blob: 23b89f26f69f20519a84a3d02c08811639a24075 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "config/aom_scale_rtcd.h"
#include "config/av1_rtcd.h"
#include "aom_ports/system_state.h"
#include "av1/encoder/encodemv.h"
#if !CONFIG_REALTIME_ONLY
#include "av1/encoder/misc_model_weights.h"
#endif // !CONFIG_REALTIME_ONLY
#include "av1/encoder/mv_prec.h"
#define MV_PREC_DET_SOBEL_EDGE_THRESH 256
#define MV_PREC_DET_SSE_STATIC_THRESH 1024
#define MV_PREC_DET_BLK_SIZE_BITS 4
#define MV_PREC_DET_BLK_SIZE (1 << MV_PREC_DET_BLK_SIZE_BITS)
#define MV_PREC_DET_THRESH 0.20
#define MV_PREC_DET_THRESH2 0.10
#define MV_PREC_DET_QTHRESH 64 // Q thresh for 1/8-pel in edge based method
#define MV_HIPREC_QTHRESH 128 // Q thresh for 1/8-pel in q-based method
#define MV_HIPREC_QTHRESH2 192 // Q thresh for 1/4-pel in q-based method
// Q thresh for 1/8-pel in edge based method
#if !CONFIG_REALTIME_ONLY
static AOM_INLINE int_mv get_ref_mv_for_mv_stats(
const MB_MODE_INFO *mbmi, const MB_MODE_INFO_EXT *mbmi_ext, int ref_idx) {
int ref_mv_idx = mbmi->ref_mv_idx;
if (mbmi->mode == NEAR_NEWMV || mbmi->mode == NEW_NEARMV) {
assert(has_second_ref(mbmi));
ref_mv_idx += 1;
}
const MV_REFERENCE_FRAME *ref_frames = mbmi->ref_frame;
const int8_t ref_frame_type = av1_ref_frame_type(ref_frames);
const CANDIDATE_MV *curr_ref_mv_stack =
mbmi_ext->ref_mv_info.ref_mv_stack[ref_frame_type];
if (ref_frames[1] > INTRA_FRAME) {
assert(ref_idx == 0 || ref_idx == 1);
return ref_idx ? curr_ref_mv_stack[ref_mv_idx].comp_mv
: curr_ref_mv_stack[ref_mv_idx].this_mv;
}
assert(ref_idx == 0);
return ref_mv_idx < mbmi_ext->ref_mv_info.ref_mv_count[ref_frame_type]
? curr_ref_mv_stack[ref_mv_idx].this_mv
: mbmi_ext->global_mvs[ref_frame_type];
}
static AOM_INLINE int get_symbol_cost(const aom_cdf_prob *cdf, int symbol) {
const aom_cdf_prob cur_cdf = AOM_ICDF(cdf[symbol]);
const aom_cdf_prob prev_cdf = symbol ? AOM_ICDF(cdf[symbol - 1]) : 0;
const aom_cdf_prob p15 = AOMMAX(cur_cdf - prev_cdf, EC_MIN_PROB);
return av1_cost_symbol(p15);
}
static AOM_INLINE int keep_one_comp_stat(MV_STATS *mv_stats, int comp_val,
int comp_idx, const AV1_COMP *cpi,
int *rates) {
assert(comp_val != 0 && "mv component should not have zero value!");
const int sign = comp_val < 0;
const int mag = sign ? -comp_val : comp_val;
const int mag_minus_1 = mag - 1;
int offset;
const int mv_class = av1_get_mv_class(mag_minus_1, &offset);
const int int_part = offset >> 3; // int mv data
const int frac_part = (offset >> 1) & 3; // fractional mv data
const int high_part = offset & 1; // high precision mv data
const int use_hp = cpi->common.fr_mv_precision > MV_SUBPEL_QTR_PRECISION;
int r_idx = 0;
const MACROBLOCK *const x = &cpi->td.mb;
const MACROBLOCKD *const xd = &x->e_mbd;
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
nmv_context *nmvc = &ec_ctx->nmvc;
nmv_component *mvcomp_ctx = nmvc->comps;
nmv_component *cur_mvcomp_ctx = &mvcomp_ctx[comp_idx];
aom_cdf_prob *sign_cdf = cur_mvcomp_ctx->sign_cdf;
aom_cdf_prob *class_cdf = cur_mvcomp_ctx->classes_cdf;
aom_cdf_prob *class0_cdf = cur_mvcomp_ctx->class0_cdf;
aom_cdf_prob(*bits_cdf)[3] = cur_mvcomp_ctx->bits_cdf;
aom_cdf_prob *high_part_cdf =
mv_class ? (cur_mvcomp_ctx->hp_cdf) : (cur_mvcomp_ctx->class0_hp_cdf);
const int sign_rate = get_symbol_cost(sign_cdf, sign);
rates[r_idx++] = sign_rate;
update_cdf(sign_cdf, sign, 2);
const int class_rate = get_symbol_cost(class_cdf, mv_class);
rates[r_idx++] = class_rate;
update_cdf(class_cdf, mv_class, MV_CLASSES);
int int_bit_rate = 0;
if (mv_class == MV_CLASS_0) {
int_bit_rate = get_symbol_cost(class0_cdf, int_part);
update_cdf(class0_cdf, int_part, CLASS0_SIZE);
} else {
const int n = mv_class + CLASS0_BITS - 1; // number of bits
for (int i = 0; i < n; ++i) {
int_bit_rate += get_symbol_cost(bits_cdf[i], (int_part >> i) & 1);
update_cdf(bits_cdf[i], (int_part >> i) & 1, 2);
}
}
rates[r_idx++] = int_bit_rate;
#if CONFIG_FLEX_MVRES
aom_cdf_prob *frac_part_cdf =
mv_class ? (cur_mvcomp_ctx->fp_cdf[0])
: (cur_mvcomp_ctx->class0_fp_cdf[int_part][0]);
int frac_part_rate_hpel = 0, frac_part_rate_qpel = 0;
frac_part_rate_hpel = get_symbol_cost(frac_part_cdf, frac_part);
rates[r_idx++] = frac_part_rate_hpel;
update_cdf(frac_part_cdf, frac_part >> 1, 2);
if (cpi->common.fr_mv_precision > MV_SUBPEL_HALF_PRECISION) {
frac_part_cdf =
mv_class
? (cur_mvcomp_ctx->fp_cdf[1 + (frac_part >> 1)])
: (cur_mvcomp_ctx->class0_fp_cdf[int_part][1 + (frac_part >> 1)]);
frac_part_rate_qpel = get_symbol_cost(frac_part_cdf, frac_part);
rates[r_idx++] = frac_part_rate_qpel;
update_cdf(frac_part_cdf, frac_part & 1, 2);
}
#else
aom_cdf_prob *frac_part_cdf = mv_class
? (cur_mvcomp_ctx->fp_cdf)
: (cur_mvcomp_ctx->class0_fp_cdf[int_part]);
const int frac_part_rate = get_symbol_cost(frac_part_cdf, frac_part);
rates[r_idx++] = frac_part_rate;
update_cdf(frac_part_cdf, frac_part, MV_FP_SIZE);
#endif
const int high_part_rate =
use_hp ? get_symbol_cost(high_part_cdf, high_part) : 0;
if (use_hp) {
update_cdf(high_part_cdf, high_part, 2);
}
rates[r_idx++] = high_part_rate;
mv_stats->last_bit_zero += !high_part;
mv_stats->last_bit_nonzero += high_part;
#if CONFIG_FLEX_MVRES
const int total_rate =
(sign_rate + class_rate + int_bit_rate + frac_part_rate_hpel +
frac_part_rate_qpel + high_part_rate);
#else
const int total_rate =
(sign_rate + class_rate + int_bit_rate + frac_part_rate + high_part_rate);
#endif
return total_rate;
}
static AOM_INLINE void keep_one_mv_stat(MV_STATS *mv_stats, const MV *ref_mv,
const MV *cur_mv, const AV1_COMP *cpi) {
const MACROBLOCK *const x = &cpi->td.mb;
const MACROBLOCKD *const xd = &x->e_mbd;
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
nmv_context *nmvc = &ec_ctx->nmvc;
aom_cdf_prob *joint_cdf = nmvc->joints_cdf;
const int use_hp = cpi->common.fr_mv_precision > MV_SUBPEL_QTR_PRECISION;
const MV diff = { cur_mv->row - ref_mv->row, cur_mv->col - ref_mv->col };
const int mv_joint = av1_get_mv_joint(&diff);
// TODO(chiyotsai@google.com): Estimate hp_diff when we are using lp
const MV hp_diff = diff;
const int hp_mv_joint = av1_get_mv_joint(&hp_diff);
const MV truncated_diff = { (diff.row / 2) * 2, (diff.col / 2) * 2 };
const MV lp_diff = use_hp ? truncated_diff : diff;
const int lp_mv_joint = av1_get_mv_joint(&lp_diff);
aom_clear_system_state();
const int mv_joint_rate = get_symbol_cost(joint_cdf, mv_joint);
const int hp_mv_joint_rate = get_symbol_cost(joint_cdf, hp_mv_joint);
const int lp_mv_joint_rate = get_symbol_cost(joint_cdf, lp_mv_joint);
update_cdf(joint_cdf, mv_joint, MV_JOINTS);
mv_stats->total_mv_rate += mv_joint_rate;
mv_stats->hp_total_mv_rate += hp_mv_joint_rate;
mv_stats->lp_total_mv_rate += lp_mv_joint_rate;
mv_stats->mv_joint_count[mv_joint]++;
for (int comp_idx = 0; comp_idx < 2; comp_idx++) {
const int comp_val = comp_idx ? diff.col : diff.row;
const int hp_comp_val = comp_idx ? hp_diff.col : hp_diff.row;
const int lp_comp_val = comp_idx ? lp_diff.col : lp_diff.row;
int rates[6];
av1_zero_array(rates, 6);
const int comp_rate =
comp_val ? keep_one_comp_stat(mv_stats, comp_val, comp_idx, cpi, rates)
: 0;
// TODO(chiyotsai@google.com): Properly get hp rate when use_hp is false
#if CONFIG_FLEX_MVRES
const int hp_rate = hp_comp_val ? rates[0] + rates[1] + rates[2] +
rates[3] + rates[4] + rates[5]
: 0;
const int lp_rate =
lp_comp_val ? rates[0] + rates[1] + rates[2] + rates[3] + rates[4] : 0;
#else
const int hp_rate =
hp_comp_val ? rates[0] + rates[1] + rates[2] + rates[3] + rates[4] : 0;
const int lp_rate =
lp_comp_val ? rates[0] + rates[1] + rates[2] + rates[3] : 0;
#endif
mv_stats->total_mv_rate += comp_rate;
mv_stats->hp_total_mv_rate += hp_rate;
mv_stats->lp_total_mv_rate += lp_rate;
}
}
static AOM_INLINE void collect_mv_stats_b(MV_STATS *mv_stats,
const AV1_COMP *cpi, int mi_row,
int mi_col) {
const AV1_COMMON *cm = &cpi->common;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) {
return;
}
const MB_MODE_INFO *mbmi = cm->mi_grid_base[mi_row * cm->mi_stride + mi_col];
const MB_MODE_INFO_EXT *mbmi_ext =
cpi->mbmi_ext_base + (mi_row * cm->mi_cols + mi_col);
if (!is_inter_block(mbmi)) {
mv_stats->intra_count++;
return;
}
mv_stats->inter_count++;
const PREDICTION_MODE mode = mbmi->mode;
const int is_compound = has_second_ref(mbmi);
if (mode == NEWMV ||
#if CONFIG_OPTFLOW_REFINEMENT
mode == NEW_NEWMV_OPTFLOW ||
#endif // CONFIG_OPTFLOW_REFINEMENT
mode == NEW_NEWMV) {
// All mvs are new
for (int ref_idx = 0; ref_idx < 1 + is_compound; ++ref_idx) {
const MV ref_mv = get_ref_mv_for_mv_stats(mbmi, mbmi_ext, ref_idx).as_mv;
const MV cur_mv = mbmi->mv[ref_idx].as_mv;
keep_one_mv_stat(mv_stats, &ref_mv, &cur_mv, cpi);
}
#if CONFIG_NEW_INTER_MODES
} else if (mode == NEAR_NEWMV ||
#if CONFIG_OPTFLOW_REFINEMENT
mode == NEAR_NEWMV_OPTFLOW || mode == NEW_NEARMV_OPTFLOW ||
#endif // CONFIG_OPTFLOW_REFINEMENT
mode == NEW_NEARMV) {
#else
} else if (mode == NEAREST_NEWMV || mode == NEAR_NEWMV ||
mode == NEW_NEARESTMV || mode == NEW_NEARMV) {
#endif // CONFIG_NEW_INTER_MODES
// has exactly one new_mv
mv_stats->default_mvs += 1;
#if CONFIG_NEW_INTER_MODES
#if CONFIG_OPTFLOW_REFINEMENT
const int ref_idx = (mode == NEAR_NEWMV || mode == NEAR_NEWMV_OPTFLOW);
#else
const int ref_idx = (mode == NEAR_NEWMV);
#endif // CONFIG_OPTFLOW_REFINEMENT
#else
const int ref_idx = (mode == NEAREST_NEWMV || mode == NEAR_NEWMV);
#endif // CONFIG_NEW_INTER_MODES
const MV ref_mv = get_ref_mv_for_mv_stats(mbmi, mbmi_ext, ref_idx).as_mv;
const MV cur_mv = mbmi->mv[ref_idx].as_mv;
keep_one_mv_stat(mv_stats, &ref_mv, &cur_mv, cpi);
} else {
// No new_mv
mv_stats->default_mvs += 1 + is_compound;
}
// Add texture information
const BLOCK_SIZE bsize = mbmi->sb_type;
const int num_rows = block_size_high[bsize];
const int num_cols = block_size_wide[bsize];
const int y_stride = cpi->source->y_stride;
const int px_row = 4 * mi_row, px_col = 4 * mi_col;
const int buf_is_hbd = cpi->source->flags & YV12_FLAG_HIGHBITDEPTH;
const int bd = cm->seq_params.bit_depth;
if (buf_is_hbd) {
uint16_t *source_buf =
CONVERT_TO_SHORTPTR(cpi->source->y_buffer) + px_row * y_stride + px_col;
for (int row = 0; row < num_rows - 1; row++) {
for (int col = 0; col < num_cols - 1; col++) {
const int offset = row * y_stride + col;
const int horz_diff =
abs(source_buf[offset + 1] - source_buf[offset]) >> (bd - 8);
const int vert_diff =
abs(source_buf[offset + y_stride] - source_buf[offset]) >> (bd - 8);
mv_stats->horz_text += horz_diff;
mv_stats->vert_text += vert_diff;
mv_stats->diag_text += horz_diff * vert_diff;
}
}
} else {
uint8_t *source_buf = cpi->source->y_buffer + px_row * y_stride + px_col;
for (int row = 0; row < num_rows - 1; row++) {
for (int col = 0; col < num_cols - 1; col++) {
const int offset = row * y_stride + col;
const int horz_diff = abs(source_buf[offset + 1] - source_buf[offset]);
const int vert_diff =
abs(source_buf[offset + y_stride] - source_buf[offset]);
mv_stats->horz_text += horz_diff;
mv_stats->vert_text += vert_diff;
mv_stats->diag_text += horz_diff * vert_diff;
}
}
}
}
// Split block
static AOM_INLINE void collect_mv_stats_sb(MV_STATS *mv_stats,
const AV1_COMP *cpi, int mi_row,
int mi_col, BLOCK_SIZE bsize) {
assert(bsize < BLOCK_SIZES_ALL);
const AV1_COMMON *cm = &cpi->common;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
const PARTITION_TYPE partition = get_partition(cm, mi_row, mi_col, bsize);
const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition);
const int hbs = mi_size_wide[bsize] / 2;
const int qbs = mi_size_wide[bsize] / 4;
switch (partition) {
case PARTITION_NONE:
collect_mv_stats_b(mv_stats, cpi, mi_row, mi_col);
break;
case PARTITION_HORZ:
collect_mv_stats_b(mv_stats, cpi, mi_row, mi_col);
collect_mv_stats_b(mv_stats, cpi, mi_row + hbs, mi_col);
break;
case PARTITION_VERT:
collect_mv_stats_b(mv_stats, cpi, mi_row, mi_col);
collect_mv_stats_b(mv_stats, cpi, mi_row, mi_col + hbs);
break;
case PARTITION_SPLIT:
collect_mv_stats_sb(mv_stats, cpi, mi_row, mi_col, subsize);
collect_mv_stats_sb(mv_stats, cpi, mi_row, mi_col + hbs, subsize);
collect_mv_stats_sb(mv_stats, cpi, mi_row + hbs, mi_col, subsize);
collect_mv_stats_sb(mv_stats, cpi, mi_row + hbs, mi_col + hbs, subsize);
break;
#if !CONFIG_EXT_RECUR_PARTITIONS
case PARTITION_HORZ_A:
collect_mv_stats_b(mv_stats, cpi, mi_row, mi_col);
collect_mv_stats_b(mv_stats, cpi, mi_row, mi_col + hbs);
collect_mv_stats_b(mv_stats, cpi, mi_row + hbs, mi_col);
break;
case PARTITION_HORZ_B:
collect_mv_stats_b(mv_stats, cpi, mi_row, mi_col);
collect_mv_stats_b(mv_stats, cpi, mi_row + hbs, mi_col);
collect_mv_stats_b(mv_stats, cpi, mi_row + hbs, mi_col + hbs);
break;
case PARTITION_VERT_A:
collect_mv_stats_b(mv_stats, cpi, mi_row, mi_col);
collect_mv_stats_b(mv_stats, cpi, mi_row + hbs, mi_col);
collect_mv_stats_b(mv_stats, cpi, mi_row, mi_col + hbs);
break;
case PARTITION_VERT_B:
collect_mv_stats_b(mv_stats, cpi, mi_row, mi_col);
collect_mv_stats_b(mv_stats, cpi, mi_row, mi_col + hbs);
collect_mv_stats_b(mv_stats, cpi, mi_row + hbs, mi_col + hbs);
break;
#endif // !CONFIG_EXT_RECUR_PARTITIONS
#if CONFIG_EXT_RECUR_PARTITIONS
case PARTITION_HORZ_3: {
collect_mv_stats_b(mv_stats, cpi, mi_row, mi_col);
collect_mv_stats_b(mv_stats, cpi, mi_row + qbs, mi_col);
collect_mv_stats_b(mv_stats, cpi, mi_row + 3 * qbs, mi_col);
break;
}
case PARTITION_VERT_3: {
collect_mv_stats_b(mv_stats, cpi, mi_row, mi_col);
collect_mv_stats_b(mv_stats, cpi, mi_row, mi_col + qbs);
collect_mv_stats_b(mv_stats, cpi, mi_row, mi_col + 3 * qbs);
break;
}
#else
case PARTITION_HORZ_4:
for (int i = 0; i < 4; ++i) {
const int this_mi_row = mi_row + i * qbs;
collect_mv_stats_b(mv_stats, cpi, this_mi_row, mi_col);
}
break;
case PARTITION_VERT_4:
for (int i = 0; i < 4; ++i) {
const int this_mi_col = mi_col + i * qbs;
collect_mv_stats_b(mv_stats, cpi, mi_row, this_mi_col);
}
break;
#endif // CONFIG_EXT_RECUR_PARTITIONS
default: assert(0);
}
}
static AOM_INLINE void collect_mv_stats_tile(MV_STATS *mv_stats,
const AV1_COMP *cpi,
const TileInfo *tile_info) {
const AV1_COMMON *cm = &cpi->common;
const int mi_row_start = tile_info->mi_row_start;
const int mi_row_end = tile_info->mi_row_end;
const int mi_col_start = tile_info->mi_col_start;
const int mi_col_end = tile_info->mi_col_end;
const int sb_size_mi = cm->seq_params.mib_size;
BLOCK_SIZE sb_size = cm->seq_params.sb_size;
for (int mi_row = mi_row_start; mi_row < mi_row_end; mi_row += sb_size_mi) {
for (int mi_col = mi_col_start; mi_col < mi_col_end; mi_col += sb_size_mi) {
collect_mv_stats_sb(mv_stats, cpi, mi_row, mi_col, sb_size);
}
}
}
void av1_collect_mv_stats(AV1_COMP *cpi, int current_q) {
MV_STATS *mv_stats = &cpi->mv_stats;
const AV1_COMMON *cm = &cpi->common;
const int tile_cols = cm->tile_cols;
const int tile_rows = cm->tile_rows;
for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
TileInfo tile_info;
av1_tile_set_row(&tile_info, cm, tile_row);
for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
const int tile_idx = tile_row * tile_cols + tile_col;
av1_tile_set_col(&tile_info, cm, tile_col);
cpi->tile_data[tile_idx].tctx = *cm->fc;
cpi->td.mb.e_mbd.tile_ctx = &cpi->tile_data[tile_idx].tctx;
collect_mv_stats_tile(mv_stats, cpi, &tile_info);
}
}
mv_stats->q = current_q;
mv_stats->order = cpi->common.current_frame.order_hint;
mv_stats->valid = 1;
}
static AOM_INLINE int get_smart_mv_prec(AV1_COMP *cpi, const MV_STATS *mv_stats,
int current_q) {
const AV1_COMMON *cm = &cpi->common;
const int order_hint = cpi->common.current_frame.order_hint;
const int order_diff = order_hint - mv_stats->order;
aom_clear_system_state();
const float area = cm->width * cm->height;
float features[MV_PREC_FEATURE_SIZE] = {
current_q,
mv_stats->q,
order_diff,
mv_stats->inter_count / area,
mv_stats->intra_count / area,
mv_stats->default_mvs / area,
mv_stats->mv_joint_count[0] / area,
mv_stats->mv_joint_count[1] / area,
mv_stats->mv_joint_count[2] / area,
mv_stats->mv_joint_count[3] / area,
mv_stats->last_bit_zero / area,
mv_stats->last_bit_nonzero / area,
mv_stats->total_mv_rate / area,
mv_stats->hp_total_mv_rate / area,
mv_stats->lp_total_mv_rate / area,
mv_stats->horz_text / area,
mv_stats->vert_text / area,
mv_stats->diag_text / area,
};
for (int f_idx = 0; f_idx < MV_PREC_FEATURE_SIZE; f_idx++) {
features[f_idx] =
(features[f_idx] - av1_mv_prec_mean[f_idx]) / av1_mv_prec_std[f_idx];
}
float score = 0.0f;
av1_nn_predict(features, &av1_mv_prec_dnn_config, 1, &score);
const int use_high_hp = score >= 0.0f;
return use_high_hp;
}
#endif // !CONFIG_REALTIME_ONLY
// Compute edge energy in the frame
static MvSubpelPrecision determine_frame_mv_precision(const AV1_COMP *cpi,
int q, int use_edges) {
(void)cpi;
if (!use_edges) {
return q < MV_HIPREC_QTHRESH ? MV_SUBPEL_EIGHTH_PRECISION
: MV_SUBPEL_QTR_PRECISION;
}
if (q < MV_PREC_DET_QTHRESH) return MV_SUBPEL_EIGHTH_PRECISION;
const YV12_BUFFER_CONFIG *srcbuf = cpi->source;
const YV12_BUFFER_CONFIG *refbuf =
get_ref_frame_yv12_buf(&cpi->common, GOLDEN_FRAME);
const int bd = cpi->td.mb.e_mbd.bd;
const int width = srcbuf->y_crop_width;
const int height = srcbuf->y_crop_height;
const int stride = srcbuf->y_stride;
const int ref_stride = refbuf->y_stride;
int num_blks[2] = { 0, 0 };
if (srcbuf->flags & YV12_FLAG_HIGHBITDEPTH) {
const uint16_t *src16 =
(const uint16_t *)CONVERT_TO_SHORTPTR(srcbuf->y_buffer);
const uint16_t *ref16 =
(const uint16_t *)CONVERT_TO_SHORTPTR(refbuf->y_buffer);
for (int i = 0; i < height - MV_PREC_DET_BLK_SIZE;
i += MV_PREC_DET_BLK_SIZE) {
for (int j = 0; j < width - MV_PREC_DET_BLK_SIZE;
j += MV_PREC_DET_BLK_SIZE) {
const uint16_t *src = src16 + i * stride + j;
const uint16_t *ref = ref16 + i * stride + j;
int64_t sse = aom_highbd_sse(
CONVERT_TO_BYTEPTR(src), stride, CONVERT_TO_BYTEPTR(ref),
ref_stride, MV_PREC_DET_BLK_SIZE, MV_PREC_DET_BLK_SIZE);
int64_t sse_norm = ROUND_POWER_OF_TWO(
sse, 2 * MV_PREC_DET_BLK_SIZE_BITS + 2 * (bd - 8));
if (sse_norm < MV_PREC_DET_SSE_STATIC_THRESH) continue;
int64_t gx = 0, gy = 0, g;
for (int y = 0; y < MV_PREC_DET_BLK_SIZE; ++y) {
for (int x = 0; x < MV_PREC_DET_BLK_SIZE; ++x) {
gx +=
abs(src[-stride + 1] - src[-stride - 1] +
(src[1] - src[-1]) * 2 + src[stride + 1] - src[stride - 1]);
gy += abs(src[stride - 1] - src[-stride - 1] +
(src[stride] - src[-stride]) * 2 + src[stride + 1] -
src[-stride + 1]);
src++;
}
src += stride - MV_PREC_DET_BLK_SIZE;
}
g = gx * gx + gy * gy;
// Normalize to per pixel and bit-depth of 8
g = ROUND_POWER_OF_TWO(
g, 4 * MV_PREC_DET_BLK_SIZE_BITS + 4 + 2 * (bd - 8));
++num_blks[g > MV_PREC_DET_SOBEL_EDGE_THRESH];
}
}
} else {
const uint8_t *src8 = srcbuf->y_buffer;
const uint8_t *ref8 = refbuf->y_buffer;
for (int i = 0; i < height - MV_PREC_DET_BLK_SIZE;
i += MV_PREC_DET_BLK_SIZE) {
for (int j = 0; j < width - MV_PREC_DET_BLK_SIZE;
j += MV_PREC_DET_BLK_SIZE) {
const uint8_t *src = src8 + i * stride + j;
const uint8_t *ref = ref8 + i * stride + j;
int64_t sse = aom_sse(src, stride, ref, ref_stride,
MV_PREC_DET_BLK_SIZE, MV_PREC_DET_BLK_SIZE);
int64_t sse_norm =
ROUND_POWER_OF_TWO(sse, 2 * MV_PREC_DET_BLK_SIZE_BITS);
if (sse_norm < MV_PREC_DET_SSE_STATIC_THRESH) continue;
int64_t gx = 0, gy = 0, g;
for (int y = 0; y < MV_PREC_DET_BLK_SIZE; ++y) {
for (int x = 0; x < MV_PREC_DET_BLK_SIZE; ++x) {
gx +=
abs(src[-stride + 1] - src[-stride - 1] +
(src[1] - src[-1]) * 2 + src[stride + 1] - src[stride - 1]);
gy += abs(src[stride - 1] - src[-stride - 1] +
(src[stride] - src[-stride]) * 2 + src[stride + 1] -
src[-stride + 1]);
src++;
}
src += stride - MV_PREC_DET_BLK_SIZE;
}
g = gx * gx + gy * gy;
// Normalize to per pixel and bit-depth of 8
g = ROUND_POWER_OF_TWO(
g, 4 * MV_PREC_DET_BLK_SIZE_BITS + 4 + 2 * (bd - 8));
++num_blks[g > MV_PREC_DET_SOBEL_EDGE_THRESH];
}
}
}
if (num_blks[0] + num_blks[1] == 0) return MV_SUBPEL_QTR_PRECISION;
const double pct_edge_blks =
100.0 * (double)num_blks[1] / (num_blks[0] + num_blks[1]);
const double pct_edge_blks_by_q = pct_edge_blks / q;
// printf("pct_edge_blks = %f [%d + %d], q = %d, ratio = %f\n", pct_edge_blks,
// num_blks[0], num_blks[1], q, pct_edge_blks_by_q);
if (pct_edge_blks_by_q >= MV_PREC_DET_THRESH)
return MV_SUBPEL_EIGHTH_PRECISION;
return MV_SUBPEL_QTR_PRECISION;
}
#if CONFIG_FLEX_MVRES
#define FLEX_MV_PRECISION_QTHRESH 256 // Reduce to turn off at low quality
static int determine_pb_flex_mv_precision(const AV1_COMP *cpi, int q) {
return (cpi->common.fr_mv_precision >= MV_SUBPEL_QTR_PRECISION &&
!is_stat_generation_stage(cpi) && q <= FLEX_MV_PRECISION_QTHRESH);
}
#endif // CONFIG_FLEX_MVRES
void av1_pick_and_set_high_precision_mv(AV1_COMP *cpi, int q) {
MvSubpelPrecision precision = cpi->common.cur_frame_force_integer_mv
? MV_SUBPEL_NONE
: determine_frame_mv_precision(cpi, q, 0);
assert(IMPLIES(!cpi->common.cur_frame_force_integer_mv,
precision >= MV_SUBPEL_QTR_PRECISION));
if (cpi->sf.high_precision_mv_usage == QTR_ONLY)
precision = MV_SUBPEL_QTR_PRECISION;
#if !CONFIG_REALTIME_ONLY
else if (cpi->sf.high_precision_mv_usage == LAST_MV_DATA &&
av1_frame_allows_smart_mv(cpi) && cpi->mv_stats.valid) {
if (get_smart_mv_prec(cpi, &cpi->mv_stats, q))
precision = MV_SUBPEL_EIGHTH_PRECISION;
}
#endif // !CONFIG_REALTIME_ONLY
av1_set_mv_precision(cpi, precision, cpi->common.cur_frame_force_integer_mv);
#if CONFIG_FLEX_MVRES
cpi->common.use_sb_mv_precision = ENABLE_SB_RES;
cpi->common.use_pb_mv_precision =
ENABLE_PB_RES ? determine_pb_flex_mv_precision(cpi, q) : 0;
#endif // CONFIG_FLEX_MVRES
}