blob: 752d6f3f0b46657f9b738069bcc6d3da57ff9f96 [file] [log] [blame]
/*
* Copyright (c) 2019, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <immintrin.h>
#include "config/av1_rtcd.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/temporal_filter.h"
#define SSE_STRIDE (BW + 2)
DECLARE_ALIGNED(32, static const uint32_t, sse_bytemask[4][8]) = {
{ 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0, 0, 0 },
{ 0, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0, 0 },
{ 0, 0, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0 },
{ 0, 0, 0, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF }
};
DECLARE_ALIGNED(32, static const uint8_t, shufflemask_16b[2][16]) = {
{ 0, 1, 0, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 },
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 10, 11, 10, 11 }
};
#define CALC_X_GRADIENT(AC, GI, DF, out) \
out = _mm256_abs_epi16( \
_mm256_add_epi16(_mm256_add_epi16(AC, GI), _mm256_slli_epi16(DF, 1)));
#define CALC_Y_GRADIENT(AC, GI, BH, out) \
out = _mm256_abs_epi16( \
_mm256_add_epi16(_mm256_sub_epi16(AC, GI), _mm256_slli_epi16(BH, 1)));
double av1_estimate_noise_from_single_plane_avx2(const uint8_t *src, int height,
int width, int stride,
int edge_thresh) {
int count = 0;
int64_t accum = 0;
// w32 stores width multiple of 32.
const int w32 = (width - 1) & ~0x1f;
const __m256i zero = _mm256_setzero_si256();
const __m256i edge_threshold = _mm256_set1_epi16(edge_thresh);
__m256i num_accumulator = zero;
__m256i sum_accumulator = zero;
// A | B | C
// D | E | F
// G | H | I
// g_x = (A - C) + (G - I) + 2*(D - F)
// g_y = (A + C) - (G + I) + 2*(B - H)
// v = 4*E - 2*(D+F+B+H) + (A+C+G+I)
// Process the width multiple of 32 here.
for (int w = 1; w < w32; w += 32) {
int h = 1;
const int start_idx = h * stride + w;
const int stride_0 = start_idx - stride;
__m256i num_accum_row_lvl = zero;
const __m256i A = _mm256_loadu_si256((__m256i *)(&src[stride_0 - 1]));
const __m256i C = _mm256_loadu_si256((__m256i *)(&src[stride_0 + 1]));
const __m256i D = _mm256_loadu_si256((__m256i *)(&src[start_idx - 1]));
const __m256i F = _mm256_loadu_si256((__m256i *)(&src[start_idx + 1]));
__m256i B = _mm256_loadu_si256((__m256i *)(&src[stride_0]));
__m256i E = _mm256_loadu_si256((__m256i *)(&src[start_idx]));
const __m256i A_lo = _mm256_unpacklo_epi8(A, zero);
const __m256i A_hi = _mm256_unpackhi_epi8(A, zero);
const __m256i C_lo = _mm256_unpacklo_epi8(C, zero);
const __m256i C_hi = _mm256_unpackhi_epi8(C, zero);
const __m256i D_lo = _mm256_unpacklo_epi8(D, zero);
const __m256i D_hi = _mm256_unpackhi_epi8(D, zero);
const __m256i F_lo = _mm256_unpacklo_epi8(F, zero);
const __m256i F_hi = _mm256_unpackhi_epi8(F, zero);
__m256i sub_AC_lo = _mm256_sub_epi16(A_lo, C_lo);
__m256i sub_AC_hi = _mm256_sub_epi16(A_hi, C_hi);
__m256i sum_AC_lo = _mm256_add_epi16(A_lo, C_lo);
__m256i sum_AC_hi = _mm256_add_epi16(A_hi, C_hi);
__m256i sub_DF_lo = _mm256_sub_epi16(D_lo, F_lo);
__m256i sub_DF_hi = _mm256_sub_epi16(D_hi, F_hi);
__m256i sum_DF_lo = _mm256_add_epi16(D_lo, F_lo);
__m256i sum_DF_hi = _mm256_add_epi16(D_hi, F_hi);
for (; h < height - 1; h++) {
__m256i sum_GI_lo, sub_GI_lo, sum_GI_hi, sub_GI_hi, gx_lo, gy_lo, gx_hi,
gy_hi;
const int k = h * stride + w;
const __m256i G = _mm256_loadu_si256((__m256i *)(&src[k + stride - 1]));
const __m256i H = _mm256_loadu_si256((__m256i *)(&src[k + stride]));
const __m256i I = _mm256_loadu_si256((__m256i *)(&src[k + stride + 1]));
const __m256i B_lo = _mm256_unpacklo_epi8(B, zero);
const __m256i B_hi = _mm256_unpackhi_epi8(B, zero);
const __m256i G_lo = _mm256_unpacklo_epi8(G, zero);
const __m256i G_hi = _mm256_unpackhi_epi8(G, zero);
const __m256i I_lo = _mm256_unpacklo_epi8(I, zero);
const __m256i I_hi = _mm256_unpackhi_epi8(I, zero);
const __m256i H_lo = _mm256_unpacklo_epi8(H, zero);
const __m256i H_hi = _mm256_unpackhi_epi8(H, zero);
sub_GI_lo = _mm256_sub_epi16(G_lo, I_lo);
sub_GI_hi = _mm256_sub_epi16(G_hi, I_hi);
sum_GI_lo = _mm256_add_epi16(G_lo, I_lo);
sum_GI_hi = _mm256_add_epi16(G_hi, I_hi);
const __m256i sub_BH_lo = _mm256_sub_epi16(B_lo, H_lo);
const __m256i sub_BH_hi = _mm256_sub_epi16(B_hi, H_hi);
CALC_X_GRADIENT(sub_AC_lo, sub_GI_lo, sub_DF_lo, gx_lo)
CALC_Y_GRADIENT(sum_AC_lo, sum_GI_lo, sub_BH_lo, gy_lo)
const __m256i ga_lo = _mm256_add_epi16(gx_lo, gy_lo);
CALC_X_GRADIENT(sub_AC_hi, sub_GI_hi, sub_DF_hi, gx_hi)
CALC_Y_GRADIENT(sum_AC_hi, sum_GI_hi, sub_BH_hi, gy_hi)
const __m256i ga_hi = _mm256_add_epi16(gx_hi, gy_hi);
__m256i cmp_lo = _mm256_cmpgt_epi16(edge_threshold, ga_lo);
__m256i cmp_hi = _mm256_cmpgt_epi16(edge_threshold, ga_hi);
const __m256i comp_reg = _mm256_add_epi16(cmp_lo, cmp_hi);
// v = 4*E -2*(D+F+B+H) + (A+C+G+I)
if (_mm256_movemask_epi8(comp_reg) != 0) {
const __m256i sum_BH_lo = _mm256_add_epi16(B_lo, H_lo);
const __m256i sum_BH_hi = _mm256_add_epi16(B_hi, H_hi);
// 2*(D+F+B+H)
const __m256i sum_DFBH_lo =
_mm256_slli_epi16(_mm256_add_epi16(sum_DF_lo, sum_BH_lo), 1);
// (A+C+G+I)
const __m256i sum_ACGI_lo = _mm256_add_epi16(sum_AC_lo, sum_GI_lo);
const __m256i sum_DFBH_hi =
_mm256_slli_epi16(_mm256_add_epi16(sum_DF_hi, sum_BH_hi), 1);
const __m256i sum_ACGI_hi = _mm256_add_epi16(sum_AC_hi, sum_GI_hi);
// Convert E register values from 8bit to 16bit
const __m256i E_lo = _mm256_unpacklo_epi8(E, zero);
const __m256i E_hi = _mm256_unpackhi_epi8(E, zero);
// 4*E - 2*(D+F+B+H)+ (A+C+G+I)
const __m256i var_lo_0 = _mm256_abs_epi16(_mm256_add_epi16(
_mm256_sub_epi16(_mm256_slli_epi16(E_lo, 2), sum_DFBH_lo),
sum_ACGI_lo));
const __m256i var_hi_0 = _mm256_abs_epi16(_mm256_add_epi16(
_mm256_sub_epi16(_mm256_slli_epi16(E_hi, 2), sum_DFBH_hi),
sum_ACGI_hi));
cmp_lo = _mm256_srli_epi16(cmp_lo, 15);
cmp_hi = _mm256_srli_epi16(cmp_hi, 15);
const __m256i var_lo = _mm256_mullo_epi16(var_lo_0, cmp_lo);
const __m256i var_hi = _mm256_mullo_epi16(var_hi_0, cmp_hi);
num_accum_row_lvl = _mm256_add_epi16(num_accum_row_lvl, cmp_lo);
num_accum_row_lvl = _mm256_add_epi16(num_accum_row_lvl, cmp_hi);
sum_accumulator = _mm256_add_epi32(sum_accumulator,
_mm256_unpacklo_epi16(var_lo, zero));
sum_accumulator = _mm256_add_epi32(sum_accumulator,
_mm256_unpackhi_epi16(var_lo, zero));
sum_accumulator = _mm256_add_epi32(sum_accumulator,
_mm256_unpacklo_epi16(var_hi, zero));
sum_accumulator = _mm256_add_epi32(sum_accumulator,
_mm256_unpackhi_epi16(var_hi, zero));
}
sub_AC_lo = sub_DF_lo;
sub_AC_hi = sub_DF_hi;
sub_DF_lo = sub_GI_lo;
sub_DF_hi = sub_GI_hi;
sum_AC_lo = sum_DF_lo;
sum_AC_hi = sum_DF_hi;
sum_DF_lo = sum_GI_lo;
sum_DF_hi = sum_GI_hi;
B = E;
E = H;
}
const __m256i num_0 = _mm256_unpacklo_epi16(num_accum_row_lvl, zero);
const __m256i num_1 = _mm256_unpackhi_epi16(num_accum_row_lvl, zero);
num_accumulator =
_mm256_add_epi32(num_accumulator, _mm256_add_epi32(num_0, num_1));
}
// Process the remaining width here.
for (int h = 1; h < height - 1; ++h) {
for (int w = w32 + 1; w < width - 1; ++w) {
const int k = h * stride + w;
// Compute sobel gradients
const int g_x = (src[k - stride - 1] - src[k - stride + 1]) +
(src[k + stride - 1] - src[k + stride + 1]) +
2 * (src[k - 1] - src[k + 1]);
const int g_y = (src[k - stride - 1] - src[k + stride - 1]) +
(src[k - stride + 1] - src[k + stride + 1]) +
2 * (src[k - stride] - src[k + stride]);
const int ga = abs(g_x) + abs(g_y);
if (ga < edge_thresh) {
// Find Laplacian
const int v =
4 * src[k] -
2 * (src[k - 1] + src[k + 1] + src[k - stride] + src[k + stride]) +
(src[k - stride - 1] + src[k - stride + 1] + src[k + stride - 1] +
src[k + stride + 1]);
accum += abs(v);
++count;
}
}
}
// s0 s1 n0 n1 s2 s3 n2 n3
__m256i sum_avx = _mm256_hadd_epi32(sum_accumulator, num_accumulator);
__m128i sum_avx_lo = _mm256_castsi256_si128(sum_avx);
__m128i sum_avx_hi = _mm256_extractf128_si256(sum_avx, 1);
// s0+s2 s1+s3 n0+n2 n1+n3
__m128i sum_avx_1 = _mm_add_epi32(sum_avx_lo, sum_avx_hi);
// s0+s2+s1+s3 n0+n2+n1+n3
__m128i result = _mm_add_epi32(_mm_srli_si128(sum_avx_1, 4), sum_avx_1);
accum += _mm_cvtsi128_si32(result);
count += _mm_extract_epi32(result, 2);
// If very few smooth pels, return -1 since the estimate is unreliable.
return (count < 16) ? -1.0 : (double)accum / (6 * count) * SQRT_PI_BY_2;
}
static AOM_FORCE_INLINE void get_squared_error_16x16_avx2(
const uint8_t *frame1, const unsigned int stride, const uint8_t *frame2,
const unsigned int stride2, const int block_width, const int block_height,
uint16_t *frame_sse, const unsigned int sse_stride) {
(void)block_width;
const uint8_t *src1 = frame1;
const uint8_t *src2 = frame2;
uint16_t *dst = frame_sse;
for (int i = 0; i < block_height; i++) {
__m128i vf1_128, vf2_128;
__m256i vf1, vf2, vdiff1, vsqdiff1;
vf1_128 = _mm_loadu_si128((__m128i *)(src1));
vf2_128 = _mm_loadu_si128((__m128i *)(src2));
vf1 = _mm256_cvtepu8_epi16(vf1_128);
vf2 = _mm256_cvtepu8_epi16(vf2_128);
vdiff1 = _mm256_sub_epi16(vf1, vf2);
vsqdiff1 = _mm256_mullo_epi16(vdiff1, vdiff1);
_mm256_storeu_si256((__m256i *)(dst), vsqdiff1);
// Set zero to uninitialized memory to avoid uninitialized loads later
*(int *)(dst + 16) = _mm_cvtsi128_si32(_mm_setzero_si128());
src1 += stride, src2 += stride2;
dst += sse_stride;
}
}
static AOM_FORCE_INLINE void get_squared_error_32x32_avx2(
const uint8_t *frame1, const unsigned int stride, const uint8_t *frame2,
const unsigned int stride2, const int block_width, const int block_height,
uint16_t *frame_sse, const unsigned int sse_stride) {
(void)block_width;
const uint8_t *src1 = frame1;
const uint8_t *src2 = frame2;
uint16_t *dst = frame_sse;
for (int i = 0; i < block_height; i++) {
__m256i vsrc1, vsrc2, vmin, vmax, vdiff, vdiff1, vdiff2, vres1, vres2;
vsrc1 = _mm256_loadu_si256((__m256i *)src1);
vsrc2 = _mm256_loadu_si256((__m256i *)src2);
vmax = _mm256_max_epu8(vsrc1, vsrc2);
vmin = _mm256_min_epu8(vsrc1, vsrc2);
vdiff = _mm256_subs_epu8(vmax, vmin);
__m128i vtmp1 = _mm256_castsi256_si128(vdiff);
__m128i vtmp2 = _mm256_extracti128_si256(vdiff, 1);
vdiff1 = _mm256_cvtepu8_epi16(vtmp1);
vdiff2 = _mm256_cvtepu8_epi16(vtmp2);
vres1 = _mm256_mullo_epi16(vdiff1, vdiff1);
vres2 = _mm256_mullo_epi16(vdiff2, vdiff2);
_mm256_storeu_si256((__m256i *)(dst), vres1);
_mm256_storeu_si256((__m256i *)(dst + 16), vres2);
// Set zero to uninitialized memory to avoid uninitialized loads later
*(int *)(dst + 32) = _mm_cvtsi128_si32(_mm_setzero_si128());
src1 += stride;
src2 += stride2;
dst += sse_stride;
}
}
static AOM_FORCE_INLINE __m256i xx_load_and_pad(uint16_t *src, int col,
int block_width) {
__m128i v128tmp = _mm_loadu_si128((__m128i *)(src));
if (col == 0) {
// For the first column, replicate the first element twice to the left
v128tmp = _mm_shuffle_epi8(v128tmp, *(__m128i *)shufflemask_16b[0]);
}
if (col == block_width - 4) {
// For the last column, replicate the last element twice to the right
v128tmp = _mm_shuffle_epi8(v128tmp, *(__m128i *)shufflemask_16b[1]);
}
return _mm256_cvtepu16_epi32(v128tmp);
}
static AOM_FORCE_INLINE int32_t xx_mask_and_hadd(__m256i vsum, int i) {
// Mask the required 5 values inside the vector
__m256i vtmp = _mm256_and_si256(vsum, *(__m256i *)sse_bytemask[i]);
__m128i v128a, v128b;
// Extract 256b as two 128b registers A and B
v128a = _mm256_castsi256_si128(vtmp);
v128b = _mm256_extracti128_si256(vtmp, 1);
// A = [A0+B0, A1+B1, A2+B2, A3+B3]
v128a = _mm_add_epi32(v128a, v128b);
// B = [A2+B2, A3+B3, 0, 0]
v128b = _mm_srli_si128(v128a, 8);
// A = [A0+B0+A2+B2, A1+B1+A3+B3, X, X]
v128a = _mm_add_epi32(v128a, v128b);
// B = [A1+B1+A3+B3, 0, 0, 0]
v128b = _mm_srli_si128(v128a, 4);
// A = [A0+B0+A2+B2+A1+B1+A3+B3, X, X, X]
v128a = _mm_add_epi32(v128a, v128b);
return _mm_extract_epi32(v128a, 0);
}
// AVX2 implementation of approx_exp()
static AOM_INLINE __m256 approx_exp_avx2(__m256 y) {
#define A ((1 << 23) / 0.69314718056f) // (1 << 23) / ln(2)
#define B \
127 // Offset for the exponent according to IEEE floating point standard.
#define C 60801 // Magic number controls the accuracy of approximation
const __m256 multiplier = _mm256_set1_ps(A);
const __m256i offset = _mm256_set1_epi32(B * (1 << 23) - C);
y = _mm256_mul_ps(y, multiplier);
y = _mm256_castsi256_ps(_mm256_add_epi32(_mm256_cvttps_epi32(y), offset));
return y;
#undef A
#undef B
#undef C
}
static void apply_temporal_filter(
const uint8_t *frame1, const unsigned int stride, const uint8_t *frame2,
const unsigned int stride2, const int block_width, const int block_height,
const int *subblock_mses, unsigned int *accumulator, uint16_t *count,
uint16_t *frame_sse, uint32_t *luma_sse_sum,
const double inv_num_ref_pixels, const double decay_factor,
const double inv_factor, const double weight_factor, double *d_factor,
int tf_wgt_calc_lvl) {
assert(((block_width == 16) || (block_width == 32)) &&
((block_height == 16) || (block_height == 32)));
uint32_t acc_5x5_sse[BH][BW];
if (block_width == 32) {
get_squared_error_32x32_avx2(frame1, stride, frame2, stride2, block_width,
block_height, frame_sse, SSE_STRIDE);
} else {
get_squared_error_16x16_avx2(frame1, stride, frame2, stride2, block_width,
block_height, frame_sse, SSE_STRIDE);
}
__m256i vsrc[5];
// Traverse 4 columns at a time
// First and last columns will require padding
for (int col = 0; col < block_width; col += 4) {
uint16_t *src = (col) ? frame_sse + col - 2 : frame_sse;
// Load and pad(for first and last col) 3 rows from the top
for (int i = 2; i < 5; i++) {
vsrc[i] = xx_load_and_pad(src, col, block_width);
src += SSE_STRIDE;
}
// Copy first row to first 2 vectors
vsrc[0] = vsrc[2];
vsrc[1] = vsrc[2];
for (int row = 0; row < block_height; row++) {
__m256i vsum = _mm256_setzero_si256();
// Add 5 consecutive rows
for (int i = 0; i < 5; i++) {
vsum = _mm256_add_epi32(vsum, vsrc[i]);
}
// Push all elements by one element to the top
for (int i = 0; i < 4; i++) {
vsrc[i] = vsrc[i + 1];
}
// Load next row to the last element
if (row <= block_height - 4) {
vsrc[4] = xx_load_and_pad(src, col, block_width);
src += SSE_STRIDE;
} else {
vsrc[4] = vsrc[3];
}
// Accumulate the sum horizontally
for (int i = 0; i < 4; i++) {
acc_5x5_sse[row][col + i] = xx_mask_and_hadd(vsum, i);
}
}
}
double subblock_mses_scaled[4];
double d_factor_decayed[4];
for (int idx = 0; idx < 4; idx++) {
subblock_mses_scaled[idx] = subblock_mses[idx] * inv_factor;
d_factor_decayed[idx] = d_factor[idx] * decay_factor;
}
if (tf_wgt_calc_lvl == 0) {
for (int i = 0, k = 0; i < block_height; i++) {
const int y_blk_raster_offset = (i >= block_height / 2) * 2;
for (int j = 0; j < block_width; j++, k++) {
const int pixel_value = frame2[i * stride2 + j];
uint32_t diff_sse = acc_5x5_sse[i][j] + luma_sse_sum[i * BW + j];
const double window_error = diff_sse * inv_num_ref_pixels;
const int subblock_idx = y_blk_raster_offset + (j >= block_width / 2);
const double combined_error =
weight_factor * window_error + subblock_mses_scaled[subblock_idx];
double scaled_error = combined_error * d_factor_decayed[subblock_idx];
scaled_error = AOMMIN(scaled_error, 7);
const int weight = (int)(exp(-scaled_error) * TF_WEIGHT_SCALE);
count[k] += weight;
accumulator[k] += weight * pixel_value;
}
}
} else {
__m256d subblock_mses_reg[4];
__m256d d_factor_mul_n_decay_qr_invs[4];
const __m256 zero = _mm256_set1_ps(0.0f);
const __m256 point_five = _mm256_set1_ps(0.5f);
const __m256 seven = _mm256_set1_ps(7.0f);
const __m256d inv_num_ref_pixel_256bit = _mm256_set1_pd(inv_num_ref_pixels);
const __m256d weight_factor_256bit = _mm256_set1_pd(weight_factor);
const __m256 tf_weight_scale = _mm256_set1_ps((float)TF_WEIGHT_SCALE);
// Maintain registers to hold mse and d_factor at subblock level.
subblock_mses_reg[0] = _mm256_set1_pd(subblock_mses_scaled[0]);
subblock_mses_reg[1] = _mm256_set1_pd(subblock_mses_scaled[1]);
subblock_mses_reg[2] = _mm256_set1_pd(subblock_mses_scaled[2]);
subblock_mses_reg[3] = _mm256_set1_pd(subblock_mses_scaled[3]);
d_factor_mul_n_decay_qr_invs[0] = _mm256_set1_pd(d_factor_decayed[0]);
d_factor_mul_n_decay_qr_invs[1] = _mm256_set1_pd(d_factor_decayed[1]);
d_factor_mul_n_decay_qr_invs[2] = _mm256_set1_pd(d_factor_decayed[2]);
d_factor_mul_n_decay_qr_invs[3] = _mm256_set1_pd(d_factor_decayed[3]);
for (int i = 0; i < block_height; i++) {
const int y_blk_raster_offset = (i >= block_height / 2) * 2;
uint32_t *luma_sse_sum_temp = luma_sse_sum + i * BW;
for (int j = 0; j < block_width; j += 8) {
const __m256i acc_sse =
_mm256_lddqu_si256((__m256i *)(acc_5x5_sse[i] + j));
const __m256i luma_sse =
_mm256_lddqu_si256((__m256i *)((luma_sse_sum_temp + j)));
// uint32_t diff_sse = acc_5x5_sse[i][j] + luma_sse_sum[i * BW + j];
const __m256i diff_sse = _mm256_add_epi32(acc_sse, luma_sse);
const __m256d diff_sse_pd_1 =
_mm256_cvtepi32_pd(_mm256_castsi256_si128(diff_sse));
const __m256d diff_sse_pd_2 =
_mm256_cvtepi32_pd(_mm256_extracti128_si256(diff_sse, 1));
// const double window_error = diff_sse * inv_num_ref_pixels;
const __m256d window_error_1 =
_mm256_mul_pd(diff_sse_pd_1, inv_num_ref_pixel_256bit);
const __m256d window_error_2 =
_mm256_mul_pd(diff_sse_pd_2, inv_num_ref_pixel_256bit);
// const int subblock_idx = y_blk_raster_offset + (j >= block_width /
// 2);
const int subblock_idx = y_blk_raster_offset + (j >= block_width / 2);
const __m256d blk_error = subblock_mses_reg[subblock_idx];
// const double combined_error =
// weight_factor *window_error + subblock_mses_scaled[subblock_idx];
const __m256d combined_error_1 = _mm256_add_pd(
_mm256_mul_pd(window_error_1, weight_factor_256bit), blk_error);
const __m256d combined_error_2 = _mm256_add_pd(
_mm256_mul_pd(window_error_2, weight_factor_256bit), blk_error);
// d_factor_decayed[subblock_idx]
const __m256d d_fact_mul_n_decay =
d_factor_mul_n_decay_qr_invs[subblock_idx];
// double scaled_error = combined_error *
// d_factor_decayed[subblock_idx];
const __m256d scaled_error_1 =
_mm256_mul_pd(combined_error_1, d_fact_mul_n_decay);
const __m256d scaled_error_2 =
_mm256_mul_pd(combined_error_2, d_fact_mul_n_decay);
const __m128 scaled_error_ps_1 = _mm256_cvtpd_ps(scaled_error_1);
const __m128 scaled_error_ps_2 = _mm256_cvtpd_ps(scaled_error_2);
const __m256 scaled_error_ps = _mm256_insertf128_ps(
_mm256_castps128_ps256(scaled_error_ps_1), scaled_error_ps_2, 0x1);
// scaled_error = AOMMIN(scaled_error, 7);
const __m256 scaled_diff_ps = _mm256_min_ps(scaled_error_ps, seven);
const __m256 minus_scaled_diff_ps = _mm256_sub_ps(zero, scaled_diff_ps);
// const int weight =
//(int)(approx_exp((float)-scaled_error) * TF_WEIGHT_SCALE + 0.5f);
const __m256 exp_result = approx_exp_avx2(minus_scaled_diff_ps);
const __m256 scale_weight_exp_result =
_mm256_mul_ps(exp_result, tf_weight_scale);
const __m256 round_result =
_mm256_add_ps(scale_weight_exp_result, point_five);
__m256i weights_in_32bit = _mm256_cvttps_epi32(round_result);
__m128i weights_in_16bit =
_mm_packus_epi32(_mm256_castsi256_si128(weights_in_32bit),
_mm256_extractf128_si256(weights_in_32bit, 0x1));
// count[k] += weight;
// accumulator[k] += weight * pixel_value;
const int stride_idx = i * stride2 + j;
const __m128i count_array =
_mm_loadu_si128((__m128i *)(count + stride_idx));
_mm_storeu_si128((__m128i *)(count + stride_idx),
_mm_add_epi16(count_array, weights_in_16bit));
const __m256i accumulator_array =
_mm256_loadu_si256((__m256i *)(accumulator + stride_idx));
const __m128i pred_values =
_mm_loadl_epi64((__m128i *)(frame2 + stride_idx));
const __m256i pred_values_u32 = _mm256_cvtepu8_epi32(pred_values);
const __m256i mull_frame2_weight_u32 =
_mm256_mullo_epi32(pred_values_u32, weights_in_32bit);
_mm256_storeu_si256(
(__m256i *)(accumulator + stride_idx),
_mm256_add_epi32(accumulator_array, mull_frame2_weight_u32));
}
}
}
}
void av1_apply_temporal_filter_avx2(
const YV12_BUFFER_CONFIG *frame_to_filter, const MACROBLOCKD *mbd,
const BLOCK_SIZE block_size, const int mb_row, const int mb_col,
const int num_planes, const double *noise_levels, const MV *subblock_mvs,
const int *subblock_mses, const int q_factor, const int filter_strength,
int tf_wgt_calc_lvl, const uint8_t *pred, uint32_t *accum,
uint16_t *count) {
const int is_high_bitdepth = frame_to_filter->flags & YV12_FLAG_HIGHBITDEPTH;
assert(block_size == BLOCK_32X32 && "Only support 32x32 block with avx2!");
assert(TF_WINDOW_LENGTH == 5 && "Only support window length 5 with avx2!");
assert(!is_high_bitdepth && "Only support low bit-depth with avx2!");
assert(num_planes >= 1 && num_planes <= MAX_MB_PLANE);
(void)is_high_bitdepth;
const int mb_height = block_size_high[block_size];
const int mb_width = block_size_wide[block_size];
const int frame_height = frame_to_filter->y_crop_height;
const int frame_width = frame_to_filter->y_crop_width;
const int min_frame_size = AOMMIN(frame_height, frame_width);
// Variables to simplify combined error calculation.
const double inv_factor = 1.0 / ((TF_WINDOW_BLOCK_BALANCE_WEIGHT + 1) *
TF_SEARCH_ERROR_NORM_WEIGHT);
const double weight_factor =
(double)TF_WINDOW_BLOCK_BALANCE_WEIGHT * inv_factor;
// Adjust filtering based on q.
// Larger q -> stronger filtering -> larger weight.
// Smaller q -> weaker filtering -> smaller weight.
double q_decay = pow((double)q_factor / TF_Q_DECAY_THRESHOLD, 2);
q_decay = CLIP(q_decay, 1e-5, 1);
if (q_factor >= TF_QINDEX_CUTOFF) {
// Max q_factor is 255, therefore the upper bound of q_decay is 8.
// We do not need a clip here.
q_decay = 0.5 * pow((double)q_factor / 64, 2);
}
// Smaller strength -> smaller filtering weight.
double s_decay = pow((double)filter_strength / TF_STRENGTH_THRESHOLD, 2);
s_decay = CLIP(s_decay, 1e-5, 1);
double d_factor[4] = { 0 };
uint16_t frame_sse[SSE_STRIDE * BH] = { 0 };
uint32_t luma_sse_sum[BW * BH] = { 0 };
for (int subblock_idx = 0; subblock_idx < 4; subblock_idx++) {
// Larger motion vector -> smaller filtering weight.
const MV mv = subblock_mvs[subblock_idx];
const double distance = sqrt(pow(mv.row, 2) + pow(mv.col, 2));
double distance_threshold = min_frame_size * TF_SEARCH_DISTANCE_THRESHOLD;
distance_threshold = AOMMAX(distance_threshold, 1);
d_factor[subblock_idx] = distance / distance_threshold;
d_factor[subblock_idx] = AOMMAX(d_factor[subblock_idx], 1);
}
// Handle planes in sequence.
int plane_offset = 0;
for (int plane = 0; plane < num_planes; ++plane) {
const uint32_t plane_h = mb_height >> mbd->plane[plane].subsampling_y;
const uint32_t plane_w = mb_width >> mbd->plane[plane].subsampling_x;
const uint32_t frame_stride = frame_to_filter->strides[plane == 0 ? 0 : 1];
const int frame_offset = mb_row * plane_h * frame_stride + mb_col * plane_w;
const uint8_t *ref = frame_to_filter->buffers[plane] + frame_offset;
const int ss_x_shift =
mbd->plane[plane].subsampling_x - mbd->plane[AOM_PLANE_Y].subsampling_x;
const int ss_y_shift =
mbd->plane[plane].subsampling_y - mbd->plane[AOM_PLANE_Y].subsampling_y;
const int num_ref_pixels = TF_WINDOW_LENGTH * TF_WINDOW_LENGTH +
((plane) ? (1 << (ss_x_shift + ss_y_shift)) : 0);
const double inv_num_ref_pixels = 1.0 / num_ref_pixels;
// Larger noise -> larger filtering weight.
const double n_decay = 0.5 + log(2 * noise_levels[plane] + 5.0);
// Decay factors for non-local mean approach.
const double decay_factor = 1 / (n_decay * q_decay * s_decay);
// Filter U-plane and V-plane using Y-plane. This is because motion
// search is only done on Y-plane, so the information from Y-plane
// will be more accurate. The luma sse sum is reused in both chroma
// planes.
if (plane == AOM_PLANE_U) {
for (unsigned int i = 0, k = 0; i < plane_h; i++) {
for (unsigned int j = 0; j < plane_w; j++, k++) {
for (int ii = 0; ii < (1 << ss_y_shift); ++ii) {
for (int jj = 0; jj < (1 << ss_x_shift); ++jj) {
const int yy = (i << ss_y_shift) + ii; // Y-coord on Y-plane.
const int xx = (j << ss_x_shift) + jj; // X-coord on Y-plane.
luma_sse_sum[i * BW + j] += frame_sse[yy * SSE_STRIDE + xx];
}
}
}
}
}
apply_temporal_filter(ref, frame_stride, pred + plane_offset, plane_w,
plane_w, plane_h, subblock_mses, accum + plane_offset,
count + plane_offset, frame_sse, luma_sse_sum,
inv_num_ref_pixels, decay_factor, inv_factor,
weight_factor, d_factor, tf_wgt_calc_lvl);
plane_offset += plane_h * plane_w;
}
}