blob: dbfbd94113260b5ffa3404d694fbfd38ed092719 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#ifndef AV1_COMMON_ONYXC_INT_H_
#define AV1_COMMON_ONYXC_INT_H_
#include "./aom_config.h"
#include "./av1_rtcd.h"
#include "aom/internal/aom_codec_internal.h"
#include "aom_util/aom_thread.h"
#if CONFIG_ANS
#include "aom_dsp/ans.h"
#endif
#include "av1/common/alloccommon.h"
#include "av1/common/av1_loopfilter.h"
#include "av1/common/entropy.h"
#include "av1/common/entropymode.h"
#include "av1/common/entropymv.h"
#include "av1/common/frame_buffers.h"
#include "av1/common/mv.h"
#include "av1/common/quant_common.h"
#if CONFIG_LOOP_RESTORATION
#include "av1/common/restoration.h"
#endif // CONFIG_LOOP_RESTORATION
#include "av1/common/tile_common.h"
#include "av1/common/odintrin.h"
#if CONFIG_CFL
#include "av1/common/cfl.h"
#endif
#if CONFIG_HASH_ME
// TODO(youzhou@microsoft.com): Encoder only. Move it out of common
#include "av1/encoder/hash_motion.h"
#endif
#ifdef __cplusplus
extern "C" {
#endif
#define CDEF_MAX_STRENGTHS 16
#define REF_FRAMES_LOG2 3
#define REF_FRAMES (1 << REF_FRAMES_LOG2)
// 4 scratch frames for the new frames to support a maximum of 4 cores decoding
// in parallel, 3 for scaled references on the encoder.
// TODO(hkuang): Add ondemand frame buffers instead of hardcoding the number
// of framebuffers.
// TODO(jkoleszar): These 3 extra references could probably come from the
// normal reference pool.
#define FRAME_BUFFERS (REF_FRAMES + 7)
#if CONFIG_REFERENCE_BUFFER
/* Constant values while waiting for the sequence header */
#define FRAME_ID_NUMBERS_PRESENT_FLAG 1
#define FRAME_ID_LENGTH_MINUS7 8 // Allows frame id up to 2^15-1
#define DELTA_FRAME_ID_LENGTH_MINUS2 12 // Allows frame id deltas up to 2^14-1
#endif // CONFIG_REFERENCE_BUFFER
#if CONFIG_NO_FRAME_CONTEXT_SIGNALING
#define FRAME_CONTEXTS (FRAME_BUFFERS + 1)
// Extra frame context which is always kept at default values
#define FRAME_CONTEXT_DEFAULTS (FRAME_CONTEXTS - 1)
#else
#define FRAME_CONTEXTS_LOG2 3
#define FRAME_CONTEXTS (1 << FRAME_CONTEXTS_LOG2)
#endif // CONFIG_NO_FRAME_CONTEXT_SIGNALING
#define NUM_PING_PONG_BUFFERS 2
typedef enum {
SINGLE_REFERENCE = 0,
COMPOUND_REFERENCE = 1,
REFERENCE_MODE_SELECT = 2,
REFERENCE_MODES = 3,
} REFERENCE_MODE;
#if !CONFIG_NO_FRAME_CONTEXT_SIGNALING
typedef enum {
RESET_FRAME_CONTEXT_NONE = 0,
RESET_FRAME_CONTEXT_CURRENT = 1,
RESET_FRAME_CONTEXT_ALL = 2,
} RESET_FRAME_CONTEXT_MODE;
#endif
typedef enum {
/**
* Update frame context to values resulting from forward probability
* updates signaled in the frame header
*/
REFRESH_FRAME_CONTEXT_FORWARD,
/**
* Update frame context to values resulting from backward probability
* updates based on entropy/counts in the decoded frame
*/
REFRESH_FRAME_CONTEXT_BACKWARD,
} REFRESH_FRAME_CONTEXT_MODE;
#if CONFIG_MFMV
#define MFMV_STACK_SIZE 4
typedef struct {
int_mv mfmv[INTER_REFS_PER_FRAME][MFMV_STACK_SIZE];
} TPL_MV_REF;
#endif
typedef struct {
int_mv mv[2];
int_mv pred_mv[2];
MV_REFERENCE_FRAME ref_frame[2];
} MV_REF;
typedef struct {
int ref_count;
#if CONFIG_FRAME_MARKER
int cur_frame_offset;
int lst_frame_offset;
int alt_frame_offset;
int gld_frame_offset;
int lst2_frame_offset;
int lst3_frame_offset;
int bwd_frame_offset;
int alt2_frame_offset;
#endif // CONFIG_FRAME_MARKER
MV_REF *mvs;
int mi_rows;
int mi_cols;
// Width and height give the size of the buffer (before any upscaling, unlike
// the sizes that can be derived from the buf structure)
int width;
int height;
#if CONFIG_GLOBAL_MOTION
WarpedMotionParams global_motion[TOTAL_REFS_PER_FRAME];
#endif // CONFIG_GLOBAL_MOTION
aom_codec_frame_buffer_t raw_frame_buffer;
YV12_BUFFER_CONFIG buf;
#if CONFIG_HASH_ME
hash_table hash_table;
#endif
#if CONFIG_TEMPMV_SIGNALING
uint8_t intra_only;
#endif
// The Following variables will only be used in frame parallel decode.
// frame_worker_owner indicates which FrameWorker owns this buffer. NULL means
// that no FrameWorker owns, or is decoding, this buffer.
AVxWorker *frame_worker_owner;
// row and col indicate which position frame has been decoded to in real
// pixel unit. They are reset to -1 when decoding begins and set to INT_MAX
// when the frame is fully decoded.
int row;
int col;
} RefCntBuffer;
typedef struct BufferPool {
// Protect BufferPool from being accessed by several FrameWorkers at
// the same time during frame parallel decode.
// TODO(hkuang): Try to use atomic variable instead of locking the whole pool.
#if CONFIG_MULTITHREAD
pthread_mutex_t pool_mutex;
#endif
// Private data associated with the frame buffer callbacks.
void *cb_priv;
aom_get_frame_buffer_cb_fn_t get_fb_cb;
aom_release_frame_buffer_cb_fn_t release_fb_cb;
RefCntBuffer frame_bufs[FRAME_BUFFERS];
// Frame buffers allocated internally by the codec.
InternalFrameBufferList int_frame_buffers;
} BufferPool;
#if CONFIG_LV_MAP
typedef struct {
int base_ctx_table[2 /*row*/][2 /*col*/][2 /*sig_map*/]
[BASE_CONTEXT_POSITION_NUM + 1];
} LV_MAP_CTX_TABLE;
typedef int BASE_CTX_TABLE[2 /*col*/][2 /*sig_map*/]
[BASE_CONTEXT_POSITION_NUM + 1];
#endif
#if CONFIG_REFERENCE_BUFFER
/* Initial version of sequence header structure */
typedef struct SequenceHeader {
int frame_id_numbers_present_flag;
int frame_id_length;
int delta_frame_id_length;
} SequenceHeader;
#endif // CONFIG_REFERENCE_BUFFER
typedef struct AV1Common {
struct aom_internal_error_info error;
aom_color_space_t color_space;
aom_transfer_function_t transfer_function;
aom_chroma_sample_position_t chroma_sample_position;
int color_range;
int width;
int height;
int render_width;
int render_height;
int last_width;
int last_height;
// TODO(jkoleszar): this implies chroma ss right now, but could vary per
// plane. Revisit as part of the future change to YV12_BUFFER_CONFIG to
// support additional planes.
int subsampling_x;
int subsampling_y;
#if CONFIG_SIMPLE_BWD_ADAPT
int largest_tile_id;
#endif
#if CONFIG_HIGHBITDEPTH
// Marks if we need to use 16bit frame buffers (1: yes, 0: no).
int use_highbitdepth;
#endif
YV12_BUFFER_CONFIG *frame_to_show;
RefCntBuffer *prev_frame;
// TODO(hkuang): Combine this with cur_buf in macroblockd.
RefCntBuffer *cur_frame;
int ref_frame_map[REF_FRAMES]; /* maps fb_idx to reference slot */
// Prepare ref_frame_map for the next frame.
// Only used in frame parallel decode.
int next_ref_frame_map[REF_FRAMES];
// TODO(jkoleszar): could expand active_ref_idx to 4, with 0 as intra, and
// roll new_fb_idx into it.
// Each Inter frame can reference INTER_REFS_PER_FRAME buffers
RefBuffer frame_refs[INTER_REFS_PER_FRAME];
int new_fb_idx;
FRAME_TYPE last_frame_type; /* last frame's frame type for motion search.*/
FRAME_TYPE frame_type;
int show_frame;
int last_show_frame;
int show_existing_frame;
// Flag for a frame used as a reference - not written to the bitstream
int is_reference_frame;
// Flag signaling that the frame is encoded using only INTRA modes.
uint8_t intra_only;
uint8_t last_intra_only;
int allow_high_precision_mv;
#if CONFIG_AMVR
int seq_mv_precision_level; // 0 the default in AOM, 1 only integer, 2
// adaptive
int cur_frame_mv_precision_level; // 0 the default in AOM, 1 only integer
#endif
int allow_screen_content_tools;
#if CONFIG_INTERINTRA
int allow_interintra_compound;
#endif // CONFIG_INTERINTRA
#if CONFIG_WEDGE || CONFIG_COMPOUND_SEGMENT
int allow_masked_compound;
#endif // CONFIG_WEDGE || CONFIG_COMPOUND_SEGMENT
#if !CONFIG_NO_FRAME_CONTEXT_SIGNALING
// Flag signaling which frame contexts should be reset to default values.
RESET_FRAME_CONTEXT_MODE reset_frame_context;
#endif
// MBs, mb_rows/cols is in 16-pixel units; mi_rows/cols is in
// MODE_INFO (8-pixel) units.
int MBs;
int mb_rows, mi_rows;
int mb_cols, mi_cols;
int mi_stride;
/* profile settings */
TX_MODE tx_mode;
int base_qindex;
int y_dc_delta_q;
int uv_dc_delta_q;
int uv_ac_delta_q;
int16_t y_dequant[MAX_SEGMENTS][2];
int16_t uv_dequant[MAX_SEGMENTS][2];
#if CONFIG_AOM_QM
// Global quant matrix tables
qm_val_t *giqmatrix[NUM_QM_LEVELS][2][2][TX_SIZES_ALL];
qm_val_t *gqmatrix[NUM_QM_LEVELS][2][2][TX_SIZES_ALL];
// Local quant matrix tables for each frame
qm_val_t *y_iqmatrix[MAX_SEGMENTS][2][TX_SIZES_ALL];
qm_val_t *uv_iqmatrix[MAX_SEGMENTS][2][TX_SIZES_ALL];
// Encoder
qm_val_t *y_qmatrix[MAX_SEGMENTS][2][TX_SIZES_ALL];
qm_val_t *uv_qmatrix[MAX_SEGMENTS][2][TX_SIZES_ALL];
int using_qmatrix;
int min_qmlevel;
int max_qmlevel;
#endif
#if CONFIG_NEW_QUANT
dequant_val_type_nuq y_dequant_nuq[MAX_SEGMENTS][QUANT_PROFILES][COEF_BANDS];
dequant_val_type_nuq uv_dequant_nuq[MAX_SEGMENTS][QUANT_PROFILES][COEF_BANDS];
#endif
/* We allocate a MODE_INFO struct for each macroblock, together with
an extra row on top and column on the left to simplify prediction. */
int mi_alloc_size;
MODE_INFO *mip; /* Base of allocated array */
MODE_INFO *mi; /* Corresponds to upper left visible macroblock */
// TODO(agrange): Move prev_mi into encoder structure.
// prev_mip and prev_mi will only be allocated in encoder.
MODE_INFO *prev_mip; /* MODE_INFO array 'mip' from last decoded frame */
MODE_INFO *prev_mi; /* 'mi' from last frame (points into prev_mip) */
// Separate mi functions between encoder and decoder.
int (*alloc_mi)(struct AV1Common *cm, int mi_size);
void (*free_mi)(struct AV1Common *cm);
void (*setup_mi)(struct AV1Common *cm);
// Grid of pointers to 8x8 MODE_INFO structs. Any 8x8 not in the visible
// area will be NULL.
MODE_INFO **mi_grid_base;
MODE_INFO **mi_grid_visible;
MODE_INFO **prev_mi_grid_base;
MODE_INFO **prev_mi_grid_visible;
// Whether to use previous frame's motion vectors for prediction.
int use_prev_frame_mvs;
// Persistent mb segment id map used in prediction.
int seg_map_idx;
int prev_seg_map_idx;
uint8_t *seg_map_array[NUM_PING_PONG_BUFFERS];
uint8_t *last_frame_seg_map;
uint8_t *current_frame_seg_map;
int seg_map_alloc_size;
InterpFilter interp_filter;
loop_filter_info_n lf_info;
#if CONFIG_FRAME_SUPERRES
// The denominator of the superres scale; the numerator is fixed.
uint8_t superres_scale_denominator;
int superres_upscaled_width;
int superres_upscaled_height;
#endif // CONFIG_FRAME_SUPERRES
#if CONFIG_LOOP_RESTORATION
RestorationInfo rst_info[MAX_MB_PLANE];
int32_t *rst_tmpbuf;
#endif // CONFIG_LOOP_RESTORATION
// Flag signaling how frame contexts should be updated at the end of
// a frame decode
REFRESH_FRAME_CONTEXT_MODE refresh_frame_context;
int ref_frame_sign_bias[TOTAL_REFS_PER_FRAME]; /* Two state 0, 1 */
struct loopfilter lf;
struct segmentation seg;
int all_lossless;
int frame_parallel_decode; // frame-based threading.
#if CONFIG_EXT_TX
int reduced_tx_set_used;
#endif // CONFIG_EXT_TX
// Context probabilities for reference frame prediction
MV_REFERENCE_FRAME comp_fwd_ref[FWD_REFS];
MV_REFERENCE_FRAME comp_bwd_ref[BWD_REFS];
REFERENCE_MODE reference_mode;
FRAME_CONTEXT *fc; /* this frame entropy */
FRAME_CONTEXT *frame_contexts; // FRAME_CONTEXTS
FRAME_CONTEXT *pre_fc; // Context referenced in this frame
#if !CONFIG_NO_FRAME_CONTEXT_SIGNALING
unsigned int frame_context_idx; /* Context to use/update */
#endif
FRAME_COUNTS counts;
#if CONFIG_FRAME_MARKER
unsigned int frame_offset;
#endif
unsigned int current_video_frame;
BITSTREAM_PROFILE profile;
// AOM_BITS_8 in profile 0 or 1, AOM_BITS_10 or AOM_BITS_12 in profile 2 or 3.
aom_bit_depth_t bit_depth;
aom_bit_depth_t dequant_bit_depth; // bit_depth of current dequantizer
int error_resilient_mode;
int tile_cols, tile_rows;
int last_tile_cols, last_tile_rows;
#if CONFIG_MAX_TILE
int min_log2_tile_cols;
int max_log2_tile_cols;
int max_log2_tile_rows;
int min_log2_tile_rows;
int min_log2_tiles;
int max_tile_width_sb;
int max_tile_height_sb;
int uniform_tile_spacing_flag;
int log2_tile_cols; // only valid for uniform tiles
int log2_tile_rows; // only valid for uniform tiles
int tile_col_start_sb[MAX_TILE_COLS + 1]; // valid for 0 <= i <= tile_cols
int tile_row_start_sb[MAX_TILE_ROWS + 1]; // valid for 0 <= i <= tile_rows
#if CONFIG_DEPENDENT_HORZTILES
int tile_row_independent[MAX_TILE_ROWS]; // valid for 0 <= i < tile_rows
#endif
#else
int log2_tile_cols, log2_tile_rows; // Used in non-large_scale_tile_coding.
int tile_width, tile_height; // In MI units
#endif // CONFIG_MAX_TILE
#if CONFIG_EXT_TILE
unsigned int large_scale_tile;
unsigned int single_tile_decoding;
#endif // CONFIG_EXT_TILE
#if CONFIG_DEPENDENT_HORZTILES
int dependent_horz_tiles;
int tile_group_start_row[MAX_TILE_ROWS][MAX_TILE_COLS];
int tile_group_start_col[MAX_TILE_ROWS][MAX_TILE_COLS];
#endif
#if CONFIG_LOOPFILTERING_ACROSS_TILES
int loop_filter_across_tiles_enabled;
#endif // CONFIG_LOOPFILTERING_ACROSS_TILES
int byte_alignment;
int skip_loop_filter;
// Private data associated with the frame buffer callbacks.
void *cb_priv;
aom_get_frame_buffer_cb_fn_t get_fb_cb;
aom_release_frame_buffer_cb_fn_t release_fb_cb;
// Handles memory for the codec.
InternalFrameBufferList int_frame_buffers;
// External BufferPool passed from outside.
BufferPool *buffer_pool;
PARTITION_CONTEXT *above_seg_context;
ENTROPY_CONTEXT *above_context[MAX_MB_PLANE];
TXFM_CONTEXT *above_txfm_context;
TXFM_CONTEXT *top_txfm_context[MAX_MB_PLANE];
TXFM_CONTEXT left_txfm_context[MAX_MB_PLANE][2 * MAX_MIB_SIZE];
int above_context_alloc_cols;
// scratch memory for intraonly/keyframe forward updates from default tables
// - this is intentionally not placed in FRAME_CONTEXT since it's reset upon
// each keyframe and not used afterwards
aom_prob kf_y_prob[INTRA_MODES][INTRA_MODES][INTRA_MODES - 1];
#if CONFIG_GLOBAL_MOTION
WarpedMotionParams global_motion[TOTAL_REFS_PER_FRAME];
#endif
BLOCK_SIZE sb_size; // Size of the superblock used for this frame
int mib_size; // Size of the superblock in units of MI blocks
int mib_size_log2; // Log 2 of above.
#if CONFIG_CDEF
int cdef_pri_damping;
int cdef_sec_damping;
int nb_cdef_strengths;
int cdef_strengths[CDEF_MAX_STRENGTHS];
int cdef_uv_strengths[CDEF_MAX_STRENGTHS];
int cdef_bits;
#endif
int delta_q_present_flag;
// Resolution of delta quant
int delta_q_res;
#if CONFIG_EXT_DELTA_Q
int delta_lf_present_flag;
// Resolution of delta lf level
int delta_lf_res;
#if CONFIG_LOOPFILTER_LEVEL
// This is a flag for number of deltas of loop filter level
// 0: use 1 delta, for y_vertical, y_horizontal, u, and v
// 1: use separate deltas for each filter level
int delta_lf_multi;
#endif // CONFIG_LOOPFILTER_LEVEL
#endif
int num_tg;
#if CONFIG_REFERENCE_BUFFER
SequenceHeader seq_params;
int current_frame_id;
int ref_frame_id[REF_FRAMES];
int valid_for_referencing[REF_FRAMES];
int refresh_mask;
int invalid_delta_frame_id_minus1;
#endif // CONFIG_REFERENCE_BUFFER
#if CONFIG_ANS && ANS_MAX_SYMBOLS
int ans_window_size_log2;
#endif
#if CONFIG_NCOBMC_ADAPT_WEIGHT
NCOBMC_KERNELS ncobmc_kernels[ADAPT_OVERLAP_BLOCKS][ALL_NCOBMC_MODES];
uint8_t *ncobmcaw_buf[4];
#endif
#if CONFIG_LV_MAP
LV_MAP_CTX_TABLE coeff_ctx_table;
#endif
#if CONFIG_LPF_SB
int final_lpf_encode;
#endif
#if CONFIG_ADAPT_SCAN
int use_adapt_scan;
#endif
#if CONFIG_MFMV
TPL_MV_REF *tpl_mvs;
#endif
} AV1_COMMON;
// TODO(hkuang): Don't need to lock the whole pool after implementing atomic
// frame reference count.
static void lock_buffer_pool(BufferPool *const pool) {
#if CONFIG_MULTITHREAD
pthread_mutex_lock(&pool->pool_mutex);
#else
(void)pool;
#endif
}
static void unlock_buffer_pool(BufferPool *const pool) {
#if CONFIG_MULTITHREAD
pthread_mutex_unlock(&pool->pool_mutex);
#else
(void)pool;
#endif
}
static INLINE YV12_BUFFER_CONFIG *get_ref_frame(AV1_COMMON *cm, int index) {
if (index < 0 || index >= REF_FRAMES) return NULL;
if (cm->ref_frame_map[index] < 0) return NULL;
assert(cm->ref_frame_map[index] < FRAME_BUFFERS);
return &cm->buffer_pool->frame_bufs[cm->ref_frame_map[index]].buf;
}
static INLINE YV12_BUFFER_CONFIG *get_frame_new_buffer(
const AV1_COMMON *const cm) {
return &cm->buffer_pool->frame_bufs[cm->new_fb_idx].buf;
}
static INLINE int get_free_fb(AV1_COMMON *cm) {
RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs;
int i;
lock_buffer_pool(cm->buffer_pool);
for (i = 0; i < FRAME_BUFFERS; ++i)
if (frame_bufs[i].ref_count == 0) break;
if (i != FRAME_BUFFERS) {
frame_bufs[i].ref_count = 1;
} else {
// Reset i to be INVALID_IDX to indicate no free buffer found.
i = INVALID_IDX;
}
unlock_buffer_pool(cm->buffer_pool);
return i;
}
static INLINE void ref_cnt_fb(RefCntBuffer *bufs, int *idx, int new_idx) {
const int ref_index = *idx;
if (ref_index >= 0 && bufs[ref_index].ref_count > 0)
bufs[ref_index].ref_count--;
*idx = new_idx;
bufs[new_idx].ref_count++;
}
#if CONFIG_TEMPMV_SIGNALING
// Returns 1 if this frame might use mvs from some previous frame. This
// function doesn't consider whether prev_frame is actually suitable (see
// frame_can_use_prev_frame_mvs for that)
static INLINE int frame_might_use_prev_frame_mvs(const AV1_COMMON *cm) {
return !cm->error_resilient_mode && !cm->intra_only;
}
// Returns 1 if this frame really can use MVs from some previous frame.
static INLINE int frame_can_use_prev_frame_mvs(const AV1_COMMON *cm) {
return (frame_might_use_prev_frame_mvs(cm) && cm->last_show_frame &&
cm->prev_frame && !cm->prev_frame->intra_only &&
cm->width == cm->prev_frame->width &&
cm->height == cm->prev_frame->height);
}
#endif
static INLINE void ensure_mv_buffer(RefCntBuffer *buf, AV1_COMMON *cm) {
if (buf->mvs == NULL || buf->mi_rows < cm->mi_rows ||
buf->mi_cols < cm->mi_cols) {
aom_free(buf->mvs);
buf->mi_rows = cm->mi_rows;
buf->mi_cols = cm->mi_cols;
#if CONFIG_TMV
CHECK_MEM_ERROR(cm, buf->mvs,
(MV_REF *)aom_calloc(
((cm->mi_rows + 1) >> 1) * ((cm->mi_cols + 1) >> 1),
sizeof(*buf->mvs)));
#else
CHECK_MEM_ERROR(
cm, buf->mvs,
(MV_REF *)aom_calloc(cm->mi_rows * cm->mi_cols, sizeof(*buf->mvs)));
#endif // CONFIG_TMV
}
#if CONFIG_MFMV
if (cm->tpl_mvs == NULL || buf->mi_rows < cm->mi_rows ||
buf->mi_cols < cm->mi_cols) {
aom_free(cm->tpl_mvs);
CHECK_MEM_ERROR(cm, cm->tpl_mvs, (TPL_MV_REF *)aom_calloc(
((cm->mi_rows + MAX_MIB_SIZE) >> 1) *
(cm->mi_stride >> 1),
sizeof(*cm->tpl_mvs)));
}
#endif
}
#if CONFIG_VAR_REFS
#define LAST_IS_VALID(cm) ((cm)->frame_refs[LAST_FRAME - 1].is_valid)
#define LAST2_IS_VALID(cm) ((cm)->frame_refs[LAST2_FRAME - 1].is_valid)
#define LAST3_IS_VALID(cm) ((cm)->frame_refs[LAST3_FRAME - 1].is_valid)
#define GOLDEN_IS_VALID(cm) ((cm)->frame_refs[GOLDEN_FRAME - 1].is_valid)
#define BWDREF_IS_VALID(cm) ((cm)->frame_refs[BWDREF_FRAME - 1].is_valid)
#define ALTREF2_IS_VALID(cm) ((cm)->frame_refs[ALTREF2_FRAME - 1].is_valid)
#define ALTREF_IS_VALID(cm) ((cm)->frame_refs[ALTREF_FRAME - 1].is_valid)
#define L_OR_L2(cm) (LAST_IS_VALID(cm) || LAST2_IS_VALID(cm))
#define L_AND_L2(cm) (LAST_IS_VALID(cm) && LAST2_IS_VALID(cm))
#define L_AND_L3(cm) (LAST_IS_VALID(cm) && LAST3_IS_VALID(cm))
#define L_AND_G(cm) (LAST_IS_VALID(cm) && GOLDEN_IS_VALID(cm))
#define L3_OR_G(cm) (LAST3_IS_VALID(cm) || GOLDEN_IS_VALID(cm))
#define L3_AND_G(cm) (LAST3_IS_VALID(cm) && GOLDEN_IS_VALID(cm))
#define BWD_OR_ALT2(cm) (BWDREF_IS_VALID(cm) || ALTREF2_IS_VALID(cm))
#define BWD_AND_ALT2(cm) (BWDREF_IS_VALID(cm) && ALTREF2_IS_VALID(cm))
#define BWD_OR_ALT(cm) (BWDREF_IS_VALID(cm) || ALTREF_IS_VALID(cm))
#define BWD_AND_ALT(cm) (BWDREF_IS_VALID(cm) && ALTREF_IS_VALID(cm))
#endif // CONFIG_VAR_REFS
static INLINE int mi_cols_aligned_to_sb(const AV1_COMMON *cm) {
return ALIGN_POWER_OF_TWO(cm->mi_cols, cm->mib_size_log2);
}
static INLINE int mi_rows_aligned_to_sb(const AV1_COMMON *cm) {
return ALIGN_POWER_OF_TWO(cm->mi_rows, cm->mib_size_log2);
}
static INLINE int frame_is_intra_only(const AV1_COMMON *const cm) {
return cm->frame_type == KEY_FRAME || cm->intra_only;
}
#if CONFIG_CFL
#if CONFIG_CHROMA_SUB8X8 && CONFIG_DEBUG
static INLINE void cfl_clear_sub8x8_val(CFL_CTX *cfl) {
memset(cfl->sub8x8_val, 0, sizeof(cfl->sub8x8_val));
}
#endif // CONFIG_CHROMA_SUB8X8 && CONFIG_DEBUG
void cfl_init(CFL_CTX *cfl, AV1_COMMON *cm);
#endif // CONFIG_CFL
static INLINE void av1_init_macroblockd(AV1_COMMON *cm, MACROBLOCKD *xd,
#if CONFIG_CFL
CFL_CTX *cfl,
#endif
tran_low_t *dqcoeff) {
for (int i = 0; i < MAX_MB_PLANE; ++i) {
xd->plane[i].dqcoeff = dqcoeff;
xd->above_context[i] = cm->above_context[i];
if (xd->plane[i].plane_type == PLANE_TYPE_Y) {
memcpy(xd->plane[i].seg_dequant, cm->y_dequant, sizeof(cm->y_dequant));
#if CONFIG_AOM_QM
memcpy(xd->plane[i].seg_iqmatrix, cm->y_iqmatrix, sizeof(cm->y_iqmatrix));
#endif
#if CONFIG_NEW_QUANT
memcpy(xd->plane[i].seg_dequant_nuq, cm->y_dequant_nuq,
sizeof(cm->y_dequant_nuq));
#endif
} else {
memcpy(xd->plane[i].seg_dequant, cm->uv_dequant, sizeof(cm->uv_dequant));
#if CONFIG_AOM_QM
memcpy(xd->plane[i].seg_iqmatrix, cm->uv_iqmatrix,
sizeof(cm->uv_iqmatrix));
#endif
#if CONFIG_NEW_QUANT
memcpy(xd->plane[i].seg_dequant_nuq, cm->uv_dequant_nuq,
sizeof(cm->uv_dequant_nuq));
#endif
}
}
xd->fc = cm->fc;
xd->above_seg_context = cm->above_seg_context;
xd->above_txfm_context = cm->above_txfm_context;
#if CONFIG_CFL
cfl_init(cfl, cm);
xd->cfl = cfl;
#endif
xd->mi_stride = cm->mi_stride;
xd->error_info = &cm->error;
}
static INLINE void set_skip_context(MACROBLOCKD *xd, int mi_row, int mi_col) {
int i;
int row_offset = mi_row;
int col_offset = mi_col;
for (i = 0; i < MAX_MB_PLANE; ++i) {
struct macroblockd_plane *const pd = &xd->plane[i];
#if CONFIG_CHROMA_SUB8X8
// Offset the buffer pointer
const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
if (pd->subsampling_y && (mi_row & 0x01) && (mi_size_high[bsize] == 1))
row_offset = mi_row - 1;
if (pd->subsampling_x && (mi_col & 0x01) && (mi_size_wide[bsize] == 1))
col_offset = mi_col - 1;
#endif
int above_idx = col_offset << (MI_SIZE_LOG2 - tx_size_wide_log2[0]);
int left_idx = (row_offset & MAX_MIB_MASK)
<< (MI_SIZE_LOG2 - tx_size_high_log2[0]);
pd->above_context = &xd->above_context[i][above_idx >> pd->subsampling_x];
pd->left_context = &xd->left_context[i][left_idx >> pd->subsampling_y];
}
}
static INLINE int calc_mi_size(int len) {
// len is in mi units.
return len + MAX_MIB_SIZE;
}
static INLINE void set_plane_n4(MACROBLOCKD *const xd, int bw, int bh) {
int i;
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].n4_w = (bw << 1) >> xd->plane[i].subsampling_x;
xd->plane[i].n4_h = (bh << 1) >> xd->plane[i].subsampling_y;
xd->plane[i].width = (bw * MI_SIZE) >> xd->plane[i].subsampling_x;
xd->plane[i].height = (bh * MI_SIZE) >> xd->plane[i].subsampling_y;
xd->plane[i].width = AOMMAX(xd->plane[i].width, 4);
xd->plane[i].height = AOMMAX(xd->plane[i].height, 4);
}
}
static INLINE void set_mi_row_col(MACROBLOCKD *xd, const TileInfo *const tile,
int mi_row, int bh, int mi_col, int bw,
#if CONFIG_DEPENDENT_HORZTILES
int dependent_horz_tile_flag,
#endif // CONFIG_DEPENDENT_HORZTILES
int mi_rows, int mi_cols) {
xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8);
xd->mb_to_bottom_edge = ((mi_rows - bh - mi_row) * MI_SIZE) * 8;
xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8);
xd->mb_to_right_edge = ((mi_cols - bw - mi_col) * MI_SIZE) * 8;
#if CONFIG_DEPENDENT_HORZTILES
if (dependent_horz_tile_flag) {
xd->up_available = (mi_row > tile->mi_row_start) || !tile->tg_horz_boundary;
} else {
#endif // CONFIG_DEPENDENT_HORZTILES
// Are edges available for intra prediction?
xd->up_available = (mi_row > tile->mi_row_start);
#if CONFIG_DEPENDENT_HORZTILES
}
#endif // CONFIG_DEPENDENT_HORZTILES
xd->left_available = (mi_col > tile->mi_col_start);
#if CONFIG_CHROMA_SUB8X8
xd->chroma_up_available = xd->up_available;
xd->chroma_left_available = xd->left_available;
if (xd->plane[1].subsampling_x && bw < mi_size_wide[BLOCK_8X8])
xd->chroma_left_available = (mi_col - 1) > tile->mi_col_start;
if (xd->plane[1].subsampling_y && bh < mi_size_high[BLOCK_8X8])
xd->chroma_up_available = (mi_row - 1) > tile->mi_row_start;
#endif
if (xd->up_available) {
xd->above_mi = xd->mi[-xd->mi_stride];
// above_mi may be NULL in encoder's first pass.
xd->above_mbmi = xd->above_mi ? &xd->above_mi->mbmi : NULL;
} else {
xd->above_mi = NULL;
xd->above_mbmi = NULL;
}
if (xd->left_available) {
xd->left_mi = xd->mi[-1];
// left_mi may be NULL in encoder's first pass.
xd->left_mbmi = xd->left_mi ? &xd->left_mi->mbmi : NULL;
} else {
xd->left_mi = NULL;
xd->left_mbmi = NULL;
}
xd->n8_h = bh;
xd->n8_w = bw;
xd->is_sec_rect = 0;
if (xd->n8_w < xd->n8_h)
if (mi_col & (xd->n8_h - 1)) xd->is_sec_rect = 1;
if (xd->n8_w > xd->n8_h)
if (mi_row & (xd->n8_w - 1)) xd->is_sec_rect = 1;
}
static INLINE const aom_prob *get_y_mode_probs(const AV1_COMMON *cm,
const MODE_INFO *mi,
const MODE_INFO *above_mi,
const MODE_INFO *left_mi,
int block) {
const PREDICTION_MODE above = av1_above_block_mode(mi, above_mi, block);
const PREDICTION_MODE left = av1_left_block_mode(mi, left_mi, block);
return cm->kf_y_prob[above][left];
}
static INLINE aom_cdf_prob *get_y_mode_cdf(FRAME_CONTEXT *tile_ctx,
const MODE_INFO *mi,
const MODE_INFO *above_mi,
const MODE_INFO *left_mi,
int block) {
const PREDICTION_MODE above = av1_above_block_mode(mi, above_mi, block);
const PREDICTION_MODE left = av1_left_block_mode(mi, left_mi, block);
#if CONFIG_KF_CTX
int above_ctx = intra_mode_context[above];
int left_ctx = intra_mode_context[left];
return tile_ctx->kf_y_cdf[above_ctx][left_ctx];
#else
return tile_ctx->kf_y_cdf[above][left];
#endif
}
static INLINE void update_partition_context(MACROBLOCKD *xd, int mi_row,
int mi_col, BLOCK_SIZE subsize,
BLOCK_SIZE bsize) {
PARTITION_CONTEXT *const above_ctx = xd->above_seg_context + mi_col;
PARTITION_CONTEXT *const left_ctx =
xd->left_seg_context + (mi_row & MAX_MIB_MASK);
#if CONFIG_EXT_PARTITION_TYPES
const int bw = mi_size_wide[bsize];
const int bh = mi_size_high[bsize];
memset(above_ctx, partition_context_lookup[subsize].above, bw);
memset(left_ctx, partition_context_lookup[subsize].left, bh);
#else
// num_4x4_blocks_wide_lookup[bsize] / 2
const int bs = mi_size_wide[bsize];
// update the partition context at the end notes. set partition bits
// of block sizes larger than the current one to be one, and partition
// bits of smaller block sizes to be zero.
memset(above_ctx, partition_context_lookup[subsize].above, bs);
memset(left_ctx, partition_context_lookup[subsize].left, bs);
#endif // CONFIG_EXT_PARTITION_TYPES
}
static INLINE int is_chroma_reference(int mi_row, int mi_col, BLOCK_SIZE bsize,
int subsampling_x, int subsampling_y) {
#if CONFIG_CHROMA_SUB8X8
const int bw = mi_size_wide[bsize];
const int bh = mi_size_high[bsize];
int ref_pos = ((mi_row & 0x01) || !(bh & 0x01) || !subsampling_y) &&
((mi_col & 0x01) || !(bw & 0x01) || !subsampling_x);
return ref_pos;
#else
int ref_pos = !(((mi_row & 0x01) && subsampling_y) ||
((mi_col & 0x01) && subsampling_x));
if (AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8) ref_pos = 1;
return ref_pos;
#endif
}
static INLINE BLOCK_SIZE scale_chroma_bsize(BLOCK_SIZE bsize, int subsampling_x,
int subsampling_y) {
BLOCK_SIZE bs = bsize;
switch (bsize) {
case BLOCK_4X4:
if (subsampling_x == 1 && subsampling_y == 1)
bs = BLOCK_8X8;
else if (subsampling_x == 1)
bs = BLOCK_8X4;
else if (subsampling_y == 1)
bs = BLOCK_4X8;
break;
case BLOCK_4X8:
if (subsampling_x == 1 && subsampling_y == 1)
bs = BLOCK_8X8;
else if (subsampling_x == 1)
bs = BLOCK_8X8;
else if (subsampling_y == 1)
bs = BLOCK_4X8;
break;
case BLOCK_8X4:
if (subsampling_x == 1 && subsampling_y == 1)
bs = BLOCK_8X8;
else if (subsampling_x == 1)
bs = BLOCK_8X4;
else if (subsampling_y == 1)
bs = BLOCK_8X8;
break;
case BLOCK_4X16:
if (subsampling_x == 1 && subsampling_y == 1)
bs = BLOCK_8X16;
else if (subsampling_x == 1)
bs = BLOCK_8X16;
else if (subsampling_y == 1)
bs = BLOCK_4X16;
break;
case BLOCK_16X4:
if (subsampling_x == 1 && subsampling_y == 1)
bs = BLOCK_16X8;
else if (subsampling_x == 1)
bs = BLOCK_16X4;
else if (subsampling_y == 1)
bs = BLOCK_16X8;
break;
default: break;
}
return bs;
}
static INLINE aom_cdf_prob cdf_element_prob(const aom_cdf_prob *cdf,
size_t element) {
assert(cdf != NULL);
#if !CONFIG_ANS
return (element > 0 ? cdf[element - 1] : CDF_PROB_TOP) - cdf[element];
#else
return cdf[element] - (element > 0 ? cdf[element - 1] : 0);
#endif
}
static INLINE void partition_gather_horz_alike(aom_cdf_prob *out,
const aom_cdf_prob *const in) {
out[0] = CDF_PROB_TOP;
out[0] -= cdf_element_prob(in, PARTITION_HORZ);
out[0] -= cdf_element_prob(in, PARTITION_SPLIT);
#if CONFIG_EXT_PARTITION_TYPES
out[0] -= cdf_element_prob(in, PARTITION_HORZ_A);
out[0] -= cdf_element_prob(in, PARTITION_HORZ_B);
out[0] -= cdf_element_prob(in, PARTITION_VERT_A);
out[0] -= cdf_element_prob(in, PARTITION_HORZ_4);
#endif
out[0] = AOM_ICDF(out[0]);
out[1] = AOM_ICDF(CDF_PROB_TOP);
}
static INLINE void partition_gather_vert_alike(aom_cdf_prob *out,
const aom_cdf_prob *const in) {
out[0] = CDF_PROB_TOP;
out[0] -= cdf_element_prob(in, PARTITION_VERT);
out[0] -= cdf_element_prob(in, PARTITION_SPLIT);
#if CONFIG_EXT_PARTITION_TYPES
out[0] -= cdf_element_prob(in, PARTITION_HORZ_A);
out[0] -= cdf_element_prob(in, PARTITION_VERT_A);
out[0] -= cdf_element_prob(in, PARTITION_VERT_B);
out[0] -= cdf_element_prob(in, PARTITION_VERT_4);
#endif
out[0] = AOM_ICDF(out[0]);
out[1] = AOM_ICDF(CDF_PROB_TOP);
}
#if CONFIG_EXT_PARTITION_TYPES
static INLINE void update_ext_partition_context(MACROBLOCKD *xd, int mi_row,
int mi_col, BLOCK_SIZE subsize,
BLOCK_SIZE bsize,
PARTITION_TYPE partition) {
if (bsize >= BLOCK_8X8) {
#if !CONFIG_EXT_PARTITION_TYPES_AB
const int hbs = mi_size_wide[bsize] / 2;
BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT);
#endif
switch (partition) {
case PARTITION_SPLIT:
if (bsize != BLOCK_8X8) break;
case PARTITION_NONE:
case PARTITION_HORZ:
case PARTITION_VERT:
case PARTITION_HORZ_4:
case PARTITION_VERT_4:
update_partition_context(xd, mi_row, mi_col, subsize, bsize);
break;
#if CONFIG_EXT_PARTITION_TYPES_AB
case PARTITION_HORZ_A:
update_partition_context(xd, mi_row, mi_col,
get_subsize(bsize, PARTITION_HORZ_4), subsize);
update_partition_context(xd, mi_row + mi_size_high[bsize] / 2, mi_col,
subsize, subsize);
break;
case PARTITION_HORZ_B:
update_partition_context(xd, mi_row, mi_col, subsize, subsize);
update_partition_context(xd, mi_row + mi_size_high[bsize] / 2, mi_col,
get_subsize(bsize, PARTITION_HORZ_4), subsize);
break;
case PARTITION_VERT_A:
update_partition_context(xd, mi_row, mi_col,
get_subsize(bsize, PARTITION_VERT_4), subsize);
update_partition_context(xd, mi_row, mi_col + mi_size_wide[bsize] / 2,
subsize, subsize);
break;
case PARTITION_VERT_B:
update_partition_context(xd, mi_row, mi_col, subsize, subsize);
update_partition_context(xd, mi_row, mi_col + mi_size_wide[bsize] / 2,
get_subsize(bsize, PARTITION_VERT_4), subsize);
break;
#else
case PARTITION_HORZ_A:
update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
update_partition_context(xd, mi_row + hbs, mi_col, subsize, subsize);
break;
case PARTITION_HORZ_B:
update_partition_context(xd, mi_row, mi_col, subsize, subsize);
update_partition_context(xd, mi_row + hbs, mi_col, bsize2, subsize);
break;
case PARTITION_VERT_A:
update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
update_partition_context(xd, mi_row, mi_col + hbs, subsize, subsize);
break;
case PARTITION_VERT_B:
update_partition_context(xd, mi_row, mi_col, subsize, subsize);
update_partition_context(xd, mi_row, mi_col + hbs, bsize2, subsize);
break;
#endif
default: assert(0 && "Invalid partition type");
}
}
}
#endif // CONFIG_EXT_PARTITION_TYPES
static INLINE int partition_plane_context(const MACROBLOCKD *xd, int mi_row,
int mi_col,
#if CONFIG_UNPOISON_PARTITION_CTX
int has_rows, int has_cols,
#endif
BLOCK_SIZE bsize) {
const PARTITION_CONTEXT *above_ctx = xd->above_seg_context + mi_col;
const PARTITION_CONTEXT *left_ctx =
xd->left_seg_context + (mi_row & MAX_MIB_MASK);
// Minimum partition point is 8x8. Offset the bsl accordingly.
const int bsl = mi_width_log2_lookup[bsize] - mi_width_log2_lookup[BLOCK_8X8];
int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1;
assert(b_width_log2_lookup[bsize] == b_height_log2_lookup[bsize]);
assert(bsl >= 0);
#if CONFIG_UNPOISON_PARTITION_CTX
if (has_rows && has_cols)
return (left * 2 + above) + bsl * PARTITION_PLOFFSET;
else if (has_rows && !has_cols)
return PARTITION_CONTEXTS_PRIMARY + bsl;
else if (!has_rows && has_cols)
return PARTITION_CONTEXTS_PRIMARY + PARTITION_BLOCK_SIZES + bsl;
else
return INVALID_PARTITION_CTX; // Bogus context, forced SPLIT
#else
return (left * 2 + above) + bsl * PARTITION_PLOFFSET;
#endif
}
static INLINE int max_block_wide(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
int plane) {
int max_blocks_wide = block_size_wide[bsize];
const struct macroblockd_plane *const pd = &xd->plane[plane];
if (xd->mb_to_right_edge < 0)
max_blocks_wide += xd->mb_to_right_edge >> (3 + pd->subsampling_x);
// Scale the width in the transform block unit.
return max_blocks_wide >> tx_size_wide_log2[0];
}
static INLINE int max_block_high(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
int plane) {
int max_blocks_high = block_size_high[bsize];
const struct macroblockd_plane *const pd = &xd->plane[plane];
if (xd->mb_to_bottom_edge < 0)
max_blocks_high += xd->mb_to_bottom_edge >> (3 + pd->subsampling_y);
// Scale the width in the transform block unit.
return max_blocks_high >> tx_size_wide_log2[0];
}
#if CONFIG_CFL
static INLINE int max_intra_block_width(const MACROBLOCKD *xd,
BLOCK_SIZE plane_bsize, int plane,
TX_SIZE tx_size) {
const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane)
<< tx_size_wide_log2[0];
return ALIGN_POWER_OF_TWO(max_blocks_wide, tx_size_wide_log2[tx_size]);
}
static INLINE int max_intra_block_height(const MACROBLOCKD *xd,
BLOCK_SIZE plane_bsize, int plane,
TX_SIZE tx_size) {
const int max_blocks_high = max_block_high(xd, plane_bsize, plane)
<< tx_size_high_log2[0];
return ALIGN_POWER_OF_TWO(max_blocks_high, tx_size_high_log2[tx_size]);
}
#endif // CONFIG_CFL
static INLINE void av1_zero_above_context(AV1_COMMON *const cm,
int mi_col_start, int mi_col_end) {
const int width = mi_col_end - mi_col_start;
const int aligned_width = ALIGN_POWER_OF_TWO(width, cm->mib_size_log2);
const int offset_y = mi_col_start << (MI_SIZE_LOG2 - tx_size_wide_log2[0]);
const int width_y = aligned_width << (MI_SIZE_LOG2 - tx_size_wide_log2[0]);
const int offset_uv = offset_y >> cm->subsampling_x;
const int width_uv = width_y >> cm->subsampling_x;
av1_zero_array(cm->above_context[0] + offset_y, width_y);
av1_zero_array(cm->above_context[1] + offset_uv, width_uv);
av1_zero_array(cm->above_context[2] + offset_uv, width_uv);
av1_zero_array(cm->above_seg_context + mi_col_start, aligned_width);
av1_zero_array(cm->above_txfm_context + (mi_col_start << TX_UNIT_WIDE_LOG2),
aligned_width << TX_UNIT_WIDE_LOG2);
}
static INLINE void av1_zero_left_context(MACROBLOCKD *const xd) {
av1_zero(xd->left_context);
av1_zero(xd->left_seg_context);
av1_zero(xd->left_txfm_context_buffer);
}
// Disable array-bounds checks as the TX_SIZE enum contains values larger than
// TX_SIZES_ALL (TX_INVALID) which make extending the array as a workaround
// infeasible. The assert is enough for static analysis and this or other tools
// asan, valgrind would catch oob access at runtime.
#if defined(__GNUC__) && __GNUC__ >= 4
#pragma GCC diagnostic ignored "-Warray-bounds"
#endif
static INLINE TX_SIZE get_min_tx_size(TX_SIZE tx_size) {
assert(tx_size < TX_SIZES_ALL);
return txsize_sqr_map[tx_size];
}
#if defined(__GNUC__) && __GNUC__ >= 4
#pragma GCC diagnostic warning "-Warray-bounds"
#endif
static INLINE void set_txfm_ctx(TXFM_CONTEXT *txfm_ctx, uint8_t txs, int len) {
int i;
for (i = 0; i < len; ++i) txfm_ctx[i] = txs;
}
static INLINE void set_txfm_ctxs(TX_SIZE tx_size, int n8_w, int n8_h, int skip,
const MACROBLOCKD *xd) {
uint8_t bw = tx_size_wide[tx_size];
uint8_t bh = tx_size_high[tx_size];
if (skip) {
bw = n8_w * MI_SIZE;
bh = n8_h * MI_SIZE;
}
set_txfm_ctx(xd->above_txfm_context, bw, n8_w << TX_UNIT_WIDE_LOG2);
set_txfm_ctx(xd->left_txfm_context, bh, n8_h << TX_UNIT_HIGH_LOG2);
}
static INLINE void txfm_partition_update(TXFM_CONTEXT *above_ctx,
TXFM_CONTEXT *left_ctx,
TX_SIZE tx_size, TX_SIZE txb_size) {
BLOCK_SIZE bsize = txsize_to_bsize[txb_size];
int bh = mi_size_high[bsize] << TX_UNIT_HIGH_LOG2;
int bw = mi_size_wide[bsize] << TX_UNIT_WIDE_LOG2;
uint8_t txw = tx_size_wide[tx_size];
uint8_t txh = tx_size_high[tx_size];
int i;
for (i = 0; i < bh; ++i) left_ctx[i] = txh;
for (i = 0; i < bw; ++i) above_ctx[i] = txw;
}
static INLINE TX_SIZE get_sqr_tx_size(int tx_dim) {
switch (tx_dim) {
#if CONFIG_EXT_PARTITION
case 128:
#endif // CONFIG_EXT_PARTITION
case 64:
#if CONFIG_TX64X64
return TX_64X64;
#else
return TX_32X32;
#endif // CONFIG_TX64X64
break;
case 32: return TX_32X32; break;
case 16: return TX_16X16; break;
case 8: return TX_8X8; break;
default: return TX_4X4;
}
}
static INLINE int txfm_partition_context(TXFM_CONTEXT *above_ctx,
TXFM_CONTEXT *left_ctx,
BLOCK_SIZE bsize, TX_SIZE tx_size) {
const uint8_t txw = tx_size_wide[tx_size];
const uint8_t txh = tx_size_high[tx_size];
const int above = *above_ctx < txw;
const int left = *left_ctx < txh;
int category = TXFM_PARTITION_CONTEXTS - 1;
// dummy return, not used by others.
if (tx_size <= TX_4X4) return 0;
TX_SIZE max_tx_size =
get_sqr_tx_size(AOMMAX(block_size_wide[bsize], block_size_high[bsize]));
if (max_tx_size >= TX_8X8) {
category = (tx_size != max_tx_size && max_tx_size > TX_8X8) +
(TX_SIZES - 1 - max_tx_size) * 2;
}
if (category == TXFM_PARTITION_CONTEXTS - 1) return category;
return category * 3 + above + left;
}
// Compute the next partition in the direction of the sb_type stored in the mi
// array, starting with bsize.
static INLINE PARTITION_TYPE get_partition(const AV1_COMMON *const cm,
int mi_row, int mi_col,
BLOCK_SIZE bsize) {
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return PARTITION_INVALID;
const int offset = mi_row * cm->mi_stride + mi_col;
MODE_INFO **mi = cm->mi_grid_visible + offset;
const BLOCK_SIZE subsize = mi[0]->mbmi.sb_type;
if (subsize == bsize) return PARTITION_NONE;
const int bhigh = mi_size_high[bsize];
const int bwide = mi_size_wide[bsize];
const int sshigh = mi_size_high[subsize];
const int sswide = mi_size_wide[subsize];
#if CONFIG_EXT_PARTITION_TYPES
if (bsize > BLOCK_8X8 && mi_row + bwide / 2 < cm->mi_rows &&
mi_col + bhigh / 2 < cm->mi_cols) {
// In this case, the block might be using an extended partition
// type.
const MB_MODE_INFO *const mbmi_right = &mi[bwide / 2]->mbmi;
const MB_MODE_INFO *const mbmi_below = &mi[bhigh / 2 * cm->mi_stride]->mbmi;
if (sswide == bwide) {
#if CONFIG_EXT_PARTITION_TYPES_AB
// Smaller height but same width. Is PARTITION_HORZ, PARTITION_HORZ_4,
// PARTITION_HORZ_A or PARTITION_HORZ_B.
if (sshigh * 2 == bhigh)
return (mbmi_below->sb_type == subsize) ? PARTITION_HORZ
: PARTITION_HORZ_B;
assert(sshigh * 4 == bhigh);
return (mbmi_below->sb_type == subsize) ? PARTITION_HORZ_4
: PARTITION_HORZ_A;
#else
// Smaller height but same width. Is PARTITION_HORZ_4, PARTITION_HORZ or
// PARTITION_HORZ_B. To distinguish the latter two, check if the lower
// half was split.
if (sshigh * 4 == bhigh) return PARTITION_HORZ_4;
assert(sshigh * 2 == bhigh);
if (mbmi_below->sb_type == subsize)
return PARTITION_HORZ;
else
return PARTITION_HORZ_B;
#endif
} else if (sshigh == bhigh) {
#if CONFIG_EXT_PARTITION_TYPES_AB
// Smaller width but same height. Is PARTITION_VERT, PARTITION_VERT_4,
// PARTITION_VERT_A or PARTITION_VERT_B.
if (sswide * 2 == bwide)
return (mbmi_right->sb_type == subsize) ? PARTITION_VERT
: PARTITION_VERT_B;
assert(sswide * 4 == bwide);
return (mbmi_right->sb_type == subsize) ? PARTITION_VERT_4
: PARTITION_VERT_A;
#else
// Smaller width but same height. Is PARTITION_VERT_4, PARTITION_VERT or
// PARTITION_VERT_B. To distinguish the latter two, check if the right
// half was split.
if (sswide * 4 == bwide) return PARTITION_VERT_4;
assert(sswide * 2 == bhigh);
if (mbmi_right->sb_type == subsize)
return PARTITION_VERT;
else
return PARTITION_VERT_B;
#endif
} else {
#if !CONFIG_EXT_PARTITION_TYPES_AB
// Smaller width and smaller height. Might be PARTITION_SPLIT or could be
// PARTITION_HORZ_A or PARTITION_VERT_A. If subsize isn't halved in both
// dimensions, we immediately know this is a split (which will recurse to
// get to subsize). Otherwise look down and to the right. With
// PARTITION_VERT_A, the right block will have height bhigh; with
// PARTITION_HORZ_A, the lower block with have width bwide. Otherwise
// it's PARTITION_SPLIT.
if (sswide * 2 != bwide || sshigh * 2 != bhigh) return PARTITION_SPLIT;
if (mi_size_wide[mbmi_below->sb_type] == bwide) return PARTITION_HORZ_A;
if (mi_size_high[mbmi_right->sb_type] == bhigh) return PARTITION_VERT_A;
#endif
return PARTITION_SPLIT;
}
}
#endif
const int vert_split = sswide < bwide;
const int horz_split = sshigh < bhigh;
const int split_idx = (vert_split << 1) | horz_split;
assert(split_idx != 0);
static const PARTITION_TYPE base_partitions[4] = {
PARTITION_INVALID, PARTITION_HORZ, PARTITION_VERT, PARTITION_SPLIT
};
return base_partitions[split_idx];
}
static INLINE void set_use_reference_buffer(AV1_COMMON *const cm, int use) {
#if CONFIG_REFERENCE_BUFFER
cm->seq_params.frame_id_numbers_present_flag = use;
#else
(void)cm;
(void)use;
#endif
}
static INLINE void set_sb_size(AV1_COMMON *const cm, BLOCK_SIZE sb_size) {
cm->sb_size = sb_size;
cm->mib_size = mi_size_wide[cm->sb_size];
cm->mib_size_log2 = b_width_log2_lookup[cm->sb_size];
}
static INLINE int all_lossless(const AV1_COMMON *cm, const MACROBLOCKD *xd) {
int i;
int all_lossless = 1;
if (cm->seg.enabled) {
for (i = 0; i < MAX_SEGMENTS; ++i) {
if (!xd->lossless[i]) {
all_lossless = 0;
break;
}
}
} else {
all_lossless = xd->lossless[0];
}
return all_lossless;
}
static INLINE int use_compressed_header(const AV1_COMMON *cm) {
(void)cm;
#if CONFIG_RESTRICT_COMPRESSED_HDR && CONFIG_NEW_MULTISYMBOL
return 0;
#elif CONFIG_RESTRICT_COMPRESSED_HDR
return cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_FORWARD;
#else
return 1;
#endif // CONFIG_RESTRICT_COMPRESSED_HDR && CONFIG_NEW_MULTISYMBOL
}
#ifdef __cplusplus
} // extern "C"
#endif
#endif // AV1_COMMON_ONYXC_INT_H_