blob: 4aa0531b4a3fa4a55597495d7e14df10411a9bee [file] [log] [blame] [edit]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <cmath>
#include <cstdlib>
#include <string>
#include <tuple>
#include "third_party/googletest/src/googletest/include/gtest/gtest.h"
#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "test/acm_random.h"
#include "test/clear_system_state.h"
#include "test/register_state_check.h"
#include "test/util.h"
#include "av1/common/av1_loopfilter.h"
#include "av1/common/entropy.h"
#include "aom/aom_integer.h"
using libaom_test::ACMRandom;
namespace {
// Horizontally and Vertically need 32x32: 8 Coeffs preceeding filtered section
// 16 Coefs within filtered section
// 8 Coeffs following filtered section
const int kNumCoeffs = 1024;
const int number_of_iterations = 10000;
const int kSpeedTestNum = 500000;
#define LOOP_PARAM \
int p, const uint8_t *blimit, const uint8_t *limit, const uint8_t *thresh
#define DUAL_LOOP_PARAM \
int p, const uint8_t *blimit0, const uint8_t *limit0, \
const uint8_t *thresh0, const uint8_t *blimit1, const uint8_t *limit1, \
const uint8_t *thresh1
typedef void (*loop_op_t)(uint8_t *s, LOOP_PARAM);
typedef void (*dual_loop_op_t)(uint8_t *s, DUAL_LOOP_PARAM);
typedef void (*hbdloop_op_t)(uint16_t *s, LOOP_PARAM, int bd);
typedef void (*hbddual_loop_op_t)(uint16_t *s, DUAL_LOOP_PARAM, int bd);
typedef std::tuple<hbdloop_op_t, hbdloop_op_t, int> hbdloop_param_t;
typedef std::tuple<hbddual_loop_op_t, hbddual_loop_op_t, int>
hbddual_loop_param_t;
typedef std::tuple<loop_op_t, loop_op_t, int> loop_param_t;
typedef std::tuple<dual_loop_op_t, dual_loop_op_t, int> dual_loop_param_t;
template <typename Pixel_t, int PIXEL_WIDTH_t>
void InitInput(Pixel_t *s, Pixel_t *ref_s, ACMRandom *rnd, const uint8_t limit,
const int mask, const int32_t p, const int i) {
uint16_t tmp_s[kNumCoeffs];
for (int j = 0; j < kNumCoeffs;) {
const uint8_t val = rnd->Rand8();
if (val & 0x80) { // 50% chance to choose a new value.
tmp_s[j] = rnd->Rand16();
j++;
} else { // 50% chance to repeat previous value in row X times.
int k = 0;
while (k++ < ((val & 0x1f) + 1) && j < kNumCoeffs) {
if (j < 1) {
tmp_s[j] = rnd->Rand16();
} else if (val & 0x20) { // Increment by a value within the limit.
tmp_s[j] = tmp_s[j - 1] + (limit - 1);
} else { // Decrement by a value within the limit.
tmp_s[j] = tmp_s[j - 1] - (limit - 1);
}
j++;
}
}
}
for (int j = 0; j < kNumCoeffs;) {
const uint8_t val = rnd->Rand8();
if (val & 0x80) {
j++;
} else { // 50% chance to repeat previous value in column X times.
int k = 0;
while (k++ < ((val & 0x1f) + 1) && j < kNumCoeffs) {
if (j < 1) {
tmp_s[j] = rnd->Rand16();
} else if (val & 0x20) { // Increment by a value within the limit.
tmp_s[(j % 32) * 32 + j / 32] =
tmp_s[((j - 1) % 32) * 32 + (j - 1) / 32] + (limit - 1);
} else { // Decrement by a value within the limit.
tmp_s[(j % 32) * 32 + j / 32] =
tmp_s[((j - 1) % 32) * 32 + (j - 1) / 32] - (limit - 1);
}
j++;
}
}
}
for (int j = 0; j < kNumCoeffs; j++) {
if (i % 2) {
s[j] = tmp_s[j] & mask;
} else {
s[j] = tmp_s[p * (j % p) + j / p] & mask;
}
ref_s[j] = s[j];
}
}
uint8_t GetOuterThresh(ACMRandom *rnd) {
return static_cast<uint8_t>(rnd->PseudoUniform(3 * MAX_LOOP_FILTER + 5));
}
uint8_t GetInnerThresh(ACMRandom *rnd) {
return static_cast<uint8_t>(rnd->PseudoUniform(MAX_LOOP_FILTER + 1));
}
uint8_t GetHevThresh(ACMRandom *rnd) {
return static_cast<uint8_t>(rnd->PseudoUniform(MAX_LOOP_FILTER + 1) >> 4);
}
template <typename func_type_t, typename params_t>
class LoopTestParam : public ::testing::TestWithParam<params_t> {
public:
virtual ~LoopTestParam() {}
virtual void SetUp() {
loopfilter_op_ = std::get<0>(this->GetParam());
ref_loopfilter_op_ = std::get<1>(this->GetParam());
bit_depth_ = std::get<2>(this->GetParam());
mask_ = (1 << bit_depth_) - 1;
}
virtual void TearDown() { libaom_test::ClearSystemState(); }
protected:
int bit_depth_;
int mask_;
func_type_t loopfilter_op_;
func_type_t ref_loopfilter_op_;
};
void call_filter(uint16_t *s, LOOP_PARAM, int bd, hbdloop_op_t op) {
op(s, p, blimit, limit, thresh, bd);
}
void call_filter(uint8_t *s, LOOP_PARAM, int bd, loop_op_t op) {
(void)bd;
op(s, p, blimit, limit, thresh);
}
void call_dualfilter(uint16_t *s, DUAL_LOOP_PARAM, int bd,
hbddual_loop_op_t op) {
op(s, p, blimit0, limit0, thresh0, blimit1, limit1, thresh1, bd);
}
void call_dualfilter(uint8_t *s, DUAL_LOOP_PARAM, int bd, dual_loop_op_t op) {
(void)bd;
op(s, p, blimit0, limit0, thresh0, blimit1, limit1, thresh1);
};
typedef LoopTestParam<hbdloop_op_t, hbdloop_param_t> Loop8Test6Param_hbd;
typedef LoopTestParam<loop_op_t, loop_param_t> Loop8Test6Param_lbd;
typedef LoopTestParam<hbddual_loop_op_t, hbddual_loop_param_t>
Loop8Test9Param_hbd;
typedef LoopTestParam<dual_loop_op_t, dual_loop_param_t> Loop8Test9Param_lbd;
#define OPCHECK(a, b) \
ACMRandom rnd(ACMRandom::DeterministicSeed()); \
const int count_test_block = number_of_iterations; \
const int32_t p = kNumCoeffs / 32; \
DECLARE_ALIGNED(b, a, s[kNumCoeffs]); \
DECLARE_ALIGNED(b, a, ref_s[kNumCoeffs]); \
int err_count_total = 0; \
int first_failure = -1; \
for (int i = 0; i < count_test_block; ++i) { \
int err_count = 0; \
uint8_t tmp = GetOuterThresh(&rnd); \
DECLARE_ALIGNED(16, const uint8_t, \
blimit[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, \
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; \
tmp = GetInnerThresh(&rnd); \
DECLARE_ALIGNED(16, const uint8_t, \
limit[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, \
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; \
tmp = GetHevThresh(&rnd); \
DECLARE_ALIGNED(16, const uint8_t, \
thresh[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, \
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; \
InitInput<a, b>(s, ref_s, &rnd, *limit, mask_, p, i); \
call_filter(ref_s + 8 + p * 8, p, blimit, limit, thresh, bit_depth_, \
ref_loopfilter_op_); \
ASM_REGISTER_STATE_CHECK(call_filter(s + 8 + p * 8, p, blimit, limit, \
thresh, bit_depth_, loopfilter_op_)); \
for (int j = 0; j < kNumCoeffs; ++j) { \
err_count += ref_s[j] != s[j]; \
} \
if (err_count && !err_count_total) { \
first_failure = i; \
} \
err_count_total += err_count; \
} \
EXPECT_EQ(0, err_count_total) \
<< "Error: Loop8Test6Param, C output doesn't match SIMD " \
"loopfilter output. " \
<< "First failed at test case " << first_failure;
TEST_P(Loop8Test6Param_hbd, OperationCheck) { OPCHECK(uint16_t, 16); }
TEST_P(Loop8Test6Param_lbd, OperationCheck) { OPCHECK(uint8_t, 8); }
#define VALCHECK(a, b) \
ACMRandom rnd(ACMRandom::DeterministicSeed()); \
const int count_test_block = number_of_iterations; \
DECLARE_ALIGNED(b, a, s[kNumCoeffs]); \
DECLARE_ALIGNED(b, a, ref_s[kNumCoeffs]); \
int err_count_total = 0; \
int first_failure = -1; \
for (int i = 0; i < count_test_block; ++i) { \
int err_count = 0; \
uint8_t tmp = GetOuterThresh(&rnd); \
DECLARE_ALIGNED(16, const uint8_t, \
blimit[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, \
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; \
tmp = GetInnerThresh(&rnd); \
DECLARE_ALIGNED(16, const uint8_t, \
limit[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, \
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; \
tmp = GetHevThresh(&rnd); \
DECLARE_ALIGNED(16, const uint8_t, \
thresh[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, \
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; \
int32_t p = kNumCoeffs / 32; \
for (int j = 0; j < kNumCoeffs; ++j) { \
s[j] = rnd.Rand16() & mask_; \
ref_s[j] = s[j]; \
} \
call_filter(ref_s + 8 + p * 8, p, blimit, limit, thresh, bit_depth_, \
ref_loopfilter_op_); \
ASM_REGISTER_STATE_CHECK(call_filter(s + 8 + p * 8, p, blimit, limit, \
thresh, bit_depth_, loopfilter_op_)); \
for (int j = 0; j < kNumCoeffs; ++j) { \
err_count += ref_s[j] != s[j]; \
} \
if (err_count && !err_count_total) { \
first_failure = i; \
} \
err_count_total += err_count; \
} \
EXPECT_EQ(0, err_count_total) \
<< "Error: Loop8Test6Param, C output doesn't match SIMD " \
"loopfilter output. " \
<< "First failed at test case " << first_failure;
TEST_P(Loop8Test6Param_hbd, ValueCheck) { VALCHECK(uint16_t, 16); }
TEST_P(Loop8Test6Param_lbd, ValueCheck) { VALCHECK(uint8_t, 8); }
#define SPEEDCHECK(a, b) \
ACMRandom rnd(ACMRandom::DeterministicSeed()); \
const int count_test_block = kSpeedTestNum; \
const int32_t bd = bit_depth_; \
DECLARE_ALIGNED(b, a, s[kNumCoeffs]); \
uint8_t tmp = GetOuterThresh(&rnd); \
DECLARE_ALIGNED(16, const uint8_t, \
blimit[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, \
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; \
tmp = GetInnerThresh(&rnd); \
DECLARE_ALIGNED(16, const uint8_t, \
limit[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, \
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; \
tmp = GetHevThresh(&rnd); \
DECLARE_ALIGNED(16, const uint8_t, \
thresh[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, \
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; \
int32_t p = kNumCoeffs / 32; \
for (int j = 0; j < kNumCoeffs; ++j) { \
s[j] = rnd.Rand16() & mask_; \
} \
for (int i = 0; i < count_test_block; ++i) { \
call_filter(s + 8 + p * 8, p, blimit, limit, thresh, bd, loopfilter_op_); \
}
TEST_P(Loop8Test6Param_hbd, DISABLED_Speed) { SPEEDCHECK(uint16_t, 16); }
TEST_P(Loop8Test6Param_lbd, DISABLED_Speed) { SPEEDCHECK(uint8_t, 8); }
#define OPCHECKd(a, b) \
ACMRandom rnd(ACMRandom::DeterministicSeed()); \
const int count_test_block = number_of_iterations; \
DECLARE_ALIGNED(b, a, s[kNumCoeffs]); \
DECLARE_ALIGNED(b, a, ref_s[kNumCoeffs]); \
int err_count_total = 0; \
int first_failure = -1; \
for (int i = 0; i < count_test_block; ++i) { \
int err_count = 0; \
uint8_t tmp = GetOuterThresh(&rnd); \
DECLARE_ALIGNED(16, const uint8_t, \
blimit0[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, \
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; \
tmp = GetInnerThresh(&rnd); \
DECLARE_ALIGNED(16, const uint8_t, \
limit0[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, \
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; \
tmp = GetHevThresh(&rnd); \
DECLARE_ALIGNED(16, const uint8_t, \
thresh0[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, \
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; \
tmp = GetOuterThresh(&rnd); \
DECLARE_ALIGNED(16, const uint8_t, \
blimit1[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, \
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; \
tmp = GetInnerThresh(&rnd); \
DECLARE_ALIGNED(16, const uint8_t, \
limit1[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, \
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; \
tmp = GetHevThresh(&rnd); \
DECLARE_ALIGNED(16, const uint8_t, \
thresh1[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, \
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; \
int32_t p = kNumCoeffs / 32; \
const uint8_t limit = *limit0 < *limit1 ? *limit0 : *limit1; \
InitInput<a, b>(s, ref_s, &rnd, limit, mask_, p, i); \
call_dualfilter(ref_s + 8 + p * 8, p, blimit0, limit0, thresh0, blimit1, \
limit1, thresh1, bit_depth_, ref_loopfilter_op_); \
ASM_REGISTER_STATE_CHECK( \
call_dualfilter(s + 8 + p * 8, p, blimit0, limit0, thresh0, blimit1, \
limit1, thresh1, bit_depth_, loopfilter_op_)); \
for (int j = 0; j < kNumCoeffs; ++j) { \
err_count += ref_s[j] != s[j]; \
} \
if (err_count && !err_count_total) { \
first_failure = i; \
} \
err_count_total += err_count; \
} \
EXPECT_EQ(0, err_count_total) \
<< "Error: Loop8Test9Param, C output doesn't match SIMD " \
"loopfilter output. " \
<< "First failed at test case " << first_failure;
TEST_P(Loop8Test9Param_hbd, OperationCheck) { OPCHECKd(uint16_t, 16); }
TEST_P(Loop8Test9Param_lbd, OperationCheck) { OPCHECKd(uint8_t, 8); }
#define VALCHECKd(a, b) \
ACMRandom rnd(ACMRandom::DeterministicSeed()); \
const int count_test_block = number_of_iterations; \
DECLARE_ALIGNED(b, a, s[kNumCoeffs]); \
DECLARE_ALIGNED(b, a, ref_s[kNumCoeffs]); \
int err_count_total = 0; \
int first_failure = -1; \
for (int i = 0; i < count_test_block; ++i) { \
int err_count = 0; \
uint8_t tmp = GetOuterThresh(&rnd); \
DECLARE_ALIGNED(16, const uint8_t, \
blimit0[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, \
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; \
tmp = GetInnerThresh(&rnd); \
DECLARE_ALIGNED(16, const uint8_t, \
limit0[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, \
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; \
tmp = GetHevThresh(&rnd); \
DECLARE_ALIGNED(16, const uint8_t, \
thresh0[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, \
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; \
tmp = GetOuterThresh(&rnd); \
DECLARE_ALIGNED(16, const uint8_t, \
blimit1[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, \
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; \
tmp = GetInnerThresh(&rnd); \
DECLARE_ALIGNED(16, const uint8_t, \
limit1[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, \
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; \
tmp = GetHevThresh(&rnd); \
DECLARE_ALIGNED(16, const uint8_t, \
thresh1[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, \
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; \
int32_t p = kNumCoeffs / 32; \
for (int j = 0; j < kNumCoeffs; ++j) { \
s[j] = rnd.Rand16() & mask_; \
ref_s[j] = s[j]; \
} \
call_dualfilter(ref_s + 8 + p * 8, p, blimit0, limit0, thresh0, blimit1, \
limit1, thresh1, bit_depth_, ref_loopfilter_op_); \
ASM_REGISTER_STATE_CHECK( \
call_dualfilter(s + 8 + p * 8, p, blimit0, limit0, thresh0, blimit1, \
limit1, thresh1, bit_depth_, loopfilter_op_)); \
for (int j = 0; j < kNumCoeffs; ++j) { \
err_count += ref_s[j] != s[j]; \
} \
if (err_count && !err_count_total) { \
first_failure = i; \
} \
err_count_total += err_count; \
} \
EXPECT_EQ(0, err_count_total) \
<< "Error: Loop8Test9Param, C output doesn't match SIMD " \
"loopfilter output. " \
<< "First failed at test case " << first_failure;
TEST_P(Loop8Test9Param_hbd, ValueCheck) { VALCHECKd(uint16_t, 16); }
TEST_P(Loop8Test9Param_lbd, ValueCheck) { VALCHECKd(uint8_t, 8); }
#define SPEEDCHECKd(a, b) \
ACMRandom rnd(ACMRandom::DeterministicSeed()); \
const int count_test_block = kSpeedTestNum; \
DECLARE_ALIGNED(b, a, s[kNumCoeffs]); \
uint8_t tmp = GetOuterThresh(&rnd); \
DECLARE_ALIGNED(16, const uint8_t, \
blimit0[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, \
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; \
tmp = GetInnerThresh(&rnd); \
DECLARE_ALIGNED(16, const uint8_t, \
limit0[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, \
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; \
tmp = GetHevThresh(&rnd); \
DECLARE_ALIGNED(16, const uint8_t, \
thresh0[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, \
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; \
tmp = GetOuterThresh(&rnd); \
DECLARE_ALIGNED(16, const uint8_t, \
blimit1[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, \
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; \
tmp = GetInnerThresh(&rnd); \
DECLARE_ALIGNED(16, const uint8_t, \
limit1[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, \
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; \
tmp = GetHevThresh(&rnd); \
DECLARE_ALIGNED(16, const uint8_t, \
thresh1[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, \
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; \
int32_t p = kNumCoeffs / 32; \
for (int j = 0; j < kNumCoeffs; ++j) { \
s[j] = rnd.Rand16() & mask_; \
} \
for (int i = 0; i < count_test_block; ++i) { \
call_dualfilter(s + 8 + p * 8, p, blimit0, limit0, thresh0, blimit1, \
limit1, thresh1, bit_depth_, loopfilter_op_); \
}
TEST_P(Loop8Test9Param_hbd, DISABLED_Speed) { SPEEDCHECKd(uint16_t, 16); }
TEST_P(Loop8Test9Param_lbd, DISABLED_Speed) { SPEEDCHECKd(uint8_t, 8); }
using std::make_tuple;
#if HAVE_SSE2
const hbdloop_param_t kHbdLoop8Test6[] = {
make_tuple(&aom_highbd_lpf_horizontal_4_sse2, &aom_highbd_lpf_horizontal_4_c,
8),
make_tuple(&aom_highbd_lpf_vertical_4_sse2, &aom_highbd_lpf_vertical_4_c, 8),
make_tuple(&aom_highbd_lpf_horizontal_6_sse2, &aom_highbd_lpf_horizontal_6_c,
8),
make_tuple(&aom_highbd_lpf_horizontal_8_sse2, &aom_highbd_lpf_horizontal_8_c,
8),
make_tuple(&aom_highbd_lpf_horizontal_14_sse2,
&aom_highbd_lpf_horizontal_14_c, 8),
make_tuple(&aom_highbd_lpf_vertical_6_sse2, &aom_highbd_lpf_vertical_6_c, 8),
make_tuple(&aom_highbd_lpf_vertical_8_sse2, &aom_highbd_lpf_vertical_8_c, 8),
make_tuple(&aom_highbd_lpf_vertical_14_sse2, &aom_highbd_lpf_vertical_14_c,
8),
make_tuple(&aom_highbd_lpf_horizontal_4_sse2, &aom_highbd_lpf_horizontal_4_c,
10),
make_tuple(&aom_highbd_lpf_vertical_4_sse2, &aom_highbd_lpf_vertical_4_c, 10),
make_tuple(&aom_highbd_lpf_horizontal_6_sse2, &aom_highbd_lpf_horizontal_6_c,
10),
make_tuple(&aom_highbd_lpf_horizontal_8_sse2, &aom_highbd_lpf_horizontal_8_c,
10),
make_tuple(&aom_highbd_lpf_horizontal_14_sse2,
&aom_highbd_lpf_horizontal_14_c, 10),
make_tuple(&aom_highbd_lpf_vertical_6_sse2, &aom_highbd_lpf_vertical_6_c, 10),
make_tuple(&aom_highbd_lpf_vertical_8_sse2, &aom_highbd_lpf_vertical_8_c, 10),
make_tuple(&aom_highbd_lpf_vertical_14_sse2, &aom_highbd_lpf_vertical_14_c,
10),
make_tuple(&aom_highbd_lpf_horizontal_4_sse2, &aom_highbd_lpf_horizontal_4_c,
12),
make_tuple(&aom_highbd_lpf_vertical_4_sse2, &aom_highbd_lpf_vertical_4_c, 12),
make_tuple(&aom_highbd_lpf_horizontal_6_sse2, &aom_highbd_lpf_horizontal_6_c,
12),
make_tuple(&aom_highbd_lpf_horizontal_8_sse2, &aom_highbd_lpf_horizontal_8_c,
12),
make_tuple(&aom_highbd_lpf_horizontal_14_sse2,
&aom_highbd_lpf_horizontal_14_c, 12),
make_tuple(&aom_highbd_lpf_vertical_14_sse2, &aom_highbd_lpf_vertical_14_c,
12),
make_tuple(&aom_highbd_lpf_vertical_6_sse2, &aom_highbd_lpf_vertical_6_c, 12),
make_tuple(&aom_highbd_lpf_vertical_8_sse2, &aom_highbd_lpf_vertical_8_c, 12)
};
INSTANTIATE_TEST_SUITE_P(SSE2, Loop8Test6Param_hbd,
::testing::ValuesIn(kHbdLoop8Test6));
const loop_param_t kLoop8Test6[] = {
make_tuple(&aom_lpf_horizontal_4_sse2, &aom_lpf_horizontal_4_c, 8),
make_tuple(&aom_lpf_horizontal_8_sse2, &aom_lpf_horizontal_8_c, 8),
make_tuple(&aom_lpf_horizontal_6_sse2, &aom_lpf_horizontal_6_c, 8),
make_tuple(&aom_lpf_vertical_6_sse2, &aom_lpf_vertical_6_c, 8),
make_tuple(&aom_lpf_horizontal_14_sse2, &aom_lpf_horizontal_14_c, 8),
make_tuple(&aom_lpf_vertical_4_sse2, &aom_lpf_vertical_4_c, 8),
make_tuple(&aom_lpf_vertical_8_sse2, &aom_lpf_vertical_8_c, 8),
make_tuple(&aom_lpf_vertical_14_sse2, &aom_lpf_vertical_14_c, 8),
};
INSTANTIATE_TEST_SUITE_P(SSE2, Loop8Test6Param_lbd,
::testing::ValuesIn(kLoop8Test6));
const dual_loop_param_t kLoop8Test9[] = {
make_tuple(&aom_lpf_horizontal_4_dual_sse2, &aom_lpf_horizontal_4_dual_c, 8),
make_tuple(&aom_lpf_vertical_4_dual_sse2, &aom_lpf_vertical_4_dual_c, 8),
make_tuple(&aom_lpf_horizontal_6_dual_sse2, &aom_lpf_horizontal_6_dual_c, 8),
make_tuple(&aom_lpf_vertical_6_dual_sse2, &aom_lpf_vertical_6_dual_c, 8),
make_tuple(&aom_lpf_horizontal_8_dual_sse2, &aom_lpf_horizontal_8_dual_c, 8),
make_tuple(&aom_lpf_vertical_8_dual_sse2, &aom_lpf_vertical_8_dual_c, 8),
make_tuple(&aom_lpf_horizontal_14_dual_sse2, &aom_lpf_horizontal_14_dual_c,
8),
make_tuple(&aom_lpf_vertical_14_dual_sse2, &aom_lpf_vertical_14_dual_c, 8)
};
INSTANTIATE_TEST_SUITE_P(SSE2, Loop8Test9Param_lbd,
::testing::ValuesIn(kLoop8Test9));
#endif // HAVE_SSE2
#if HAVE_SSE2
const hbddual_loop_param_t kHbdLoop8Test9[] = {
make_tuple(&aom_highbd_lpf_horizontal_4_dual_sse2,
&aom_highbd_lpf_horizontal_4_dual_c, 8),
make_tuple(&aom_highbd_lpf_horizontal_6_dual_sse2,
&aom_highbd_lpf_horizontal_6_dual_c, 8),
make_tuple(&aom_highbd_lpf_horizontal_8_dual_sse2,
&aom_highbd_lpf_horizontal_8_dual_c, 8),
make_tuple(&aom_highbd_lpf_horizontal_14_dual_sse2,
&aom_highbd_lpf_horizontal_14_dual_c, 8),
make_tuple(&aom_highbd_lpf_vertical_4_dual_sse2,
&aom_highbd_lpf_vertical_4_dual_c, 8),
make_tuple(&aom_highbd_lpf_vertical_6_dual_sse2,
&aom_highbd_lpf_vertical_6_dual_c, 8),
make_tuple(&aom_highbd_lpf_vertical_8_dual_sse2,
&aom_highbd_lpf_vertical_8_dual_c, 8),
make_tuple(&aom_highbd_lpf_vertical_14_dual_sse2,
&aom_highbd_lpf_vertical_14_dual_c, 8),
make_tuple(&aom_highbd_lpf_horizontal_4_dual_sse2,
&aom_highbd_lpf_horizontal_4_dual_c, 10),
make_tuple(&aom_highbd_lpf_horizontal_6_dual_sse2,
&aom_highbd_lpf_horizontal_6_dual_c, 10),
make_tuple(&aom_highbd_lpf_horizontal_8_dual_sse2,
&aom_highbd_lpf_horizontal_8_dual_c, 10),
make_tuple(&aom_highbd_lpf_horizontal_14_dual_sse2,
&aom_highbd_lpf_horizontal_14_dual_c, 10),
make_tuple(&aom_highbd_lpf_vertical_4_dual_sse2,
&aom_highbd_lpf_vertical_4_dual_c, 10),
make_tuple(&aom_highbd_lpf_vertical_6_dual_sse2,
&aom_highbd_lpf_vertical_6_dual_c, 10),
make_tuple(&aom_highbd_lpf_vertical_8_dual_sse2,
&aom_highbd_lpf_vertical_8_dual_c, 10),
make_tuple(&aom_highbd_lpf_vertical_14_dual_sse2,
&aom_highbd_lpf_vertical_14_dual_c, 10),
make_tuple(&aom_highbd_lpf_horizontal_4_dual_sse2,
&aom_highbd_lpf_horizontal_4_dual_c, 12),
make_tuple(&aom_highbd_lpf_horizontal_6_dual_sse2,
&aom_highbd_lpf_horizontal_6_dual_c, 12),
make_tuple(&aom_highbd_lpf_horizontal_8_dual_sse2,
&aom_highbd_lpf_horizontal_8_dual_c, 12),
make_tuple(&aom_highbd_lpf_horizontal_14_dual_sse2,
&aom_highbd_lpf_horizontal_14_dual_c, 12),
make_tuple(&aom_highbd_lpf_vertical_4_dual_sse2,
&aom_highbd_lpf_vertical_4_dual_c, 12),
make_tuple(&aom_highbd_lpf_vertical_6_dual_sse2,
&aom_highbd_lpf_vertical_6_dual_c, 12),
make_tuple(&aom_highbd_lpf_vertical_8_dual_sse2,
&aom_highbd_lpf_vertical_8_dual_c, 12),
make_tuple(&aom_highbd_lpf_vertical_14_dual_sse2,
&aom_highbd_lpf_vertical_14_dual_c, 12),
};
INSTANTIATE_TEST_SUITE_P(SSE2, Loop8Test9Param_hbd,
::testing::ValuesIn(kHbdLoop8Test9));
#endif // HAVE_SSE2
#if HAVE_NEON
const loop_param_t kLoop8Test6[] = {
make_tuple(&aom_lpf_vertical_14_neon, &aom_lpf_vertical_14_c, 8),
make_tuple(&aom_lpf_vertical_8_neon, &aom_lpf_vertical_8_c, 8),
make_tuple(&aom_lpf_vertical_6_neon, &aom_lpf_vertical_6_c, 8),
make_tuple(&aom_lpf_vertical_4_neon, &aom_lpf_vertical_4_c, 8),
make_tuple(&aom_lpf_horizontal_14_neon, &aom_lpf_horizontal_14_c, 8),
make_tuple(&aom_lpf_horizontal_8_neon, &aom_lpf_horizontal_8_c, 8),
make_tuple(&aom_lpf_horizontal_6_neon, &aom_lpf_horizontal_6_c, 8),
make_tuple(&aom_lpf_horizontal_4_neon, &aom_lpf_horizontal_4_c, 8)
};
INSTANTIATE_TEST_SUITE_P(NEON, Loop8Test6Param_lbd,
::testing::ValuesIn(kLoop8Test6));
#endif // HAVE_NEON
#if HAVE_AVX2
const hbddual_loop_param_t kHbdLoop8Test9Avx2[] = {
make_tuple(&aom_highbd_lpf_horizontal_4_dual_avx2,
&aom_highbd_lpf_horizontal_4_dual_c, 8),
make_tuple(&aom_highbd_lpf_horizontal_4_dual_avx2,
&aom_highbd_lpf_horizontal_4_dual_c, 10),
make_tuple(&aom_highbd_lpf_horizontal_4_dual_avx2,
&aom_highbd_lpf_horizontal_4_dual_c, 12),
make_tuple(&aom_highbd_lpf_horizontal_8_dual_avx2,
&aom_highbd_lpf_horizontal_8_dual_c, 8),
make_tuple(&aom_highbd_lpf_horizontal_8_dual_avx2,
&aom_highbd_lpf_horizontal_8_dual_c, 10),
make_tuple(&aom_highbd_lpf_horizontal_8_dual_avx2,
&aom_highbd_lpf_horizontal_8_dual_c, 12),
make_tuple(&aom_highbd_lpf_vertical_4_dual_avx2,
&aom_highbd_lpf_vertical_4_dual_c, 8),
make_tuple(&aom_highbd_lpf_vertical_4_dual_avx2,
&aom_highbd_lpf_vertical_4_dual_c, 10),
make_tuple(&aom_highbd_lpf_vertical_4_dual_avx2,
&aom_highbd_lpf_vertical_4_dual_c, 12),
make_tuple(&aom_highbd_lpf_vertical_8_dual_avx2,
&aom_highbd_lpf_vertical_8_dual_c, 8),
make_tuple(&aom_highbd_lpf_vertical_8_dual_avx2,
&aom_highbd_lpf_vertical_8_dual_c, 10),
make_tuple(&aom_highbd_lpf_vertical_8_dual_avx2,
&aom_highbd_lpf_vertical_8_dual_c, 12),
};
INSTANTIATE_TEST_SUITE_P(AVX2, Loop8Test9Param_hbd,
::testing::ValuesIn(kHbdLoop8Test9Avx2));
#endif
} // namespace