blob: f3ba4b8824d3ec11ae5cc99f752cefb48527b639 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <limits.h>
#include <stdio.h>
#include "aom/aom_encoder.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/binary_codes_writer.h"
#include "aom_dsp/bitwriter_buffer.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/bitops.h"
#include "aom_ports/mem_ops.h"
#include "aom_ports/system_state.h"
#if CONFIG_BITSTREAM_DEBUG
#include "aom_util/debug_util.h"
#endif // CONFIG_BITSTREAM_DEBUG
#include "av1/common/cdef.h"
#include "av1/common/cfl.h"
#include "av1/common/entropy.h"
#include "av1/common/entropymode.h"
#include "av1/common/entropymv.h"
#include "av1/common/mvref_common.h"
#include "av1/common/pred_common.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/common/seg_common.h"
#include "av1/common/tile_common.h"
#include "av1/encoder/bitstream.h"
#include "av1/encoder/cost.h"
#include "av1/encoder/encodemv.h"
#include "av1/encoder/encodetxb.h"
#include "av1/encoder/mcomp.h"
#include "av1/encoder/palette.h"
#include "av1/encoder/segmentation.h"
#include "av1/encoder/tokenize.h"
#define ENC_MISMATCH_DEBUG 0
static INLINE void write_uniform(aom_writer *w, int n, int v) {
const int l = get_unsigned_bits(n);
const int m = (1 << l) - n;
if (l == 0) return;
if (v < m) {
aom_write_literal(w, v, l - 1);
} else {
aom_write_literal(w, m + ((v - m) >> 1), l - 1);
aom_write_literal(w, (v - m) & 1, 1);
}
}
static AOM_INLINE void loop_restoration_write_sb_coeffs(
const AV1_COMMON *const cm, MACROBLOCKD *xd, const RestorationUnitInfo *rui,
aom_writer *const w, int plane, FRAME_COUNTS *counts);
static AOM_INLINE void write_intra_y_mode_kf(FRAME_CONTEXT *frame_ctx,
const MB_MODE_INFO *mi,
const MB_MODE_INFO *above_mi,
const MB_MODE_INFO *left_mi,
PREDICTION_MODE mode,
aom_writer *w) {
assert(!is_intrabc_block(mi));
(void)mi;
aom_write_symbol(w, mode, get_y_mode_cdf(frame_ctx, above_mi, left_mi),
INTRA_MODES);
}
static AOM_INLINE void write_inter_mode(aom_writer *w, PREDICTION_MODE mode,
FRAME_CONTEXT *ec_ctx,
const int16_t mode_ctx) {
const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK;
aom_write_symbol(w, mode != NEWMV, ec_ctx->newmv_cdf[newmv_ctx], 2);
if (mode != NEWMV) {
const int16_t zeromv_ctx =
(mode_ctx >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
aom_write_symbol(w, mode != GLOBALMV, ec_ctx->zeromv_cdf[zeromv_ctx], 2);
if (mode != GLOBALMV) {
int16_t refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK;
aom_write_symbol(w, mode != NEARESTMV, ec_ctx->refmv_cdf[refmv_ctx], 2);
}
}
}
static AOM_INLINE void write_drl_idx(
FRAME_CONTEXT *ec_ctx, const MB_MODE_INFO *mbmi,
const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame, aom_writer *w) {
assert(mbmi->ref_mv_idx < 3);
const int new_mv = mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV;
if (new_mv) {
int idx;
for (idx = 0; idx < 2; ++idx) {
if (mbmi_ext_frame->ref_mv_count > idx + 1) {
uint8_t drl_ctx = av1_drl_ctx(mbmi_ext_frame->weight, idx);
aom_write_symbol(w, mbmi->ref_mv_idx != idx, ec_ctx->drl_cdf[drl_ctx],
2);
if (mbmi->ref_mv_idx == idx) return;
}
}
return;
}
if (have_nearmv_in_inter_mode(mbmi->mode)) {
int idx;
// TODO(jingning): Temporary solution to compensate the NEARESTMV offset.
for (idx = 1; idx < 3; ++idx) {
if (mbmi_ext_frame->ref_mv_count > idx + 1) {
uint8_t drl_ctx = av1_drl_ctx(mbmi_ext_frame->weight, idx);
aom_write_symbol(w, mbmi->ref_mv_idx != (idx - 1),
ec_ctx->drl_cdf[drl_ctx], 2);
if (mbmi->ref_mv_idx == (idx - 1)) return;
}
}
return;
}
}
static AOM_INLINE void write_inter_compound_mode(MACROBLOCKD *xd, aom_writer *w,
PREDICTION_MODE mode,
const int16_t mode_ctx) {
assert(is_inter_compound_mode(mode));
aom_write_symbol(w, INTER_COMPOUND_OFFSET(mode),
xd->tile_ctx->inter_compound_mode_cdf[mode_ctx],
INTER_COMPOUND_MODES);
}
static AOM_INLINE void write_tx_size_vartx(MACROBLOCKD *xd,
const MB_MODE_INFO *mbmi,
TX_SIZE tx_size, int depth,
int blk_row, int blk_col,
aom_writer *w) {
FRAME_CONTEXT *const ec_ctx = xd->tile_ctx;
const int max_blocks_high = max_block_high(xd, mbmi->sb_type, 0);
const int max_blocks_wide = max_block_wide(xd, mbmi->sb_type, 0);
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
if (depth == MAX_VARTX_DEPTH) {
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, tx_size, tx_size);
return;
}
const int ctx = txfm_partition_context(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row,
mbmi->sb_type, tx_size);
const int txb_size_index =
av1_get_txb_size_index(mbmi->sb_type, blk_row, blk_col);
const int write_txfm_partition =
tx_size == mbmi->inter_tx_size[txb_size_index];
if (write_txfm_partition) {
aom_write_symbol(w, 0, ec_ctx->txfm_partition_cdf[ctx], 2);
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, tx_size, tx_size);
// TODO(yuec): set correct txfm partition update for qttx
} else {
const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
const int bsw = tx_size_wide_unit[sub_txs];
const int bsh = tx_size_high_unit[sub_txs];
aom_write_symbol(w, 1, ec_ctx->txfm_partition_cdf[ctx], 2);
if (sub_txs == TX_4X4) {
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, sub_txs, tx_size);
return;
}
assert(bsw > 0 && bsh > 0);
for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh)
for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) {
int offsetr = blk_row + row;
int offsetc = blk_col + col;
write_tx_size_vartx(xd, mbmi, sub_txs, depth + 1, offsetr, offsetc, w);
}
}
}
static AOM_INLINE void write_selected_tx_size(const MACROBLOCKD *xd,
aom_writer *w) {
const MB_MODE_INFO *const mbmi = xd->mi[0];
const BLOCK_SIZE bsize = mbmi->sb_type;
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
if (block_signals_txsize(bsize)) {
const TX_SIZE tx_size = mbmi->tx_size;
const int tx_size_ctx = get_tx_size_context(xd);
const int depth = tx_size_to_depth(tx_size, bsize);
const int max_depths = bsize_to_max_depth(bsize);
const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize);
assert(depth >= 0 && depth <= max_depths);
assert(!is_inter_block(mbmi));
assert(IMPLIES(is_rect_tx(tx_size), is_rect_tx_allowed(xd, mbmi)));
aom_write_symbol(w, depth, ec_ctx->tx_size_cdf[tx_size_cat][tx_size_ctx],
max_depths + 1);
}
}
static int write_skip(const AV1_COMMON *cm, const MACROBLOCKD *xd,
int segment_id, const MB_MODE_INFO *mi, aom_writer *w) {
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
return 1;
} else {
const int skip = mi->skip;
const int ctx = av1_get_skip_context(xd);
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
aom_write_symbol(w, skip, ec_ctx->skip_cdfs[ctx], 2);
return skip;
}
}
static int write_skip_mode(const AV1_COMMON *cm, const MACROBLOCKD *xd,
int segment_id, const MB_MODE_INFO *mi,
aom_writer *w) {
if (!cm->current_frame.skip_mode_info.skip_mode_flag) return 0;
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
return 0;
}
const int skip_mode = mi->skip_mode;
if (!is_comp_ref_allowed(mi->sb_type)) {
assert(!skip_mode);
return 0;
}
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME) ||
segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) {
// These features imply single-reference mode, while skip mode implies
// compound reference. Hence, the two are mutually exclusive.
// In other words, skip_mode is implicitly 0 here.
assert(!skip_mode);
return 0;
}
const int ctx = av1_get_skip_mode_context(xd);
aom_write_symbol(w, skip_mode, xd->tile_ctx->skip_mode_cdfs[ctx], 2);
return skip_mode;
}
static AOM_INLINE void write_is_inter(const AV1_COMMON *cm,
const MACROBLOCKD *xd, int segment_id,
aom_writer *w, const int is_inter) {
if (!segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) {
assert(is_inter);
return;
}
const int ctx = av1_get_intra_inter_context(xd);
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
aom_write_symbol(w, is_inter, ec_ctx->intra_inter_cdf[ctx], 2);
}
}
static AOM_INLINE void write_motion_mode(const AV1_COMMON *cm, MACROBLOCKD *xd,
const MB_MODE_INFO *mbmi,
aom_writer *w) {
MOTION_MODE last_motion_mode_allowed =
cm->switchable_motion_mode
? motion_mode_allowed(cm->global_motion, xd, mbmi,
cm->allow_warped_motion)
: SIMPLE_TRANSLATION;
assert(mbmi->motion_mode <= last_motion_mode_allowed);
switch (last_motion_mode_allowed) {
case SIMPLE_TRANSLATION: break;
case OBMC_CAUSAL:
aom_write_symbol(w, mbmi->motion_mode == OBMC_CAUSAL,
xd->tile_ctx->obmc_cdf[mbmi->sb_type], 2);
break;
default:
aom_write_symbol(w, mbmi->motion_mode,
xd->tile_ctx->motion_mode_cdf[mbmi->sb_type],
MOTION_MODES);
}
}
static AOM_INLINE void write_delta_qindex(const MACROBLOCKD *xd,
int delta_qindex, aom_writer *w) {
int sign = delta_qindex < 0;
int abs = sign ? -delta_qindex : delta_qindex;
int rem_bits, thr;
int smallval = abs < DELTA_Q_SMALL ? 1 : 0;
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
aom_write_symbol(w, AOMMIN(abs, DELTA_Q_SMALL), ec_ctx->delta_q_cdf,
DELTA_Q_PROBS + 1);
if (!smallval) {
rem_bits = get_msb(abs - 1);
thr = (1 << rem_bits) + 1;
aom_write_literal(w, rem_bits - 1, 3);
aom_write_literal(w, abs - thr, rem_bits);
}
if (abs > 0) {
aom_write_bit(w, sign);
}
}
static AOM_INLINE void write_delta_lflevel(const AV1_COMMON *cm,
const MACROBLOCKD *xd, int lf_id,
int delta_lflevel, aom_writer *w) {
int sign = delta_lflevel < 0;
int abs = sign ? -delta_lflevel : delta_lflevel;
int rem_bits, thr;
int smallval = abs < DELTA_LF_SMALL ? 1 : 0;
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
if (cm->delta_q_info.delta_lf_multi) {
assert(lf_id >= 0 && lf_id < (av1_num_planes(cm) > 1 ? FRAME_LF_COUNT
: FRAME_LF_COUNT - 2));
aom_write_symbol(w, AOMMIN(abs, DELTA_LF_SMALL),
ec_ctx->delta_lf_multi_cdf[lf_id], DELTA_LF_PROBS + 1);
} else {
aom_write_symbol(w, AOMMIN(abs, DELTA_LF_SMALL), ec_ctx->delta_lf_cdf,
DELTA_LF_PROBS + 1);
}
if (!smallval) {
rem_bits = get_msb(abs - 1);
thr = (1 << rem_bits) + 1;
aom_write_literal(w, rem_bits - 1, 3);
aom_write_literal(w, abs - thr, rem_bits);
}
if (abs > 0) {
aom_write_bit(w, sign);
}
}
static AOM_INLINE void pack_map_tokens(aom_writer *w, const TOKENEXTRA **tp,
int n, int num) {
const TOKENEXTRA *p = *tp;
write_uniform(w, n, p->token); // The first color index.
++p;
--num;
for (int i = 0; i < num; ++i) {
aom_write_symbol(w, p->token, p->color_map_cdf, n);
++p;
}
*tp = p;
}
static AOM_INLINE void pack_txb_tokens(
aom_writer *w, AV1_COMMON *cm, MACROBLOCK *const x, const TOKENEXTRA **tp,
const TOKENEXTRA *const tok_end, MACROBLOCKD *xd, MB_MODE_INFO *mbmi,
int plane, BLOCK_SIZE plane_bsize, aom_bit_depth_t bit_depth, int block,
int blk_row, int blk_col, TX_SIZE tx_size, TOKEN_STATS *token_stats) {
const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
const struct macroblockd_plane *const pd = &xd->plane[plane];
const TX_SIZE plane_tx_size =
plane ? av1_get_max_uv_txsize(mbmi->sb_type, pd->subsampling_x,
pd->subsampling_y)
: mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row,
blk_col)];
if (tx_size == plane_tx_size || plane) {
const CB_COEFF_BUFFER *cb_coef_buff = x->cb_coef_buff;
const int txb_offset =
x->mbmi_ext_frame->cb_offset / (TX_SIZE_W_MIN * TX_SIZE_H_MIN);
const tran_low_t *tcoeff_txb =
cb_coef_buff->tcoeff[plane] + x->mbmi_ext_frame->cb_offset;
const uint16_t *eob_txb = cb_coef_buff->eobs[plane] + txb_offset;
const uint8_t *txb_skip_ctx_txb =
cb_coef_buff->txb_skip_ctx[plane] + txb_offset;
const int *dc_sign_ctx_txb = cb_coef_buff->dc_sign_ctx[plane] + txb_offset;
const tran_low_t *tcoeff = BLOCK_OFFSET(tcoeff_txb, block);
const uint16_t eob = eob_txb[block];
TXB_CTX txb_ctx = { txb_skip_ctx_txb[block], dc_sign_ctx_txb[block] };
av1_write_coeffs_txb(cm, xd, w, blk_row, blk_col, plane, tx_size, tcoeff,
eob, &txb_ctx);
#if CONFIG_RD_DEBUG
TOKEN_STATS tmp_token_stats;
init_token_stats(&tmp_token_stats);
token_stats->txb_coeff_cost_map[blk_row][blk_col] = tmp_token_stats.cost;
token_stats->cost += tmp_token_stats.cost;
#endif
} else {
const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
const int bsw = tx_size_wide_unit[sub_txs];
const int bsh = tx_size_high_unit[sub_txs];
const int step = bsh * bsw;
assert(bsw > 0 && bsh > 0);
for (int r = 0; r < tx_size_high_unit[tx_size]; r += bsh) {
for (int c = 0; c < tx_size_wide_unit[tx_size]; c += bsw) {
const int offsetr = blk_row + r;
const int offsetc = blk_col + c;
if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue;
pack_txb_tokens(w, cm, x, tp, tok_end, xd, mbmi, plane, plane_bsize,
bit_depth, block, offsetr, offsetc, sub_txs,
token_stats);
block += step;
}
}
}
}
static INLINE void set_spatial_segment_id(const AV1_COMMON *const cm,
uint8_t *segment_ids,
BLOCK_SIZE bsize, int mi_row,
int mi_col, int segment_id) {
const int mi_offset = mi_row * cm->mi_cols + mi_col;
const int bw = mi_size_wide[bsize];
const int bh = mi_size_high[bsize];
const int xmis = AOMMIN(cm->mi_cols - mi_col, bw);
const int ymis = AOMMIN(cm->mi_rows - mi_row, bh);
int x, y;
for (y = 0; y < ymis; ++y)
for (x = 0; x < xmis; ++x)
segment_ids[mi_offset + y * cm->mi_cols + x] = segment_id;
}
int av1_neg_interleave(int x, int ref, int max) {
assert(x < max);
const int diff = x - ref;
if (!ref) return x;
if (ref >= (max - 1)) return -x + max - 1;
if (2 * ref < max) {
if (abs(diff) <= ref) {
if (diff > 0)
return (diff << 1) - 1;
else
return ((-diff) << 1);
}
return x;
} else {
if (abs(diff) < (max - ref)) {
if (diff > 0)
return (diff << 1) - 1;
else
return ((-diff) << 1);
}
return (max - x) - 1;
}
}
static AOM_INLINE void write_segment_id(AV1_COMP *cpi,
const MB_MODE_INFO *const mbmi,
aom_writer *w,
const struct segmentation *seg,
struct segmentation_probs *segp,
int mi_row, int mi_col, int skip) {
if (!seg->enabled || !seg->update_map) return;
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
int cdf_num;
const int pred = av1_get_spatial_seg_pred(cm, xd, mi_row, mi_col, &cdf_num);
if (skip) {
// Still need to transmit tx size for intra blocks even if skip is
// true. Changing segment_id may make the tx size become invalid, e.g
// changing from lossless to lossy.
assert(is_inter_block(mbmi) || !cpi->has_lossless_segment);
set_spatial_segment_id(cm, cm->cur_frame->seg_map, mbmi->sb_type, mi_row,
mi_col, pred);
set_spatial_segment_id(cm, cpi->segmentation_map, mbmi->sb_type, mi_row,
mi_col, pred);
/* mbmi is read only but we need to update segment_id */
((MB_MODE_INFO *)mbmi)->segment_id = pred;
return;
}
const int coded_id =
av1_neg_interleave(mbmi->segment_id, pred, seg->last_active_segid + 1);
aom_cdf_prob *pred_cdf = segp->spatial_pred_seg_cdf[cdf_num];
aom_write_symbol(w, coded_id, pred_cdf, MAX_SEGMENTS);
set_spatial_segment_id(cm, cm->cur_frame->seg_map, mbmi->sb_type, mi_row,
mi_col, mbmi->segment_id);
}
#define WRITE_REF_BIT(bname, pname) \
aom_write_symbol(w, bname, av1_get_pred_cdf_##pname(xd), 2)
// This function encodes the reference frame
static AOM_INLINE void write_ref_frames(const AV1_COMMON *cm,
const MACROBLOCKD *xd, aom_writer *w) {
const MB_MODE_INFO *const mbmi = xd->mi[0];
const int is_compound = has_second_ref(mbmi);
const int segment_id = mbmi->segment_id;
// If segment level coding of this signal is disabled...
// or the segment allows multiple reference frame options
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
assert(!is_compound);
assert(mbmi->ref_frame[0] ==
get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME));
} else if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP) ||
segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) {
assert(!is_compound);
assert(mbmi->ref_frame[0] == LAST_FRAME);
} else {
// does the feature use compound prediction or not
// (if not specified at the frame/segment level)
if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT) {
if (is_comp_ref_allowed(mbmi->sb_type))
aom_write_symbol(w, is_compound, av1_get_reference_mode_cdf(xd), 2);
} else {
assert((!is_compound) ==
(cm->current_frame.reference_mode == SINGLE_REFERENCE));
}
if (is_compound) {
const COMP_REFERENCE_TYPE comp_ref_type = has_uni_comp_refs(mbmi)
? UNIDIR_COMP_REFERENCE
: BIDIR_COMP_REFERENCE;
aom_write_symbol(w, comp_ref_type, av1_get_comp_reference_type_cdf(xd),
2);
if (comp_ref_type == UNIDIR_COMP_REFERENCE) {
const int bit = mbmi->ref_frame[0] == BWDREF_FRAME;
WRITE_REF_BIT(bit, uni_comp_ref_p);
if (!bit) {
assert(mbmi->ref_frame[0] == LAST_FRAME);
const int bit1 = mbmi->ref_frame[1] == LAST3_FRAME ||
mbmi->ref_frame[1] == GOLDEN_FRAME;
WRITE_REF_BIT(bit1, uni_comp_ref_p1);
if (bit1) {
const int bit2 = mbmi->ref_frame[1] == GOLDEN_FRAME;
WRITE_REF_BIT(bit2, uni_comp_ref_p2);
}
} else {
assert(mbmi->ref_frame[1] == ALTREF_FRAME);
}
return;
}
assert(comp_ref_type == BIDIR_COMP_REFERENCE);
const int bit = (mbmi->ref_frame[0] == GOLDEN_FRAME ||
mbmi->ref_frame[0] == LAST3_FRAME);
WRITE_REF_BIT(bit, comp_ref_p);
if (!bit) {
const int bit1 = mbmi->ref_frame[0] == LAST2_FRAME;
WRITE_REF_BIT(bit1, comp_ref_p1);
} else {
const int bit2 = mbmi->ref_frame[0] == GOLDEN_FRAME;
WRITE_REF_BIT(bit2, comp_ref_p2);
}
const int bit_bwd = mbmi->ref_frame[1] == ALTREF_FRAME;
WRITE_REF_BIT(bit_bwd, comp_bwdref_p);
if (!bit_bwd) {
WRITE_REF_BIT(mbmi->ref_frame[1] == ALTREF2_FRAME, comp_bwdref_p1);
}
} else {
const int bit0 = (mbmi->ref_frame[0] <= ALTREF_FRAME &&
mbmi->ref_frame[0] >= BWDREF_FRAME);
WRITE_REF_BIT(bit0, single_ref_p1);
if (bit0) {
const int bit1 = mbmi->ref_frame[0] == ALTREF_FRAME;
WRITE_REF_BIT(bit1, single_ref_p2);
if (!bit1) {
WRITE_REF_BIT(mbmi->ref_frame[0] == ALTREF2_FRAME, single_ref_p6);
}
} else {
const int bit2 = (mbmi->ref_frame[0] == LAST3_FRAME ||
mbmi->ref_frame[0] == GOLDEN_FRAME);
WRITE_REF_BIT(bit2, single_ref_p3);
if (!bit2) {
const int bit3 = mbmi->ref_frame[0] != LAST_FRAME;
WRITE_REF_BIT(bit3, single_ref_p4);
} else {
const int bit4 = mbmi->ref_frame[0] != LAST3_FRAME;
WRITE_REF_BIT(bit4, single_ref_p5);
}
}
}
}
}
static AOM_INLINE void write_filter_intra_mode_info(
const AV1_COMMON *cm, const MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi,
aom_writer *w) {
if (av1_filter_intra_allowed(cm, mbmi)) {
aom_write_symbol(w, mbmi->filter_intra_mode_info.use_filter_intra,
xd->tile_ctx->filter_intra_cdfs[mbmi->sb_type], 2);
if (mbmi->filter_intra_mode_info.use_filter_intra) {
const FILTER_INTRA_MODE mode =
mbmi->filter_intra_mode_info.filter_intra_mode;
aom_write_symbol(w, mode, xd->tile_ctx->filter_intra_mode_cdf,
FILTER_INTRA_MODES);
}
}
}
static AOM_INLINE void write_angle_delta(aom_writer *w, int angle_delta,
aom_cdf_prob *cdf) {
aom_write_symbol(w, angle_delta + MAX_ANGLE_DELTA, cdf,
2 * MAX_ANGLE_DELTA + 1);
}
static AOM_INLINE void write_mb_interp_filter(AV1_COMP *cpi,
const MACROBLOCKD *xd,
aom_writer *w) {
AV1_COMMON *const cm = &cpi->common;
const MB_MODE_INFO *const mbmi = xd->mi[0];
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
if (!av1_is_interp_needed(xd)) {
int_interpfilters filters =
av1_broadcast_interp_filter(av1_unswitchable_filter(cm->interp_filter));
assert(mbmi->interp_filters.as_int == filters.as_int);
(void)filters;
return;
}
if (cm->interp_filter == SWITCHABLE) {
int dir;
for (dir = 0; dir < 2; ++dir) {
const int ctx = av1_get_pred_context_switchable_interp(xd, dir);
InterpFilter filter =
av1_extract_interp_filter(mbmi->interp_filters, dir);
aom_write_symbol(w, filter, ec_ctx->switchable_interp_cdf[ctx],
SWITCHABLE_FILTERS);
++cm->cur_frame->interp_filter_selected[filter];
if (cm->seq_params.enable_dual_filter == 0) return;
}
}
}
// Transmit color values with delta encoding. Write the first value as
// literal, and the deltas between each value and the previous one. "min_val" is
// the smallest possible value of the deltas.
static AOM_INLINE void delta_encode_palette_colors(const int *colors, int num,
int bit_depth, int min_val,
aom_writer *w) {
if (num <= 0) return;
assert(colors[0] < (1 << bit_depth));
aom_write_literal(w, colors[0], bit_depth);
if (num == 1) return;
int max_delta = 0;
int deltas[PALETTE_MAX_SIZE];
memset(deltas, 0, sizeof(deltas));
for (int i = 1; i < num; ++i) {
assert(colors[i] < (1 << bit_depth));
const int delta = colors[i] - colors[i - 1];
deltas[i - 1] = delta;
assert(delta >= min_val);
if (delta > max_delta) max_delta = delta;
}
const int min_bits = bit_depth - 3;
int bits = AOMMAX(av1_ceil_log2(max_delta + 1 - min_val), min_bits);
assert(bits <= bit_depth);
int range = (1 << bit_depth) - colors[0] - min_val;
aom_write_literal(w, bits - min_bits, 2);
for (int i = 0; i < num - 1; ++i) {
aom_write_literal(w, deltas[i] - min_val, bits);
range -= deltas[i];
bits = AOMMIN(bits, av1_ceil_log2(range));
}
}
// Transmit luma palette color values. First signal if each color in the color
// cache is used. Those colors that are not in the cache are transmitted with
// delta encoding.
static AOM_INLINE void write_palette_colors_y(
const MACROBLOCKD *const xd, const PALETTE_MODE_INFO *const pmi,
int bit_depth, aom_writer *w) {
const int n = pmi->palette_size[0];
uint16_t color_cache[2 * PALETTE_MAX_SIZE];
const int n_cache = av1_get_palette_cache(xd, 0, color_cache);
int out_cache_colors[PALETTE_MAX_SIZE];
uint8_t cache_color_found[2 * PALETTE_MAX_SIZE];
const int n_out_cache =
av1_index_color_cache(color_cache, n_cache, pmi->palette_colors, n,
cache_color_found, out_cache_colors);
int n_in_cache = 0;
for (int i = 0; i < n_cache && n_in_cache < n; ++i) {
const int found = cache_color_found[i];
aom_write_bit(w, found);
n_in_cache += found;
}
assert(n_in_cache + n_out_cache == n);
delta_encode_palette_colors(out_cache_colors, n_out_cache, bit_depth, 1, w);
}
// Write chroma palette color values. U channel is handled similarly to the luma
// channel. For v channel, either use delta encoding or transmit raw values
// directly, whichever costs less.
static AOM_INLINE void write_palette_colors_uv(
const MACROBLOCKD *const xd, const PALETTE_MODE_INFO *const pmi,
int bit_depth, aom_writer *w) {
const int n = pmi->palette_size[1];
const uint16_t *colors_u = pmi->palette_colors + PALETTE_MAX_SIZE;
const uint16_t *colors_v = pmi->palette_colors + 2 * PALETTE_MAX_SIZE;
// U channel colors.
uint16_t color_cache[2 * PALETTE_MAX_SIZE];
const int n_cache = av1_get_palette_cache(xd, 1, color_cache);
int out_cache_colors[PALETTE_MAX_SIZE];
uint8_t cache_color_found[2 * PALETTE_MAX_SIZE];
const int n_out_cache = av1_index_color_cache(
color_cache, n_cache, colors_u, n, cache_color_found, out_cache_colors);
int n_in_cache = 0;
for (int i = 0; i < n_cache && n_in_cache < n; ++i) {
const int found = cache_color_found[i];
aom_write_bit(w, found);
n_in_cache += found;
}
delta_encode_palette_colors(out_cache_colors, n_out_cache, bit_depth, 0, w);
// V channel colors. Don't use color cache as the colors are not sorted.
const int max_val = 1 << bit_depth;
int zero_count = 0, min_bits_v = 0;
int bits_v =
av1_get_palette_delta_bits_v(pmi, bit_depth, &zero_count, &min_bits_v);
const int rate_using_delta =
2 + bit_depth + (bits_v + 1) * (n - 1) - zero_count;
const int rate_using_raw = bit_depth * n;
if (rate_using_delta < rate_using_raw) { // delta encoding
assert(colors_v[0] < (1 << bit_depth));
aom_write_bit(w, 1);
aom_write_literal(w, bits_v - min_bits_v, 2);
aom_write_literal(w, colors_v[0], bit_depth);
for (int i = 1; i < n; ++i) {
assert(colors_v[i] < (1 << bit_depth));
if (colors_v[i] == colors_v[i - 1]) { // No need to signal sign bit.
aom_write_literal(w, 0, bits_v);
continue;
}
const int delta = abs((int)colors_v[i] - colors_v[i - 1]);
const int sign_bit = colors_v[i] < colors_v[i - 1];
if (delta <= max_val - delta) {
aom_write_literal(w, delta, bits_v);
aom_write_bit(w, sign_bit);
} else {
aom_write_literal(w, max_val - delta, bits_v);
aom_write_bit(w, !sign_bit);
}
}
} else { // Transmit raw values.
aom_write_bit(w, 0);
for (int i = 0; i < n; ++i) {
assert(colors_v[i] < (1 << bit_depth));
aom_write_literal(w, colors_v[i], bit_depth);
}
}
}
static AOM_INLINE void write_palette_mode_info(const AV1_COMMON *cm,
const MACROBLOCKD *xd,
const MB_MODE_INFO *const mbmi,
int mi_row, int mi_col,
aom_writer *w) {
const int num_planes = av1_num_planes(cm);
const BLOCK_SIZE bsize = mbmi->sb_type;
assert(av1_allow_palette(cm->allow_screen_content_tools, bsize));
const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
const int bsize_ctx = av1_get_palette_bsize_ctx(bsize);
if (mbmi->mode == DC_PRED) {
const int n = pmi->palette_size[0];
const int palette_y_mode_ctx = av1_get_palette_mode_ctx(xd);
aom_write_symbol(
w, n > 0,
xd->tile_ctx->palette_y_mode_cdf[bsize_ctx][palette_y_mode_ctx], 2);
if (n > 0) {
aom_write_symbol(w, n - PALETTE_MIN_SIZE,
xd->tile_ctx->palette_y_size_cdf[bsize_ctx],
PALETTE_SIZES);
write_palette_colors_y(xd, pmi, cm->seq_params.bit_depth, w);
}
}
const int uv_dc_pred =
num_planes > 1 && mbmi->uv_mode == UV_DC_PRED &&
is_chroma_reference(mi_row, mi_col, bsize, xd->plane[1].subsampling_x,
xd->plane[1].subsampling_y);
if (uv_dc_pred) {
const int n = pmi->palette_size[1];
const int palette_uv_mode_ctx = (pmi->palette_size[0] > 0);
aom_write_symbol(w, n > 0,
xd->tile_ctx->palette_uv_mode_cdf[palette_uv_mode_ctx], 2);
if (n > 0) {
aom_write_symbol(w, n - PALETTE_MIN_SIZE,
xd->tile_ctx->palette_uv_size_cdf[bsize_ctx],
PALETTE_SIZES);
write_palette_colors_uv(xd, pmi, cm->seq_params.bit_depth, w);
}
}
}
void av1_write_tx_type(const AV1_COMMON *const cm, const MACROBLOCKD *xd,
int blk_row, int blk_col, int plane, TX_SIZE tx_size,
aom_writer *w) {
MB_MODE_INFO *mbmi = xd->mi[0];
const int is_inter = is_inter_block(mbmi);
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
// Only y plane's tx_type is transmitted
if (plane > 0) return;
PLANE_TYPE plane_type = get_plane_type(plane);
TX_TYPE tx_type = av1_get_tx_type(plane_type, xd, blk_row, blk_col, tx_size,
cm->reduced_tx_set_used);
const TX_SIZE square_tx_size = txsize_sqr_map[tx_size];
if (get_ext_tx_types(tx_size, is_inter, cm->reduced_tx_set_used) > 1 &&
((!cm->seg.enabled && cm->base_qindex > 0) ||
(cm->seg.enabled && xd->qindex[mbmi->segment_id] > 0)) &&
!mbmi->skip &&
!segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
const TxSetType tx_set_type =
av1_get_ext_tx_set_type(tx_size, is_inter, cm->reduced_tx_set_used);
const int eset = get_ext_tx_set(tx_size, is_inter, cm->reduced_tx_set_used);
// eset == 0 should correspond to a set with only DCT_DCT and there
// is no need to send the tx_type
assert(eset > 0);
assert(av1_ext_tx_used[tx_set_type][tx_type]);
if (is_inter) {
aom_write_symbol(w, av1_ext_tx_ind[tx_set_type][tx_type],
ec_ctx->inter_ext_tx_cdf[eset][square_tx_size],
av1_num_ext_tx_set[tx_set_type]);
} else {
PREDICTION_MODE intra_dir;
if (mbmi->filter_intra_mode_info.use_filter_intra)
intra_dir =
fimode_to_intradir[mbmi->filter_intra_mode_info.filter_intra_mode];
else
intra_dir = mbmi->mode;
aom_write_symbol(
w, av1_ext_tx_ind[tx_set_type][tx_type],
ec_ctx->intra_ext_tx_cdf[eset][square_tx_size][intra_dir],
av1_num_ext_tx_set[tx_set_type]);
}
}
}
static AOM_INLINE void write_intra_y_mode_nonkf(FRAME_CONTEXT *frame_ctx,
BLOCK_SIZE bsize,
PREDICTION_MODE mode,
aom_writer *w) {
aom_write_symbol(w, mode, frame_ctx->y_mode_cdf[size_group_lookup[bsize]],
INTRA_MODES);
}
static AOM_INLINE void write_intra_uv_mode(FRAME_CONTEXT *frame_ctx,
UV_PREDICTION_MODE uv_mode,
PREDICTION_MODE y_mode,
CFL_ALLOWED_TYPE cfl_allowed,
aom_writer *w) {
aom_write_symbol(w, uv_mode, frame_ctx->uv_mode_cdf[cfl_allowed][y_mode],
UV_INTRA_MODES - !cfl_allowed);
}
static AOM_INLINE void write_cfl_alphas(FRAME_CONTEXT *const ec_ctx,
uint8_t idx, int8_t joint_sign,
aom_writer *w) {
aom_write_symbol(w, joint_sign, ec_ctx->cfl_sign_cdf, CFL_JOINT_SIGNS);
// Magnitudes are only signaled for nonzero codes.
if (CFL_SIGN_U(joint_sign) != CFL_SIGN_ZERO) {
aom_cdf_prob *cdf_u = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)];
aom_write_symbol(w, CFL_IDX_U(idx), cdf_u, CFL_ALPHABET_SIZE);
}
if (CFL_SIGN_V(joint_sign) != CFL_SIGN_ZERO) {
aom_cdf_prob *cdf_v = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)];
aom_write_symbol(w, CFL_IDX_V(idx), cdf_v, CFL_ALPHABET_SIZE);
}
}
static AOM_INLINE void write_cdef(AV1_COMMON *cm, MACROBLOCKD *const xd,
aom_writer *w, int skip, int mi_col,
int mi_row) {
if (cm->coded_lossless || cm->allow_intrabc) return;
const int m = ~((1 << (6 - MI_SIZE_LOG2)) - 1);
const MB_MODE_INFO *mbmi =
cm->mi_grid_base[(mi_row & m) * cm->mi_stride + (mi_col & m)];
// Initialise when at top left part of the superblock
if (!(mi_row & (cm->seq_params.mib_size - 1)) &&
!(mi_col & (cm->seq_params.mib_size - 1))) { // Top left?
xd->cdef_preset[0] = xd->cdef_preset[1] = xd->cdef_preset[2] =
xd->cdef_preset[3] = -1;
}
// Emit CDEF param at first non-skip coding block
const int mask = 1 << (6 - MI_SIZE_LOG2);
const int index = cm->seq_params.sb_size == BLOCK_128X128
? !!(mi_col & mask) + 2 * !!(mi_row & mask)
: 0;
if (xd->cdef_preset[index] == -1 && !skip) {
aom_write_literal(w, mbmi->cdef_strength, cm->cdef_info.cdef_bits);
xd->cdef_preset[index] = mbmi->cdef_strength;
}
}
static AOM_INLINE void write_inter_segment_id(
AV1_COMP *cpi, aom_writer *w, const struct segmentation *const seg,
struct segmentation_probs *const segp, int mi_row, int mi_col, int skip,
int preskip) {
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
AV1_COMMON *const cm = &cpi->common;
if (seg->update_map) {
if (preskip) {
if (!seg->segid_preskip) return;
} else {
if (seg->segid_preskip) return;
if (skip) {
write_segment_id(cpi, mbmi, w, seg, segp, mi_row, mi_col, 1);
if (seg->temporal_update) mbmi->seg_id_predicted = 0;
return;
}
}
if (seg->temporal_update) {
const int pred_flag = mbmi->seg_id_predicted;
aom_cdf_prob *pred_cdf = av1_get_pred_cdf_seg_id(segp, xd);
aom_write_symbol(w, pred_flag, pred_cdf, 2);
if (!pred_flag) {
write_segment_id(cpi, mbmi, w, seg, segp, mi_row, mi_col, 0);
}
if (pred_flag) {
set_spatial_segment_id(cm, cm->cur_frame->seg_map, mbmi->sb_type,
mi_row, mi_col, mbmi->segment_id);
}
} else {
write_segment_id(cpi, mbmi, w, seg, segp, mi_row, mi_col, 0);
}
}
}
// If delta q is present, writes delta_q index.
// Also writes delta_q loop filter levels, if present.
static AOM_INLINE void write_delta_q_params(AV1_COMP *cpi, const int mi_row,
const int mi_col, int skip,
aom_writer *w) {
AV1_COMMON *const cm = &cpi->common;
const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
if (delta_q_info->delta_q_present_flag) {
MACROBLOCK *const x = &cpi->td.mb;
MACROBLOCKD *const xd = &x->e_mbd;
const MB_MODE_INFO *const mbmi = xd->mi[0];
const BLOCK_SIZE bsize = mbmi->sb_type;
const int super_block_upper_left =
((mi_row & (cm->seq_params.mib_size - 1)) == 0) &&
((mi_col & (cm->seq_params.mib_size - 1)) == 0);
if ((bsize != cm->seq_params.sb_size || skip == 0) &&
super_block_upper_left) {
assert(mbmi->current_qindex > 0);
const int reduced_delta_qindex =
(mbmi->current_qindex - xd->current_qindex) /
delta_q_info->delta_q_res;
write_delta_qindex(xd, reduced_delta_qindex, w);
xd->current_qindex = mbmi->current_qindex;
if (delta_q_info->delta_lf_present_flag) {
if (delta_q_info->delta_lf_multi) {
const int frame_lf_count =
av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) {
int reduced_delta_lflevel =
(mbmi->delta_lf[lf_id] - xd->delta_lf[lf_id]) /
delta_q_info->delta_lf_res;
write_delta_lflevel(cm, xd, lf_id, reduced_delta_lflevel, w);
xd->delta_lf[lf_id] = mbmi->delta_lf[lf_id];
}
} else {
int reduced_delta_lflevel =
(mbmi->delta_lf_from_base - xd->delta_lf_from_base) /
delta_q_info->delta_lf_res;
write_delta_lflevel(cm, xd, -1, reduced_delta_lflevel, w);
xd->delta_lf_from_base = mbmi->delta_lf_from_base;
}
}
}
}
}
static AOM_INLINE void write_intra_prediction_modes(AV1_COMP *cpi,
const int mi_row,
const int mi_col,
int is_keyframe,
aom_writer *w) {
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->td.mb;
MACROBLOCKD *const xd = &x->e_mbd;
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
const MB_MODE_INFO *const mbmi = xd->mi[0];
const PREDICTION_MODE mode = mbmi->mode;
const BLOCK_SIZE bsize = mbmi->sb_type;
// Y mode.
if (is_keyframe) {
const MB_MODE_INFO *const above_mi = xd->above_mbmi;
const MB_MODE_INFO *const left_mi = xd->left_mbmi;
write_intra_y_mode_kf(ec_ctx, mbmi, above_mi, left_mi, mode, w);
} else {
write_intra_y_mode_nonkf(ec_ctx, bsize, mode, w);
}
// Y angle delta.
const int use_angle_delta = av1_use_angle_delta(bsize);
if (use_angle_delta && av1_is_directional_mode(mode)) {
write_angle_delta(w, mbmi->angle_delta[PLANE_TYPE_Y],
ec_ctx->angle_delta_cdf[mode - V_PRED]);
}
// UV mode and UV angle delta.
if (!cm->seq_params.monochrome &&
is_chroma_reference(mi_row, mi_col, bsize, xd->plane[1].subsampling_x,
xd->plane[1].subsampling_y)) {
const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode;
write_intra_uv_mode(ec_ctx, uv_mode, mode, is_cfl_allowed(xd), w);
if (uv_mode == UV_CFL_PRED)
write_cfl_alphas(ec_ctx, mbmi->cfl_alpha_idx, mbmi->cfl_alpha_signs, w);
if (use_angle_delta && av1_is_directional_mode(get_uv_mode(uv_mode))) {
write_angle_delta(w, mbmi->angle_delta[PLANE_TYPE_UV],
ec_ctx->angle_delta_cdf[uv_mode - V_PRED]);
}
}
// Palette.
if (av1_allow_palette(cm->allow_screen_content_tools, bsize)) {
write_palette_mode_info(cm, xd, mbmi, mi_row, mi_col, w);
}
// Filter intra.
write_filter_intra_mode_info(cm, xd, mbmi, w);
}
static INLINE int16_t mode_context_analyzer(
const int16_t mode_context, const MV_REFERENCE_FRAME *const rf) {
if (rf[1] <= INTRA_FRAME) return mode_context;
const int16_t newmv_ctx = mode_context & NEWMV_CTX_MASK;
const int16_t refmv_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK;
const int16_t comp_ctx = compound_mode_ctx_map[refmv_ctx >> 1][AOMMIN(
newmv_ctx, COMP_NEWMV_CTXS - 1)];
return comp_ctx;
}
static INLINE int_mv get_ref_mv_from_stack(
int ref_idx, const MV_REFERENCE_FRAME *ref_frame, int ref_mv_idx,
const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame) {
const int8_t ref_frame_type = av1_ref_frame_type(ref_frame);
const CANDIDATE_MV *curr_ref_mv_stack = mbmi_ext_frame->ref_mv_stack;
if (ref_frame[1] > INTRA_FRAME) {
assert(ref_idx == 0 || ref_idx == 1);
return ref_idx ? curr_ref_mv_stack[ref_mv_idx].comp_mv
: curr_ref_mv_stack[ref_mv_idx].this_mv;
}
assert(ref_idx == 0);
return ref_mv_idx < mbmi_ext_frame->ref_mv_count
? curr_ref_mv_stack[ref_mv_idx].this_mv
: mbmi_ext_frame->global_mvs[ref_frame_type];
}
static INLINE int_mv get_ref_mv(const MACROBLOCK *x, int ref_idx) {
const MACROBLOCKD *xd = &x->e_mbd;
const MB_MODE_INFO *mbmi = xd->mi[0];
int ref_mv_idx = mbmi->ref_mv_idx;
if (mbmi->mode == NEAR_NEWMV || mbmi->mode == NEW_NEARMV) {
assert(has_second_ref(mbmi));
ref_mv_idx += 1;
}
return get_ref_mv_from_stack(ref_idx, mbmi->ref_frame, ref_mv_idx,
x->mbmi_ext_frame);
}
static AOM_INLINE void pack_inter_mode_mvs(AV1_COMP *cpi, const int mi_row,
const int mi_col, aom_writer *w) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->td.mb;
MACROBLOCKD *const xd = &x->e_mbd;
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
const struct segmentation *const seg = &cm->seg;
struct segmentation_probs *const segp = &ec_ctx->seg;
const MB_MODE_INFO *const mbmi = xd->mi[0];
const MB_MODE_INFO_EXT_FRAME *const mbmi_ext_frame = x->mbmi_ext_frame;
const PREDICTION_MODE mode = mbmi->mode;
const int segment_id = mbmi->segment_id;
const BLOCK_SIZE bsize = mbmi->sb_type;
const int allow_hp = cm->allow_high_precision_mv;
const int is_inter = is_inter_block(mbmi);
const int is_compound = has_second_ref(mbmi);
int ref;
write_inter_segment_id(cpi, w, seg, segp, mi_row, mi_col, 0, 1);
write_skip_mode(cm, xd, segment_id, mbmi, w);
assert(IMPLIES(mbmi->skip_mode, mbmi->skip));
const int skip =
mbmi->skip_mode ? 1 : write_skip(cm, xd, segment_id, mbmi, w);
write_inter_segment_id(cpi, w, seg, segp, mi_row, mi_col, skip, 0);
write_cdef(cm, xd, w, skip, mi_col, mi_row);
write_delta_q_params(cpi, mi_row, mi_col, skip, w);
if (!mbmi->skip_mode) write_is_inter(cm, xd, mbmi->segment_id, w, is_inter);
if (mbmi->skip_mode) return;
if (!is_inter) {
write_intra_prediction_modes(cpi, mi_row, mi_col, 0, w);
} else {
int16_t mode_ctx;
av1_collect_neighbors_ref_counts(xd);
write_ref_frames(cm, xd, w);
mode_ctx =
mode_context_analyzer(mbmi_ext_frame->mode_context, mbmi->ref_frame);
// If segment skip is not enabled code the mode.
if (!segfeature_active(seg, segment_id, SEG_LVL_SKIP)) {
if (is_inter_compound_mode(mode))
write_inter_compound_mode(xd, w, mode, mode_ctx);
else if (is_inter_singleref_mode(mode))
write_inter_mode(w, mode, ec_ctx, mode_ctx);
if (mode == NEWMV || mode == NEW_NEWMV || have_nearmv_in_inter_mode(mode))
write_drl_idx(ec_ctx, mbmi, mbmi_ext_frame, w);
else
assert(mbmi->ref_mv_idx == 0);
}
if (mode == NEWMV || mode == NEW_NEWMV) {
for (ref = 0; ref < 1 + is_compound; ++ref) {
nmv_context *nmvc = &ec_ctx->nmvc;
const int_mv ref_mv = get_ref_mv(x, ref);
av1_encode_mv(cpi, w, &mbmi->mv[ref].as_mv, &ref_mv.as_mv, nmvc,
allow_hp);
}
} else if (mode == NEAREST_NEWMV || mode == NEAR_NEWMV) {
nmv_context *nmvc = &ec_ctx->nmvc;
const int_mv ref_mv = get_ref_mv(x, 1);
av1_encode_mv(cpi, w, &mbmi->mv[1].as_mv, &ref_mv.as_mv, nmvc, allow_hp);
} else if (mode == NEW_NEARESTMV || mode == NEW_NEARMV) {
nmv_context *nmvc = &ec_ctx->nmvc;
const int_mv ref_mv = get_ref_mv(x, 0);
av1_encode_mv(cpi, w, &mbmi->mv[0].as_mv, &ref_mv.as_mv, nmvc, allow_hp);
}
if (cpi->common.current_frame.reference_mode != COMPOUND_REFERENCE &&
cpi->common.seq_params.enable_interintra_compound &&
is_interintra_allowed(mbmi)) {
const int interintra = mbmi->ref_frame[1] == INTRA_FRAME;
const int bsize_group = size_group_lookup[bsize];
aom_write_symbol(w, interintra, ec_ctx->interintra_cdf[bsize_group], 2);
if (interintra) {
aom_write_symbol(w, mbmi->interintra_mode,
ec_ctx->interintra_mode_cdf[bsize_group],
INTERINTRA_MODES);
if (is_interintra_wedge_used(bsize)) {
aom_write_symbol(w, mbmi->use_wedge_interintra,
ec_ctx->wedge_interintra_cdf[bsize], 2);
if (mbmi->use_wedge_interintra) {
aom_write_symbol(w, mbmi->interintra_wedge_index,
ec_ctx->wedge_idx_cdf[bsize], 16);
}
}
}
}
if (mbmi->ref_frame[1] != INTRA_FRAME) write_motion_mode(cm, xd, mbmi, w);
// First write idx to indicate current compound inter prediction mode group
// Group A (0): dist_wtd_comp, compound_average
// Group B (1): interintra, compound_diffwtd, wedge
if (has_second_ref(mbmi)) {
const int masked_compound_used = is_any_masked_compound_used(bsize) &&
cm->seq_params.enable_masked_compound;
if (masked_compound_used) {
const int ctx_comp_group_idx = get_comp_group_idx_context(xd);
aom_write_symbol(w, mbmi->comp_group_idx,
ec_ctx->comp_group_idx_cdf[ctx_comp_group_idx], 2);
} else {
assert(mbmi->comp_group_idx == 0);
}
if (mbmi->comp_group_idx == 0) {
if (mbmi->compound_idx)
assert(mbmi->interinter_comp.type == COMPOUND_AVERAGE);
if (cm->seq_params.order_hint_info.enable_dist_wtd_comp) {
const int comp_index_ctx = get_comp_index_context(cm, xd);
aom_write_symbol(w, mbmi->compound_idx,
ec_ctx->compound_index_cdf[comp_index_ctx], 2);
} else {
assert(mbmi->compound_idx == 1);
}
} else {
assert(cpi->common.current_frame.reference_mode != SINGLE_REFERENCE &&
is_inter_compound_mode(mbmi->mode) &&
mbmi->motion_mode == SIMPLE_TRANSLATION);
assert(masked_compound_used);
// compound_diffwtd, wedge
assert(mbmi->interinter_comp.type == COMPOUND_WEDGE ||
mbmi->interinter_comp.type == COMPOUND_DIFFWTD);
if (is_interinter_compound_used(COMPOUND_WEDGE, bsize))
aom_write_symbol(w, mbmi->interinter_comp.type - COMPOUND_WEDGE,
ec_ctx->compound_type_cdf[bsize],
MASKED_COMPOUND_TYPES);
if (mbmi->interinter_comp.type == COMPOUND_WEDGE) {
assert(is_interinter_compound_used(COMPOUND_WEDGE, bsize));
aom_write_symbol(w, mbmi->interinter_comp.wedge_index,
ec_ctx->wedge_idx_cdf[bsize], 16);
aom_write_bit(w, mbmi->interinter_comp.wedge_sign);
} else {
assert(mbmi->interinter_comp.type == COMPOUND_DIFFWTD);
aom_write_literal(w, mbmi->interinter_comp.mask_type,
MAX_DIFFWTD_MASK_BITS);
}
}
}
write_mb_interp_filter(cpi, xd, w);
}
}
static AOM_INLINE void write_intrabc_info(
MACROBLOCKD *xd, const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame,
aom_writer *w) {
const MB_MODE_INFO *const mbmi = xd->mi[0];
int use_intrabc = is_intrabc_block(mbmi);
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
aom_write_symbol(w, use_intrabc, ec_ctx->intrabc_cdf, 2);
if (use_intrabc) {
assert(mbmi->mode == DC_PRED);
assert(mbmi->uv_mode == UV_DC_PRED);
assert(mbmi->motion_mode == SIMPLE_TRANSLATION);
int_mv dv_ref = mbmi_ext_frame->ref_mv_stack[0].this_mv;
av1_encode_dv(w, &mbmi->mv[0].as_mv, &dv_ref.as_mv, &ec_ctx->ndvc);
}
}
static AOM_INLINE void write_mb_modes_kf(
AV1_COMP *cpi, MACROBLOCKD *xd,
const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame, const int mi_row,
const int mi_col, aom_writer *w) {
AV1_COMMON *const cm = &cpi->common;
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
const struct segmentation *const seg = &cm->seg;
struct segmentation_probs *const segp = &ec_ctx->seg;
const MB_MODE_INFO *const mbmi = xd->mi[0];
if (seg->segid_preskip && seg->update_map)
write_segment_id(cpi, mbmi, w, seg, segp, mi_row, mi_col, 0);
const int skip = write_skip(cm, xd, mbmi->segment_id, mbmi, w);
if (!seg->segid_preskip && seg->update_map)
write_segment_id(cpi, mbmi, w, seg, segp, mi_row, mi_col, skip);
write_cdef(cm, xd, w, skip, mi_col, mi_row);
write_delta_q_params(cpi, mi_row, mi_col, skip, w);
if (av1_allow_intrabc(cm)) {
write_intrabc_info(xd, mbmi_ext_frame, w);
if (is_intrabc_block(mbmi)) return;
}
write_intra_prediction_modes(cpi, mi_row, mi_col, 1, w);
}
#if CONFIG_RD_DEBUG
static AOM_INLINE void dump_mode_info(MB_MODE_INFO *mi) {
printf("\nmi->mi_row == %d\n", mi->mi_row);
printf("&& mi->mi_col == %d\n", mi->mi_col);
printf("&& mi->sb_type == %d\n", mi->sb_type);
printf("&& mi->tx_size == %d\n", mi->tx_size);
printf("&& mi->mode == %d\n", mi->mode);
}
static int rd_token_stats_mismatch(RD_STATS *rd_stats, TOKEN_STATS *token_stats,
int plane) {
if (rd_stats->txb_coeff_cost[plane] != token_stats->cost) {
int r, c;
printf("\nplane %d rd_stats->txb_coeff_cost %d token_stats->cost %d\n",
plane, rd_stats->txb_coeff_cost[plane], token_stats->cost);
printf("rd txb_coeff_cost_map\n");
for (r = 0; r < TXB_COEFF_COST_MAP_SIZE; ++r) {
for (c = 0; c < TXB_COEFF_COST_MAP_SIZE; ++c) {
printf("%d ", rd_stats->txb_coeff_cost_map[plane][r][c]);
}
printf("\n");
}
printf("pack txb_coeff_cost_map\n");
for (r = 0; r < TXB_COEFF_COST_MAP_SIZE; ++r) {
for (c = 0; c < TXB_COEFF_COST_MAP_SIZE; ++c) {
printf("%d ", token_stats->txb_coeff_cost_map[r][c]);
}
printf("\n");
}
return 1;
}
return 0;
}
#endif
#if ENC_MISMATCH_DEBUG
static AOM_INLINE void enc_dump_logs(AV1_COMP *cpi, int mi_row, int mi_col) {
AV1_COMMON *const cm = &cpi->common;
const MB_MODE_INFO *const mbmi =
*(cm->mi_grid_base + (mi_row * cm->mi_stride + mi_col));
const MB_MODE_INFO_EXT_FRAME *const mbmi_ext_frame_base =
cpi->mbmi_ext_frame_base + get_mi_ext_idx(cm, mi_row, mi_col);
if (is_inter_block(mbmi)) {
#define FRAME_TO_CHECK 11
if (cm->current_frame.frame_number == FRAME_TO_CHECK &&
cm->show_frame == 1) {
const BLOCK_SIZE bsize = mbmi->sb_type;
int_mv mv[2] = { 0 };
const int is_comp_ref = has_second_ref(mbmi);
for (int ref = 0; ref < 1 + is_comp_ref; ++ref)
mv[ref].as_mv = mbmi->mv[ref].as_mv;
if (!is_comp_ref) {
mv[1].as_int = 0;
}
const int16_t mode_ctx =
is_comp_ref ? 0
: mode_context_analyzer(mbmi_ext_frame->mode_context,
mbmi->ref_frame);
const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK;
int16_t zeromv_ctx = -1;
int16_t refmv_ctx = -1;
if (mbmi->mode != NEWMV) {
zeromv_ctx = (mode_ctx >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
if (mbmi->mode != GLOBALMV)
refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK;
}
printf(
"=== ENCODER ===: "
"Frame=%d, (mi_row,mi_col)=(%d,%d), skip_mode=%d, mode=%d, bsize=%d, "
"show_frame=%d, mv[0]=(%d,%d), mv[1]=(%d,%d), ref[0]=%d, "
"ref[1]=%d, motion_mode=%d, mode_ctx=%d, "
"newmv_ctx=%d, zeromv_ctx=%d, refmv_ctx=%d, tx_size=%d\n",
cm->current_frame.frame_number, mi_row, mi_col, mbmi->skip_mode,
mbmi->mode, bsize, cm->show_frame, mv[0].as_mv.row, mv[0].as_mv.col,
mv[1].as_mv.row, mv[1].as_mv.col, mbmi->ref_frame[0],
mbmi->ref_frame[1], mbmi->motion_mode, mode_ctx, newmv_ctx,
zeromv_ctx, refmv_ctx, mbmi->tx_size);
}
}
}
#endif // ENC_MISMATCH_DEBUG
static AOM_INLINE void write_mbmi_b(AV1_COMP *cpi, aom_writer *w, int mi_row,
int mi_col) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
MB_MODE_INFO *m = xd->mi[0];
if (frame_is_intra_only(cm)) {
write_mb_modes_kf(cpi, xd, cpi->td.mb.mbmi_ext_frame, mi_row, mi_col, w);
} else {
// has_subpel_mv_component needs the ref frame buffers set up to look
// up if they are scaled. has_subpel_mv_component is in turn needed by
// write_switchable_interp_filter, which is called by pack_inter_mode_mvs.
set_ref_ptrs(cm, xd, m->ref_frame[0], m->ref_frame[1]);
#if ENC_MISMATCH_DEBUG
enc_dump_logs(cpi, mi_row, mi_col);
#endif // ENC_MISMATCH_DEBUG
pack_inter_mode_mvs(cpi, mi_row, mi_col, w);
}
}
static AOM_INLINE void write_inter_txb_coeff(
AV1_COMMON *const cm, MACROBLOCK *const x, MB_MODE_INFO *const mbmi,
aom_writer *w, const TOKENEXTRA **tok, const TOKENEXTRA *const tok_end,
TOKEN_STATS *token_stats, const int row, const int col, int *block,
const int plane) {
MACROBLOCKD *const xd = &x->e_mbd;
const struct macroblockd_plane *const pd = &xd->plane[plane];
const BLOCK_SIZE bsize = mbmi->sb_type;
assert(bsize < BLOCK_SIZES_ALL);
const BLOCK_SIZE bsizec =
scale_chroma_bsize(bsize, pd->subsampling_x, pd->subsampling_y);
const BLOCK_SIZE plane_bsize =
get_plane_block_size(bsizec, pd->subsampling_x, pd->subsampling_y);
const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, plane);
const int step =
tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size];
const int bkw = tx_size_wide_unit[max_tx_size];
const int bkh = tx_size_high_unit[max_tx_size];
const BLOCK_SIZE max_unit_bsize =
get_plane_block_size(BLOCK_64X64, pd->subsampling_x, pd->subsampling_y);
int mu_blocks_wide = block_size_wide[max_unit_bsize] >> tx_size_wide_log2[0];
int mu_blocks_high = block_size_high[max_unit_bsize] >> tx_size_high_log2[0];
int blk_row, blk_col;
assert(plane_bsize < BLOCK_SIZES_ALL);
const int num_4x4_w = block_size_wide[plane_bsize] >> tx_size_wide_log2[0];
const int num_4x4_h = block_size_high[plane_bsize] >> tx_size_high_log2[0];
const int unit_height =
AOMMIN(mu_blocks_high + (row >> pd->subsampling_y), num_4x4_h);
const int unit_width =
AOMMIN(mu_blocks_wide + (col >> pd->subsampling_x), num_4x4_w);
for (blk_row = row >> pd->subsampling_y; blk_row < unit_height;
blk_row += bkh) {
for (blk_col = col >> pd->subsampling_x; blk_col < unit_width;
blk_col += bkw) {
pack_txb_tokens(w, cm, x, tok, tok_end, xd, mbmi, plane, plane_bsize,
cm->seq_params.bit_depth, *block, blk_row, blk_col,
max_tx_size, token_stats);
*block += step;
}
}
}
static AOM_INLINE void write_tokens_b(AV1_COMP *cpi, aom_writer *w,
const TOKENEXTRA **tok,
const TOKENEXTRA *const tok_end,
int mi_row, int mi_col) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->td.mb;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
const BLOCK_SIZE bsize = mbmi->sb_type;
assert(!mbmi->skip);
const int is_inter = is_inter_block(mbmi);
if (!is_inter) {
av1_write_coeffs_mb(cm, x, mi_row, mi_col, w, bsize);
} else {
int block[MAX_MB_PLANE] = { 0 };
assert(bsize == get_plane_block_size(bsize, xd->plane[0].subsampling_x,
xd->plane[0].subsampling_y));
const int num_4x4_w = block_size_wide[bsize] >> tx_size_wide_log2[0];
const int num_4x4_h = block_size_high[bsize] >> tx_size_high_log2[0];
TOKEN_STATS token_stats;
init_token_stats(&token_stats);
const BLOCK_SIZE max_unit_bsize = BLOCK_64X64;
assert(max_unit_bsize == get_plane_block_size(BLOCK_64X64,
xd->plane[0].subsampling_x,
xd->plane[0].subsampling_y));
int mu_blocks_wide =
block_size_wide[max_unit_bsize] >> tx_size_wide_log2[0];
int mu_blocks_high =
block_size_high[max_unit_bsize] >> tx_size_high_log2[0];
mu_blocks_wide = AOMMIN(num_4x4_w, mu_blocks_wide);
mu_blocks_high = AOMMIN(num_4x4_h, mu_blocks_high);
const int num_planes = av1_num_planes(cm);
for (int row = 0; row < num_4x4_h; row += mu_blocks_high) {
for (int col = 0; col < num_4x4_w; col += mu_blocks_wide) {
for (int plane = 0; plane < num_planes; ++plane) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
if (!is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x,
pd->subsampling_y)) {
continue;
}
write_inter_txb_coeff(cm, x, mbmi, w, tok, tok_end, &token_stats, row,
col, &block[plane], plane);
}
}
}
#if CONFIG_RD_DEBUG
for (int plane = 0; plane < num_planes; ++plane) {
if (mbmi->sb_type >= BLOCK_8X8 &&
rd_token_stats_mismatch(&mbmi->rd_stats, &token_stats, plane)) {
dump_mode_info(mbmi);
assert(0);
}
}
#endif // CONFIG_RD_DEBUG
}
}
static AOM_INLINE void write_modes_b(AV1_COMP *cpi, const TileInfo *const tile,
aom_writer *w, const TOKENEXTRA **tok,
const TOKENEXTRA *const tok_end,
int mi_row, int mi_col) {
const AV1_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &cpi->td.mb.e_mbd;
xd->mi = cm->mi_grid_base + (mi_row * cm->mi_stride + mi_col);
cpi->td.mb.mbmi_ext_frame =
cpi->mbmi_ext_frame_base + get_mi_ext_idx(cm, mi_row, mi_col);
const MB_MODE_INFO *mbmi = xd->mi[0];
const BLOCK_SIZE bsize = mbmi->sb_type;
assert(bsize <= cm->seq_params.sb_size ||
(bsize >= BLOCK_SIZES && bsize < BLOCK_SIZES_ALL));
const int bh = mi_size_high[bsize];
const int bw = mi_size_wide[bsize];
set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols);
xd->above_txfm_context = cm->above_txfm_context[tile->tile_row] + mi_col;
xd->left_txfm_context =
xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
write_mbmi_b(cpi, w, mi_row, mi_col);
for (int plane = 0; plane < AOMMIN(2, av1_num_planes(cm)); ++plane) {
const uint8_t palette_size_plane =
mbmi->palette_mode_info.palette_size[plane];
assert(!mbmi->skip_mode || !palette_size_plane);
if (palette_size_plane > 0) {
assert(mbmi->use_intrabc == 0);
assert(av1_allow_palette(cm->allow_screen_content_tools, mbmi->sb_type));
int rows, cols;
av1_get_block_dimensions(mbmi->sb_type, plane, xd, NULL, NULL, &rows,
&cols);
assert(*tok < tok_end);
pack_map_tokens(w, tok, palette_size_plane, rows * cols);
}
}
const int is_inter_tx = is_inter_block(mbmi);
const int skip = mbmi->skip;
const int segment_id = mbmi->segment_id;
if (cm->tx_mode == TX_MODE_SELECT && block_signals_txsize(bsize) &&
!(is_inter_tx && skip) && !xd->lossless[segment_id]) {
if (is_inter_tx) { // This implies skip flag is 0.
const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, bsize, 0);
const int txbh = tx_size_high_unit[max_tx_size];
const int txbw = tx_size_wide_unit[max_tx_size];
const int width = block_size_wide[bsize] >> tx_size_wide_log2[0];
const int height = block_size_high[bsize] >> tx_size_high_log2[0];
for (int idy = 0; idy < height; idy += txbh) {
for (int idx = 0; idx < width; idx += txbw) {
write_tx_size_vartx(xd, mbmi, max_tx_size, 0, idy, idx, w);
}
}
} else {
write_selected_tx_size(xd, w);
set_txfm_ctxs(mbmi->tx_size, xd->n4_w, xd->n4_h, 0, xd);
}
} else {
set_txfm_ctxs(mbmi->tx_size, xd->n4_w, xd->n4_h, skip && is_inter_tx, xd);
}
if (!mbmi->skip) {
write_tokens_b(cpi, w, tok, tok_end, mi_row, mi_col);
}
}
static AOM_INLINE void write_partition(const AV1_COMMON *const cm,
const MACROBLOCKD *const xd, int hbs,
int mi_row, int mi_col, PARTITION_TYPE p,
BLOCK_SIZE bsize, aom_writer *w) {
const int is_partition_point = bsize >= BLOCK_8X8;
if (!is_partition_point) return;
const int has_rows = (mi_row + hbs) < cm->mi_rows;
const int has_cols = (mi_col + hbs) < cm->mi_cols;
const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
if (!has_rows && !has_cols) {
assert(p == PARTITION_SPLIT);
return;
}
if (has_rows && has_cols) {
aom_write_symbol(w, p, ec_ctx->partition_cdf[ctx],
partition_cdf_length(bsize));
} else if (!has_rows && has_cols) {
assert(p == PARTITION_SPLIT || p == PARTITION_HORZ);
assert(bsize > BLOCK_8X8);
aom_cdf_prob cdf[2];
partition_gather_vert_alike(cdf, ec_ctx->partition_cdf[ctx], bsize);
aom_write_cdf(w, p == PARTITION_SPLIT, cdf, 2);
} else {
assert(has_rows && !has_cols);
assert(p == PARTITION_SPLIT || p == PARTITION_VERT);
assert(bsize > BLOCK_8X8);
aom_cdf_prob cdf[2];
partition_gather_horz_alike(cdf, ec_ctx->partition_cdf[ctx], bsize);
aom_write_cdf(w, p == PARTITION_SPLIT, cdf, 2);
}
}
static AOM_INLINE void write_modes_sb(
AV1_COMP *const cpi, const TileInfo *const tile, aom_writer *const w,
const TOKENEXTRA **tok, const TOKENEXTRA *const tok_end, int mi_row,
int mi_col, BLOCK_SIZE bsize) {
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
assert(bsize < BLOCK_SIZES_ALL);
const int hbs = mi_size_wide[bsize] / 2;
const int quarter_step = mi_size_wide[bsize] / 4;
int i;
const PARTITION_TYPE partition = get_partition(cm, mi_row, mi_col, bsize);
const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition);
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
const int num_planes = av1_num_planes(cm);
for (int plane = 0; plane < num_planes; ++plane) {
int rcol0, rcol1, rrow0, rrow1;
if (av1_loop_restoration_corners_in_sb(cm, plane, mi_row, mi_col, bsize,
&rcol0, &rcol1, &rrow0, &rrow1)) {
const int rstride = cm->rst_info[plane].horz_units_per_tile;
for (int rrow = rrow0; rrow < rrow1; ++rrow) {
for (int rcol = rcol0; rcol < rcol1; ++rcol) {
const int runit_idx = rcol + rrow * rstride;
const RestorationUnitInfo *rui =
&cm->rst_info[plane].unit_info[runit_idx];
loop_restoration_write_sb_coeffs(cm, xd, rui, w, plane,
cpi->td.counts);
}
}
}
}
write_partition(cm, xd, hbs, mi_row, mi_col, partition, bsize, w);
switch (partition) {
case PARTITION_NONE:
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
break;
case PARTITION_HORZ:
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
if (mi_row + hbs < cm->mi_rows)
write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col);
break;
case PARTITION_VERT:
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
if (mi_col + hbs < cm->mi_cols)
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs);
break;
case PARTITION_SPLIT:
write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col, subsize);
write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs, subsize);
write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col, subsize);
write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs,
subsize);
break;
case PARTITION_HORZ_A:
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs);
write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col);
break;
case PARTITION_HORZ_B:
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col);
write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs);
break;
case PARTITION_VERT_A:
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col);
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs);
break;
case PARTITION_VERT_B:
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs);
write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs);
break;
case PARTITION_HORZ_4:
for (i = 0; i < 4; ++i) {
int this_mi_row = mi_row + i * quarter_step;
if (i > 0 && this_mi_row >= cm->mi_rows) break;
write_modes_b(cpi, tile, w, tok, tok_end, this_mi_row, mi_col);
}
break;
case PARTITION_VERT_4:
for (i = 0; i < 4; ++i) {
int this_mi_col = mi_col + i * quarter_step;
if (i > 0 && this_mi_col >= cm->mi_cols) break;
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, this_mi_col);
}
break;
default: assert(0);
}
// update partition context
update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition);
}
static AOM_INLINE void write_modes(AV1_COMP *const cpi,
const TileInfo *const tile,
aom_writer *const w, int tile_row,
int tile_col) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
const int mi_row_start = tile->mi_row_start;
const int mi_row_end = tile->mi_row_end;
const int mi_col_start = tile->mi_col_start;
const int mi_col_end = tile->mi_col_end;
int mi_row, mi_col, sb_row_in_tile;
av1_zero_above_context(cm, xd, mi_col_start, mi_col_end, tile->tile_row);
av1_init_above_context(cm, xd, tile->tile_row);
if (cpi->common.delta_q_info.delta_q_present_flag) {
xd->current_qindex = cpi->common.base_qindex;
if (cpi->common.delta_q_info.delta_lf_present_flag) {
av1_reset_loop_filter_delta(xd, av1_num_planes(cm));
}
}
for (mi_row = mi_row_start; mi_row < mi_row_end;
mi_row += cm->seq_params.mib_size) {
sb_row_in_tile =
(mi_row - tile->mi_row_start) >> cm->seq_params.mib_size_log2;
const TOKENEXTRA *tok =
cpi->tplist[tile_row][tile_col][sb_row_in_tile].start;
const TOKENEXTRA *tok_end =
tok + cpi->tplist[tile_row][tile_col][sb_row_in_tile].count;
av1_zero_left_context(xd);
for (mi_col = mi_col_start; mi_col < mi_col_end;
mi_col += cm->seq_params.mib_size) {
cpi->td.mb.cb_coef_buff = av1_get_cb_coeff_buffer(cpi, mi_row, mi_col);
write_modes_sb(cpi, tile, w, &tok, tok_end, mi_row, mi_col,
cm->seq_params.sb_size);
}
assert(tok == cpi->tplist[tile_row][tile_col][sb_row_in_tile].stop);
}
}
static AOM_INLINE void encode_restoration_mode(
AV1_COMMON *cm, struct aom_write_bit_buffer *wb) {
assert(!cm->all_lossless);
if (!cm->seq_params.enable_restoration) return;
if (cm->allow_intrabc) return;
const int num_planes = av1_num_planes(cm);
int all_none = 1, chroma_none = 1;
for (int p = 0; p < num_planes; ++p) {
RestorationInfo *rsi = &cm->rst_info[p];
if (rsi->frame_restoration_type != RESTORE_NONE) {
all_none = 0;
chroma_none &= p == 0;
}
switch (rsi->frame_restoration_type) {
case RESTORE_NONE:
aom_wb_write_bit(wb, 0);
aom_wb_write_bit(wb, 0);
break;
case RESTORE_WIENER:
aom_wb_write_bit(wb, 1);
aom_wb_write_bit(wb, 0);
break;
case RESTORE_SGRPROJ:
aom_wb_write_bit(wb, 1);
aom_wb_write_bit(wb, 1);
break;
case RESTORE_SWITCHABLE:
aom_wb_write_bit(wb, 0);
aom_wb_write_bit(wb, 1);
break;
default: assert(0);
}
}
if (!all_none) {
assert(cm->seq_params.sb_size == BLOCK_64X64 ||
cm->seq_params.sb_size == BLOCK_128X128);
const int sb_size = cm->seq_params.sb_size == BLOCK_128X128 ? 128 : 64;
RestorationInfo *rsi = &cm->rst_info[0];
assert(rsi->restoration_unit_size >= sb_size);
assert(RESTORATION_UNITSIZE_MAX == 256);
if (sb_size == 64) {
aom_wb_write_bit(wb, rsi->restoration_unit_size > 64);
}
if (rsi->restoration_unit_size > 64) {
aom_wb_write_bit(wb, rsi->restoration_unit_size > 128);
}
}
if (num_planes > 1) {
int s = AOMMIN(cm->seq_params.subsampling_x, cm->seq_params.subsampling_y);
if (s && !chroma_none) {
aom_wb_write_bit(wb, cm->rst_info[1].restoration_unit_size !=
cm->rst_info[0].restoration_unit_size);
assert(cm->rst_info[1].restoration_unit_size ==
cm->rst_info[0].restoration_unit_size ||
cm->rst_info[1].restoration_unit_size ==
(cm->rst_info[0].restoration_unit_size >> s));
assert(cm->rst_info[2].restoration_unit_size ==
cm->rst_info[1].restoration_unit_size);
} else if (!s) {
assert(cm->rst_info[1].restoration_unit_size ==
cm->rst_info[0].restoration_unit_size);
assert(cm->rst_info[2].restoration_unit_size ==
cm->rst_info[1].restoration_unit_size);
}
}
}
static AOM_INLINE void write_wiener_filter(int wiener_win,
const WienerInfo *wiener_info,
WienerInfo *ref_wiener_info,
aom_writer *wb) {
if (wiener_win == WIENER_WIN)
aom_write_primitive_refsubexpfin(
wb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
WIENER_FILT_TAP0_SUBEXP_K,
ref_wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV,
wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV);
else
assert(wiener_info->vfilter[0] == 0 &&
wiener_info->vfilter[WIENER_WIN - 1] == 0);
aom_write_primitive_refsubexpfin(
wb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
WIENER_FILT_TAP1_SUBEXP_K,
ref_wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV,
wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV);
aom_write_primitive_refsubexpfin(
wb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
WIENER_FILT_TAP2_SUBEXP_K,
ref_wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV,
wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV);
if (wiener_win == WIENER_WIN)
aom_write_primitive_refsubexpfin(
wb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
WIENER_FILT_TAP0_SUBEXP_K,
ref_wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV,
wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV);
else
assert(wiener_info->hfilter[0] == 0 &&
wiener_info->hfilter[WIENER_WIN - 1] == 0);
aom_write_primitive_refsubexpfin(
wb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
WIENER_FILT_TAP1_SUBEXP_K,
ref_wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV,
wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV);
aom_write_primitive_refsubexpfin(
wb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
WIENER_FILT_TAP2_SUBEXP_K,
ref_wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV,
wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV);
memcpy(ref_wiener_info, wiener_info, sizeof(*wiener_info));
}
static AOM_INLINE void write_sgrproj_filter(const SgrprojInfo *sgrproj_info,
SgrprojInfo *ref_sgrproj_info,
aom_writer *wb) {
aom_write_literal(wb, sgrproj_info->ep, SGRPROJ_PARAMS_BITS);
const sgr_params_type *params = &av1_sgr_params[sgrproj_info->ep];
if (params->r[0] == 0) {
assert(sgrproj_info->xqd[0] == 0);
aom_write_primitive_refsubexpfin(
wb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K,
ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1,
sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1);
} else if (params->r[1] == 0) {
aom_write_primitive_refsubexpfin(
wb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K,
ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0,
sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0);
} else {
aom_write_primitive_refsubexpfin(
wb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K,
ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0,
sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0);
aom_write_primitive_refsubexpfin(
wb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K,
ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1,
sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1);
}
memcpy(ref_sgrproj_info, sgrproj_info, sizeof(*sgrproj_info));
}
static AOM_INLINE void loop_restoration_write_sb_coeffs(
const AV1_COMMON *const cm, MACROBLOCKD *xd, const RestorationUnitInfo *rui,
aom_writer *const w, int plane, FRAME_COUNTS *counts) {
const RestorationInfo *rsi = cm->rst_info + plane;
RestorationType frame_rtype = rsi->frame_restoration_type;
if (frame_rtype == RESTORE_NONE) return;
(void)counts;
assert(!cm->all_lossless);
const int wiener_win = (plane > 0) ? WIENER_WIN_CHROMA : WIENER_WIN;
WienerInfo *ref_wiener_info = &xd->wiener_info[plane];
SgrprojInfo *ref_sgrproj_info = &xd->sgrproj_info[plane];
RestorationType unit_rtype = rui->restoration_type;
if (frame_rtype == RESTORE_SWITCHABLE) {
aom_write_symbol(w, unit_rtype, xd->tile_ctx->switchable_restore_cdf,
RESTORE_SWITCHABLE_TYPES);
#if CONFIG_ENTROPY_STATS
++counts->switchable_restore[unit_rtype];
#endif
switch (unit_rtype) {
case RESTORE_WIENER:
write_wiener_filter(wiener_win, &rui->wiener_info, ref_wiener_info, w);
break;
case RESTORE_SGRPROJ:
write_sgrproj_filter(&rui->sgrproj_info, ref_sgrproj_info, w);
break;
default: assert(unit_rtype == RESTORE_NONE); break;
}
} else if (frame_rtype == RESTORE_WIENER) {
aom_write_symbol(w, unit_rtype != RESTORE_NONE,
xd->tile_ctx->wiener_restore_cdf, 2);
#if CONFIG_ENTROPY_STATS
++counts->wiener_restore[unit_rtype != RESTORE_NONE];
#endif
if (unit_rtype != RESTORE_NONE) {
write_wiener_filter(wiener_win, &rui->wiener_info, ref_wiener_info, w);
}
} else if (frame_rtype == RESTORE_SGRPROJ) {
aom_write_symbol(w, unit_rtype != RESTORE_NONE,
xd->tile_ctx->sgrproj_restore_cdf, 2);
#if CONFIG_ENTROPY_STATS
++counts->sgrproj_restore[unit_rtype != RESTORE_NONE];
#endif
if (unit_rtype != RESTORE_NONE) {
write_sgrproj_filter(&rui->sgrproj_info, ref_sgrproj_info, w);
}
}
}
static AOM_INLINE void encode_loopfilter(AV1_COMMON *cm,
struct aom_write_bit_buffer *wb) {
assert(!cm->coded_lossless);
if (cm->allow_intrabc) return;
const int num_planes = av1_num_planes(cm);
int i;
struct loopfilter *lf = &cm->lf;
// Encode the loop filter level and type
aom_wb_write_literal(wb, lf->filter_level[0], 6);
aom_wb_write_literal(wb, lf->filter_level[1], 6);
if (num_planes > 1) {
if (lf->filter_level[0] || lf->filter_level[1]) {
aom_wb_write_literal(wb, lf->filter_level_u, 6);
aom_wb_write_literal(wb, lf->filter_level_v, 6);
}
}
aom_wb_write_literal(wb, lf->sharpness_level, 3);
// Write out loop filter deltas applied at the MB level based on mode or
// ref frame (if they are enabled).
aom_wb_write_bit(wb, lf->mode_ref_delta_enabled);
if (lf->mode_ref_delta_enabled) {
aom_wb_write_bit(wb, lf->mode_ref_delta_update);
if (lf->mode_ref_delta_update) {
const RefCntBuffer *buf = get_primary_ref_frame_buf(cm);
int8_t last_ref_deltas[REF_FRAMES];
if (buf == NULL) {
av1_set_default_ref_deltas(last_ref_deltas);
} else {
memcpy(last_ref_deltas, buf->ref_deltas, REF_FRAMES);
}
for (i = 0; i < REF_FRAMES; i++) {
const int delta = lf->ref_deltas[i];
const int changed = delta != last_ref_deltas[i];
aom_wb_write_bit(wb, changed);
if (changed) aom_wb_write_inv_signed_literal(wb, delta, 6);
}
int8_t last_mode_deltas[MAX_MODE_LF_DELTAS];
if (buf == NULL) {
av1_set_default_mode_deltas(last_mode_deltas);
} else {
memcpy(last_mode_deltas, buf->mode_deltas, MAX_MODE_LF_DELTAS);
}
for (i = 0; i < MAX_MODE_LF_DELTAS; i++) {
const int delta = lf->mode_deltas[i];
const int changed = delta != last_mode_deltas[i];
aom_wb_write_bit(wb, changed);
if (changed) aom_wb_write_inv_signed_literal(wb, delta, 6);
}
}
}
}
static AOM_INLINE void encode_cdef(const AV1_COMMON *cm,
struct aom_write_bit_buffer *wb) {
assert(!cm->coded_lossless);
if (!cm->seq_params.enable_cdef) return;
if (cm->allow_intrabc) return;
const int num_planes = av1_num_planes(cm);
int i;
aom_wb_write_literal(wb, cm->cdef_info.cdef_damping - 3, 2);
aom_wb_write_literal(wb, cm->cdef_info.cdef_bits, 2);
for (i = 0; i < cm->cdef_info.nb_cdef_strengths; i++) {
aom_wb_write_literal(wb, cm->cdef_info.cdef_strengths[i],
CDEF_STRENGTH_BITS);
if (num_planes > 1)
aom_wb_write_literal(wb, cm->cdef_info.cdef_uv_strengths[i],
CDEF_STRENGTH_BITS);
}
}
static AOM_INLINE void write_delta_q(struct aom_write_bit_buffer *wb,
int delta_q) {
if (delta_q != 0) {
aom_wb_write_bit(wb, 1);
aom_wb_write_inv_signed_literal(wb, delta_q, 6);
} else {
aom_wb_write_bit(wb, 0);
}
}
static AOM_INLINE void encode_quantization(const AV1_COMMON *const cm,
struct aom_write_bit_buffer *wb) {
const int num_planes = av1_num_planes(cm);
aom_wb_write_literal(wb, cm->base_qindex, QINDEX_BITS);
write_delta_q(wb, cm->y_dc_delta_q);
if (num_planes > 1) {
int diff_uv_delta = (cm->u_dc_delta_q != cm->v_dc_delta_q) ||
(cm->u_ac_delta_q != cm->v_ac_delta_q);
if (cm->seq_params.separate_uv_delta_q) aom_wb_write_bit(wb, diff_uv_delta);
write_delta_q(wb, cm->u_dc_delta_q);
write_delta_q(wb, cm->u_ac_delta_q);
if (diff_uv_delta) {
write_delta_q(wb, cm->v_dc_delta_q);
write_delta_q(wb, cm->v_ac_delta_q);
}
}
aom_wb_write_bit(wb, cm->using_qmatrix);
if (cm->using_qmatrix) {
aom_wb_write_literal(wb, cm->qm_y, QM_LEVEL_BITS);
aom_wb_write_literal(wb, cm->qm_u, QM_LEVEL_BITS);
if (!cm->seq_params.separate_uv_delta_q)
assert(cm->qm_u == cm->qm_v);
else
aom_wb_write_literal(wb, cm->qm_v, QM_LEVEL_BITS);
}
}
static AOM_INLINE void encode_segmentation(AV1_COMMON *cm, MACROBLOCKD *xd,
struct aom_write_bit_buffer *wb) {
int i, j;
struct segmentation *seg = &cm->seg;
aom_wb_write_bit(wb, seg->enabled);
if (!seg->enabled) return;
// Write update flags
if (cm->primary_ref_frame == PRIMARY_REF_NONE) {
assert(seg->update_map == 1);
seg->temporal_update = 0;
assert(seg->update_data == 1);
} else {
aom_wb_write_bit(wb, seg->update_map);
if (seg->update_map) {
// Select the coding strategy (temporal or spatial)
av1_choose_segmap_coding_method(cm, xd);
aom_wb_write_bit(wb, seg->temporal_update);
}
aom_wb_write_bit(wb, seg->update_data);
}
// Segmentation data
if (seg->update_data) {
for (i = 0; i < MAX_SEGMENTS; i++) {
for (j = 0; j < SEG_LVL_MAX; j++) {
const int active = segfeature_active(seg, i, j);
aom_wb_write_bit(wb, active);
if (active) {
const int data_max = av1_seg_feature_data_max(j);
const int data_min = -data_max;
const int ubits = get_unsigned_bits(data_max);
const int data = clamp(get_segdata(seg, i, j), data_min, data_max);
if (av1_is_segfeature_signed(j)) {
aom_wb_write_inv_signed_literal(wb, data, ubits);
} else {
aom_wb_write_literal(wb, data, ubits);
}
}
}
}
}
}
static AOM_INLINE void write_frame_interp_filter(
InterpFilter filter, struct aom_write_bit_buffer *wb) {
aom_wb_write_bit(wb, filter == SWITCHABLE);
if (filter != SWITCHABLE)
aom_wb_write_literal(wb, filter, LOG_SWITCHABLE_FILTERS);
}
// Same function as write_uniform but writing to uncompresses header wb
static AOM_INLINE void wb_write_uniform(struct aom_write_bit_buffer *wb, int n,
int v) {
const int l = get_unsigned_bits(n);
const int m = (1 << l) - n;
if (l == 0) return;
if (v < m) {
aom_wb_write_literal(wb, v, l - 1);
} else {
aom_wb_write_literal(wb, m + ((v - m) >> 1), l - 1);
aom_wb_write_literal(wb, (v - m) & 1, 1);
}
}
static AOM_INLINE void write_tile_info_max_tile(
const AV1_COMMON *const cm, struct aom_write_bit_buffer *wb) {
int width_mi = ALIGN_POWER_OF_TWO(cm->mi_cols, cm->seq_params.mib_size_log2);
int height_mi = ALIGN_POWER_OF_TWO(cm->mi_rows, cm->seq_params.mib_size_log2);
int width_sb = width_mi >> cm->seq_params.mib_size_log2;
int height_sb = height_mi >> cm->seq_params.mib_size_log2;
int size_sb, i;
aom_wb_write_bit(wb, cm->uniform_tile_spacing_flag);
if (cm->uniform_tile_spacing_flag) {
// Uniform spaced tiles with power-of-two number of rows and columns
// tile columns
int ones = cm->log2_tile_cols - cm->min_log2_tile_cols;
while (ones--) {
aom_wb_write_bit(wb, 1);
}
if (cm->log2_tile_cols < cm->max_log2_tile_cols) {
aom_wb_write_bit(wb, 0);
}
// rows
ones = cm->log2_tile_rows - cm->min_log2_tile_rows;
while (ones--) {
aom_wb_write_bit(wb, 1);
}
if (cm->log2_tile_rows < cm->max_log2_tile_rows) {
aom_wb_write_bit(wb, 0);
}
} else {
// Explicit tiles with configurable tile widths and heights
// columns
for (i = 0; i < cm->tile_cols; i++) {
size_sb = cm->tile_col_start_sb[i + 1] - cm->tile_col_start_sb[i];
wb_write_uniform(wb, AOMMIN(width_sb, cm->max_tile_width_sb),
size_sb - 1);
width_sb -= size_sb;
}
assert(width_sb == 0);
// rows
for (i = 0; i < cm->tile_rows; i++) {
size_sb = cm->tile_row_start_sb[i + 1] - cm->tile_row_start_sb[i];
wb_write_uniform(wb, AOMMIN(height_sb, cm->max_tile_height_sb),
size_sb - 1);
height_sb -= size_sb;
}
assert(height_sb == 0);
}
}
static AOM_INLINE void write_tile_info(const AV1_COMMON *const cm,
struct aom_write_bit_buffer *saved_wb,
struct aom_write_bit_buffer *wb) {
write_tile_info_max_tile(cm, wb);
*saved_wb = *wb;
if (cm->tile_rows * cm->tile_cols > 1) {
// tile id used for cdf update
aom_wb_write_literal(wb, 0, cm->log2_tile_cols + cm->log2_tile_rows);
// Number of bytes in tile size - 1
aom_wb_write_literal(wb, 3, 2);
}
}
static AOM_INLINE void write_ext_tile_info(
const AV1_COMMON *const cm, struct aom_write_bit_buffer *saved_wb,
struct aom_write_bit_buffer *wb) {
// This information is stored as a separate byte.
int mod = wb->bit_offset % CHAR_BIT;
if (mod > 0) aom_wb_write_literal(wb, 0, CHAR_BIT - mod);
assert(aom_wb_is_byte_aligned(wb));
*saved_wb = *wb;
if (cm->tile_rows * cm->tile_cols > 1) {
// Note that the last item in the uncompressed header is the data
// describing tile configuration.
// Number of bytes in tile column size - 1
aom_wb_write_literal(wb, 0, 2);
// Number of bytes in tile size - 1
aom_wb_write_literal(wb, 0, 2);
}
}
// Stores the location and size of a tile's data in the bitstream. Used for
// later identifying identical tiles
typedef struct TileBufferEnc {
uint8_t *data;
size_t size;
} TileBufferEnc;
static INLINE int find_identical_tile(
const int tile_row, const int tile_col,
TileBufferEnc (*const tile_buffers)[MAX_TILE_COLS]) {
const MV32 candidate_offset[1] = { { 1, 0 } };
const uint8_t *const cur_tile_data =
tile_buffers[tile_row][tile_col].data + 4;
const size_t cur_tile_size = tile_buffers[tile_row][tile_col].size;
int i;
if (tile_row == 0) return 0;
// (TODO: yunqingwang) For now, only above tile is checked and used.
// More candidates such as left tile can be added later.
for (i = 0; i < 1; i++) {
int row_offset = candidate_offset[0].row;
int col_offset = candidate_offset[0].col;
int row = tile_row - row_offset;
int col = tile_col - col_offset;
const uint8_t *tile_data;
TileBufferEnc *candidate;
if (row < 0 || col < 0) continue;
const uint32_t tile_hdr = mem_get_le32(tile_buffers[row][col].data);
// Read out tile-copy-mode bit:
if ((tile_hdr >> 31) == 1) {
// The candidate is a copy tile itself: the offset is stored in bits
// 30 through 24 inclusive.
row_offset += (tile_hdr >> 24) & 0x7f;
row = tile_row - row_offset;
}
candidate = &tile_buffers[row][col];
if (row_offset >= 128 || candidate->size != cur_tile_size) continue;
tile_data = candidate->data + 4;
if (memcmp(tile_data, cur_tile_data, cur_tile_size) != 0) continue;
// Identical tile found
assert(row_offset > 0);
return row_offset;
}
// No identical tile found
return 0;