blob: ebe9e22432690ebb3fe8e0ada6ae3b006272c518 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem.h"
#include "aom_ports/system_state.h"
#include "av1/common/common.h"
#include "av1/common/mvref_common.h"
#include "av1/common/onyxc_int.h"
#include "av1/common/reconinter.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/encodemv.h"
#include "av1/encoder/mcomp.h"
#include "av1/encoder/partition_strategy.h"
#include "av1/encoder/rdopt.h"
#include "av1/encoder/reconinter_enc.h"
// #define NEW_DIAMOND_SEARCH
static INLINE const uint8_t *get_buf_from_mv(const struct buf_2d *buf,
const MV *mv) {
return &buf->buf[mv->row * buf->stride + mv->col];
}
void av1_set_mv_search_range(MvLimits *mv_limits, const MV *mv) {
int col_min = (mv->col >> 3) - MAX_FULL_PEL_VAL + (mv->col & 7 ? 1 : 0);
int row_min = (mv->row >> 3) - MAX_FULL_PEL_VAL + (mv->row & 7 ? 1 : 0);
int col_max = (mv->col >> 3) + MAX_FULL_PEL_VAL;
int row_max = (mv->row >> 3) + MAX_FULL_PEL_VAL;
col_min = AOMMAX(col_min, (MV_LOW >> 3) + 1);
row_min = AOMMAX(row_min, (MV_LOW >> 3) + 1);
col_max = AOMMIN(col_max, (MV_UPP >> 3) - 1);
row_max = AOMMIN(row_max, (MV_UPP >> 3) - 1);
// Get intersection of UMV window and valid MV window to reduce # of checks
// in diamond search.
if (mv_limits->col_min < col_min) mv_limits->col_min = col_min;
if (mv_limits->col_max > col_max) mv_limits->col_max = col_max;
if (mv_limits->row_min < row_min) mv_limits->row_min = row_min;
if (mv_limits->row_max > row_max) mv_limits->row_max = row_max;
}
int av1_init_search_range(int size) {
int sr = 0;
// Minimum search size no matter what the passed in value.
size = AOMMAX(16, size);
while ((size << sr) < MAX_FULL_PEL_VAL) sr++;
sr = AOMMIN(sr, MAX_MVSEARCH_STEPS - 2);
return sr;
}
static INLINE int mv_cost(const MV *mv, const int *joint_cost,
int *const comp_cost[2]) {
return joint_cost[av1_get_mv_joint(mv)] + comp_cost[0][mv->row] +
comp_cost[1][mv->col];
}
int av1_mv_bit_cost(const MV *mv, const MV *ref, const int *mvjcost,
int *mvcost[2], int weight) {
const MV diff = { mv->row - ref->row, mv->col - ref->col };
return ROUND_POWER_OF_TWO(mv_cost(&diff, mvjcost, mvcost) * weight, 7);
}
#define PIXEL_TRANSFORM_ERROR_SCALE 4
static int mv_err_cost(const MV *mv, const MV *ref, const int *mvjcost,
int *mvcost[2], int error_per_bit) {
if (mvcost) {
const MV diff = { mv->row - ref->row, mv->col - ref->col };
return (int)ROUND_POWER_OF_TWO_64(
(int64_t)mv_cost(&diff, mvjcost, mvcost) * error_per_bit,
RDDIV_BITS + AV1_PROB_COST_SHIFT - RD_EPB_SHIFT +
PIXEL_TRANSFORM_ERROR_SCALE);
}
return 0;
}
static int mvsad_err_cost(const MACROBLOCK *x, const MV *mv, const MV *ref,
int sad_per_bit) {
const MV diff = { (mv->row - ref->row) * 8, (mv->col - ref->col) * 8 };
return ROUND_POWER_OF_TWO(
(unsigned)mv_cost(&diff, x->nmv_vec_cost, x->mv_cost_stack) * sad_per_bit,
AV1_PROB_COST_SHIFT);
}
void av1_init_dsmotion_compensation(search_site_config *cfg, int stride) {
int len, ss_count = 1;
cfg->ss[0].mv.col = cfg->ss[0].mv.row = 0;
cfg->ss[0].offset = 0;
cfg->stride = stride;
for (len = MAX_FIRST_STEP; len > 0; len /= 2) {
// Generate offsets for 4 search sites per step.
const MV ss_mvs[] = { { -len, 0 }, { len, 0 }, { 0, -len }, { 0, len } };
int i;
for (i = 0; i < 4; ++i) {
search_site *const ss = &cfg->ss[ss_count++];
ss->mv = ss_mvs[i];
ss->offset = ss->mv.row * stride + ss->mv.col;
}
}
cfg->ss_count = ss_count;
cfg->searches_per_step = 4;
}
void av1_init3smotion_compensation(search_site_config *cfg, int stride) {
int len, ss_count = 1;
cfg->ss[0].mv.col = cfg->ss[0].mv.row = 0;
cfg->ss[0].offset = 0;
cfg->stride = stride;
for (len = MAX_FIRST_STEP; len > 0; len /= 2) {
// Generate offsets for 8 search sites per step.
const MV ss_mvs[8] = { { -len, 0 }, { len, 0 }, { 0, -len },
{ 0, len }, { -len, -len }, { -len, len },
{ len, -len }, { len, len } };
int i;
for (i = 0; i < 8; ++i) {
search_site *const ss = &cfg->ss[ss_count++];
ss->mv = ss_mvs[i];
ss->offset = ss->mv.row * stride + ss->mv.col;
}
}
cfg->ss_count = ss_count;
cfg->searches_per_step = 8;
}
/*
* To avoid the penalty for crossing cache-line read, preload the reference
* area in a small buffer, which is aligned to make sure there won't be crossing
* cache-line read while reading from this buffer. This reduced the cpu
* cycles spent on reading ref data in sub-pixel filter functions.
* TODO: Currently, since sub-pixel search range here is -3 ~ 3, copy 22 rows x
* 32 cols area that is enough for 16x16 macroblock. Later, for SPLITMV, we
* could reduce the area.
*/
// convert motion vector component to offset for sv[a]f calc
static INLINE int sp(int x) { return x & 7; }
static INLINE const uint8_t *pre(const uint8_t *buf, int stride, int r, int c) {
const int offset = (r >> 3) * stride + (c >> 3);
return buf + offset;
}
/* checks if (r, c) has better score than previous best */
#define CHECK_BETTER(v, r, c) \
if (c >= minc && c <= maxc && r >= minr && r <= maxr) { \
MV this_mv = { r, c }; \
v = mv_err_cost(&this_mv, ref_mv, mvjcost, mvcost, error_per_bit); \
if (second_pred == NULL) { \
thismse = vfp->svf(pre(y, y_stride, r, c), y_stride, sp(c), sp(r), \
src_address, src_stride, &sse); \
} else if (mask) { \
thismse = vfp->msvf(pre(y, y_stride, r, c), y_stride, sp(c), sp(r), \
src_address, src_stride, second_pred, mask, \
mask_stride, invert_mask, &sse); \
} else { \
thismse = vfp->svaf(pre(y, y_stride, r, c), y_stride, sp(c), sp(r), \
src_address, src_stride, &sse, second_pred); \
} \
v += thismse; \
if (v < besterr) { \
besterr = v; \
br = r; \
bc = c; \
*distortion = thismse; \
*sse1 = sse; \
} \
} else { \
v = INT_MAX; \
}
#define CHECK_BETTER0(v, r, c) CHECK_BETTER(v, r, c)
/* checks if (r, c) has better score than previous best */
#define CHECK_BETTER1(v, r, c) \
if (c >= minc && c <= maxc && r >= minr && r <= maxr) { \
MV this_mv = { r, c }; \
thismse = upsampled_pref_error( \
xd, cm, mi_row, mi_col, &this_mv, vfp, src_address, src_stride, \
pre(y, y_stride, r, c), y_stride, sp(c), sp(r), second_pred, mask, \
mask_stride, invert_mask, w, h, &sse, use_accurate_subpel_search); \
v = mv_err_cost(&this_mv, ref_mv, mvjcost, mvcost, error_per_bit); \
v += thismse; \
if (v < besterr) { \
besterr = v; \
br = r; \
bc = c; \
*distortion = thismse; \
*sse1 = sse; \
} \
} else { \
v = INT_MAX; \
}
#define FIRST_LEVEL_CHECKS \
{ \
unsigned int left, right, up, down, diag; \
CHECK_BETTER(left, tr, tc - hstep); \
CHECK_BETTER(right, tr, tc + hstep); \
CHECK_BETTER(up, tr - hstep, tc); \
CHECK_BETTER(down, tr + hstep, tc); \
whichdir = (left < right ? 0 : 1) + (up < down ? 0 : 2); \
switch (whichdir) { \
case 0: CHECK_BETTER(diag, tr - hstep, tc - hstep); break; \
case 1: CHECK_BETTER(diag, tr - hstep, tc + hstep); break; \
case 2: CHECK_BETTER(diag, tr + hstep, tc - hstep); break; \
case 3: CHECK_BETTER(diag, tr + hstep, tc + hstep); break; \
} \
}
#define SECOND_LEVEL_CHECKS \
{ \
int kr, kc; \
unsigned int second; \
if (tr != br && tc != bc) { \
kr = br - tr; \
kc = bc - tc; \
CHECK_BETTER(second, tr + kr, tc + 2 * kc); \
CHECK_BETTER(second, tr + 2 * kr, tc + kc); \
} else if (tr == br && tc != bc) { \
kc = bc - tc; \
CHECK_BETTER(second, tr + hstep, tc + 2 * kc); \
CHECK_BETTER(second, tr - hstep, tc + 2 * kc); \
switch (whichdir) { \
case 0: \
case 1: CHECK_BETTER(second, tr + hstep, tc + kc); break; \
case 2: \
case 3: CHECK_BETTER(second, tr - hstep, tc + kc); break; \
} \
} else if (tr != br && tc == bc) { \
kr = br - tr; \
CHECK_BETTER(second, tr + 2 * kr, tc + hstep); \
CHECK_BETTER(second, tr + 2 * kr, tc - hstep); \
switch (whichdir) { \
case 0: \
case 2: CHECK_BETTER(second, tr + kr, tc + hstep); break; \
case 1: \
case 3: CHECK_BETTER(second, tr + kr, tc - hstep); break; \
} \
} \
}
// TODO(yunqingwang): SECOND_LEVEL_CHECKS_BEST was a rewrote of
// SECOND_LEVEL_CHECKS, and SECOND_LEVEL_CHECKS should be rewritten
// later in the same way.
#define SECOND_LEVEL_CHECKS_BEST(k) \
{ \
unsigned int second; \
int br0 = br; \
int bc0 = bc; \
assert(tr == br || tc == bc); \
if (tr == br && tc != bc) { \
kc = bc - tc; \
} else if (tr != br && tc == bc) { \
kr = br - tr; \
} \
CHECK_BETTER##k(second, br0 + kr, bc0); \
CHECK_BETTER##k(second, br0, bc0 + kc); \
if (br0 != br || bc0 != bc) { \
CHECK_BETTER##k(second, br0 + kr, bc0 + kc); \
} \
}
#define SETUP_SUBPEL_SEARCH \
const uint8_t *const src_address = x->plane[0].src.buf; \
const int src_stride = x->plane[0].src.stride; \
const MACROBLOCKD *xd = &x->e_mbd; \
unsigned int besterr = INT_MAX; \
unsigned int sse; \
unsigned int whichdir; \
int thismse; \
MV *bestmv = &x->best_mv.as_mv; \
const unsigned int halfiters = iters_per_step; \
const unsigned int quarteriters = iters_per_step; \
const unsigned int eighthiters = iters_per_step; \
const int y_stride = xd->plane[0].pre[0].stride; \
const int offset = bestmv->row * y_stride + bestmv->col; \
const uint8_t *const y = xd->plane[0].pre[0].buf; \
\
int br = bestmv->row * 8; \
int bc = bestmv->col * 8; \
int hstep = 4; \
int minc, maxc, minr, maxr; \
int tr = br; \
int tc = bc; \
\
set_subpel_mv_search_range(&x->mv_limits, &minc, &maxc, &minr, &maxr, \
ref_mv); \
\
bestmv->row *= 8; \
bestmv->col *= 8;
static unsigned int setup_center_error(
const MACROBLOCKD *xd, const MV *bestmv, const MV *ref_mv,
int error_per_bit, const aom_variance_fn_ptr_t *vfp,
const uint8_t *const src, const int src_stride, const uint8_t *const y,
int y_stride, const uint8_t *second_pred, const uint8_t *mask,
int mask_stride, int invert_mask, int w, int h, int offset, int *mvjcost,
int *mvcost[2], unsigned int *sse1, int *distortion) {
unsigned int besterr;
if (second_pred != NULL) {
#if CONFIG_AV1_HIGHBITDEPTH
if (is_cur_buf_hbd(xd)) {
DECLARE_ALIGNED(16, uint16_t, comp_pred16[MAX_SB_SQUARE]);
uint8_t *comp_pred = CONVERT_TO_BYTEPTR(comp_pred16);
if (mask) {
aom_highbd_comp_mask_pred(comp_pred, second_pred, w, h, y + offset,
y_stride, mask, mask_stride, invert_mask);
} else {
aom_highbd_comp_avg_pred(comp_pred, second_pred, w, h, y + offset,
y_stride);
}
besterr = vfp->vf(comp_pred, w, src, src_stride, sse1);
} else {
DECLARE_ALIGNED(16, uint8_t, comp_pred[MAX_SB_SQUARE]);
if (mask) {
aom_comp_mask_pred(comp_pred, second_pred, w, h, y + offset, y_stride,
mask, mask_stride, invert_mask);
} else {
aom_comp_avg_pred(comp_pred, second_pred, w, h, y + offset, y_stride);
}
besterr = vfp->vf(comp_pred, w, src, src_stride, sse1);
}
#else
(void)xd;
DECLARE_ALIGNED(16, uint8_t, comp_pred[MAX_SB_SQUARE]);
if (mask) {
aom_comp_mask_pred(comp_pred, second_pred, w, h, y + offset, y_stride,
mask, mask_stride, invert_mask);
} else {
aom_comp_avg_pred(comp_pred, second_pred, w, h, y + offset, y_stride);
}
besterr = vfp->vf(comp_pred, w, src, src_stride, sse1);
#endif
} else {
besterr = vfp->vf(y + offset, y_stride, src, src_stride, sse1);
}
*distortion = besterr;
besterr += mv_err_cost(bestmv, ref_mv, mvjcost, mvcost, error_per_bit);
return besterr;
}
static INLINE int divide_and_round(int n, int d) {
return ((n < 0) ^ (d < 0)) ? ((n - d / 2) / d) : ((n + d / 2) / d);
}
static INLINE int is_cost_list_wellbehaved(int *cost_list) {
return cost_list[0] < cost_list[1] && cost_list[0] < cost_list[2] &&
cost_list[0] < cost_list[3] && cost_list[0] < cost_list[4];
}
// Returns surface minima estimate at given precision in 1/2^n bits.
// Assume a model for the cost surface: S = A(x - x0)^2 + B(y - y0)^2 + C
// For a given set of costs S0, S1, S2, S3, S4 at points
// (y, x) = (0, 0), (0, -1), (1, 0), (0, 1) and (-1, 0) respectively,
// the solution for the location of the minima (x0, y0) is given by:
// x0 = 1/2 (S1 - S3)/(S1 + S3 - 2*S0),
// y0 = 1/2 (S4 - S2)/(S4 + S2 - 2*S0).
// The code below is an integerized version of that.
static AOM_INLINE void get_cost_surf_min(int *cost_list, int *ir, int *ic,
int bits) {
*ic = divide_and_round((cost_list[1] - cost_list[3]) * (1 << (bits - 1)),
(cost_list[1] - 2 * cost_list[0] + cost_list[3]));
*ir = divide_and_round((cost_list[4] - cost_list[2]) * (1 << (bits - 1)),
(cost_list[4] - 2 * cost_list[0] + cost_list[2]));
}
int av1_find_best_sub_pixel_tree_pruned_evenmore(
MACROBLOCK *x, const AV1_COMMON *const cm, int mi_row, int mi_col,
const MV *ref_mv, int allow_hp, int error_per_bit,
const aom_variance_fn_ptr_t *vfp, int forced_stop, int iters_per_step,
int *cost_list, int *mvjcost, int *mvcost[2], int *distortion,
unsigned int *sse1, const uint8_t *second_pred, const uint8_t *mask,
int mask_stride, int invert_mask, int w, int h,
int use_accurate_subpel_search, const int do_reset_fractional_mv) {
SETUP_SUBPEL_SEARCH;
besterr = setup_center_error(xd, bestmv, ref_mv, error_per_bit, vfp,
src_address, src_stride, y, y_stride,
second_pred, mask, mask_stride, invert_mask, w,
h, offset, mvjcost, mvcost, sse1, distortion);
(void)halfiters;
(void)quarteriters;
(void)eighthiters;
(void)whichdir;
(void)allow_hp;
(void)forced_stop;
(void)hstep;
(void)use_accurate_subpel_search;
(void)cm;
(void)mi_row;
(void)mi_col;
(void)do_reset_fractional_mv;
if (cost_list && cost_list[0] != INT_MAX && cost_list[1] != INT_MAX &&
cost_list[2] != INT_MAX && cost_list[3] != INT_MAX &&
cost_list[4] != INT_MAX && is_cost_list_wellbehaved(cost_list)) {
int ir, ic;
unsigned int minpt;
get_cost_surf_min(cost_list, &ir, &ic, 2);
if (ir != 0 || ic != 0) {
CHECK_BETTER(minpt, tr + 2 * ir, tc + 2 * ic);
}
} else {
FIRST_LEVEL_CHECKS;
if (halfiters > 1) {
SECOND_LEVEL_CHECKS;
}
tr = br;
tc = bc;
// Each subsequent iteration checks at least one point in common with
// the last iteration could be 2 ( if diag selected) 1/4 pel
// Note forced_stop: 0 - full, 1 - qtr only, 2 - half only
if (forced_stop != 2) {
hstep >>= 1;
FIRST_LEVEL_CHECKS;
if (quarteriters > 1) {
SECOND_LEVEL_CHECKS;
}
}
}
tr = br;
tc = bc;
if (allow_hp && forced_stop == 0) {
hstep >>= 1;
FIRST_LEVEL_CHECKS;
if (eighthiters > 1) {
SECOND_LEVEL_CHECKS;
}
}
bestmv->row = br;
bestmv->col = bc;
return besterr;
}
int av1_find_best_sub_pixel_tree_pruned_more(
MACROBLOCK *x, const AV1_COMMON *const cm, int mi_row, int mi_col,
const MV *ref_mv, int allow_hp, int error_per_bit,
const aom_variance_fn_ptr_t *vfp, int forced_stop, int iters_per_step,
int *cost_list, int *mvjcost, int *mvcost[2], int *distortion,
unsigned int *sse1, const uint8_t *second_pred, const uint8_t *mask,
int mask_stride, int invert_mask, int w, int h,
int use_accurate_subpel_search, const int do_reset_fractional_mv) {
SETUP_SUBPEL_SEARCH;
(void)use_accurate_subpel_search;
(void)cm;
(void)mi_row;
(void)mi_col;
(void)do_reset_fractional_mv;
besterr = setup_center_error(xd, bestmv, ref_mv, error_per_bit, vfp,
src_address, src_stride, y, y_stride,
second_pred, mask, mask_stride, invert_mask, w,
h, offset, mvjcost, mvcost, sse1, distortion);
if (cost_list && cost_list[0] != INT_MAX && cost_list[1] != INT_MAX &&
cost_list[2] != INT_MAX && cost_list[3] != INT_MAX &&
cost_list[4] != INT_MAX && is_cost_list_wellbehaved(cost_list)) {
unsigned int minpt;
int ir, ic;
get_cost_surf_min(cost_list, &ir, &ic, 1);
if (ir != 0 || ic != 0) {
CHECK_BETTER(minpt, tr + ir * hstep, tc + ic * hstep);
}
} else {
FIRST_LEVEL_CHECKS;
if (halfiters > 1) {
SECOND_LEVEL_CHECKS;
}
}
// Each subsequent iteration checks at least one point in common with
// the last iteration could be 2 ( if diag selected) 1/4 pel
// Note forced_stop: 0 - full, 1 - qtr only, 2 - half only
if (forced_stop != 2) {
tr = br;
tc = bc;
hstep >>= 1;
FIRST_LEVEL_CHECKS;
if (quarteriters > 1) {
SECOND_LEVEL_CHECKS;
}
}
if (allow_hp && forced_stop == 0) {
tr = br;
tc = bc;
hstep >>= 1;
FIRST_LEVEL_CHECKS;
if (eighthiters > 1) {
SECOND_LEVEL_CHECKS;
}
}
// These lines insure static analysis doesn't warn that
// tr and tc aren't used after the above point.
(void)tr;
(void)tc;
bestmv->row = br;
bestmv->col = bc;
return besterr;
}
int av1_find_best_sub_pixel_tree_pruned(
MACROBLOCK *x, const AV1_COMMON *const cm, int mi_row, int mi_col,
const MV *ref_mv, int allow_hp, int error_per_bit,
const aom_variance_fn_ptr_t *vfp, int forced_stop, int iters_per_step,
int *cost_list, int *mvjcost, int *mvcost[2], int *distortion,
unsigned int *sse1, const uint8_t *second_pred, const uint8_t *mask,
int mask_stride, int invert_mask, int w, int h,
int use_accurate_subpel_search, const int do_reset_fractional_mv) {
SETUP_SUBPEL_SEARCH;
(void)use_accurate_subpel_search;
(void)cm;
(void)mi_row;
(void)mi_col;
(void)do_reset_fractional_mv;
besterr = setup_center_error(xd, bestmv, ref_mv, error_per_bit, vfp,
src_address, src_stride, y, y_stride,
second_pred, mask, mask_stride, invert_mask, w,
h, offset, mvjcost, mvcost, sse1, distortion);
if (cost_list && cost_list[0] != INT_MAX && cost_list[1] != INT_MAX &&
cost_list[2] != INT_MAX && cost_list[3] != INT_MAX &&
cost_list[4] != INT_MAX) {
unsigned int left, right, up, down, diag;
whichdir = (cost_list[1] < cost_list[3] ? 0 : 1) +
(cost_list[2] < cost_list[4] ? 0 : 2);
switch (whichdir) {
case 0:
CHECK_BETTER(left, tr, tc - hstep);
CHECK_BETTER(down, tr + hstep, tc);
CHECK_BETTER(diag, tr + hstep, tc - hstep);
break;
case 1:
CHECK_BETTER(right, tr, tc + hstep);
CHECK_BETTER(down, tr + hstep, tc);
CHECK_BETTER(diag, tr + hstep, tc + hstep);
break;
case 2:
CHECK_BETTER(left, tr, tc - hstep);
CHECK_BETTER(up, tr - hstep, tc);
CHECK_BETTER(diag, tr - hstep, tc - hstep);
break;
case 3:
CHECK_BETTER(right, tr, tc + hstep);
CHECK_BETTER(up, tr - hstep, tc);
CHECK_BETTER(diag, tr - hstep, tc + hstep);
break;
}
} else {
FIRST_LEVEL_CHECKS;
if (halfiters > 1) {
SECOND_LEVEL_CHECKS;
}
}
tr = br;
tc = bc;
// Each subsequent iteration checks at least one point in common with
// the last iteration could be 2 ( if diag selected) 1/4 pel
// Note forced_stop: 0 - full, 1 - qtr only, 2 - half only
if (forced_stop != 2) {
hstep >>= 1;
FIRST_LEVEL_CHECKS;
if (quarteriters > 1) {
SECOND_LEVEL_CHECKS;
}
tr = br;
tc = bc;
}
if (allow_hp && forced_stop == 0) {
hstep >>= 1;
FIRST_LEVEL_CHECKS;
if (eighthiters > 1) {
SECOND_LEVEL_CHECKS;
}
tr = br;
tc = bc;
}
// These lines insure static analysis doesn't warn that
// tr and tc aren't used after the above point.
(void)tr;
(void)tc;
bestmv->row = br;
bestmv->col = bc;
return besterr;
}
/* clang-format off */
static const MV search_step_table[12] = {
// left, right, up, down
{ 0, -4 }, { 0, 4 }, { -4, 0 }, { 4, 0 },
{ 0, -2 }, { 0, 2 }, { -2, 0 }, { 2, 0 },
{ 0, -1 }, { 0, 1 }, { -1, 0 }, { 1, 0 }
};
/* clang-format on */
static int upsampled_pref_error(MACROBLOCKD *xd, const AV1_COMMON *const cm,
int mi_row, int mi_col, const MV *const mv,
const aom_variance_fn_ptr_t *vfp,
const uint8_t *const src, const int src_stride,
const uint8_t *const y, int y_stride,
int subpel_x_q3, int subpel_y_q3,
const uint8_t *second_pred, const uint8_t *mask,
int mask_stride, int invert_mask, int w, int h,
unsigned int *sse, int subpel_search) {
unsigned int besterr;
#if CONFIG_AV1_HIGHBITDEPTH
if (is_cur_buf_hbd(xd)) {
DECLARE_ALIGNED(16, uint16_t, pred16[MAX_SB_SQUARE]);
uint8_t *pred8 = CONVERT_TO_BYTEPTR(pred16);
if (second_pred != NULL) {
if (mask) {
aom_highbd_comp_mask_upsampled_pred(
xd, cm, mi_row, mi_col, mv, pred8, second_pred, w, h, subpel_x_q3,
subpel_y_q3, y, y_stride, mask, mask_stride, invert_mask, xd->bd,
subpel_search);
} else {
aom_highbd_comp_avg_upsampled_pred(
xd, cm, mi_row, mi_col, mv, pred8, second_pred, w, h, subpel_x_q3,
subpel_y_q3, y, y_stride, xd->bd, subpel_search);
}
} else {
aom_highbd_upsampled_pred(xd, cm, mi_row, mi_col, mv, pred8, w, h,
subpel_x_q3, subpel_y_q3, y, y_stride, xd->bd,
subpel_search);
}
besterr = vfp->vf(pred8, w, src, src_stride, sse);
} else {
DECLARE_ALIGNED(16, uint8_t, pred[MAX_SB_SQUARE]);
if (second_pred != NULL) {
if (mask) {
aom_comp_mask_upsampled_pred(xd, cm, mi_row, mi_col, mv, pred,
second_pred, w, h, subpel_x_q3,
subpel_y_q3, y, y_stride, mask,
mask_stride, invert_mask, subpel_search);
} else {
aom_comp_avg_upsampled_pred(xd, cm, mi_row, mi_col, mv, pred,
second_pred, w, h, subpel_x_q3, subpel_y_q3,
y, y_stride, subpel_search);
}
} else {
aom_upsampled_pred(xd, cm, mi_row, mi_col, mv, pred, w, h, subpel_x_q3,
subpel_y_q3, y, y_stride, subpel_search);
}
besterr = vfp->vf(pred, w, src, src_stride, sse);
}
#else
DECLARE_ALIGNED(16, uint8_t, pred[MAX_SB_SQUARE]);
if (second_pred != NULL) {
if (mask) {
aom_comp_mask_upsampled_pred(xd, cm, mi_row, mi_col, mv, pred,
second_pred, w, h, subpel_x_q3, subpel_y_q3,
y, y_stride, mask, mask_stride, invert_mask,
subpel_search);
} else {
aom_comp_avg_upsampled_pred(xd, cm, mi_row, mi_col, mv, pred, second_pred,
w, h, subpel_x_q3, subpel_y_q3, y, y_stride,
subpel_search);
}
} else {
aom_upsampled_pred(xd, cm, mi_row, mi_col, mv, pred, w, h, subpel_x_q3,
subpel_y_q3, y, y_stride, subpel_search);
}
besterr = vfp->vf(pred, w, src, src_stride, sse);
#endif
return besterr;
}
static unsigned int upsampled_setup_center_error(
MACROBLOCKD *xd, const AV1_COMMON *const cm, int mi_row, int mi_col,
const MV *bestmv, const MV *ref_mv, int error_per_bit,
const aom_variance_fn_ptr_t *vfp, const uint8_t *const src,
const int src_stride, const uint8_t *const y, int y_stride,
const uint8_t *second_pred, const uint8_t *mask, int mask_stride,
int invert_mask, int w, int h, int offset, int *mvjcost, int *mvcost[2],
unsigned int *sse1, int *distortion, int subpel_search) {
unsigned int besterr =
upsampled_pref_error(xd, cm, mi_row, mi_col, bestmv, vfp, src, src_stride,
y + offset, y_stride, 0, 0, second_pred, mask,
mask_stride, invert_mask, w, h, sse1, subpel_search);
*distortion = besterr;
besterr += mv_err_cost(bestmv, ref_mv, mvjcost, mvcost, error_per_bit);
return besterr;
}
// when use_accurate_subpel_search == 0
static INLINE unsigned int estimate_upsampled_pref_error(
const aom_variance_fn_ptr_t *vfp, const uint8_t *const src,
const int src_stride, const uint8_t *const pre, int y_stride,
int subpel_x_q3, int subpel_y_q3, const uint8_t *second_pred,
const uint8_t *mask, int mask_stride, int invert_mask, unsigned int *sse) {
if (second_pred == NULL) {
return vfp->svf(pre, y_stride, subpel_x_q3, subpel_y_q3, src, src_stride,
sse);
} else if (mask) {
return vfp->msvf(pre, y_stride, subpel_x_q3, subpel_y_q3, src, src_stride,
second_pred, mask, mask_stride, invert_mask, sse);
} else {
return vfp->svaf(pre, y_stride, subpel_x_q3, subpel_y_q3, src, src_stride,
sse, second_pred);
}
}
int av1_find_best_sub_pixel_tree(
MACROBLOCK *x, const AV1_COMMON *const cm, int mi_row, int mi_col,
const MV *ref_mv, int allow_hp, int error_per_bit,
const aom_variance_fn_ptr_t *vfp, int forced_stop, int iters_per_step,
int *cost_list, int *mvjcost, int *mvcost[2], int *distortion,
unsigned int *sse1, const uint8_t *second_pred, const uint8_t *mask,
int mask_stride, int invert_mask, int w, int h,
int use_accurate_subpel_search, const int do_reset_fractional_mv) {
const uint8_t *const src_address = x->plane[0].src.buf;
const int src_stride = x->plane[0].src.stride;
MACROBLOCKD *xd = &x->e_mbd;
unsigned int besterr = INT_MAX;
unsigned int sse;
unsigned int thismse;
const int y_stride = xd->plane[0].pre[0].stride;
MV *bestmv = &x->best_mv.as_mv;
const int offset = bestmv->row * y_stride + bestmv->col;
const uint8_t *const y = xd->plane[0].pre[0].buf;
int br = bestmv->row * 8;
int bc = bestmv->col * 8;
int hstep = 4;
int iter, round = 3 - forced_stop;
int tr = br;
int tc = bc;
const MV *search_step = search_step_table;
int idx, best_idx = -1;
unsigned int cost_array[5];
int kr, kc;
int minc, maxc, minr, maxr;
set_subpel_mv_search_range(&x->mv_limits, &minc, &maxc, &minr, &maxr, ref_mv);
if (!allow_hp)
if (round == 3) round = 2;
bestmv->row *= 8;
bestmv->col *= 8;
if (use_accurate_subpel_search)
besterr = upsampled_setup_center_error(
xd, cm, mi_row, mi_col, bestmv, ref_mv, error_per_bit, vfp, src_address,
src_stride, y, y_stride, second_pred, mask, mask_stride, invert_mask, w,
h, offset, mvjcost, mvcost, sse1, distortion,
use_accurate_subpel_search);
else
besterr = setup_center_error(xd, bestmv, ref_mv, error_per_bit, vfp,
src_address, src_stride, y, y_stride,
second_pred, mask, mask_stride, invert_mask, w,
h, offset, mvjcost, mvcost, sse1, distortion);
(void)cost_list; // to silence compiler warning
if (do_reset_fractional_mv) {
av1_set_fractional_mv(x->fractional_best_mv);
}
for (iter = 0; iter < round; ++iter) {
if ((x->fractional_best_mv[iter].as_mv.row == br) &&
(x->fractional_best_mv[iter].as_mv.col == bc))
return INT_MAX;
x->fractional_best_mv[iter].as_mv.row = br;
x->fractional_best_mv[iter].as_mv.col = bc;
// Check vertical and horizontal sub-pixel positions.
for (idx = 0; idx < 4; ++idx) {
tr = br + search_step[idx].row;
tc = bc + search_step[idx].col;
if (tc >= minc && tc <= maxc && tr >= minr && tr <= maxr) {
MV this_mv = { tr, tc };
if (use_accurate_subpel_search) {
thismse = upsampled_pref_error(
xd, cm, mi_row, mi_col, &this_mv, vfp, src_address, src_stride,
pre(y, y_stride, tr, tc), y_stride, sp(tc), sp(tr), second_pred,
mask, mask_stride, invert_mask, w, h, &sse,
use_accurate_subpel_search);
} else {
thismse = estimate_upsampled_pref_error(
vfp, src_address, src_stride, pre(y, y_stride, tr, tc), y_stride,
sp(tc), sp(tr), second_pred, mask, mask_stride, invert_mask,
&sse);
}
cost_array[idx] = thismse + mv_err_cost(&this_mv, ref_mv, mvjcost,
mvcost, error_per_bit);
if (cost_array[idx] < besterr) {
best_idx = idx;
besterr = cost_array[idx];
*distortion = thismse;
*sse1 = sse;
}
} else {
cost_array[idx] = INT_MAX;
}
}
// Check diagonal sub-pixel position
kc = (cost_array[0] <= cost_array[1] ? -hstep : hstep);
kr = (cost_array[2] <= cost_array[3] ? -hstep : hstep);
tc = bc + kc;
tr = br + kr;
if (tc >= minc && tc <= maxc && tr >= minr && tr <= maxr) {
MV this_mv = { tr, tc };
if (use_accurate_subpel_search) {
thismse = upsampled_pref_error(
xd, cm, mi_row, mi_col, &this_mv, vfp, src_address, src_stride,
pre(y, y_stride, tr, tc), y_stride, sp(tc), sp(tr), second_pred,
mask, mask_stride, invert_mask, w, h, &sse,
use_accurate_subpel_search);
} else {
thismse = estimate_upsampled_pref_error(
vfp, src_address, src_stride, pre(y, y_stride, tr, tc), y_stride,
sp(tc), sp(tr), second_pred, mask, mask_stride, invert_mask, &sse);
}
cost_array[4] = thismse + mv_err_cost(&this_mv, ref_mv, mvjcost, mvcost,
error_per_bit);
if (cost_array[4] < besterr) {
best_idx = 4;
besterr = cost_array[4];
*distortion = thismse;
*sse1 = sse;
}
} else {
cost_array[idx] = INT_MAX;
}
if (best_idx < 4 && best_idx >= 0) {
br += search_step[best_idx].row;
bc += search_step[best_idx].col;
} else if (best_idx == 4) {
br = tr;
bc = tc;
}
if (iters_per_step > 1 && best_idx != -1) {
if (use_accurate_subpel_search) {
SECOND_LEVEL_CHECKS_BEST(1);
} else {
SECOND_LEVEL_CHECKS_BEST(0);
}
}
search_step += 4;
hstep >>= 1;
best_idx = -1;
}
// These lines insure static analysis doesn't warn that
// tr and tc aren't used after the above point.
(void)tr;
(void)tc;
bestmv->row = br;
bestmv->col = bc;
return besterr;
}
#undef PRE
#undef CHECK_BETTER
unsigned int av1_compute_motion_cost(const AV1_COMP *cpi, MACROBLOCK *const x,
BLOCK_SIZE bsize, int mi_row, int mi_col,
const MV *this_mv) {
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *xd = &x->e_mbd;
const uint8_t *const src = x->plane[0].src.buf;
const int src_stride = x->plane[0].src.stride;
uint8_t *const dst = xd->plane[0].dst.buf;
const int dst_stride = xd->plane[0].dst.stride;
const aom_variance_fn_ptr_t *vfp = &cpi->fn_ptr[bsize];
const int_mv ref_mv = av1_get_ref_mv(x, 0);
unsigned int mse;
unsigned int sse;
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize,
AOM_PLANE_Y, AOM_PLANE_Y);
mse = vfp->vf(dst, dst_stride, src, src_stride, &sse);
mse += mv_err_cost(this_mv, &ref_mv.as_mv, x->nmv_vec_cost, x->mv_cost_stack,
x->errorperbit);
return mse;
}
// Refine MV in a small range
unsigned int av1_refine_warped_mv(const AV1_COMP *cpi, MACROBLOCK *const x,
BLOCK_SIZE bsize, int mi_row, int mi_col,
int *pts0, int *pts_inref0,
int total_samples) {
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = xd->mi[0];
const MV neighbors[8] = { { 0, -1 }, { 1, 0 }, { 0, 1 }, { -1, 0 },
{ 0, -2 }, { 2, 0 }, { 0, 2 }, { -2, 0 } };
const int_mv ref_mv = av1_get_ref_mv(x, 0);
int16_t br = mbmi->mv[0].as_mv.row;
int16_t bc = mbmi->mv[0].as_mv.col;
int16_t *tr = &mbmi->mv[0].as_mv.row;
int16_t *tc = &mbmi->mv[0].as_mv.col;
WarpedMotionParams best_wm_params = mbmi->wm_params;
int best_num_proj_ref = mbmi->num_proj_ref;
unsigned int bestmse;
int minc, maxc, minr, maxr;
const int start = cm->allow_high_precision_mv ? 0 : 4;
int ite;
set_subpel_mv_search_range(&x->mv_limits, &minc, &maxc, &minr, &maxr,
&ref_mv.as_mv);
// Calculate the center position's error
assert(bc >= minc && bc <= maxc && br >= minr && br <= maxr);
bestmse = av1_compute_motion_cost(cpi, x, bsize, mi_row, mi_col,
&mbmi->mv[0].as_mv);
// MV search
for (ite = 0; ite < 2; ++ite) {
int best_idx = -1;
int idx;
for (idx = start; idx < start + 4; ++idx) {
unsigned int thismse;
*tr = br + neighbors[idx].row;
*tc = bc + neighbors[idx].col;
if (*tc >= minc && *tc <= maxc && *tr >= minr && *tr <= maxr) {
MV this_mv = { *tr, *tc };
int pts[SAMPLES_ARRAY_SIZE], pts_inref[SAMPLES_ARRAY_SIZE];
memcpy(pts, pts0, total_samples * 2 * sizeof(*pts0));
memcpy(pts_inref, pts_inref0, total_samples * 2 * sizeof(*pts_inref0));
if (total_samples > 1)
mbmi->num_proj_ref =
av1_selectSamples(&this_mv, pts, pts_inref, total_samples, bsize);
if (!av1_find_projection(mbmi->num_proj_ref, pts, pts_inref, bsize, *tr,
*tc, &mbmi->wm_params, mi_row, mi_col)) {
thismse =
av1_compute_motion_cost(cpi, x, bsize, mi_row, mi_col, &this_mv);
if (thismse < bestmse) {
best_idx = idx;
best_wm_params = mbmi->wm_params;
best_num_proj_ref = mbmi->num_proj_ref;
bestmse = thismse;
}
}
}
}
if (best_idx == -1) break;
if (best_idx >= 0) {
br += neighbors[best_idx].row;
bc += neighbors[best_idx].col;
}
}
*tr = br;
*tc = bc;
mbmi->wm_params = best_wm_params;
mbmi->num_proj_ref = best_num_proj_ref;
return bestmse;
}
static INLINE int check_bounds(const MvLimits *mv_limits, int row, int col,
int range) {
return ((row - range) >= mv_limits->row_min) &
((row + range) <= mv_limits->row_max) &
((col - range) >= mv_limits->col_min) &
((col + range) <= mv_limits->col_max);
}
static INLINE int is_mv_in(const MvLimits *mv_limits, const MV *mv) {
return (mv->col >= mv_limits->col_min) && (mv->col <= mv_limits->col_max) &&
(mv->row >= mv_limits->row_min) && (mv->row <= mv_limits->row_max);
}
#define CHECK_BETTER \
{ \
if (thissad < bestsad) { \
if (use_mvcost) \
thissad += mvsad_err_cost(x, &this_mv, &fcenter_mv, sad_per_bit); \
if (thissad < bestsad) { \
bestsad = thissad; \
best_site = i; \
} \
} \
}
#define MAX_PATTERN_SCALES 11
#define MAX_PATTERN_CANDIDATES 8 // max number of canddiates per scale
#define PATTERN_CANDIDATES_REF 3 // number of refinement candidates
// Calculate and return a sad+mvcost list around an integer best pel.
static INLINE void calc_int_cost_list(const MACROBLOCK *x,
const MV *const ref_mv, int sadpb,
const aom_variance_fn_ptr_t *fn_ptr,
const MV *best_mv, int *cost_list) {
static const MV neighbors[4] = { { 0, -1 }, { 1, 0 }, { 0, 1 }, { -1, 0 } };
const struct buf_2d *const what = &x->plane[0].src;
const struct buf_2d *const in_what = &x->e_mbd.plane[0].pre[0];
const MV fcenter_mv = { ref_mv->row >> 3, ref_mv->col >> 3 };
const int br = best_mv->row;
const int bc = best_mv->col;
int i;
unsigned int sse;
const MV this_mv = { br, bc };
cost_list[0] =
fn_ptr->vf(what->buf, what->stride, get_buf_from_mv(in_what, &this_mv),
in_what->stride, &sse) +
mvsad_err_cost(x, &this_mv, &fcenter_mv, sadpb);
if (check_bounds(&x->mv_limits, br, bc, 1)) {
for (i = 0; i < 4; i++) {
const MV neighbor_mv = { br + neighbors[i].row, bc + neighbors[i].col };
cost_list[i + 1] = fn_ptr->vf(what->buf, what->stride,
get_buf_from_mv(in_what, &neighbor_mv),
in_what->stride, &sse) +
mv_err_cost(&neighbor_mv, &fcenter_mv, x->nmv_vec_cost,
x->mv_cost_stack, x->errorperbit);
}
} else {
for (i = 0; i < 4; i++) {
const MV neighbor_mv = { br + neighbors[i].row, bc + neighbors[i].col };
if (!is_mv_in(&x->mv_limits, &neighbor_mv))
cost_list[i + 1] = INT_MAX;
else
cost_list[i + 1] =
fn_ptr->vf(what->buf, what->stride,
get_buf_from_mv(in_what, &neighbor_mv), in_what->stride,
&sse) +
mv_err_cost(&neighbor_mv, &fcenter_mv, x->nmv_vec_cost,
x->mv_cost_stack, x->errorperbit);
}
}
}
static INLINE void calc_int_sad_list(const MACROBLOCK *x,
const MV *const ref_mv, int sadpb,
const aom_variance_fn_ptr_t *fn_ptr,
const MV *best_mv, int *cost_list,
const int use_mvcost, const int bestsad) {
static const MV neighbors[4] = { { 0, -1 }, { 1, 0 }, { 0, 1 }, { -1, 0 } };
const struct buf_2d *const what = &x->plane[0].src;
const struct buf_2d *const in_what = &x->e_mbd.plane[0].pre[0];
const MV fcenter_mv = { ref_mv->row >> 3, ref_mv->col >> 3 };
int i;
const int br = best_mv->row;
const int bc = best_mv->col;
if (cost_list[0] == INT_MAX) {
cost_list[0] = bestsad;
if (check_bounds(&x->mv_limits, br, bc, 1)) {
for (i = 0; i < 4; i++) {
const MV this_mv = { br + neighbors[i].row, bc + neighbors[i].col };
cost_list[i + 1] =
fn_ptr->sdf(what->buf, what->stride,
get_buf_from_mv(in_what, &this_mv), in_what->stride);
}
} else {
for (i = 0; i < 4; i++) {
const MV this_mv = { br + neighbors[i].row, bc + neighbors[i].col };
if (!is_mv_in(&x->mv_limits, &this_mv))
cost_list[i + 1] = INT_MAX;
else
cost_list[i + 1] =
fn_ptr->sdf(what->buf, what->stride,
get_buf_from_mv(in_what, &this_mv), in_what->stride);
}
}
} else {
if (use_mvcost) {
for (i = 0; i < 4; i++) {
const MV this_mv = { br + neighbors[i].row, bc + neighbors[i].col };
if (cost_list[i + 1] != INT_MAX) {
cost_list[i + 1] += mvsad_err_cost(x, &this_mv, &fcenter_mv, sadpb);
}
}
}
}
}
// Generic pattern search function that searches over multiple scales.
// Each scale can have a different number of candidates and shape of
// candidates as indicated in the num_candidates and candidates arrays
// passed into this function
//
static int pattern_search(
MACROBLOCK *x, MV *start_mv, int search_param, int sad_per_bit,
int do_init_search, int *cost_list, const aom_variance_fn_ptr_t *vfp,
int use_mvcost, const MV *center_mv,
const int num_candidates[MAX_PATTERN_SCALES],
const MV candidates[MAX_PATTERN_SCALES][MAX_PATTERN_CANDIDATES]) {
const MACROBLOCKD *const xd = &x->e_mbd;
static const int search_param_to_steps[MAX_MVSEARCH_STEPS] = {
10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0,
};
int i, s, t;
const struct buf_2d *const what = &x->plane[0].src;
const struct buf_2d *const in_what = &xd->plane[0].pre[0];
const int last_is_4 = num_candidates[0] == 4;
int br, bc;
int bestsad = INT_MAX;
int thissad;
int k = -1;
const MV fcenter_mv = { center_mv->row >> 3, center_mv->col >> 3 };
assert(search_param < MAX_MVSEARCH_STEPS);
int best_init_s = search_param_to_steps[search_param];
// adjust ref_mv to make sure it is within MV range
clamp_mv(start_mv, x->mv_limits.col_min, x->mv_limits.col_max,
x->mv_limits.row_min, x->mv_limits.row_max);
br = start_mv->row;
bc = start_mv->col;
if (cost_list != NULL) {
cost_list[0] = cost_list[1] = cost_list[2] = cost_list[3] = cost_list[4] =
INT_MAX;
}
// Work out the start point for the search
bestsad = vfp->sdf(what->buf, what->stride,
get_buf_from_mv(in_what, start_mv), in_what->stride) +
mvsad_err_cost(x, start_mv, &fcenter_mv, sad_per_bit);
// Search all possible scales upto the search param around the center point
// pick the scale of the point that is best as the starting scale of
// further steps around it.
if (do_init_search) {
s = best_init_s;
best_init_s = -1;
for (t = 0; t <= s; ++t) {
int best_site = -1;
if (check_bounds(&x->mv_limits, br, bc, 1 << t)) {
for (i = 0; i < num_candidates[t]; i++) {
const MV this_mv = { br + candidates[t][i].row,
bc + candidates[t][i].col };
thissad =
vfp->sdf(what->buf, what->stride,
get_buf_from_mv(in_what, &this_mv), in_what->stride);
CHECK_BETTER
}
} else {
for (i = 0; i < num_candidates[t]; i++) {
const MV this_mv = { br + candidates[t][i].row,
bc + candidates[t][i].col };
if (!is_mv_in(&x->mv_limits, &this_mv)) continue;
thissad =
vfp->sdf(what->buf, what->stride,
get_buf_from_mv(in_what, &this_mv), in_what->stride);
CHECK_BETTER
}
}
if (best_site == -1) {
continue;
} else {
best_init_s = t;
k = best_site;
}
}
if (best_init_s != -1) {
br += candidates[best_init_s][k].row;
bc += candidates[best_init_s][k].col;
}
}
// If the center point is still the best, just skip this and move to
// the refinement step.
if (best_init_s != -1) {
const int last_s = (last_is_4 && cost_list != NULL);
int best_site = -1;
s = best_init_s;
for (; s >= last_s; s--) {
// No need to search all points the 1st time if initial search was used
if (!do_init_search || s != best_init_s) {
if (check_bounds(&x->mv_limits, br, bc, 1 << s)) {
for (i = 0; i < num_candidates[s]; i++) {
const MV this_mv = { br + candidates[s][i].row,
bc + candidates[s][i].col };
thissad =
vfp->sdf(what->buf, what->stride,
get_buf_from_mv(in_what, &this_mv), in_what->stride);
CHECK_BETTER
}
} else {
for (i = 0; i < num_candidates[s]; i++) {
const MV this_mv = { br + candidates[s][i].row,
bc + candidates[s][i].col };
if (!is_mv_in(&x->mv_limits, &this_mv)) continue;
thissad =
vfp->sdf(what->buf, what->stride,
get_buf_from_mv(in_what, &this_mv), in_what->stride);
CHECK_BETTER
}
}
if (best_site == -1) {
continue;
} else {
br += candidates[s][best_site].row;
bc += candidates[s][best_site].col;
k = best_site;
}
}
do {
int next_chkpts_indices[PATTERN_CANDIDATES_REF];
best_site = -1;
next_chkpts_indices[0] = (k == 0) ? num_candidates[s] - 1 : k - 1;
next_chkpts_indices[1] = k;
next_chkpts_indices[2] = (k == num_candidates[s] - 1) ? 0 : k + 1;
if (check_bounds(&x->mv_limits, br, bc, 1 << s)) {
for (i = 0; i < PATTERN_CANDIDATES_REF; i++) {
const MV this_mv = {
br + candidates[s][next_chkpts_indices[i]].row,
bc + candidates[s][next_chkpts_indices[i]].col
};
thissad =
vfp->sdf(what->buf, what->stride,
get_buf_from_mv(in_what, &this_mv), in_what->stride);
CHECK_BETTER
}
} else {
for (i = 0; i < PATTERN_CANDIDATES_REF; i++) {
const MV this_mv = {
br + candidates[s][next_chkpts_indices[i]].row,
bc + candidates[s][next_chkpts_indices[i]].col
};
if (!is_mv_in(&x->mv_limits, &this_mv)) continue;
thissad =
vfp->sdf(what->buf, what->stride,
get_buf_from_mv(in_what, &this_mv), in_what->stride);
CHECK_BETTER
}
}
if (best_site != -1) {
k = next_chkpts_indices[best_site];
br += candidates[s][k].row;
bc += candidates[s][k].col;
}
} while (best_site != -1);
}
// Note: If we enter the if below, then cost_list must be non-NULL.
if (s == 0) {
cost_list[0] = bestsad;
if (!do_init_search || s != best_init_s) {
if (check_bounds(&x->mv_limits, br, bc, 1 << s)) {
for (i = 0; i < num_candidates[s]; i++) {
const MV this_mv = { br + candidates[s][i].row,
bc + candidates[s][i].col };
cost_list[i + 1] = thissad =
vfp->sdf(what->buf, what->stride,
get_buf_from_mv(in_what, &this_mv), in_what->stride);
CHECK_BETTER
}
} else {
for (i = 0; i < num_candidates[s]; i++) {
const MV this_mv = { br + candidates[s][i].row,
bc + candidates[s][i].col };
if (!is_mv_in(&x->mv_limits, &this_mv)) continue;
cost_list[i + 1] = thissad =
vfp->sdf(what->buf, what->stride,
get_buf_from_mv(in_what, &this_mv), in_what->stride);
CHECK_BETTER
}
}
if (best_site != -1) {
br += candidates[s][best_site].row;
bc += candidates[s][best_site].col;
k = best_site;
}
}
while (best_site != -1) {
int next_chkpts_indices[PATTERN_CANDIDATES_REF];
best_site = -1;
next_chkpts_indices[0] = (k == 0) ? num_candidates[s] - 1 : k - 1;
next_chkpts_indices[1] = k;
next_chkpts_indices[2] = (k == num_candidates[s] - 1) ? 0 : k + 1;
cost_list[1] = cost_list[2] = cost_list[3] = cost_list[4] = INT_MAX;
cost_list[((k + 2) % 4) + 1] = cost_list[0];
cost_list[0] = bestsad;
if (check_bounds(&x->mv_limits, br, bc, 1 << s)) {
for (i = 0; i < PATTERN_CANDIDATES_REF; i++) {
const MV this_mv = {
br + candidates[s][next_chkpts_indices[i]].row,
bc + candidates[s][next_chkpts_indices[i]].col
};
cost_list[next_chkpts_indices[i] + 1] = thissad =
vfp->sdf(what->buf, what->stride,
get_buf_from_mv(in_what, &this_mv), in_what->stride);
CHECK_BETTER
}
} else {
for (i = 0; i < PATTERN_CANDIDATES_REF; i++) {
const MV this_mv = {
br + candidates[s][next_chkpts_indices[i]].row,
bc + candidates[s][next_chkpts_indices[i]].col
};
if (!is_mv_in(&x->mv_limits, &this_mv)) {
cost_list[next_chkpts_indices[i] + 1] = INT_MAX;
continue;
}
cost_list[next_chkpts_indices[i] + 1] = thissad =
vfp->sdf(what->buf, what->stride,
get_buf_from_mv(in_what, &this_mv), in_what->stride);
CHECK_BETTER
}
}
if (best_site != -1) {
k = next_chkpts_indices[best_site];
br += candidates[s][k].row;
bc += candidates[s][k].col;
}
}
}
}
// Returns the one-away integer pel cost/sad around the best as follows:
// cost_list[0]: cost/sad at the best integer pel
// cost_list[1]: cost/sad at delta {0, -1} (left) from the best integer pel
// cost_list[2]: cost/sad at delta { 1, 0} (bottom) from the best integer pel
// cost_list[3]: cost/sad at delta { 0, 1} (right) from the best integer pel
// cost_list[4]: cost/sad at delta {-1, 0} (top) from the best integer pel
if (cost_list) {
const MV best_int_mv = { br, bc };
if (last_is_4) {
calc_int_sad_list(x, center_mv, sad_per_bit, vfp, &best_int_mv, cost_list,
use_mvcost, bestsad);
} else {
calc_int_cost_list(x, center_mv, sad_per_bit, vfp, &best_int_mv,
cost_list);
}
}
x->best_mv.as_mv.row = br;
x->best_mv.as_mv.col = bc;
return bestsad;
}
int av1_get_mvpred_var(const MACROBLOCK *x, const MV *best_mv,
const MV *center_mv, const aom_variance_fn_ptr_t *vfp,
int use_mvcost) {
const MACROBLOCKD *const xd = &x->e_mbd;
const struct buf_2d *const what = &x->plane[0].src;
const struct buf_2d *const in_what = &xd->plane[0].pre[0];
const MV mv = { best_mv->row * 8, best_mv->col * 8 };
unsigned int unused;
return vfp->vf(what->buf, what->stride, get_buf_from_mv(in_what, best_mv),
in_what->stride, &unused) +
(use_mvcost ? mv_err_cost(&mv, center_mv, x->nmv_vec_cost,
x->mv_cost_stack, x->errorperbit)
: 0);
}
int av1_get_mvpred_av_var(const MACROBLOCK *x, const MV *best_mv,
const MV *center_mv, const uint8_t *second_pred,
const aom_variance_fn_ptr_t *vfp, int use_mvcost) {
const MACROBLOCKD *const xd = &x->e_mbd;
const struct buf_2d *const what = &x->plane[0].src;
const struct buf_2d *const in_what = &xd->plane[0].pre[0];
const MV mv = { best_mv->row * 8, best_mv->col * 8 };
unsigned int unused;
return vfp->svaf(get_buf_from_mv(in_what, best_mv), in_what->stride, 0, 0,
what->buf, what->stride, &unused, second_pred) +
(use_mvcost ? mv_err_cost(&mv, center_mv, x->nmv_vec_cost,
x->mv_cost_stack, x->errorperbit)
: 0);
}
int av1_get_mvpred_mask_var(const MACROBLOCK *x, const MV *best_mv,
const MV *center_mv, const uint8_t *second_pred,
const uint8_t *mask, int mask_stride,
int invert_mask, const aom_variance_fn_ptr_t *vfp,
int use_mvcost) {
const MACROBLOCKD *const xd = &x->e_mbd;
const struct buf_2d *const what = &x->plane[0].src;
const struct buf_2d *const in_what = &xd->plane[0].pre[0];
const MV mv = { best_mv->row * 8, best_mv->col * 8 };
unsigned int unused;
return vfp->msvf(what->buf, what->stride, 0, 0,
get_buf_from_mv(in_what, best_mv), in_what->stride,
second_pred, mask, mask_stride, invert_mask, &unused) +
(use_mvcost ? mv_err_cost(&mv, center_mv, x->nmv_vec_cost,
x->mv_cost_stack, x->errorperbit)
: 0);
}
int av1_hex_search(MACROBLOCK *x, MV *start_mv, int search_param,
int sad_per_bit, int do_init_search, int *cost_list,
const aom_variance_fn_ptr_t *vfp, int use_mvcost,
const MV *center_mv) {
// First scale has 8-closest points, the rest have 6 points in hex shape
// at increasing scales
static const int hex_num_candidates[MAX_PATTERN_SCALES] = { 8, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6 };
// Note that the largest candidate step at each scale is 2^scale
/* clang-format off */
static const MV hex_candidates[MAX_PATTERN_SCALES][MAX_PATTERN_CANDIDATES] = {
{ { -1, -1 }, { 0, -1 }, { 1, -1 }, { 1, 0 }, { 1, 1 }, { 0, 1 }, { -1, 1 },
{ -1, 0 } },
{ { -1, -2 }, { 1, -2 }, { 2, 0 }, { 1, 2 }, { -1, 2 }, { -2, 0 } },
{ { -2, -4 }, { 2, -4 }, { 4, 0 }, { 2, 4 }, { -2, 4 }, { -4, 0 } },
{ { -4, -8 }, { 4, -8 }, { 8, 0 }, { 4, 8 }, { -4, 8 }, { -8, 0 } },
{ { -8, -16 }, { 8, -16 }, { 16, 0 }, { 8, 16 }, { -8, 16 }, { -16, 0 } },
{ { -16, -32 }, { 16, -32 }, { 32, 0 }, { 16, 32 }, { -16, 32 },
{ -32, 0 } },
{ { -32, -64 }, { 32, -64 }, { 64, 0 }, { 32, 64 }, { -32, 64 },
{ -64, 0 } },
{ { -64, -128 }, { 64, -128 }, { 128, 0 }, { 64, 128 }, { -64, 128 },
{ -128, 0 } },
{ { -128, -256 }, { 128, -256 }, { 256, 0 }, { 128, 256 }, { -128, 256 },
{ -256, 0 } },
{ { -256, -512 }, { 256, -512 }, { 512, 0 }, { 256, 512 }, { -256, 512 },
{ -512, 0 } },
{ { -512, -1024 }, { 512, -1024 }, { 1024, 0 }, { 512, 1024 },
{ -512, 1024 }, { -1024, 0 } },
};
/* clang-format on */
return pattern_search(x, start_mv, search_param, sad_per_bit, do_init_search,
cost_list, vfp, use_mvcost, center_mv,
hex_num_candidates, hex_candidates);
}
static int bigdia_search(MACROBLOCK *x, MV *start_mv, int search_param,
int sad_per_bit, int do_init_search, int *cost_list,
const aom_variance_fn_ptr_t *vfp, int use_mvcost,
const MV *center_mv) {
// First scale has 4-closest points, the rest have 8 points in diamond
// shape at increasing scales
static const int bigdia_num_candidates[MAX_PATTERN_SCALES] = {
4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
};
// Note that the largest candidate step at each scale is 2^scale
/* clang-format off */
static const MV
bigdia_candidates[MAX_PATTERN_SCALES][MAX_PATTERN_CANDIDATES] = {
{ { 0, -1 }, { 1, 0 }, { 0, 1 }, { -1, 0 } },
{ { -1, -1 }, { 0, -2 }, { 1, -1 }, { 2, 0 }, { 1, 1 }, { 0, 2 },
{ -1, 1 }, { -2, 0 } },
{ { -2, -2 }, { 0, -4 }, { 2, -2 }, { 4, 0 }, { 2, 2 }, { 0, 4 },
{ -2, 2 }, { -4, 0 } },
{ { -4, -4 }, { 0, -8 }, { 4, -4 }, { 8, 0 }, { 4, 4 }, { 0, 8 },
{ -4, 4 }, { -8, 0 } },
{ { -8, -8 }, { 0, -16 }, { 8, -8 }, { 16, 0 }, { 8, 8 }, { 0, 16 },
{ -8, 8 }, { -16, 0 } },
{ { -16, -16 }, { 0, -32 }, { 16, -16 }, { 32, 0 }, { 16, 16 },
{ 0, 32 }, { -16, 16 }, { -32, 0 } },
{ { -32, -32 }, { 0, -64 }, { 32, -32 }, { 64, 0 }, { 32, 32 },
{ 0, 64 }, { -32, 32 }, { -64, 0 } },
{ { -64, -64 }, { 0, -128 }, { 64, -64 }, { 128, 0 }, { 64, 64 },
{ 0, 128 }, { -64, 64 }, { -128, 0 } },
{ { -128, -128 }, { 0, -256 }, { 128, -128 }, { 256, 0 }, { 128, 128 },
{ 0, 256 }, { -128, 128 }, { -256, 0 } },
{ { -256, -256 }, { 0, -512 }, { 256, -256 }, { 512, 0 }, { 256, 256 },
{ 0, 512 }, { -256, 256 }, { -512, 0 } },
{ { -512, -512 }, { 0, -1024 }, { 512, -512 }, { 1024, 0 },
{ 512, 512 }, { 0, 1024 }, { -512, 512 }, { -1024, 0 } },
};
/* clang-format on */
return pattern_search(x, start_mv, search_param, sad_per_bit, do_init_search,
cost_list, vfp, use_mvcost, center_mv,
bigdia_num_candidates, bigdia_candidates);
}
static int square_search(MACROBLOCK *x, MV *start_mv, int search_param,
int sad_per_bit, int do_init_search, int *cost_list,
const aom_variance_fn_ptr_t *vfp, int use_mvcost,
const MV *center_mv) {
// All scales have 8 closest points in square shape
static const int square_num_candidates[MAX_PATTERN_SCALES] = {
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
};
// Note that the largest candidate step at each scale is 2^scale
/* clang-format off */
static const MV
square_candidates[MAX_PATTERN_SCALES][MAX_PATTERN_CANDIDATES] = {
{ { -1, -1 }, { 0, -1 }, { 1, -1 }, { 1, 0 }, { 1, 1 }, { 0, 1 },
{ -1, 1 }, { -1, 0 } },
{ { -2, -2 }, { 0, -2 }, { 2, -2 }, { 2, 0 }, { 2, 2 }, { 0, 2 },
{ -2, 2 }, { -2, 0 } },
{ { -4, -4 }, { 0, -4 }, { 4, -4 }, { 4, 0 }, { 4, 4 }, { 0, 4 },
{ -4, 4 }, { -4, 0 } },
{ { -8, -8 }, { 0, -8 }, { 8, -8 }, { 8, 0 }, { 8, 8 }, { 0, 8 },
{ -8, 8 }, { -8, 0 } },
{ { -16, -16 }, { 0, -16 }, { 16, -16 }, { 16, 0 }, { 16, 16 },
{ 0, 16 }, { -16, 16 }, { -16, 0 } },
{ { -32, -32 }, { 0, -32 }, { 32, -32 }, { 32, 0 }, { 32, 32 },
{ 0, 32 }, { -32, 32 }, { -32, 0 } },
{ { -64, -64 }, { 0, -64 }, { 64, -64 }, { 64, 0 }, { 64, 64 },
{ 0, 64 }, { -64, 64 }, { -64, 0 } },
{ { -128, -128 }, { 0, -128 }, { 128, -128 }, { 128, 0 }, { 128, 128 },
{ 0, 128 }, { -128, 128 }, { -128, 0 } },
{ { -256, -256 }, { 0, -256 }, { 256, -256 }, { 256, 0 }, { 256, 256 },
{ 0, 256 }, { -256, 256 }, { -256, 0 } },
{ { -512, -512 }, { 0, -512 }, { 512, -512 }, { 512, 0 }, { 512, 512 },
{ 0, 512 }, { -512, 512 }, { -512, 0 } },
{ { -1024, -1024 }, { 0, -1024 }, { 1024, -1024 }, { 1024, 0 },
{ 1024, 1024 }, { 0, 1024 }, { -1024, 1024 }, { -1024, 0 } },
};
/* clang-format on */
return pattern_search(x, start_mv, search_param, sad_per_bit, do_init_search,
cost_list, vfp, use_mvcost, center_mv,
square_num_candidates, square_candidates);
}
static int fast_hex_search(MACROBLOCK *x, MV *ref_mv, int search_param,
int sad_per_bit,
int do_init_search, // must be zero for fast_hex
int *cost_list, const aom_variance_fn_ptr_t *vfp,
int use_mvcost, const MV *center_mv) {
return av1_hex_search(x, ref_mv, AOMMAX(MAX_MVSEARCH_STEPS - 2, search_param),
sad_per_bit, do_init_search, cost_list, vfp, use_mvcost,
center_mv);
}
static int fast_dia_search(MACROBLOCK *x, MV *ref_mv, int search_param,
int sad_per_bit, int do_init_search, int *cost_list,
const aom_variance_fn_ptr_t *vfp, int use_mvcost,
const MV *center_mv) {
return bigdia_search(x, ref_mv, AOMMAX(MAX_MVSEARCH_STEPS - 2, search_param),
sad_per_bit, do_init_search, cost_list, vfp, use_mvcost,
center_mv);
}
#undef CHECK_BETTER
// Exhuastive motion search around a given centre position with a given
// step size.
static int exhuastive_mesh_search(MACROBLOCK *x, MV *ref_mv, MV *best_mv,
int range, int step, int sad_per_bit,
const aom_variance_fn_ptr_t *fn_ptr,
const MV *center_mv) {
const MACROBLOCKD *const xd = &x->e_mbd;
const struct buf_2d *const what = &x->plane[0].src;
const struct buf_2d *const in_what = &xd->plane[0].pre[0];
MV fcenter_mv = { center_mv->row, center_mv->col };
unsigned int best_sad = INT_MAX;
int r, c, i;
int start_col, end_col, start_row, end_row;
int col_step = (step > 1) ? step : 4;
assert(step >= 1);
clamp_mv(&fcenter_mv, x->mv_limits.col_min, x->mv_limits.col_max,
x->mv_limits.row_min, x->mv_limits.row_max);
*best_mv = fcenter_mv;
best_sad =
fn_ptr->sdf(what->buf, what->stride,
get_buf_from_mv(in_what, &fcenter_mv), in_what->stride) +
mvsad_err_cost(x, &fcenter_mv, ref_mv, sad_per_bit);
start_row = AOMMAX(-range, x->mv_limits.row_min - fcenter_mv.row);
start_col = AOMMAX(-range, x->mv_limits.col_min - fcenter_mv.col);
end_row = AOMMIN(range, x->mv_limits.row_max - fcenter_mv.row);
end_col = AOMMIN(range, x->mv_limits.col_max - fcenter_mv.col);
for (r = start_row; r <= end_row; r += step) {
for (c = start_col; c <= end_col; c += col_step) {
// Step > 1 means we are not checking every location in this pass.
if (step > 1) {
const MV mv = { fcenter_mv.row + r, fcenter_mv.col + c };
unsigned int sad =
fn_ptr->sdf(what->buf, what->stride, get_buf_from_mv(in_what, &mv),
in_what->stride);
if (sad < best_sad) {
sad += mvsad_err_cost(x, &mv, ref_mv, sad_per_bit);
if (sad < best_sad) {
best_sad = sad;
x->second_best_mv.as_mv = *best_mv;
*best_mv = mv;
}
}
} else {
// 4 sads in a single call if we are checking every location
if (c + 3 <= end_col) {
unsigned int sads[4];
const uint8_t *addrs[4];
for (i = 0; i < 4; ++i) {
const MV mv = { fcenter_mv.row + r, fcenter_mv.col + c + i };
addrs[i] = get_buf_from_mv(in_what, &mv);
}
fn_ptr->sdx4df(what->buf, what->stride, addrs, in_what->stride, sads);
for (i = 0; i < 4; ++i) {
if (sads[i] < best_sad) {
const MV mv = { fcenter_mv.row + r, fcenter_mv.col + c + i };
const unsigned int sad =
sads[i] + mvsad_err_cost(x, &mv, ref_mv, sad_per_bit);
if (sad < best_sad) {
best_sad = sad;
x->second_best_mv.as_mv = *best_mv;
*best_mv = mv;
}
}
}
} else {
for (i = 0; i < end_col - c; ++i) {
const MV mv = { fcenter_mv.row + r, fcenter_mv.col + c + i };
unsigned int sad =
fn_ptr->sdf(what->buf, what->stride,
get_buf_from_mv(in_what, &mv), in_what->stride);
if (sad < best_sad) {
sad += mvsad_err_cost(x, &mv, ref_mv, sad_per_bit);
if (sad < best_sad) {
best_sad = sad;
x->second_best_mv.as_mv = *best_mv;
*best_mv = mv;
}
}
}
}
}
}
}
return best_sad;
}
int av1_diamond_search_sad_c(MACROBLOCK *x, const search_site_config *cfg,
MV *ref_mv, MV *best_mv, int search_param,
int sad_per_bit, int *num00,
const aom_variance_fn_ptr_t *fn_ptr,
const MV *center_mv) {
int i, j, step;
const MACROBLOCKD *const xd = &x->e_mbd;
uint8_t *what = x->plane[0].src.buf;
const int what_stride = x->plane[0].src.stride;
const uint8_t *in_what;
const int in_what_stride = xd->plane[0].pre[0].stride;
const uint8_t *best_address;
unsigned int bestsad = INT_MAX;
int best_site = 0;
int last_site = 0;
int ref_row;
int ref_col;
// search_param determines the length of the initial step and hence the number
// of iterations.
// 0 = initial step (MAX_FIRST_STEP) pel
// 1 = (MAX_FIRST_STEP/2) pel,
// 2 = (MAX_FIRST_STEP/4) pel...
const search_site *ss = &cfg->ss[search_param * cfg->searches_per_step];
const int tot_steps = (cfg->ss_count / cfg->searches_per_step) - search_param;
const MV fcenter_mv = { center_mv->row >> 3, center_mv->col >> 3 };
clamp_mv(ref_mv, x->mv_limits.col_min, x->mv_limits.col_max,
x->mv_limits.row_min, x->mv_limits.row_max);
ref_row = ref_mv->row;
ref_col = ref_mv->col;
*num00 = 0;
best_mv->row = ref_row;
best_mv->col = ref_col;
// Work out the start point for the search
in_what = xd->plane[0].pre[0].buf + ref_row * in_what_stride + ref_col;
best_address = in_what;
// Check the starting position
bestsad = fn_ptr->sdf(what, what_stride, in_what, in_what_stride) +
mvsad_err_cost(x, best_mv, &fcenter_mv, sad_per_bit);
i = 1;
for (step = 0; step < tot_steps; step++) {
int all_in = 1, t;
// All_in is true if every one of the points we are checking are within
// the bounds of the image.
all_in &= ((best_mv->row + ss[i].mv.row) > x->mv_limits.row_min);
all_in &= ((best_mv->row + ss[i + 1].mv.row) < x->mv_limits.row_max);
all_in &= ((best_mv->col + ss[i + 2].mv.col) > x->mv_limits.col_min);
all_in &= ((best_mv->col + ss[i + 3].mv.col) < x->mv_limits.col_max);
// If all the pixels are within the bounds we don't check whether the
// search point is valid in this loop, otherwise we check each point
// for validity..
if (all_in) {
unsigned int sad_array[4];
for (j = 0; j < cfg->searches_per_step; j += 4) {
unsigned char const *block_offset[4];
for (t = 0; t < 4; t++)
block_offset[t] = ss[i + t].offset + best_address;
fn_ptr->sdx4df(what, what_stride, block_offset, in_what_stride,
sad_array);
for (t = 0; t < 4; t++, i++) {
if (sad_array[t] < bestsad) {
const MV this_mv = { best_mv->row + ss[i].mv.row,
best_mv->col + ss[i].mv.col };
sad_array[t] +=
mvsad_err_cost(x, &this_mv, &fcenter_mv, sad_per_bit);
if (sad_array[t] < bestsad) {
bestsad = sad_array[t];
best_site = i;
}
}
}
}
} else {
for (j = 0; j < cfg->searches_per_step; j++) {
// Trap illegal vectors
const MV this_mv = { best_mv->row + ss[i].mv.row,
best_mv->col + ss[i].mv.col };
if (is_mv_in(&x->mv_limits, &this_mv)) {
const uint8_t *const check_here = ss[i].offset + best_address;
unsigned int thissad =
fn_ptr->sdf(what, what_stride, check_here, in_what_stride);
if (thissad < bestsad) {
thissad += mvsad_err_cost(x, &this_mv, &fcenter_mv, sad_per_bit);
if (thissad < bestsad) {
bestsad = thissad;
best_site = i;
}
}
}
i++;
}
}
if (best_site != last_site) {
x->second_best_mv.as_mv = *best_mv;
best_mv->row += ss[best_site].mv.row;
best_mv->col += ss[best_site].mv.col;
best_address += ss[best_site].offset;
last_site = best_site;
#if defined(NEW_DIAMOND_SEARCH)
while (1) {
const MV this_mv = { best_mv->row + ss[best_site].mv.row,
best_mv->col + ss[best_site].mv.col };
if (is_mv_in(&x->mv_limits, &this_mv)) {
const uint8_t *const check_here = ss[best_site].offset + best_address;
unsigned int thissad =
fn_ptr->sdf(what, what_stride, check_here, in_what_stride);
if (thissad < bestsad) {
thissad += mvsad_err_cost(x, &this_mv, &fcenter_mv, sad_per_bit);
if (thissad < bestsad) {
bestsad = thissad;
best_mv->row += ss[best_site].mv.row;
best_mv->col += ss[best_site].mv.col;
best_address += ss[best_site].offset;
continue;
}
}
}
break;
}
#endif
} else if (best_address == in_what) {
(*num00)++;
}
}
return bestsad;
}
/* do_refine: If last step (1-away) of n-step search doesn't pick the center
point as the best match, we will do a final 1-away diamond
refining search */
static int full_pixel_diamond(const AV1_COMP *const cpi, MACROBLOCK *x,
MV *mvp_full, int step_param, int sadpb,
int further_steps, int do_refine, int *cost_list,
const aom_variance_fn_ptr_t *fn_ptr,
const MV *ref_mv, const search_site_config *cfg) {
MV temp_mv;
int thissme, n, num00 = 0;
int bestsme = cpi->diamond_search_sad(x, cfg, mvp_full, &temp_mv, step_param,
sadpb, &n, fn_ptr, ref_mv);
if (bestsme < INT_MAX)
bestsme = av1_get_mvpred_var(x, &temp_mv, ref_mv, fn_ptr, 1);
x->best_mv.as_mv = temp_mv;
// If there won't be more n-step search, check to see if refining search is
// needed.
if (n > further_steps) do_refine = 0;
while (n < further_steps) {
++n;
if (num00) {
num00--;
} else {
thissme =
cpi->diamond_search_sad(x, cfg, mvp_full, &temp_mv, step_param + n,
sadpb, &num00, fn_ptr, ref_mv);
if (thissme < INT_MAX)
thissme = av1_get_mvpred_var(x, &temp_mv, ref_mv, fn_ptr, 1);
// check to see if refining search is needed.
if (num00 > further_steps - n) do_refine = 0;
if (thissme < bestsme) {
bestsme = thissme;
x->best_mv.as_mv = temp_mv;
}
}
}
// final 1-away diamond refining search
if (do_refine) {
const int search_range = 8;
MV best_mv = x->best_mv.as_mv;
thissme = av1_refining_search_sad(x, &best_mv, sadpb, search_range, fn_ptr,
ref_mv);
if (thissme < INT_MAX)
thissme = av1_get_mvpred_var(x, &best_mv, ref_mv, fn_ptr, 1);
if (thissme < bestsme) {
bestsme = thissme;
x->best_mv.as_mv = best_mv;
}
}
// Return cost list.
if (cost_list) {
calc_int_cost_list(x, ref_mv, sadpb, fn_ptr, &x->best_mv.as_mv, cost_list);
}
return bestsme;
}
#define MIN_RANGE 7
#define MAX_RANGE 256
#define MIN_INTERVAL 1
// Runs an limited range exhaustive mesh search using a pattern set
// according to the encode speed profile.
static int full_pixel_exhaustive(const AV1_COMP *const cpi, MACROBLOCK *x,
const MV *centre_mv_full, int sadpb,
int *cost_list,
const aom_variance_fn_ptr_t *fn_ptr,
const MV *ref_mv, MV *dst_mv) {
const SPEED_FEATURES *const sf = &cpi->sf;
MV temp_mv = { centre_mv_full->row, centre_mv_full->col };
MV f_ref_mv = { ref_mv->row >> 3, ref_mv->col >> 3 };
int bestsme;
int i;
int interval = sf->mesh_patterns[0].interval;
int range = sf->mesh_patterns[0].range;
int baseline_interval_divisor;
// Keep track of number of exhaustive calls (this frame in this thread).
if (x->ex_search_count_ptr != NULL) ++(*x->ex_search_count_ptr);
// Trap illegal values for interval and range for this function.
if ((range < MIN_RANGE) || (range > MAX_RANGE) || (interval < MIN_INTERVAL) ||
(interval > range))
return INT_MAX;
baseline_interval_divisor = range / interval;
// Check size of proposed first range against magnitude of the centre
// value used as a starting point.
range = AOMMAX(range, (5 * AOMMAX(abs(temp_mv.row), abs(temp_mv.col))) / 4);
range = AOMMIN(range, MAX_RANGE);
interval = AOMMAX(interval, range / baseline_interval_divisor);
// initial search
bestsme = exhuastive_mesh_search(x, &f_ref_mv, &temp_mv, range, interval,
sadpb, fn_ptr, &temp_mv);
if ((interval > MIN_INTERVAL) && (range > MIN_RANGE)) {
// Progressive searches with range and step size decreasing each time
// till we reach a step size of 1. Then break out.
for (i = 1; i < MAX_MESH_STEP; ++i) {
// First pass with coarser step and longer range
bestsme = exhuastive_mesh_search(
x, &f_ref_mv, &temp_mv, sf->mesh_patterns[i].range,
sf->mesh_patterns[i].interval, sadpb, fn_ptr, &temp_mv);
if (sf->mesh_patterns[i].interval == 1) break;
}
}
if (bestsme < INT_MAX)
bestsme = av1_get_mvpred_var(x, &temp_mv, ref_mv, fn_ptr, 1);
*dst_mv = temp_mv;
// Return cost list.
if (cost_list) {
calc_int_cost_list(x, ref_mv, sadpb, fn_ptr, dst_mv, cost_list);
}
return bestsme;
}
int av1_refining_search_sad(MACROBLOCK *x, MV *ref_mv, int error_per_bit,
int search_range,
const aom_variance_fn_ptr_t *fn_ptr,
const MV *center_mv) {
const MACROBLOCKD *const xd = &x->e_mbd;
const MV neighbors[4] = { { -1, 0 }, { 0, -1 }, { 0, 1 }, { 1, 0 } };
const struct buf_2d *const what = &x->plane[0].src;
const struct buf_2d *const in_what = &xd->plane[0].pre[0];
const MV fcenter_mv = { center_mv->row >> 3, center_mv->col >> 3 };
const uint8_t *best_address = get_buf_from_mv(in_what, ref_mv);
unsigned int best_sad =
fn_ptr->sdf(what->buf, what->stride, best_address, in_what->stride) +
mvsad_err_cost(x, ref_mv, &fcenter_mv, error_per_bit);
int i, j;
for (i = 0; i < search_range; i++) {
int best_site = -1;
const int all_in = ((ref_mv->row - 1) > x->mv_limits.row_min) &
((ref_mv->row + 1) < x->mv_limits.row_max) &
((ref_mv->col - 1) > x->mv_limits.col_min) &
((ref_mv->col + 1) < x->mv_limits.col_max);
if (all_in) {
unsigned int sads[4];
const uint8_t *const positions[4] = { best_address - in_what->stride,
best_address - 1, best_address + 1,
best_address + in_what->stride };
fn_ptr->sdx4df(what->buf, what->stride, positions, in_what->stride, sads);
for (j = 0; j < 4; ++j) {
if (sads[j] < best_sad) {
const MV mv = { ref_mv->row + neighbors[j].row,
ref_mv->col + neighbors[j].col };
sads[j] += mvsad_err_cost(x, &mv, &fcenter_mv, error_per_bit);
if (sads[j] < best_sad) {
best_sad = sads[j];
best_site = j;
}
}
}
} else {
for (j = 0; j < 4; ++j) {
const MV mv = { ref_mv->row + neighbors[j].row,
ref_mv->col + neighbors[j].col };
if (is_mv_in(&x->mv_limits, &mv)) {
unsigned int sad =
fn_ptr->sdf(what->buf, what->stride,
get_buf_from_mv(in_what, &mv), in_what->stride);
if (sad < best_sad) {
sad += mvsad_err_cost(x, &mv, &fcenter_mv, error_per_bit);
if (sad < best_sad) {
best_sad = sad;
best_site = j;
}
}
}
}
}
if (best_site == -1) {
break;
} else {
x->second_best_mv.as_mv = *ref_mv;
ref_mv->row += neighbors[best_site].row;
ref_mv->col += neighbors[best_site].col;
best_address = get_buf_from_mv(in_what, ref_mv);
}
}
return best_sad;
}
// This function is called when we do joint motion search in comp_inter_inter
// mode, or when searching for one component of an ext-inter compound mode.
int av1_refining_search_8p_c(MACROBLOCK *x, int error_per_bit, int search_range,
const aom_variance_fn_ptr_t *fn_ptr,
const uint8_t *mask, int mask_stride,
int invert_mask, const MV *center_mv,
const uint8_t *second_pred) {
static const search_neighbors neighbors[8] = {
{ { -1, 0 }, -1 * SEARCH_GRID_STRIDE_8P + 0 },
{ { 0, -1 }, 0 * SEARCH_GRID_STRIDE_8P - 1 },
{ { 0, 1 }, 0 * SEARCH_GRID_STRIDE_8P + 1 },
{ { 1, 0 }, 1 * SEARCH_GRID_STRIDE_8P + 0 },
{ { -1, -1 }, -1 * SEARCH_GRID_STRIDE_8P - 1 },
{ { 1, -1 }, 1 * SEARCH_GRID_STRIDE_8P - 1 },
{ { -1, 1 }, -1 * SEARCH_GRID_STRIDE_8P + 1 },
{ { 1, 1 }, 1 * SEARCH_GRID_STRIDE_8P + 1 }
};
const MACROBLOCKD *const xd = &x->e_mbd;
const struct buf_2d *const what = &x->plane[0].src;
const struct buf_2d *const in_what = &xd->plane[0].pre[0];
const MV fcenter_mv = { center_mv->row >> 3, center_mv->col >> 3 };
MV *best_mv = &x->best_mv.as_mv;
unsigned int best_sad = INT_MAX;
int i, j;
uint8_t do_refine_search_grid[SEARCH_GRID_STRIDE_8P *
SEARCH_GRID_STRIDE_8P] = { 0 };
int grid_center = SEARCH_GRID_CENTER_8P;
int grid_coord = grid_center;
clamp_mv(best_mv, x->mv_limits.col_min, x->mv_limits.col_max,
x->mv_limits.row_min, x->mv_limits.row_max);
if (mask) {
best_sad = fn_ptr->msdf(what->buf, what->stride,
get_buf_from_mv(in_what, best_mv), in_what->stride,
second_pred, mask, mask_stride, invert_mask) +
mvsad_err_cost(x, best_mv, &fcenter_mv, error_per_bit);
} else {
best_sad =
fn_ptr->sdaf(what->buf, what->stride, get_buf_from_mv(in_what, best_mv),
in_what->stride, second_pred) +
mvsad_err_cost(x, best_mv, &fcenter_mv, error_per_bit);
}
do_refine_search_grid[grid_coord] = 1;
for (i = 0; i < search_range; ++i) {
int best_site = -1;
for (j = 0; j < 8; ++j)