blob: ad994ae92a444c61a27a1d21462cee23d2209db1 [file] [log] [blame]
/*
*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "./aom_config.h"
#include "aom_mem/aom_mem.h"
#include "av1/common/alloccommon.h"
#include "av1/common/blockd.h"
#include "av1/common/entropymode.h"
#include "av1/common/entropymv.h"
#include "av1/common/onyxc_int.h"
int av1_get_MBs(int width, int height) {
const int aligned_width = ALIGN_POWER_OF_TWO(width, 3);
const int aligned_height = ALIGN_POWER_OF_TWO(height, 3);
const int mi_cols = aligned_width >> MI_SIZE_LOG2;
const int mi_rows = aligned_height >> MI_SIZE_LOG2;
const int mb_cols = (mi_cols + 2) >> 2;
const int mb_rows = (mi_rows + 2) >> 2;
return mb_rows * mb_cols;
}
void av1_set_mb_mi(AV1_COMMON *cm, int width, int height) {
// Ensure that the decoded width and height are both multiples of
// 8 luma pixels (note: this may only be a multiple of 4 chroma pixels if
// subsampling is used).
// This simplifies the implementation of various experiments,
// eg. cdef, which operates on units of 8x8 luma pixels.
const int aligned_width = ALIGN_POWER_OF_TWO(width, 3);
const int aligned_height = ALIGN_POWER_OF_TWO(height, 3);
cm->mi_cols = aligned_width >> MI_SIZE_LOG2;
cm->mi_rows = aligned_height >> MI_SIZE_LOG2;
cm->mi_stride = calc_mi_size(cm->mi_cols);
cm->mb_cols = (cm->mi_cols + 2) >> 2;
cm->mb_rows = (cm->mi_rows + 2) >> 2;
cm->MBs = cm->mb_rows * cm->mb_cols;
}
static int alloc_seg_map(AV1_COMMON *cm, int seg_map_size) {
int i;
for (i = 0; i < NUM_PING_PONG_BUFFERS; ++i) {
cm->seg_map_array[i] = (uint8_t *)aom_calloc(seg_map_size, 1);
if (cm->seg_map_array[i] == NULL) return 1;
}
cm->seg_map_alloc_size = seg_map_size;
// Init the index.
cm->seg_map_idx = 0;
cm->prev_seg_map_idx = 1;
cm->current_frame_seg_map = cm->seg_map_array[cm->seg_map_idx];
if (!cm->frame_parallel_decode)
cm->last_frame_seg_map = cm->seg_map_array[cm->prev_seg_map_idx];
return 0;
}
static void free_seg_map(AV1_COMMON *cm) {
int i;
for (i = 0; i < NUM_PING_PONG_BUFFERS; ++i) {
aom_free(cm->seg_map_array[i]);
cm->seg_map_array[i] = NULL;
}
cm->current_frame_seg_map = NULL;
if (!cm->frame_parallel_decode) {
cm->last_frame_seg_map = NULL;
}
cm->seg_map_alloc_size = 0;
}
static void free_scratch_buffers(AV1_COMMON *cm) {
(void)cm;
#if CONFIG_NCOBMC && CONFIG_NCOBMC_ADAPT_WEIGHT
for (int i = 0; i < 4; ++i) {
if (cm->ncobmcaw_buf[i]) {
aom_free(cm->ncobmcaw_buf[i]);
cm->ncobmcaw_buf[i] = NULL;
}
}
#endif // CONFIG_NCOBMC && CONFIG_NCOBMC_ADAPT_WEIGHT
}
static int alloc_scratch_buffers(AV1_COMMON *cm) {
(void)cm;
#if CONFIG_NCOBMC && CONFIG_NCOBMC_ADAPT_WEIGHT
// If not allocated already, allocate
if (!cm->ncobmcaw_buf[0] && !cm->ncobmcaw_buf[1] && !cm->ncobmcaw_buf[2] &&
!cm->ncobmcaw_buf[3]) {
for (int i = 0; i < 4; ++i) {
CHECK_MEM_ERROR(
cm, cm->ncobmcaw_buf[i],
(uint8_t *)aom_memalign(
16, (1 + CONFIG_HIGHBITDEPTH) * MAX_MB_PLANE * MAX_SB_SQUARE));
}
}
#endif // CONFIG_NCOBMC && CONFIG_NCOBMC_ADAPT_WEIGHT
return 0;
}
void av1_free_ref_frame_buffers(BufferPool *pool) {
int i;
for (i = 0; i < FRAME_BUFFERS; ++i) {
if (pool->frame_bufs[i].ref_count > 0 &&
pool->frame_bufs[i].raw_frame_buffer.data != NULL) {
pool->release_fb_cb(pool->cb_priv, &pool->frame_bufs[i].raw_frame_buffer);
pool->frame_bufs[i].ref_count = 0;
}
aom_free(pool->frame_bufs[i].mvs);
pool->frame_bufs[i].mvs = NULL;
aom_free_frame_buffer(&pool->frame_bufs[i].buf);
#if CONFIG_HASH_ME
av1_hash_table_destroy(&pool->frame_bufs[i].hash_table);
#endif
}
}
#if CONFIG_LOOP_RESTORATION
// Assumes cm->rst_info[p].restoration_tilesize is already initialized
void av1_alloc_restoration_buffers(AV1_COMMON *cm) {
int p;
#if CONFIG_FRAME_SUPERRES
int width = cm->superres_upscaled_width;
int height = cm->superres_upscaled_height;
#else
int width = cm->width;
int height = cm->height;
#endif // CONFIG_FRAME_SUPERRES
av1_alloc_restoration_struct(cm, &cm->rst_info[0], width, height);
for (p = 1; p < MAX_MB_PLANE; ++p)
av1_alloc_restoration_struct(cm, &cm->rst_info[p],
ROUND_POWER_OF_TWO(width, cm->subsampling_x),
ROUND_POWER_OF_TWO(height, cm->subsampling_y));
aom_free(cm->rst_tmpbuf);
CHECK_MEM_ERROR(cm, cm->rst_tmpbuf,
(int32_t *)aom_memalign(16, RESTORATION_TMPBUF_SIZE));
#if CONFIG_STRIPED_LOOP_RESTORATION
// Allocate internal storage for the loop restoration stripe boundary lines
for (p = 0; p < MAX_MB_PLANE; ++p) {
int w = p == 0 ? width : ROUND_POWER_OF_TWO(width, cm->subsampling_x);
int align_bits = 5; // align for efficiency
int stride = ALIGN_POWER_OF_TWO(w, align_bits);
int num_stripes = (height + 63) / 64;
// for each processing stripe: 2 lines above, 2 below
int buf_size = num_stripes * 2 * stride;
uint8_t *above_buf, *below_buf;
RestorationStripeBoundaries *boundaries = &cm->rst_info[p].boundaries;
aom_free(boundaries->stripe_boundary_above);
aom_free(boundaries->stripe_boundary_below);
#if CONFIG_HIGHBITDEPTH
if (cm->use_highbitdepth) buf_size = buf_size * 2;
#endif
CHECK_MEM_ERROR(cm, above_buf,
(uint8_t *)aom_memalign(1 << align_bits, buf_size));
CHECK_MEM_ERROR(cm, below_buf,
(uint8_t *)aom_memalign(1 << align_bits, buf_size));
boundaries->stripe_boundary_above = above_buf;
boundaries->stripe_boundary_below = below_buf;
boundaries->stripe_boundary_stride = stride;
}
#endif // CONFIG_STRIPED_LOOP_RESTORATION
}
void av1_free_restoration_buffers(AV1_COMMON *cm) {
int p;
for (p = 0; p < MAX_MB_PLANE; ++p)
av1_free_restoration_struct(&cm->rst_info[p]);
aom_free(cm->rst_tmpbuf);
cm->rst_tmpbuf = NULL;
}
#endif // CONFIG_LOOP_RESTORATION
void av1_free_context_buffers(AV1_COMMON *cm) {
int i;
cm->free_mi(cm);
free_seg_map(cm);
free_scratch_buffers(cm);
for (i = 0; i < MAX_MB_PLANE; i++) {
aom_free(cm->above_context[i]);
cm->above_context[i] = NULL;
}
aom_free(cm->above_seg_context);
cm->above_seg_context = NULL;
cm->above_context_alloc_cols = 0;
aom_free(cm->above_txfm_context);
cm->above_txfm_context = NULL;
for (i = 0; i < MAX_MB_PLANE; ++i) {
aom_free(cm->top_txfm_context[i]);
cm->top_txfm_context[i] = NULL;
}
}
int av1_alloc_context_buffers(AV1_COMMON *cm, int width, int height) {
int new_mi_size;
av1_set_mb_mi(cm, width, height);
new_mi_size = cm->mi_stride * calc_mi_size(cm->mi_rows);
if (cm->mi_alloc_size < new_mi_size) {
cm->free_mi(cm);
if (cm->alloc_mi(cm, new_mi_size)) goto fail;
}
if (cm->seg_map_alloc_size < cm->mi_rows * cm->mi_cols) {
// Create the segmentation map structure and set to 0.
free_seg_map(cm);
if (alloc_seg_map(cm, cm->mi_rows * cm->mi_cols)) goto fail;
}
if (alloc_scratch_buffers(cm)) goto fail;
if (cm->above_context_alloc_cols < cm->mi_cols) {
// TODO(geza.lore): These are bigger than they need to be.
// cm->tile_width would be enough but it complicates indexing a
// little elsewhere.
const int aligned_mi_cols =
ALIGN_POWER_OF_TWO(cm->mi_cols, MAX_MIB_SIZE_LOG2);
int i;
for (i = 0; i < MAX_MB_PLANE; i++) {
aom_free(cm->above_context[i]);
cm->above_context[i] = (ENTROPY_CONTEXT *)aom_calloc(
aligned_mi_cols << (MI_SIZE_LOG2 - tx_size_wide_log2[0]),
sizeof(*cm->above_context[0]));
if (!cm->above_context[i]) goto fail;
}
aom_free(cm->above_seg_context);
cm->above_seg_context = (PARTITION_CONTEXT *)aom_calloc(
aligned_mi_cols, sizeof(*cm->above_seg_context));
if (!cm->above_seg_context) goto fail;
aom_free(cm->above_txfm_context);
cm->above_txfm_context = (TXFM_CONTEXT *)aom_calloc(
aligned_mi_cols << TX_UNIT_WIDE_LOG2, sizeof(*cm->above_txfm_context));
if (!cm->above_txfm_context) goto fail;
for (i = 0; i < MAX_MB_PLANE; ++i) {
aom_free(cm->top_txfm_context[i]);
cm->top_txfm_context[i] =
(TXFM_CONTEXT *)aom_calloc(aligned_mi_cols << TX_UNIT_WIDE_LOG2,
sizeof(*cm->top_txfm_context[0]));
if (!cm->top_txfm_context[i]) goto fail;
}
cm->above_context_alloc_cols = aligned_mi_cols;
}
return 0;
fail:
// clear the mi_* values to force a realloc on resync
av1_set_mb_mi(cm, 0, 0);
av1_free_context_buffers(cm);
return 1;
}
void av1_remove_common(AV1_COMMON *cm) {
av1_free_context_buffers(cm);
aom_free(cm->fc);
cm->fc = NULL;
aom_free(cm->frame_contexts);
cm->frame_contexts = NULL;
}
void av1_init_context_buffers(AV1_COMMON *cm) {
cm->setup_mi(cm);
if (cm->last_frame_seg_map && !cm->frame_parallel_decode)
memset(cm->last_frame_seg_map, 0, cm->mi_rows * cm->mi_cols);
}
void av1_swap_current_and_last_seg_map(AV1_COMMON *cm) {
// Swap indices.
const int tmp = cm->seg_map_idx;
cm->seg_map_idx = cm->prev_seg_map_idx;
cm->prev_seg_map_idx = tmp;
cm->current_frame_seg_map = cm->seg_map_array[cm->seg_map_idx];
cm->last_frame_seg_map = cm->seg_map_array[cm->prev_seg_map_idx];
}