmi->ref_frame[0];
#if CONFIG_EXT_REFS
const MV_REFERENCE_FRAME ref1 = mbmi->ref_frame[1];
#endif // CONFIG_EXT_REFS
if (cm->reference_mode == REFERENCE_MODE_SELECT) {
#if !SUB8X8_COMP_REF
if (mbmi->sb_type >= BLOCK_8X8)
counts->comp_inter[av1_get_reference_mode_context(cm, xd)]
[has_second_ref(mbmi)]++;
#else
counts->comp_inter[av1_get_reference_mode_context(cm, xd)]
[has_second_ref(mbmi)]++;
#endif
}
if (has_second_ref(mbmi)) {
#if CONFIG_EXT_REFS
const int bit = (ref0 == GOLDEN_FRAME || ref0 == LAST3_FRAME);
counts->comp_ref[av1_get_pred_context_comp_ref_p(cm, xd)][0][bit]++;
if (!bit) {
counts->comp_ref[av1_get_pred_context_comp_ref_p1(cm, xd)][1]
[ref0 == LAST_FRAME]++;
} else {
counts->comp_ref[av1_get_pred_context_comp_ref_p2(cm, xd)][2]
[ref0 == GOLDEN_FRAME]++;
}
counts->comp_bwdref[av1_get_pred_context_comp_bwdref_p(cm, xd)][0]
[ref1 == ALTREF_FRAME]++;
#else
counts->comp_ref[av1_get_pred_context_comp_ref_p(cm, xd)][0]
[ref0 == GOLDEN_FRAME]++;
#endif // CONFIG_EXT_REFS
} else {
#if CONFIG_EXT_REFS
const int bit = (ref0 == ALTREF_FRAME || ref0 == BWDREF_FRAME);
counts->single_ref[av1_get_pred_context_single_ref_p1(xd)][0][bit]++;
if (bit) {
counts->single_ref[av1_get_pred_context_single_ref_p2(xd)][1]
[ref0 != BWDREF_FRAME]++;
} else {
const int bit1 = !(ref0 == LAST2_FRAME || ref0 == LAST_FRAME);
counts
->single_ref[av1_get_pred_context_single_ref_p3(xd)][2][bit1]++;
if (!bit1) {
counts->single_ref[av1_get_pred_context_single_ref_p4(xd)][3]
[ref0 != LAST_FRAME]++;
} else {
counts->single_ref[av1_get_pred_context_single_ref_p5(xd)][4]
[ref0 != LAST3_FRAME]++;
}
}
#else
counts->single_ref[av1_get_pred_context_single_ref_p1(xd)][0]
[ref0 != LAST_FRAME]++;
if (ref0 != LAST_FRAME) {
counts->single_ref[av1_get_pred_context_single_ref_p2(xd)][1]
[ref0 != GOLDEN_FRAME]++;
}
#endif // CONFIG_EXT_REFS
}
#if CONFIG_EXT_INTER
if (cm->reference_mode != COMPOUND_REFERENCE &&
#if CONFIG_SUPERTX
!supertx_enabled &&
#endif
is_interintra_allowed(mbmi)) {
const int bsize_group = size_group_lookup[bsize];
if (mbmi->ref_frame[1] == INTRA_FRAME) {
counts->interintra[bsize_group][1]++;
counts->interintra_mode[bsize_group][mbmi->interintra_mode]++;
if (is_interintra_wedge_used(bsize))
counts->wedge_interintra[bsize][mbmi->use_wedge_interintra]++;
} else {
counts->interintra[bsize_group][0]++;
}
}
#endif // CONFIG_EXT_INTER
#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
const MOTION_MODE motion_allowed = motion_mode_allowed(
#if CONFIG_GLOBAL_MOTION && SEPARATE_GLOBAL_MOTION
0, xd->global_motion,
#endif // CONFIG_GLOBAL_MOTION && SEPARATE_GLOBAL_MOTION
mi);
#if CONFIG_SUPERTX
if (!supertx_enabled)
#endif // CONFIG_SUPERTX
#if CONFIG_EXT_INTER
if (mbmi->ref_frame[1] != INTRA_FRAME)
#endif // CONFIG_EXT_INTER
#if CONFIG_MOTION_VAR && CONFIG_WARPED_MOTION
{
if (motion_allowed == WARPED_CAUSAL)
counts->motion_mode[mbmi->sb_type][mbmi->motion_mode]++;
else if (motion_allowed == OBMC_CAUSAL)
counts->obmc[mbmi->sb_type][mbmi->motion_mode == OBMC_CAUSAL]++;
}
#else
if (motion_allowed > SIMPLE_TRANSLATION)
counts->motion_mode[mbmi->sb_type][mbmi->motion_mode]++;
#endif // CONFIG_MOTION_VAR && CONFIG_WARPED_MOTION
#endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
#if CONFIG_EXT_INTER
if (cm->reference_mode != SINGLE_REFERENCE &&
is_inter_compound_mode(mbmi->mode)
#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
&& mbmi->motion_mode == SIMPLE_TRANSLATION
#endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
) {
counts->compound_interinter[bsize]
[mbmi->interinter_compound_data.type]++;
}
#endif // CONFIG_EXT_INTER
}
}
if (inter_block &&
!segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
int16_t mode_ctx;
#if !CONFIG_REF_MV